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ON EQUAL-INPUT AND MONOTONE MARKOV MATRICES

MICHAEL BAAKE AND JEREMY SUMNER

Abstract. The classes of equal-input and of monotone Markov matrices are revisited, with

special focus on embeddability, infinite divisibility, and mutual relations. Several uniqueness

results for the embedding problem are obtained in the process. We employ various algebraic

and geometric tools, including commutativity, permutation invariance and convexity. Of

particular relevance in several demarcation results are Markov matrices that are idempotents.

1. Introduction

Let Md denote the set of d-dimensional Markov (or stochastic) matrices, which are the

elements of Mat(d,R) with non-negative entries and all row sums equal to 1. Clearly, Md is

a compact convex set, with the dd Markov matrices with entries in {0, 1} being its extremal

points (or elements); see [22, Sec. II.1] for a summary. Another classic example is the subset

of Md of doubly stochastic matrices, where both the matrix and its transpose are Markov.

Here, the extremal elements are the d! permutation matrices, which is known as Birkhoff’s

theorem. Concepts and methods from convexity will be employed throughout the manuscript;

see [26] for general background on convex structures.

A Markov matrix M is called embeddable [7, 18, 5, 2] if it can be written as M = eQ with

a rate matrix Q, which is a matrix with non-negative off-diagonal elements and vanishing

row sums. A rate matrix Q is also called a Markov generator, or simply generator, because

{etQ : t > 0} is a semigroup of Markov matrices with unit, and is thus a monoid; see [23] for

general background on Markov chains in continuous time. The set of embeddable matrices

from Md is denoted by ME
d . A Markov matrix is called infinitely divisible [8, 10] if it has

a Markov n-th root for every n ∈ N, where N is the set of positive integers. It is a well-

known fact [18, Prop. 7] that a Markov matrix is embeddable if and only if it is non-singular

and infinitely divisible; see [13, Sec. 2.3] as well as [11, 6] for related material. In the other

direction of taking powers, whenever Q is a generator, M∞ := limt→∞ etQ exists, and is an

idempotent Markov matrix by [1, Prop. 2.3(3)], so M2
∞ =M∞.

To avoid trivial statements, we will generally assume d > 2. Let C ∈ Mat(d,R) have equal

rows, each being (c1, . . . , cd), and define c = c1 + . . . + cd as its parameter sum. A matrix C

with c = 1 and all ci > 0 is Markov, but of rank 1, so det(C) = 0 for d > 1. For this reason,

such matrices C are often of limited interest, for instance in the context of embeddability.
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Instead, consider MC = (1 − c)1 + C, which is a matrix with each row summing to 1. It

is Markov if ci > 0 and c 6 1 + ci for all i. Following [25], we call such Markov matrices

equal-input, since they describe Markov chains where the probability of a transition i → j,

for i 6= j, depends on j only. All such matrices are of the above form, and the underlying

c is called its summatory parameter. For a given d, they form another convex set, which we

denote by Cd; see Lemma 2.7 for more.

A seemingly unrelated concept, at least at first sight, is the following. Consider the standard

simplex of d-dimensional probability vectors,

Pd := {(x1, . . . , xd) : all xi > 0 and x1 + . . . + xd = 1},

which is a compact convex set. Its extremal elements are the standard (row) basis vectors

ei with 1 6 i 6 d. One can introduce the partial order of stochastic monotonicity on Pd by

saying that x is dominated by y, written as x 4 y, when
∑d

i=m xi 6
∑d

i=m yi holds for all

1 6 m 6 d; see Eq. (10) below for an alternative formulation. The corresponding partial

order is well defined also on the positive multiples of Pd, called level sets, hence extendable to

convex combinations. Further, it is consistent on the entire positive cone, where two vectors

can at most be compared when they lie in the same level set. This notion has its origin in an

important class of stochastic processes [4] that show up in many places in probability theory

and its applications [16, 20, 17].

A Markov matrix M = (mij)16i,j6d is called stochastically monotone, or monotone for

short, when the mapping x 7→ xM preserves stochastic monotonicity; compare [4, 16]. It is

well-known thatM is monotone if and only if its rows mi = (mi1, . . . ,mid) = eiM are ordered

accordingly with increasing row numbers, meaning mi 4 mj for all i 6 j. More generally, the

concept of being monotone is well defined for all non-negative matrices with equal row sums,

which simply are multiples of Markov matrices. Then, preserving the partial order means that

an inequality in one level set is turned into the corresponding one in another. The monotone

Markov matrices in Md form a closed convex set, which we denote by Md,4. All elements

of Md,4 have trace > 1, and the extremal points of Md,4, as detailed in Lemma 3.4 below,

are the
(2d−1

d

)

monotone Markov matrices with entries in {0, 1}. Monotone Markov matrices

appear in many contexts; see [16, 20] as well as [17, Ch. 3] for examples.

A stationary vector of M ∈ Md is any x ∈ Pd with xM = x. Given M, the set of all

stationary vectors is convex. In fact, it is a subsimplex of Pd that can be a singleton set

(as for all irreducible M) or larger, up to Pd itself (for M = 1). A Markov matrix M is an

idempotent when M2 = M . This means that M maps any x ∈ Pd to a stationary vector in

one step. Except for M = 1, any idempotent in Md has minimal polynomial x(x − 1). In

particular, all idempotents in Md are diagonalisable.

As we shall see, the above two classes of matrices are intimately connected, and several

of their properties can be derived and understood interactively. In our presentation below,

idempotents will play an important role, which is an interesting point that does not seem

to have attracted much attention in the past. Below, we build on terminology, methods
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and results from [1], which makes a renewed section on preliminaries unnecessary. Thus, we

immediately continue by recalling some results on equal-input matrices in Section 2 and then

derive new results on their graded semigroup structure (Proposition 2.6), their embeddability

(Proposition 2.11) and their multiplicative structure in exponential form (Theorem 2.14). We

note that the latter can be viewed as a non-trivial, explicit version of the Baker–Campbell–

Hausdorff (BCH) formula in this case.

Then, we turn to the monotone matrices in Section 3, where we first recall some of their

elementary properties and then continue with results on embeddability (Theorem 3.8) and

monotone generators (Proposition 3.11). Throughout the discussion, idempotent matrices

will naturally appear, which can be explained by the intrinsic (pseudo-)Poissonian structure

of infinitely divisible Markov matrices (Proposition 3.14 and Theorem 3.17). We consider the

case d = 3 in more detail in Section 4, where the embeddability can be decided completely

(Proposition 4.3 and Theorem 4.4), and close with a general uniqueness result (Theorem 5.3

and Corollary 5.5) and some comments on Markov roots and limiting cases in Section 5.

2. Equal-input matrices and some of their properties

From now on, we always use C to denote a non-negative matrix with equal rows and

parameter sum c > 0, where c = 0 then implies C = 0. For any matrix C of this type, one

has MC = C for all M ∈ Md.

2.1. Equal-input Markov matrices. Given such a matrix C, the corresponding matrix

(1) MC := (1− c)1 + C

is Markov precisely when 0 6 ci for all i together with c 6 1 + mini ci. It is then called an

equal-input Markov matrix, and the set of all such matrices for a fixed d is denoted by Cd. As
C 6= 0 has eigenvalues c and 0, the latter with multiplicity d−1, it is clear that

(2) det(MC) = (1− c)d−1 .

A Markov generator Q is called equal-input if it is of the form Q = QC = C − c1, with C as

above and c > 0 without further restrictions. Clearly, c = 0 means Q = 0. Also here, we call

c the summatory parameter, as it will always be clear from the context whether we refer to a

Markov matrix or to a generator. Since C2 = cC, one gets Q2
C = −cQC , so any equal-input

generator is diagonalisable. When c > 0, the matrix 1
c
C is both Markov and an idempotent.

As we shall see, the relation QC =MC − 1 will become particularly important.

Fact 2.1. If M ∈ Cd, with d > 2, its summatory parameter satisfies c ∈
[

0, d
d−1

]

. Moreover,

M ∈ Cd is an idempotent if and only if c = 1 or c = 0, where the latter case means M = 1,

while all other idempotents are singular.

Proof. Assume that M = MC is Markov. Since 0 6 c = c1 + . . . + cd 6 1 + mini ci, the

maximal value of c is realised for c1 = . . . = cd = c
d
, which gives the first claim. The second

follows from considering the equation

(1− c)1 + C = MC = M 2
C = (1− c)21 + (2− c)C,
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which is solved by C = 0 with c = 0 or, for any c > 0, implies (1− c)C = 0 and hence c = 1.

This leads to the two cases stated, where 1 is the only non-singular idempotent by (2). �

Let us next look at some asymptotic properties. Here, one has

M n
C = (1− c)n1 +

1− (1− c)n

c
C

for n ∈ N0 and c > 0 (so C 6= 0). If |1− c| < 1, we see that M n
C , as n→ ∞, converges to the

Markov matrix 1
c
C. Adding the case with c = 0, but excluding c = 2 from the consideration

(where convergence fails, occurring only for d = 2), one can summarise as follows.

Fact 2.2. Let d > 2 and let C be a non-negative matrix with equal rows and parameter sum

0 6 c < 2. Then, if the matrix MC from (1) is Markov, one has

lim
n→∞

M n
C =

{

1, if c = 0,

1
c
C, otherwise,

where all limits are idempotents. Here, the summatory parameter of M n
C is 1 − (1 − c)n,

which is 0 for c = 0, or otherwise converges to 1 as n→ ∞. �

Since idempotents will show up repeatedly below, we recall the following well-known prop-

erty of Markov matrices.

Lemma 2.3. For M ∈ Md, the following properties are equivalent.

(1) M is a non-singular idempotent.

(2) 1 is the only eigenvalue of M .

(3) M = 1.

(4) M has minimal polynomial q(x) = x− 1.

Proof. Clearly, M has 1 as an eigenvalue, because it is Markov. When M2 = M , the only

possible other eigenvalue is 0, and (1) ⇒ (2) is clear. The implications (3) ⇒ (4) ⇒ (1) are

immediate, and it remains to show (2) ⇒ (3).

By [9, Thm. 13.10], we know that the algebraic multiplicity of the eigenvalue 1 agrees with

the geometric one. When no other eigenvalue exists, this means M = 1. �

The set Cd of equal-input matrices is important in many applications, see [25, 1] and

references therein, and has interesting algebraic properties as follows.

Fact 2.4. Let C and C ′ be two non-negative, equal-row matrices, with parameter sums c

and c′, such that MC and MC ′ are Markov matrices, so both lie in Cd. Then, one also gets

M =MCMC ′ ∈ Cd, where one has M = MC ′′ with C ′′ = (1− c′)C + C ′ and parameter sum

c′′ = c+ c′ − cc′. �

The Markov property ofM =MCMC ′ implies 0 6 c′′i 6 c′′ 6 1+c′′i for all i, which may not

be obvious from the formula for C ′′. In fact, the relation between the summatory parameters

can be further analysed as follows, where we refer to [19] for the grading notion.
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Lemma 2.5. Consider f(a, b) = a + b − ab for a, b ∈ X := [0, 1) ∪ (1, 2]. Then, one of the

following three cases applies.

(1) If max(a, b) < 1, one has 0 6 max(a, b) 6 f(a, b) < 1.

(2) If min(a, b) > 1, one has 0 6 2−min(a, b) 6 f(a, b) < 1.

(3) Otherwise, one has 1 < f(a, b) 6 max(a, b) 6 2.

In particular, the mapping (a, b) 7→ f(a, b) turns X into a C2-graded, commutative monoid,

with 0 as the neutral element of X and the grading being induced by the two connected com-

ponents of X, for instance via the mapping x 7→ sgn(1− x) for x ∈ X.

Proof. Without loss of generality, we may assume a 6 b. Also, observe that the function

x 7→ x(2− x), on [0, 2], has a unique maximum at x = 1, with value 1, so x(x− 1) < 1 holds

for all x ∈ [0, 1) ∪ (1, 2]. Now, we can look at the three cases as follows.

When 0 6 a 6 b < 1, where 1− b is positive, we obtain the estimate

0 6 b 6 b+ (1− b)a = f(a, b) < b+ (1− b) = 1,

while 1 < a 6 b 6 2, where 1− a is negative, leads to

0 6 2− a = a+ 2(1− a) 6 a+ b(1− a) = f(a, b) 6 a+ a(1− a) = a(2− a) < 1.

For the remaining case, it suffices to consider 0 6 a < 1 < b 6 2, which gives

1 = b+ (1− b) < b+ a(1− b) = f(a, b) 6 a+ b− a = b 6 2,

from which claims (1) − (3) follow.

Since f(f(a, b), c) = a+b+c−ab−ac−bc+abc = f(a, f(b, c)), associativity of the mapping

(a, b) 7→ f(a, b) is clear, and the C2-graded monoid structure is now obvious. �

Proposition 2.6. The set Cd is a monoid under matrix multiplication, with the subset of

non-singular elements forming a submonoid. The latter is C2-graded by sgn(1− c), where c

is the summatory parameter, which matches with the grading of X from Lemma 2.5. When

d is even, the same grading emerges from the sign of the determinant.

Proof. The semigroup property follows from Fact 2.4, and 1 ∈ Cd shows that Cd is a monoid.

The non-singular matrices, which include 1, are closed under multiplication.

The formula for the summatory parameter of a product from Fact 2.4, in conjunction with

Lemma 2.5, implies c′′ ∈ [0, 1) when c and c′ are either both in [0, 1) or both in
(

1, d
d−1

]

,

where the ranges follow from Fact 2.1. Likewise, c′′ > 1 if and only if c < 1 < c′ or c′ < 1 < c.

Together, this provides the claimed C2-grading.

For even d, by Eq. (2), the sign of 1− c matches the sign of the determinant. �

Given d > 2, one can consider Xd :=
{

x ∈ X : x 6 d
d−1

}

, which defines a submonoid of X,

which is again C2-graded. Then, we have two monoid homomorphisms, namely

Cd −−→ Xd −−→ C2 ,
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which summarises the grading structure. Let us mention in passing that the grading can be

extended to include the singular matrices (that is, those with c = 1), and thus cover all of Cd,
by employing the semigroup {−1, 0, 1} instead of C2.

Next, we consider the set Cd in a little more detail. We begin with the closed subset (and

semigroup) of non-trivial idempotents,

Cd,1 := {M ∈ Cd : c = 1} = {M ∈ Cd :M2 =M 6= 1} = {M ∈ Cd : det(M) = 0},

where the alternative characterisations immediately follow from Fact 2.1 and Eq. (2). Let

Ei ∈ Mat(d,R) denote the matrix with 1 in all positions of column i and 0 everywhere else,

which is an idempotent Markov matrix. In fact, these matrices satisfy

(3) EiEj = Ej for all 1 6 i, j 6 d,

and it is easy to see that any convex combination M =
∑d

i=1 βiEi, where all βi > 0 and

β1 + . . .+ βd = 1, is an idempotent as well. For d > 2, we also define the rational matrix

(4) Gd = 1
d− 1













1 · · · 1
...

. . .
...

1 · · · 1






− 1






= 1

d− 1

(

E1 + . . . + Ed − 1
)

,

which is the unique element of Cd with maximal summatory parameter, c = d
d−1 .

Lemma 2.7. The sets Cd and Cd,1 are convex. When d > 2, the extremal elements of Cd,1
are the idempotent matrices E1, . . . , Ed, which remain extremal in Cd. There are two further

extremal elements in Cd, namely 1 and Gd.

Proof. The convexity of Cd follows from

αMC + (1− α)MC ′ =
(

1− (αc+ (1− α)c′)
)

1 + αC + (1− α)C ′

for α ∈ [0, 1] together with the linearity of the summatory parameter. The convexity of the

subset Cd,1 is then obvious because these are the elements with c = 1. Clearly, the convex

combinations of the d matrices E1, . . . , Ed span Cd,1. Since they are linearly independent,

they must be extremal.

Let M ∈ Cd, so M = MC , where C has equal rows (c1, . . . , cd) with ci > 0 and parameter

sum c ∈
[

0, d
d−1

]

, subject to the condition c 6 1 + cmin with cmin = mini ci. Now, we will

show that M is of the form r1 + sGd +
∑

i tiEi for some r, s, ti > 0 that sum to 1.

If c ∈ [0, 1], simply choose s = 0, ti = ci and r = 1 − c, which does the job. If c > 1, we

have cmin > 0 because c 6 1+ cmin by the Markov property of M . Choose s = (d−1)cmin and

ti = ci − cmin, where s > 0 and all ti > 0 by construction. Then, s+
∑

i ti = c− cmin 6 1, so

we can complete this with r = 1− s−∑i ti > 0. It is easy to check that this gives a convex

combination with summatory parameter c, and also that the sum equals M .

Consequently, the compact set Cd is the convex hull of {1, Gd, E1, . . . , Ed}, and hence the

smallest convex set that contains these d+2 matrices. In view of the Krein–Milman theorem

[26, Thm. 2.6.16], it remains to show that they all are extremal. This is clear for 1, where
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c = 0, and for Gd, which is the only matrix in Cd with c = d
d−1 . Since the Ei are linearly

independent, but all have c = 1, none can be replaced by a convex combination of the other

matrices (including 1 and Gd), which completes the argument. �

Example 2.8. For d = 2, all Markov matrices are of equal-input type. The four extremal

elements of C2 = M2 are given by

c 0 1 1 2

C 0 ( 1 0
1 0 ) ( 0 1

0 1 ) ( 1 1
1 1 )

MC 1 ( 1 0
1 0 ) ( 0 1

0 1 ) ( 0 1
1 0 )

where the two Markov matrices with c = 1 span C2,1; see [1, Fig. 1] for an illustration.

The situation is a little more interesting for d = 3, where C3 ( M3, and one has

c 0 1 1 1 3
2

MC 1

(

1 0 0
1 0 0
1 0 0

) (

0 1 0
0 1 0
0 1 0

) (

0 0 1
0 0 1
0 0 1

)

1
2

(

0 1 1
1 0 1
1 1 0

)

part of which will reappear in Table 1 below. ♦

2.2. Equal-input generators and embeddability. If Q is an equal-input generator with

summatory parameter c, so Q = C − c1, its exponential is

(5) eQ = 1 + 1− e−c

c
Q = 1− e−c

c
C + e−c

1,

with C = 0 for c = 0, so the summatory parameter of eQ is always given by c̃ = 1− e−c. For

embeddability, one has the following well-known result; see [18, 5] for background.

Lemma 2.9. The Markov matrix M =
(

1−a a
b 1−b

)

with a, b ∈ [0, 1] is embeddable if and only

if det(M) > 0, which is equivalent to the condition 0 6 a + b < 1. In this case, there is

precisely one generator Q such that M = eQ, namely Q = − log(1−a−b)
a+b

(

M − 1
)

, which is an

equal-input generator.

Proof. The first statement is Kendall’s theorem, see [1, Thm. 3.1] for a complete formulation,

while the uniqueness claim is established in [1, Eq. (5) and Cor. 3.3]. �

Put differently, since C2 = M2, a matrix M ∈ M2 is embeddable if and only if its sum-

matory parameter satisfies 0 6 c < 1. The closure of the set of embeddable matrices in M2

consists of all infinitely divisible elements of M2, as we shall discuss in more detail later, in

Theorem 3.8 and Example 3.15.

Remark 2.10. The equation ex = 1 has precisely one solution x ∈ R, namely x = 0.

In contrast, eA = 1 with A ∈ Mat(2,R) has already infinitely many solutions, including

A = n
(

0 −2π
2π 0

)

with n ∈ Z. Restricting A to real matrices with zero row sums restores

uniqueness, because one eigenvalue of A is then 0, hence also the second, by the spectral

mapping theorem (SMT), as A is real. Since A must be diagonalisable by [1, Fact 2.15],

A = 0 is the only solution.
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When A = (aij)16i,j6d is a Markov generator with eA = 1, for arbitrary d, one has

1 = det(eA) = etr(A) and thus 0 = tr(A) = −∑i 6=j aij . With aij > 0 for all i 6= j by the

generator property, this gives aij = 0 for all i 6= j, hence also aii = 0 for all i. Consequently,

A = 0 is the only generator with eA = 1. However, already for d = 3, there are further

solutions of eA = 1 among the real matrices with zero row sums, which is one reason why the

embedding problem becomes more complicated for d > 3. ♦

In general, when Q is an equal-input generator, then so is 1
n
Q, for every n ∈ N. Now,

we can reformulate results from [1] and combine them with Kingman’s characterisation of

embeddability via regularity in conjunction with infinite divisibility [18, Prop. 7]. As this is

compatible with the equal-input structure, we can summarise the general situation as follows.

Proposition 2.11. When d is even, M ∈ Cd is embeddable if and only if 0 6 c < 1. When

d > 3 is odd, there are further embeddable cases with c > 1.

For arbitrary d and M ∈ Cd, the following properties are equivalent.

(1) M has positive spectrum.

(2) M is embeddable via an equal-input generator.

(3) M is non-singular and infinitely divisible within Cd.
(4) The summatory parameter of M satisfies 0 6 c < 1. �

A concrete example of an embeddable matrix M ∈ C3 with c > 1 is discussed in [5, Ex. 16]

and [1, Ex. 4.3]. This M is infinitely divisible within M3, but not within C3. In fact, since
n
√
M has spectrum

{

1, exp
(−π

√
3

n
± iπ

n

)}

in this case, M does not possess an n-th root of

equal-input type for any n > 2.

Example 2.12. Within Cd lies the submonoid of constant-input matrices [1, Rem. 4.8], which

all are of the form Mc := 1 + cJd with 0 6 c 6 d
d−1 , where Jd = d−1

d
(Gd − 1) with Gd from

(4) is a constant-input generator with summatory parameter 1, hence J2
d = −Jd . Clearly, Jd,

as well as every constant-input matrix, is diagonalisable. If c ∈ [0, 1), the spectral radius of

cJd is c < 1, and a simple calculation with log(1 + cJd) gives

Mc := 1 + cJd = exp
(

− log(1− c)Jd
)

.

For d even, by Proposition 2.11, no constant-input Markov matrix with c > 1 can be embed-

dable, while this changes for d > 3 odd.

Assume that d is odd and Mc with c > 1 is embeddable, so M = eQ, where we also have

[Jd, Q] = 0. So, by [1, Lemma 4.10 and Fact 2.15], Q is doubly stochastic and diagonalisable.

As the eigenvalues of Mc are 1 and 1− c < 0, the latter with multiplicity d− 1, the spectrum

of Q cannot be real. In particular, Q is not symmetric. Still, for any a ∈ [0, 1), we get

MaMc = e− log(1−a)Jd eQ = eQ−log(1−a)Jd ,

and Mf(a,c) is embeddable as well, where f is the function from Lemma 2.5.

When c > 1 is fixed and a varies in [0, 1), f(a, c) runs through (1, c ]. Now, the infinitely

divisible elements of Md form a closed subset, as follows by a standard compactness argument
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via convergent subsequences. Since Mc with c > 1 is non-singular, we see that there is a

number cmax ∈ (1, 2] such that Mc is embeddable precisely for all c ∈ [0, 1) ∪ (1, cmax]. These

constant-input matrices form a monoid that inherits the C2-grading from Proposition 2.6.

For the case d = 3, we know from [1, Cor. 6.6] that cmax = 1 + e−π
√
3. The determination of

cmax > 1 for d = 2m+ 1 with m > 2 is an interesting open question. ♦

When d > 3, the embedding of M ∈ Cd need no longer be unique as for d = 2, but one still

has the following property.

Lemma 2.13. Let d > 2 and let M ∈ Cd be embeddable. If M admits a representation of

the form M = eQ with a generator Q of equal-input type, the latter is unique in the sense

that no other embedding can have an equal-input generator.

Proof. The claim is obvious for M = 1, where Q = 0 is the only generator solution; compare

Remark 2.10. Next, let Q and Q′ be equal-input generators, with summatory parameters c

and c′, where we may now assume that cc′ > 0. When eQ = eQ
′

, Eq. (5) implies

e−c
1 + 1− e−c

c
C = e−c′

1 + 1− e−c′

c′
C ′.

As both C and C ′ are equal-row matrices, this can only hold when e−c = e−c′ , hence c = c′,
which in turn forces C = C ′ and thus Q = Q′ as claimed. �

When M ∈ Cd is equal-input embeddable, so M = MC for some C > 0 with parameter

sum 0 6 c < 1 by Proposition 2.11, the unique generator from Lemma 2.13 is given by

(6) Q = − log(1− c)

c
(MC − 1),

meaning Q = 0 for c = 0, which is a nice extension of Lemma 2.9. The derivation rests on

the observation that c < 1 is the spectral radius of MC − 1, which permits the use of the

standard branch of the matrix logarithm and its power series.

Let us next expand on an observation made in [1], in the context of an effective BCH

formula for embeddable equal-input matrices. Here, one considers products of exponentials

of equal-input generators, including non-commuting ones.

Theorem 2.14. Let Q and Q′ be equal-input generators, with summatory parameters c and

c′, respectively. Then, one has eQeQ
′

= eQ
′′

with

Q′′ = c+ c′

c
(

1− e−(c+c′)
)

(

e−c′(1− e−c)Q+ c
c′
(1− e−c′)Q′),

interpreted appropriately for c = 0 or c′ = 0, where Q′′ is again an equal-input generator. In

particular, when [Q,Q′ ] = 0, the formula simplifies to Q′′ = Q+Q′.

Proof. Let C and C ′ be the constant-row matrices underneath Q and Q′. Using the second

identity from Eq. (5) in conjunction with the relation CC ′ = cC ′, one finds

(7) eQeQ
′

= e−(c+c′)
1 +

e−c′(1− e−c)

c
C + 1− e−c′

c′
C ′.
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Since the summatory parameters of eQ and eQ
′

are c̃ = 1 − e−c and c̃′ = 1 − e−c′ , which

both lie in [0, 1), the product eQeQ
′

is an equal-input matrix that has summatory parameter

c̃′′ ∈ [0, 1) by Lemma 2.5. As such, it is equal-input embeddable by Proposition 2.11; see also

[1, Thm. 4.6]. Consequently, there exists an equal-input generator Q′′= C ′′− c′′1 such that

(8) eQeQ
′

= eQ
′′

= e−c′′
1 + 1− e−c′′

c′′
C ′′,

where the last step follows once more from (5).

A comparison of (7) and (8) reveals that equality can only hold when the summatory

parameters satisfy c′′ = c+ c′, which then gives

C ′′ = c+ c′

1− e−(c+c′)

(

e−c′(1− e−c)

c
C + 1− e−c′

c′
C ′
)

.

Inserting C = Q+ c1 and the analogous terms for C ′ and C ′′ leads to the formula stated.

The condition [Q,Q′ ] = 0, which includes the case that one generator is 0, is equivalent to

c′C = cC ′, which also gives c′Q = cQ′. Inserting this into the formula for Q′′ produces the
claimed simplification after a short calculation. �

In Theorem 2.14, the summatory parameters of eQ, eQ
′

and eQ
′′

are always related by

c̃′′ = c̃+ c̃′ − c̃ c̃′ = f
(

c̃, c̃′
)

= 1− e−(c+c′) < 1,

in accordance with Fact 2.4 and Lemma 2.5. Various other aspects of equal- and constant-

input Markov matrices have been discussed in [1], wherefore we now proceed to the second

matrix class described in the Introduction.

3. Monotone Markov matrices and embeddability

Let us begin this section with a formalisation of some of our previous recollections. To this

end, we follow [16] and employ the lower-triangular matrix T ∈ Mat(d,R) given by

(9) T =







1 0
...

. . .

1 · · · 1






,

together with its inverse, T−1, which has entries 1 on the diagonal, −1 on the first subdiagonal,

and 0 everywhere else. With T and vectors x, y ∈ Pd, one has the equivalence

(10) x 4 y ⇐⇒ xT 6 yT,

where the inequality on the right means that it is satisfied element-wise.
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3.1. Monotone Markov matrices. If E(i,j) ∈ Mat(d,R) denotes the elementary matrix

with a single 1 in position (i, j) and 0 everywhere else, which results in

(11) E(k,ℓ)E(m,n) = δℓ,mE(k,n) ,

one obtains the relations

E(i,j)T = E(i,1) + . . .+ E(i,j) and T−1E(i,j) = E(i,j) − E(i+1,j) ,

where E(d+1,j) := 0. Further, we call a column vector v = (v1, . . . , vd)
T non-decreasing if

vi 6 vi+1 holds for all 1 6 i 6 d−1. Now, we can characterise monotone matrices as follows.

Fact 3.1. For a Markov matrix M ∈ Md, the following statements are equivalent.

(1) The matrix M is monotone.

(2) The mapping x 7→ xM preserves the partial order 4 on the positive cone.

(3) One has T−1MT > 0, understood element-wise, with T as in Eq. (9).

(4) Whenever v is a non-decreasing vector, Mv is also non-decreasing.

Further, the same equivalences hold for any non-negative B ∈ Mat(d,R) with equal row sums.

Proof. By our definition, (1) is equivalent to preserving 4 on Pd, which clearly extends to all

level sets αPd with α > 0, so (1) ⇐⇒ (2) is clear. The equivalences (2) ⇐⇒ (3) ⇐⇒ (4) are

now an immediate consequence of [16, Thm. 1.1].

The case B = 0 is trivial. When B 6= 0, with elements bij, is a non-negative matrix with

equal row sums, meaning that
∑d

j=1 bij = b > 0 for all 1 6 i 6 d, the matrix M = 1
b
B is

Markov, and the final claim follows from the compatibility of the partial order on the positive

cone with scaling by b and the fact that the conditions in (3) and (4) are linear in M . �

Example 3.2. LetM = (mij)16i,j6d be Markov. When d = 2, the non-negativity of T−1MT

is equivalent to the single condition tr(M) > 1, alternatively to

m22 > m12 .

Likewise, for d = 3, the original monotonicity condition for M , or equivalently the non-

negativity condition for T−1MT , boils down to

m33 > m23 > m13 and m11 > m21 > m31 ,

where it was used that all rows of M sum to 1. ♦

Let Eℓ1,...,ℓd
denote the {0, 1} Markov matrix with the row vector eℓi as row i, for 1 6 i 6 d,

so Eℓ1,...,ℓd
= E(1,ℓ1)

+ . . . + E(d,ℓd)
. There exist dd such matrices, which are the extremal

elements of Md. Since ei 4 ej if and only if i 6 j, it is clear that Eℓ1,...,ℓd
is monotone

precisely when ℓ1 6 ℓ2 6 · · · 6 ℓd. Using (11), or alternatively tracing the images of the basis

vectors ei, one verifies the multiplication rule

(12) Ek1,...,kd
Eℓ1,...,ℓd

= Eℓk1,...,ℓkd
.

Due to the existence of singular idempotents among these matrices (when d > 2), one thus

obtains the following structure result.
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Fact 3.3. For d > 2, the set of {0, 1} Markov matrices, under matrix multiplication, is a

monoid, but not a group. The same property holds for the subset of monotone matrices.

A {0, 1} Markov matrix in Md is non-singular if and only if it is a permutation matrix.

The subset of the d! permutation matrices is isomorphic with the symmetric group Sd. �

Now, we turn to a well-known property of Md,4, where we include a proof for convenience.

Lemma 3.4. The set Md,4 is convex. It has
(2d−1

d

)

extremal points, which are the monotone

Markov matrices with entries in {0, 1}, that is, the Eℓ1,...,ℓd
with 1 6 ℓ1 6 ℓ2 6 · · · 6 ℓd 6 d.

Proof. Convexity is clear, for instance via Fact 3.1(3). Consequently, any convex combination

of monotone {0, 1} Markov matrices must lie in Md,4. Thus, we first have to show that such

convex combinations exhaust Md,4. This follows from a greedy algorithm that is based on

the following reduction argument.

Consider a non-negative matrix B 6= 0 with equal row sums, b say, where b > 0. Assume

that B is monotone. Such a matrix, due to the monotonicity condition, appears in a (non-

reduced) row-echelon form. This is captured in a set of integer pairs
(

(i1, j1), . . . , (ir, jr)
)

,

where j1 is the position of the first (or left-most) non-zero column of B, with i1 the lowest

position of a positive element in it, j2 then is the left-most position of a column that is non-

zero below row i1, with i2 the lowest position of a positive element in column j2, and so on.

Clearly, r > 1 and ir = d due to b > 0 in conjunction with B being monotone.

For instance, B may have the row-echelon form

B =





















0 ∗ · · · ·
0 ∗ · · · ·
0 • · · · ·
0 0 • · · ·
0 0 0 0 ∗ ·
0 0 0 0 • ·





















,

here with r = 3 and integer pairs
(

(3, 2), (4, 3), (6, 5)
)

. A symbol • marks the lowest positive

element in a column, and ∗ any element in the same column (above •) that cannot be smaller

(as a consequence of monotonicity). In each row, there is thus either one ∗ or one • by this

rule. The total number of symbols of type • or ∗ is d, so 6 in this particular case. To the left

of them, all elements are 0, while the remaining elements of B are left unspecified, as they

play no role at this stage.

Now, let α > 0 be the minimal element in the • positions, which are the (ik, jk), and let

E denote the matrix that has a 1 in every • and in every ∗ position and a 0 anywhere else,

which obviously is a monotone {0, 1} Markov matrix, namely the Eℓ1,...,ℓd
where ℓi is the

unique position of ∗ or • in row i, for 1 6 i 6 d. Now, set B′ = B − αE, which is still

monotone and has constant row sums b′ = b−α > 0, but one • is now replaced by a 0, which

means that this • is gone or has moved up or right (or both) in the matrix. Unless B′ = 0,

we repeat the procedure with the new row-echelon form, which terminates after finitely many

steps. The result is a decomposition of B as a sum of monotone {0, 1} Markov matrices with
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(ℓ1, ℓ2, ℓ3) M σ(M) p q M2

(1, 1, 1)
(

1 0 0
1 0 0
1 0 0

)

{1, 0, 0} x2(x− 1) x(x− 1) (1, 1, 1)

(1, 1, 2)
(

1 0 0
1 0 0
0 1 0

)

{1, 0, 0} x2(x− 1) p(x) (1, 1, 1)

(1, 1, 3)
(

1 0 0
1 0 0
0 0 1

)

{1, 1, 0} x(x− 1)2 x(x− 1) (1, 1, 3)

(1, 2, 2)
(

1 0 0
0 1 0
0 1 0

)

{1, 1, 0} x(x− 1)2 x(x− 1) (1, 2, 2)

(1, 2, 3)
(

1 0 0
0 1 0
0 0 1

)

{1, 1, 1} (x− 1)3 x− 1 (1, 2, 3)

(1, 3, 3)
(

1 0 0
0 0 1
0 0 1

)

{1, 1, 0} x(x− 1)2 x(x− 1) (1, 3, 3)

(2, 2, 2)
(

0 1 0
0 1 0
0 1 0

)

{1, 0, 0} x2(x− 1) x(x− 1) (2, 2, 2)

(2, 2, 3)
(

0 1 0
0 1 0
0 0 1

)

{1, 1, 0} x(x− 1)2 x(x− 1) (2, 2, 3)

(2, 3, 3)
(

0 1 0
0 0 1
0 0 1

)

{1, 0, 0} x2(x− 1) p(x) (3, 3, 3)

(3, 3, 3)
(

0 0 1
0 0 1
0 0 1

)

{1, 0, 0} x2(x− 1) x(x− 1) (3, 3, 3)

Table 1. The 10 extremal elements Eℓ1,ℓ2,ℓ3
of M3,4 with some of their prop-

erties. Here, σ(M) is the spectrum of M with multiplicities, while p and q

are, up to an overall sign, the characteristic and the minimal polynomial of

M . Note that p 6= q precisely when M is an idempotent. The last column

gives M2 in terms of its index parameters.

positive weight factors. If we start with M, which has equal row sums b = 1, it is clear that

we end up with a convex combination.

No monotone {0, 1} Markov matrix can be written as a convex combination of the other

ones, so their extremality is clear. Now, given d, the monotone {0, 1} Markov matrices are

in obvious bijection with the possibilities to distribute d indistinguishable balls (the 1s) to

d distinguishable boxes (the columns of the matrix), where an outcome (n1, . . . , nd), with

n1 + . . . + nd = d, parameterises the matrix M with the row vector e1 in the first n1 rows,

then e2 in the next n2 rows, and so on. The total number of possible outcomes is well known

to be
(2d−1
d−1

)

=
(2d−1

d

)

, as this is the number of choices to place d−1 separating walls between

the d balls on the altogether 2d− 1 positions; see [24, A001700] for details. �

The case d = 3 is summarised in Table 1. By Lemma 3.4, every monotone Markov matrix

M ∈ Md can be expressed as a convex combination of the form

(13) M =
∑

16ℓ16···6ℓd6d

αℓ1,...,ℓd
Eℓ1,...,ℓd
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with all coefficients αℓ1,...,ℓd
> 0, their sum being 1, and Eℓ1,...,ℓd

as above. Observing that

tr
(

Eℓ1,...,ℓd

)

> 1 whenever ℓ1 6 ℓ2 6 · · · 6 ℓd, one finds from (13) that tr(M) > 1 holds for all

monotone Markov matrices, which easily generalises as follows.

Corollary 3.5. Let B ∈ Mat(d,R) be a non-negative matrix with equal row sums, b > 0. If

B is also monotone, one has tr(B) > b. �

3.2. Monotonicity and embeddability. Recall from [1] that Ed denotes the semigroup

generated by the embeddable Markov matrices of dimension d. For d = 2, every element of E2
is itself embeddable (so E2 = ME

2 , which is no longer true for d > 3), and the set of monotone

Markov matrices agrees with the closure of E2. In fact, M2,4 is the closed triangle in M2

with the vertices 12, E1 = ( 1 0
1 0 ) and E2 = ( 0 1

0 1 ). Only the line {αE1+(1−α)E2 : 0 6 α 6 1}
does not belong to E2, because it consists of singular idempotents. The only other idempotent

in M2 is 12, the trivial case. This leads to the following result.

Proposition 3.6. An element M ∈ M2 is monotone if and only if tr(M) > 1. Thus, being

monotone is equivalent to either being embeddable or being a non-trivial idempotent.

Proof. Observe that tr(M) 6 2 holds for all M ∈ M2. Since M =
(

1−a a
b 1−b

)

with a, b ∈ [0, 1]

is monotone if and only if 1 > a+ b, compare Example 3.2, the first claim is immediate. By

Lemma 2.9, tr(M) = 1 means M is monotone, but not embeddable.

For the second claim, observe thatM ∈ M2 is an idempotent if and only ifM2 =M , which

implies σ(M) ⊆ {0, 1}. Since λ = 1 is always an eigenvalue, being an idempotent either means

that the second eigenvalue is also 1, hence M = 1 by Lemma 2.3, or that det(M) = 0, which

gives the line from E1 to E2 discussed above. �

Corollary 3.7. Any M ∈ M2,4 is infinitely divisible within M2,4. In fact, M ∈ M2 is

infinitely divisible if and only if it is monotone.

Proof. Let M ∈ M2 be monotone. By Proposition 3.6, the case det(M) = 0 means M2 =M ,

so also Mn =M for all n ∈ N by induction, and M is a monotone n-th root of itself. Clearly,

the latter statement also applies to M = 1.

When M =
(

1−a a
b 1−b

)

6= 1 is embeddable, we have a+ b > 0 and M = eQ with the unique

generator Q from Lemma 2.9. Then, for any n ∈ N, a Markov n-th root of M is given by

exp
(

1
n
Q
)

=

(

1− ǫa ǫa

ǫb 1− ǫb

)

with ǫ =
1− n

√
1− a− b

a+ b
,

as follows from the same standard calculation with the matrix exponential that was used to

derive (6). Now, exp
(

1
n
Q
)

is monotone if and only if 1 > ǫ(a + b), by an application of the

criterion from Example 3.2. But this estimate follows from 0 < a+ b < 1 because ǫ ∈ [0, 1].

It remains to show that infinite divisibility of M ∈ M2 implies its monotonicity, which can

be derived from the spectrum as follows. If 1 is the only eigenvalue of M , we have M = 1 by

Lemma 2.3, which is embeddable. Otherwise, one has σ(M) = {1, λ} where λ 6= 1 must be

real, with |λ| 6 1. Since M has a Markov square root by assumption, we get λ ∈ [0, 1). Now,
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λ = 0 means that M is an idempotent, while λ > 0 implies det(M) > 0, so M is embeddable

by Lemma 2.9. Monotonicity of M now follows from Proposition 3.6. �

Our next goal is a better understanding of the connection between Md,4 and Cd, aiming

at generalisations of Corollary 3.7 to general d. To this end, we once more consider a non-

negative matrix C with equal rows and parameter sum c, with C = 0 only when c = 0. For

c > 0, the matrix 1
c
C is both Markov and monotone. Consequently, the Markov matrix MC

from Eq. (1), for any c ∈ [0, 1], is a convex combination of 1 and 1
c
C, hence monotone as well.

When c = 0, which means MC = 1, or when c = 1, where MC = C, the matrix MC is a

monotone idempotent. When c ∈ (0, 1), Eq. (6) implies

(14) MC = eQ with Q = − log(1− c)

c
QC ,

where QC =MC − 1 as before, which is an equal-input generator. Now, for arbitrary n ∈ N,

a standard calculation with the exponential series gives the formula

(15) exp
(

1
n
Q
)

= 1 +
1− n

√
1− c

c
QC = n

√
1− c 1 +

(

1− n
√
1− c

)

1
c
C.

Since n
√
1− c ∈ (0, 1) under our assumptions, this is a convex combination of two monotone

Markov matrices, hence monotone and Markov itself. We have thus proved the following gen-

eralisation of our previous statements, assuming d > 2 as usual. In particular, the idempotent

elements play a similar role as in the two-dimensional case.

Theorem 3.8. Let C, QC and MC be as above, and let c = c1+ . . .+cd be the corresponding

parameter sum. If c ∈ [0, 1], MC is Markov and monotone, with the following properties.

(1) MC is an idempotent if and only if c ∈ {0, 1}, where c = 0 means MC = 1.

(2) MC is embeddable if and only if c ∈ [0, 1), then with Q = 0 for c = 0 or otherwise

with the generator Q from (14).

In particular, MC = 1 is the only embeddable idempotent. In both cases, for every n ∈ N,

MC has a Markov n-th root that is both equal-input and monotone, which is to say that MC

is infinitely divisible within Md,4 ∩ Cd. �

Note that, also in generalisation of the case d = 2, the set of monotone Markov matrices of

type MC with summatory parameter c ∈ [0, 1] is the closure of the equal-input Markov ma-

trices that are embeddable with an equal-input generator, with all non-embeddable boundary

cases being non-trivial idempotents. In fact, one has more as follows.

Corollary 3.9. A Markov matrix M ∈ Cd is monotone if and only if its summatory parameter

satisfies c ∈ [0, 1]. So, one obtains the convex set

Cd,4 := Cd ∩Md,4 =
{

M ∈ Cd : c ∈ [0, 1]
}

,

with the d+1 extremal elements E1, . . . , Ed and 1.

Further, Cd,4 is the disjoint union of the set of equal-input embeddable elements from Cd
with the set Cd,1 of non-trivial idempotents in Cd. The eigenvalues of any M ∈ Cd,4 are real

and non-negative, and they are positive precisely for the embeddable cases.
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Proof. It is clear from Theorem 3.8 that all M ∈ Cd with c ∈ [0, 1] are monotone, so we need

to show that no further element of Cd is. To this end, consider a Markov matrix of the form

M = (1 − c)1 + C with c > 1, which implies that all ci > 0. Then, it is easy to check that

T−1MT fails to be a non-negative matrix, where T is the matrix from (9), and M fails to be

monotone by Fact 3.1(3).

When c ∈ [0, 1], we have 0 6 ci 6 c1 + . . . + cd = c 6 1 for all 1 6 i 6 d, and

MC = (1− c)1 + C = (1− c)1 +

d
∑

i=1

ciEi

is a convex combination, where the extremality of E1, . . . , Ed and 1 is clear.

Another application of Theorem 3.8 gives the decomposition claimed, while the statement

on the spectrum is clear because the eigenvalues of MC are 1 and 1− c. �

Geometrically, the situation is that the simplex Cd,4 separates the compact set Cd into

the subset with c ∈ [0, 1), which are the ‘good’ cases for embeddability, and the subset with

c ∈
(

1, d
d−1

]

, where embeddability requires d even and further conditions, but is never possible

with an equal-input generator. For d = 2, we refer to [1, Fig. 1] for an illustration.

One can view Cd,4 differently when starting in Md,4. Let Sd be the symmetric (or per-

mutation) group of d elements, and Pπ the standard permutation matrix that represents the

mapping ei 7→ e
π(i) under multiplication to the right. Pπ has elements δ

i,π(j) and satisfies

P−1
π = P

π−1 . There are d! such matrices, which are the extremal elements among the doubly

stochastic matrices mentioned earlier. The conjugation action by such a matrix gives

PπE(k,ℓ)P
−1
π = E(π(k),π(ℓ)) and PπEℓ1,...,ℓd

P−1
π = Eπ(ℓ

π−1(1)),...,π(ℓπ−1(d))
,

as follows from a simple calculation with Eℓ1,...,ℓd
= E(1,ℓ1)

+ . . . + E(d,ℓd)
, or, alternatively,

from tracing the images of the basis vectors ei for 1 6 i 6 d.

Now, a set F ⊆ Md of Markov matrices is called permutation invariant if PπFP−1
π = F

holds for all π ∈ Sd. Clearly, Md itself is such a set, as is Cd or its subset of constant-input

matrices. The latter are also individually permutation invariant (which is also called exchange-

able in probability theory [8]), that is, PπMP−1
π = M holds for every constant-input matrix

M and all π ∈ Sd. In fact, the Markov matrices that are individually permutation invariant

are precisely the constant-input ones, without restriction on the summatory parameter c.

The set of all {0, 1} Markov matrices is permutation invariant as well, and partitions into

Sd-orbits of the form OSd
(M) = {PπMP−1

π : π ∈ Sd}. Two such orbits are

OSd
(1) = {1} and OSd

(E1) = {E1, . . . , Ed},

which both consist of monotone matrices only. One can check that no other orbit of the

decomposition has this property, which implies the following characterisation.

Fact 3.10. The convex set Cd,4 is the maximal subset of Md,4 that is permutation invari-

ant. The elements of Cd,4 that are individually permutation invariant are the constant-input

matrices with c ∈ [0, 1]. �
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Let us turn to Markov semigroups. Recall from [16] that a (homogeneous) Markov semi-

group {etQ : t > 0}, with generator Q, is called monotone when etQ is monotone for every

t > 0. Moreover, a generator Q is called monotone if all off-diagonal elements of T−1QT are

non-negative, where T is the matrix from Eq. (9). This concept is motivated by the following

connection, which is [16, Thm. 2.1]. Due to its importance, we include a short proof.

Proposition 3.11. If Q is a Markov generator, the following properties are equivalent.

(1) The semigroup {etQ : t > 0} is monotone.

(2) The generator Q is monotone.

Proof. For (1) ⇒ (2), observe that T−1etQT > 0 implies
(

T−1 1
t
(etQ − 1)T

)

ij
> 0 for t > 0

and all i 6= j. Then, taking tց 0 establishes this direction.

For (2) ⇒ (1), is it clear that T−1QT + α1 > 0 holds for any sufficiently large α > 0.

Choose α also large enough so that Mα := 1 + α−1Q is Markov, which is clearly possible.

Then, T−1MαT > 0, and we get T−1Mm
α T = (T−1MαT )

m > 0 for all integers m > 0. Now,

observe

etQ = e−αteαtMα =

∞
∑

m=0

e−αt (αt)
m

m!
Mm

α ,

which, for all t > 0, constitutes a convergent sum that is a convex combination of monotone

Markov matrices. Consequently, etQ is monotone as well. �

Example 3.12. Let Q = (qij)16i,j6d be a Markov generator. When d = 2, it is always

monotone, that is, no extra condition emerges; compare Proposition 3.6. When d = 3, being

monotone is equivalent with the two conditions

q23 > q13 and q21 > q31 ,

which provide a surprisingly simple criterion for monotonicity in this case. ♦

The above considerations have the following consequence.

Corollary 3.13. For M ∈ Md,4, the following properties are equivalent.

(1) M is embeddable via a monotone Markov generator.

(2) M is non-singular and infinitely divisible within Md,4.

Proof. (1) ⇒ (2): Let M = eQ with Q a monotone generator, so det(M) = etr(Q) > 0. Now,
1
n
Q is still a monotone generator, for any n ∈ N, and exp

(

1
n
Q
)

is a monotone Markov matrix

(by Proposition 3.11) that is also an n-th root of M.

(2) ⇒ (1): By Kingman’s characterisation [18, Prop. 7], M is embeddable, soM = eQ with

some generator Q. We need to show that Q can be chosen to be monotone. Let Rn be an n-th

root of M that is Markov and monotone, which exists and implies that An := n(Rn − 1) is

a monotone generator. By a standard compactness argument, there is a subsequence (ni)i∈N
of increasing integers such that Q′ = limi→∞Ani

is a monotone generator as well. From here
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on, we can employ Kingman’s original proof to conclude that

M =
(

1 +
Q′

ni

)n
i

+ o(1) as i→ ∞,

which gives M = eQ
′

as claimed. �

3.3. Idempotents and infinite divisibility. At this point, it seems worthwhile to take a

closer look at infinite divisibility in general. In this context, we refer to [8, Sec. X.9] for the

underlying (pseudo-)Poissonian structures.

Proposition 3.14. Let P0, P ∈ Md be chosen such that P 2
0 = P0, so P0 is an idempotent,

and that P0P = PP0 = P . Then, the matrix family {M(t) : t > 0} with

M(t) := e−t
(

P0 +

∞
∑

m=1

tm

m!
Pm
)

= e−t
(

P0 − 1 + etP
)

satisfies the following properties, where A := P − 1 is a generator.

(1) The mapping t 7→M(t) is continuous, with M(0) = P0.

(2) M(t)M(s) =M(t+ s) holds for all t, s > 0.

(3) M(t) is Markov, for all t > 0.

(4) M(t) = e−t(P0 − 1) + etA = P0 e
tA for all t > 0.

(5) P = P0 if and only if M(t) = P0 holds for all t > 0.

(6) For t > 0, M(t) is idempotent if and only if M(t) = P0.

In particular, {M(t) : t > 0} always constitutes a continuous monoid, with P0 as its neutral

element, while it is a homogeneous Markov semigroup if and only if P0 = 1.

Proof. (1) is obvious, while (2) follows from a standard calculation with the convergent series.

Both P0 and P are Markov, and so is Pm for all m ∈ N. Now, for any t > 0, M(t) is a con-

vergent, convex combination of Markov matrices, hence Markov as well, which shows (3).

Next, claim (4) and the easy direction of (5) follow from elementary calculations, using

P0 e
tP = P0 +

∑

m>1
tm

m!P
m together with etP = etetA. When M(t) = P0 for all t > 0, one

obtains P0 + etP = 1 + etP0. But this implies etP = etP0 for all t > 0 and thus P = P0.

For (6), one direction is trivial. The other follows from (4) by observing that M(t) idem-

potent implies P0 e
tA = M(t) = M(t)2 = M(2t) = P0 e

2tA and hence gives the relation

P0 = P0 e
tA =M(t) as claimed.

Finally, while the (abstract) semigroup and monoid properties are clear, the family can

only be a homogeneous Markov semigroup when M(t) = etQ for some generator Q and all

t > 0, so M(0) = 1, which is the only non-singular idempotent in Md by Lemma 2.3. We

thus have P0 = 1 in this case, and (4) implies M(t) = etA as claimed. �

Example 3.15. Let us analyse the meaning of Proposition 3.14 for d > 2. If P0 = 1, there is

no further restriction on P , andM(t) = etA with A = P−1, which can thus be any generator

with diagonal elements in [−1, 0]. This way, possibly after rescaling t, all embeddable matrices
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are covered. For P ∈ Cd with c ∈ [0, 1), we see that A = P − 1 is a generator of equal-input

type, in line with Lemma 2.9 and Proposition 2.11.

If P0 ∈ Cd,1, we get P0 =
∑d

i=1 βiEi with βi > 0 and β1 + . . . + βd = 1, hence P0 = PP0

for any P ∈ Md. Assuming PP0 = P0P = P , we find P = P0, which gives M(t) ≡ P0 by

Proposition 3.14(5).

For d = 2, where M2 = C2, this exhausts all cases because no further idempotents exist.

Consequently, M ∈ M2 is infinitely divisible if and only if it is embeddable or an idempotent,

with M = 1 being the only case that is both; compare Proposition 3.6 and Corollary 3.7.

When d > 3, one obtains mixtures via direct sums, where 1 ⊕ P0 and (1+A)⊕ P0 lead to

M(t) = etA ⊕ P0. There are further examples already for d = 3, such as

P0 = αE1,1,3 + (1− α)E1,3,3 =







1 0 0

α 0 1−α
0 0 1






, with det(P0) = 0,

which is idempotent for any α ∈ [0, 1]. Then, P ∈ M3 with PP0 = P0P = P leads to

P =







a 0 1−a
c 0 1− c

1− b 0 b







with a, b ∈ [0, 1] and c = αa + (1 − α)(1 − b). Here, M(t) = P0 e
tA is singular for all

t > 0 and thus never embeddable. Moreover, for P 6= P0, the matrix M(t) can only be

idempotent for t = 0 and possibly for isolated further values of t > 0. This is so because

M(t) = M(t)2 = M(2t) implies etP = etP0 via an elementary calculation. When this holds

for t from a set with an accumulation point, t0 say, standard arguments imply P = P0. So,

more interesting as well as more complicated cases emerge in Md \ Cd as d grows. ♦

Lemma 3.16. With P0, P and M(t) as in Proposition 3.14, one has either det
(

M(t)
)

> 0

for all t > 0, which happens if and only if P0 = 1, or det
(

M(t)
)

= 0 for all t > 0, which is

true whenever P0 6= 1, equivalently whenever P0 is singular.

Proof. Recall via Lemma 2.3 that P 2
0 = P0 either means det(P0) = 1, which forces P0 = 1,

or det(P0) = 0. Now, observe that P0M(t) =M(t) holds for all t > 0, so

det(P0) det
(

M(t)
)

= det
(

M(t)
)

,

and det
(

M(t)
)

≡ 0 for singular P0 is immediate.

The only remaining case is P0 = 1. Here, Proposition 3.14(3) implies M(t) = etA with

A = P − 1 and hence det
(

M(t)
)

= etr(tA) > 0. �

A semigroup as in Proposition 3.14 is called Poissonian if P0 = 1, and pseudo-Poissonian

otherwise [8, Sec. X.1]. We can now recall the central classification result on infinitely divisible,

finite-dimensional Markov matrices from [10] as follows. In particular, it underpins the role

of idempotents in the embedding problem.
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Theorem 3.17. A Markov matrix M ∈ Md is infinitely divisible if and only if there are

Markov matrices P0, P ∈ Md, with P
2
0 = P0 and P0P = PP0 = P , and some s > 0 such that

M = e−s
(

P0 +

∞
∑

m=1

sm

m!
Pm
)

.

Moreover, M is embeddable if and only if one also has P0 = 1.

Proof. For the proof of the first claim, we refer to [10].

For the second claim, we know that M embeddable implies det(M) > 0, and we are in

the case with P0 = 1 by Lemma 3.16. Conversely, when P0 = 1, Proposition 3.14(4) gives

M = esA with the generator A = P − 1. �

Note that the parameter s cannot be avoided in this formulation because a generator Q

can have arbitrarily large diagonal entries, whence 1+Q need not be Markov, while 1+ sQ,

for all suitably small s > 0, will be; compare Example 3.15 and Proposition 3.14.

Further consequences can be derived from [P0, P ] = 0 when P is cyclic, which means that

minimal and characteristic polynomial of P agree. In particular, this is the case when P

is simple; see [1, Fact 2.10] for a systematic characterisation of cyclic matrices. Whenever

P ∈ Md is cyclic, its centraliser is the Abelian ring

cent(P ) = {B ∈ Mat(d,R) : [P,B ] = 0} = R[P ],

where each element of this ring is of the form
∑d−1

n=0 αnP
n with all αn ∈ R, as a consequence

of the Cayley–Hamilton theorem. In particular, P0 is then an idempotent from this ring. We

leave further details to the interested reader.

4. Monotone Markov matrices in three dimensions

Let us now look at d = 3 in more detail, where we state the following simple and certainly

well-known property, which we prove due to lack of reference.

Proposition 4.1. The eigenvalues of any M ∈ M3,4 are real. Moreover, at most one

eigenvalue of M can be negative, which happens if and only if det(M) < 0.

Further, if d = 3 and Q is a monotone Markov generator, its eigenvalues are non-positive,

real numbers.

Proof. First, M ∈ M3,4 ⊂ M3 implies 1 ∈ σ(M). As d = 3, the characteristic polynomial of

M then is (1− x)
(

x2 − (tr(M)− 1)x+ det(M)
)

, and the remaining two eigenvalues are

(16) λ± = 1
2

(

tr(M)− 1±
√
∆
)

,

with the discriminant ∆ = (tr(M) − 1)2 − 4 det(M). By an explicit calculation, where one

first eliminates m22 and later also m11 via the row sum condition, one verifies that

∆ =
(

m11 −m21 +m23 −m33

)2
+ 4

(

m23 −m13

)(

m21 −m31

)

> 0,

where the inequality follows from the monotonicity of M via Example 3.2.
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This implies σ(M) ⊂ R, and the formula for λ± from Eq. (16) shows that at most λ− can

be negative, because tr(M) > 1 by Corollary 3.5. Also, when det(M) = 0, the spectrum is

σ(M) = {1, tr(M)− 1, 0}, which is non-negative. This establishes the claims on M .

If Q = (qij)16i,j63 is a Markov generator, its spectrum contains 0, while the other two

eigenvalues are given by

(17) µ± = 1
2

(

tr(Q)±
√
D
)

,

where, in analogy to above, one finds

D =
(

q11 − q21 + q23 − q33
)2

+ 4
(

q23 − q13
)(

q21 − q31
)

> 0.

Here, the inequality follows via the monotonicity criterion from Example 3.12.

Consequently, all eigenvalues are real. They are then non-positive because all eigenvalues

of Markov generators have real part 6 0, compare [1, Prop. 2.3(1)], as can also be checked

explicitly from (17), where tr(Q) 6 0 6
√
D 6 |tr(Q)|. �

Considering the convex combinations

M(α) := αE1,1,2 + (1−α)E2,3,3 =







α 1−α 0

α 0 1−α
0 α 1−α






with α ∈ (0, 1),

in the notation of Table 1, one finds tr(M(α)) = 1 and det(M(α)) = −α(1− α) < 0. This

shows that cases with a simple negative eigenvalue exist. On the other hand, Proposition 4.1

also means that the spectrum of a matrix M ∈ M3,4 is positive if and only if det(M) > 0.

Corollary 4.2. Consider any M ∈ M3,4 with det(M) < 0. Then, M is neither embeddable

nor can it have a monotone n-th Markov root for n even. In fact, M has no Markov or,

indeed, real square root at all, and M is not infinitely divisible.

Proof. Since det(M) < 0, embeddability is ruled out immediately, and so is the existence of

a real square root because M has only a simple negative eigenvalue; compare [13, Thm. 6.6]

or [14]. Consequently, M cannot be infinitely divisible.

Further, B ∈ M3,4 with B2m = M for any m ∈ N implies non-negative spectrum for M

due to σ(B) ⊂ R, which contradicts det(M) < 0. �

Let us now analyse when a matrix M ∈ M3,4 is embeddable. For this, M must be non-

singular and thus, by Corollary 4.2, have positive spectrum. So, all eigenvalues of M must

satisfy 0 < λ 6 1. Further, A = M − 1 is a generator that inherits monotonicity from M as

all off-diagonal elements of T−1AT are non-negative. Since the spectral radius of A is ̺A < 1,

(18) Q := log(1 +A) =

∞
∑

m=1

(−1)m−1

m
Am

converges and defines a real matrix with zero row sums andM = eQ. As we are not interested

in other types of solutions, we now introduce the non-unital, real algebra

(19) A(3)

0 := {B ∈ Mat(3,R) : all row sums of B are 0},
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which certainly contains the Q from (18). Since positive spectrum ofM means σ(M) ⊂ (0, 1],

all eigenvalues of Q are non-positive real numbers by the SMT. It remains to analyse the

generator property and potential uniqueness of Q.

Let q be the minimal polynomial of A. Its degree satisfies deg(q) ∈ {1, 2, 3} and equals the

degree of the minimal polynomial of M . Further, let

alg(A) := 〈Am : m ∈ N〉R
be the real algebra spanned by the positive powers of A, which does not contain 1, as one can

check easily. In fact, one has alg(A) = 〈A,A2〉R by the Cayley–Hamilton theorem, so alg(A)

is a subalgebra of A(3)

0 of dimension 6 2. Indeed, we clearly get

(20) dim
(

alg(A)
)

= deg(q)− 1 ∈ {0, 1, 2}

together with Q ∈ alg(A) due to (18), which leads to different situations as follows.

Proposition 4.3. Let the matrix M ∈ M3,4 have a minimal polynomial of degree 6 2.

Then, the following properties are equivalent.

(1) The spectrum of M is positive.

(2) One has det(M) > 0.

(3) M is embeddable.

(4) M is embeddable with a monotone generator.

If M is embeddable, there is precisely one monotone generator Q with M = eQ, namely the

one given in Eq. (18).

Proof. The implications (4) ⇒ (3) ⇒ (2) are clear, while (2) ⇐⇒ (1) follows from Proposi-

tion 4.1. It remains to show (1) ⇒ (4), so assume σ(M) ⊂ R+ := {x ∈ R : x > 0}. As above,
let q be the minimal polynomial of A =M − 1, which has the same degree as that of M .

When deg(q) = 1, since 0 is always an eigenvalue of A, the only possibility is q(x) = x,

hence A = 0 and thus also Q = 0 from (18), which gives the trivial case 1 = exp(0), where 1

is the only matrix in M3,4 with a minimal polynomial of degree 1. By Remark 2.10, Q = 0

is the only generator with eQ = 1, which is trivially monotone.

When deg(q) = 2, we have A 6= 0, hence tr(A) < 0, so by (20) we get A2 = −αA for some

α ∈ R, where tr(A2) > 0 implies α > 0. Here, A =M − 1 is diagonalisable, with eigenvalues

0 and −α > −1, in line with σ(M) ⊂ R+. Then, (18) simplifies to Q = − log(1−α)
α

A, which is

a positive multiple of A and hence a monotone generator, so M is embeddable as M = eQ.

To establish the uniqueness claim, consider any Q′ ∈ A(3)

0 such that M = eQ
′

, where M is

diagonalisable by assumption, hence also Q′ by [1, Fact 2.15]. We then still have [Q′, A] = 0,

but not necessarily Q′ ∈ alg(A). Now, by [1, Lemma 6.1], there are two possibilities, namely

dim
(

alg(Q′)
)

∈ {1, 2}. Here, if the dimension is 2, Q′ must be simple, which is only possible if

Q′ has a complex-conjugate pair of (non-real) eigenvalues. But then, Q′ cannot be monotone,

by Proposition 4.1. It remains to consider dim
(

alg(Q′)
)

= 1, where we get alg(Q′) = alg(A)

from [1, Lemma 6.1(1)], hence Q′ = aA for some a > 0. By taking the determinant on both
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ends of eQ
′

=M = eQ, which gives a positive number, one finds

a tr(A) = − log(1− α)

α
tr(A).

As tr(A) 6= 0, this implies a = − log(1−α)
α

and thus Q′ = Q. �

Let us pause to state the asymptotic behaviour of Mn for the embeddable matrices covered

by Proposition 4.3. In the above notation, one trivially hasMn = 1 for all n when deg(q) = 1,

while a simple calculation gives

M∞ := lim
n→∞

Mn = 1 + lim
n→∞

1− (1− α)n

α
A = 1 +

1

α
A

for the more interesting case that deg(q) = 2.

When deg(q) = 3, the situation becomes a little more complex. Here, A = M − 1 is

always cyclic, with 0 being a simple eigenvalue. Then, we obtain A3 = rA + sA2 with

r = tr(M) − det(M) − 2 and s = tr(A). Since σ(A) = {0, µ+, µ−}, where µ± are negative

numbers by Proposition 4.1, we get r = −µ+µ− < 0 and s = µ+ + µ− < 0. This remains

correct when µ+ = µ−, where A has a non-trivial Jordan normal form1 (as it is cyclic).

Let us first consider the case that A is simple (and hence also diagonalisable). Here, we

have −1 < µ− < µ+ < 0 together with σ(M) = {1, 1+µ+, 1+µ−}. As A is cyclic, any matrix

Q ∈ A(3)

0 with M = eQ must lie in alg(A) = R[A]∩A(3)

0 , so Q = αA+βA2 for some α, β ∈ R,

again by Frobenius’ theorem. Then, the SMT implies

αµ± + βµ2± = log(1 + µ±) ∈ R ,

which is an inhomogeneous system of linear equations for α and β. As

det

(

µ+ µ2+
µ− µ2−

)

= µ+µ−(µ− − µ+) < 0,

we get a unique solution, which is given by

(21) α =
µ2− log(1 + µ+)− µ2+ log(1 + µ−)

µ+µ−(µ− − µ+)
, β =

µ+ log(1 + µ−)− µ− log(1 + µ+)

µ+µ−(µ− − µ+)
.

This shows that M = eQ has precisely one solution with Q ∈ A(3)

0 , which must be the one

from (18). One can check via the Taylor series that α > 0 and β < 0, though this is not

sufficient to guarantee the generator or the monotonicity property of Q. So, we have derived

the following result.

Theorem 4.4. Let M ∈ M3,4 have simple spectrum with det(M) > 0, and set A =M − 1,

with σ(A) = {0, µ+, µ−} as above. Then, there is precisely one Q ∈ A(3)

0 such that M = eQ,

namely the matrix Q from (18), which also satisfies Q = αA+ βA2 with α, β from (21).

Further, Q is a generator, and M = eQ, precisely when (αA+βA2)ij > 0 holds for all i 6= j,

and Q is also monotone when the criterion from Example 3.12 is satisfied by αA+ βA2. �

1Although A is a real matrix, it is more convenient, and also completely consistent, to always employ the

complex Jordan normal form of A in our arguments.
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It remains to consider the case that A is cyclic, but not simple. Then, its eigenvalues are 0

and −1 < µ < 0, the latter twice. Also here, any solution of M = eQ with Q ∈ A(3)

0 must be

of the form Q = αA+ βA2, which implies the condition αµ+ βµ2 = log(1 + µ) by the SMT.

Using the standard Jordan normal form of A, which must comprise the Jordan block
(

µ 1
0 µ

)

due to our assumption, one obtains another condition from eQ = 1 + A, this time from the

superdiagonal element of the Jordan block, namely (1 + µ)(α+ 2βµ) = 1. This results in the

unique solution

(22) α = 2
log(1 + µ)

µ
− 1

1 + µ
and β = 1

µ(1 + µ)
− log(1 + µ)

µ2
.

Note that (22) also follows from (21) by an approximation argument of de L’Hospital type,

via setting µ− = µ = µ+ + x and letting x → 0. So, the Q from (18) is once more the only

solution for M = eQ with Q ∈ A(3)

0 . Here, α > 0 for µ sufficiently large (approx. above −0.7)

and β < 0, which is more complicated than in the previous case. Nevertheless, we have the

following result.

Corollary 4.5. Let M ∈ M3,4 be cyclic, but not simple. Then, A = M − 1 has spectrum

σ(A) = {0, µ} with −1 < µ < 0, where µ has algebraic multiplicity 2, but geometric multi-

plicity 1. Further, all statements of Theorem 4.4 remain true, this time with the coefficients

α, β from (22). �

Not all M ∈ M3,4 with positive determinant (and hence spectrum) can be embeddable, as

there are cases with a single 0 in one position; see [5, 11, 1] and references therein for further

examples. For d > 4, the possibility of complex conjugate pairs of eigenvalues increases the

complexity of the treatment, which is nevertheless possible with the recent results from [2].

5. Uniqueness of embedding and further directions

The explicit treatment of M3,4 in the previous section shows that some useful sufficient

criteria for unique embeddability should be in store, such as the one stated in [13, Sec. 2.3] for

Markov matrices with distinct positive eigenvalues. Let us first recall a classic result on the

existence of a real logarithm, which can be found in many places, for instance in [9, Sec. 8.8.2]

or as [3, Thm. 1].

Fact 5.1. For B ∈ GL(d,R), the equation B = eR has a solution R ∈ Mat(d,R) if and only

if every elementary Jordan block of B with an eigenvalue on the negative real axis occurs

with even multiplicity. When B is diagonalisable, this simplifies to the condition that each

eigenvalue of B on the negative real axis has even algebraic multiplicity. �

Any matrix R ∈ Mat(d,R) that solves B = eR is called a real logarithm of B. When

considering a non-singular Markov matrix M , we are only interested in real logarithms of

M with zero row sums, that is, in elements from the subalgebra A(d)
0 ⊂ Mat(d,R). This

is justified by the following observation. Suppose eR has unit row sums with a real matrix

R that fails to have zero row sums. Then, the set of matrices etR with unit row sums and
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t ∈ R forms a discrete subgroup of {etR : t ∈ R} ≃ R. This is so because the existence

of an accumulation point with unit row sums, t0 say, would result in (1, . . . , 1)T being an

eigenvector of R with eigenvalue 0, which is a contradiction.

In analogy to the previous case with d = 3, now for A ∈ A(d)
0 with arbitrary d > 2, we

define the non-unital algebra

alg(A) := 〈Am : m ∈ N〉R = 〈A,A2, . . . , Ad−1〉R ⊂ A(d)
0 ,

where the second formulation follows from the Cayley–Hamilton theorem in conjunction with

the fact that A(d)
0 is non-unital.

Lemma 5.2. Let M ∈ Md be cyclic and non-singular, and assume that M possesses at least

one real logarithm, according to Fact 5.1. Then, with A = M − 1, any real logarithm R of

M satisfies R ∈ alg(A).

Proof. Clearly, we have [R,M ] = [R,A] = 0, so M cyclic implies R ∈ R[A] by Frobenius’

theorem, and thus R = α01 +
∑d−1

n=1 αnA
n for some α0, . . . , αd−1 ∈ R. Hence, R = α01 +X

with X ∈ A(d)
0 , where eX then has unit row sums. Consequently, all row sums of eR = eα0 eX

equal eα0 , which must be 1. So, we get α0 = 0 and R ∈ alg(A) ⊂ A(d)
0 as claimed. �

Now, we can extend the uniqueness result mentioned earlier to cyclic matrices. It is a

variant of [3, Thm. 2], but we give a different and constructive proof that later leads to an

effective (and numerically stable) criterion for embeddability. It generalises what we saw in

Theorem 4.4 and Corollary 4.5, and also differs from the approach used in [2].

Theorem 5.3. Suppose M ∈ Md is cyclic and has real spectrum. Then, M possesses a real

logarithm R, so M = eR, if and only if the spectrum of M is positive. In this case, R is

unique, and is always an element of alg(A) ⊂ A(d)
0 , where A =M − 1.

Proof. When M is cyclic, no elementary Jordan block can occur twice, and the first impli-

cation follows from Fact 5.1. When σ(M) ⊂ R+, due to Fact 5.1 and Lemma 5.2, all real

logarithms of M must lie in alg(A), and there is at least one R ∈ alg(A) with eR =M , so we

have R =
∑d−1

i=1 αiA
i for some α1, . . . , αd−1 ∈ R. It remains to establish uniqueness.

First, assume that A is simple. As A is a generator, this means σ(A) = {0, µ1, . . . , µd−1},
with distinct µi ∈ (−1, 0) due to our assumptions. Then, since all αi and µj are real, the

SMT implies the d− 1 identities

(23)

d−1
∑

ℓ=1

αℓ µ
ℓ
i = log(1 + µi), 1 6 i 6 d− 1.

They constitute an inhomogeneous system of linear equations for the αi with the matrix

(24) B =













µ1 µ21 · · · µd−1
1

µ2 µ22 · · · µd−1
2

...
...

...

µd−1 µ2d−1 · · · µd−1
d−1













.
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Since det(B) = (
∏

i µi)
∏

k>ℓ(µk − µℓ) by an obvious variant of the standard Vandermonde

determinant formula, B is invertible when A is simple, and (23) has a unique real solution.

When A is cyclic, but not simple, the appearance of non-trivial Jordan blocks necessitates

a more refined argument. Clearly, as A is a generator and also cyclic, 0 is a simple eigenvalue

of A by [1, Prop. 2.3(2)]. Let µ ∈ (−1, 0) be any of the other eigenvalues, say with algebraic

multiplicity m. When m = 1, we get one condition from the SMT, and nothing else is needed.

So, assume m > 2. As A is cyclic, the geometric multiplicity of µ is 1, and the corresponding

Jordan block in standard form is Jµ = µ1m + Nm, where Nm is the nilpotent matrix with

entries 1 on the first superdiagonal and 0 everywhere else. It satisfies Nm
m = 0, while Nk

m, for

1 6 k < m, has entries 1 on the k-th superdiagonal and 0 elsewhere. In this case, we get only

one condition from the SMT, namely

(25)

d−1
∑

ℓ=1

αℓ µ
ℓ = log(1 + µ),

as in (23), while we need m − 1 independent further ones. They will come from derivatives

of (25), which needs a justification as follows.

First, from eR = 1 +A, one concludes that we must have

(26) exp

( d−1
∑

ℓ=1

αℓ J
ℓ
µ

)

= 1m + Jµ = (1 + µ)1m +Nm .

Now, defining the polynomial φ(x) =
∑d−1

ℓ=1 αℓ x
ℓ and the function ψ(x) = eφ(x), one can

employ the standard method from [13, Sec. 1.2.1] to calculate the exponential in (26) as

ψ
(

Jµ
)

= ψ(µ)1m +
m−1
∑

k=1

ψ(k)(µ)

k!
Nk

m ,

where ψ(k) denotes the k-th derivative of ψ. As ψ(µ) = 1+µ by (25), a comparison with (26)

leads to the conditions ψ(k)(µ) = δk,1 for 1 6 k 6 m− 1, noting that 1 + µ 6= 0. Iterating the

product rule on ψ = eφ and inserting (25) then results in

(27) dk

dµk

d−1
∑

ℓ=k

αℓ µ
ℓ = φ(k)(µ) =

(−1)k−1(k − 1)!

(1 + µ)k
= dk

dµk
log(1 + µ),

which shows that the additional conditions on the αℓ emerge via derivatives of the fundamental

relation (25). It remains to check when we obtain a unique solution α1, . . . , αd−1 this way.

Here, the matrix B that generalises (24) is specified by an n-tuple
(

(µ1,m1), . . . , (µn,mn)
)

of distinct non-zero eigenvalues µi of A with their algebraic multiplicities mi, where n 6 d−1

and m1 + . . . +mn = d − 1. A pair (µi,mi) is responsible for mi rows of B of length d − 1,

where the first derives from (25), followed by mi − 1 rows induced by (27). Here, each new

row emerges from the previous one by differentiation with respect to µi. The resulting matrix

is a variant of the confluent Vandermonde matrix, see [12, Sec. 22.2] or [21], which is known

from Hermite interpolation. It is invertible if and only if the µi are distinct.
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To substantiate the latter claim, define the sequence (γn)n∈N by

γn = det













1 1 1 · · · 1

1 2 4 · · · 2n−1

...
...

...
...

1 n n2 . . . nn−1













,

which starts as 1, 1, 2, 12, 288, 34560; compare [24, A000178]. Then, one finds

det(B) =

( n
∏

i=1

µmi

i γmi

)

∏

k>ℓ

(

µk − µℓ
)m

k
m

ℓ ,

compare [12, Exc. 22.6], which reduces to the determinant formula stated previously for the

special case m1 = . . . = mn = 1. Since the µi are distinct, det(B) 6= 0 is clear, and the

claimed uniqueness follows. �

The benefit of this approach is that one can calculate B−1 and thus determine the coeffi-

cients purely from the eigenvalues of A. In particular, the unique R is a generator if and only

if
∑d−1

i=1 αiA
i satisfies the corresponding conditions.

Remark 5.4. The Vandermonde matrix and its inverse is well known from Lagrange inter-

polation theory. Therefore, in minor modification of the results from [15, Sec. 0.9.11], one

finds the matrix elements of the inverse of B from (24) as

(

B−1
)

ij
=

(−1)i−1S
(d−2)
d−1−i

(

{µ1, . . . , µd−1} \ {µj}
)

µj
∏

k 6=j(µk − µj)

where S
(n)
m

(

{a1, . . . , an}
)

is the elementary symmetric polynomial as defined by S
(n)
0 ≡ 1,

S
(n)
1

(

{a1, . . . , an}
)

= a1 + . . .+ an, S
(n)
2

(

{a1, . . . , an}
)

=
∑

i<j aiaj and so on, up to the final

one, which is S
(n)
n

(

{a1, . . . , an}
)

=
∏

i ai.

With a little more effort, this formula can be extended to the cyclic situation as well; see

[21] for a constructive approach to B−1 in this case. ♦

The above result leads to the following sufficient criterion for unique embeddability.

Corollary 5.5. Let M ∈ Md be cyclic and have real spectrum, σ(M) ⊂ R. Then, M has a

real logarithm if and only if σ(M) ⊂ R+.

In this case, the spectral radius of A =M − 1 is ̺A < 1, and there is at most one Markov

generator Q such that M = eQ. The only choice is Q = log(1+A) ∈ alg(A) ⊂ A(d)
0 , calculated

with the standard branch of the matrix logarithm as a convergent series. In particular, M is

embeddable if and only if the matrix log(1 +A) is a generator.

Proof. The first claim follows from Theorem 5.3. If σ(M) ⊂ R+, all eigenvalues of A lie

in the half-open interval (−1, 0], so ̺A < 1 is clear. By Theorem 5.3, as M is cyclic with
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σ(M) ⊂ (0, 1], there is precisely one real matrix R with M = eR. Due to ̺A < 1, the series

log(1 +A) =

∞
∑

m=1

(−1)m−1

m
Am

converges. The limit is then an element of alg(A), because this algebra is a closed subset of

Mat(d,R). So, we get R = log(1 + A) ∈ alg(A) in this case, which has zero row sums, but

need not be a generator. �

One can go beyond this result, but care is required with the branches of the complex

logarithm; see [13, Ch. 11] for background and [2] for recent progress in this direction.

Remark 5.6. The results from Theorem 4.4 and Corollary 4.5 apply to all cyclic matrices

M ∈ M3 with positive spectrum in that the embeddability of M can most easily be verified

via testing whether αA+βA2 is a generator, where A =M−1 and α, β ∈ R are the numbers

from Eq. (21), if M is simple, or from Eq. (22) otherwise. ♦

Clearly, uniqueness results have interesting consequences on the structure of Markov roots,

as can be seen in the following refinement of [1, Ex. 3.9].

Example 5.7. The two-dimensional Markov matrix

M =

(

3
4

1
4

1
2

1
2

)

is uniquely embeddable by Lemma 2.9, so M = eQ with a unique generator Q. Nevertheless,

as follows from a simple calculation, it has precisely two Markov square roots, namely

M1 =

(

5
6

1
6

1
3

2
3

)

and M2 =

(

1
2

1
2

1 0

)

.

Of these, M1 = exp
(

1
2Q
)

is embeddable, whileM2 is not. So, in the embeddable case, there is

always at least one Markov n-th root for every n ∈ N of the form exp
(

1
n
Q
)

, but there can still

be others. A uniqueness result for the embedding of M then means that, among all Markov

roots, there is precisely one sequence of embeddable Markov n-th roots of M . ♦

The setME
d of embeddable matrices is a relatively closed subset of {M ∈ Md : det(M) > 0}

by [18, Prop. 3], but (for d > 2) it is not a closed subset of Md. The closure of ME
d is still a

subset of the infinitely divisible elements of Md, and it is a natural question which matrices

lie on the boundary, which we denote by ∂ME
d . Clearly, there can be embeddable cases, such

as
(

1 0
1−α α

)

or
(

α 1−α
0 1

)

for d = 2 and 0 < α 6 1, as well as (singular) idempotent ones, such

as M∞ = limt→∞ etQ for any generator Q 6= 0. For d > 2, there are further possibilities.

Any M ∈ ∂ME
d satisfies M = limn→∞ eQn for some sequence (Qn)n∈N of generators, which

implies limn→∞ etr(Qn) = det(M) > 0.

WhenM ∈ ∂ME
d has det(M) > 0, it is embeddable by Kingman’s infinite divisibility crite-

rion. Alternatively, a positive determinant implies that the sequence
(

tr(Qn)
)

n∈N converges

and is thus bounded. Since all diagonal elements of a generator are non-positive, they are
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bounded as well, hence also all elements of the Qn due to the vanishing row sums. By a stan-

dard compactness argument, there is thus a subsequence (Qni
)i∈N such that limi→∞Qni

= Q

is a generator with M = eQ as expected, and M lies in the Markov semigroup {etQ : t > 0}.
When det(M) = 0, the sequence

(

tr(Qn)
)

n∈N must be (negatively) unbounded, and we

may assume that, at least at one off-diagonal position, the entries of the Qn are (positively)

unbounded. When d = 2, this suffices to show that M is a singular idempotent. Already for

d = 3, the situation becomes more complex, since one can have a limitingM with det(M) = 0

that is not an idempotent, by considering

exp







−a−b a b

c −c−d d

e f −e−f







for a, b, . . . , f > 0. Then, fixing b, . . . , f at generic values and letting a → ∞ produces such

examples, and similarly for various other choices. When d = 4, one can have mixtures in

block matrix form, such as

M =

(

1 0

1−α α

)

⊕
(

β 1−β
β 1−β

)

for α ∈ (0, 1) and β ∈ [0, 1], which is singular but not idempotent.

It seems worthwhile to characterise the boundary more completely, for instance by relating

semigroups with reducible generators to properties of the boundary, which we leave as an open

problem at this point. More generally, a simplified systematic treatment of the embeddability

problem for d 6 4 would be helpful in view of the applications in phylogeny; see [2] for recent

progress in this direction. Finally, even some of the elementary questions become much harder

in the situation of countable states, where many new phenomena occur; see [6] and references

therein for some recent results.
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suggestions, as well as Tanja Eisner and Agnes Radl for helpful comments on the manuscript.

This work was supported by the German Research Foundation (DFG), within the CRC 1283

at Bielefeld University, and by the Australian Research Council (ARC), via Discovery Project

DP 180102215.

References

[1] M. Baake and J. Sumner, Notes on Markov embedding, Lin. Alg. Appl. 594 (2020) 262–299;

arXiv:1903.08736.

[2] M. Casanellas, J. Fernández-Sánchez and J. Roca-Lacostena, The embedding problem for Markov

matrices, preprint (2020); arXiv:2005.00818.

[3] W.J. Culver, On the existence and uniqueness of the real logarithm of a matrix, Proc. Amer.

Math. Soc. 17 (1966) 1146–1151.



30 MICHAEL BAAKE AND JEREMY SUMNER

[4] D.J. Daley, Stochastically monotone Markov chains, Z. Wahrscheinlichkeitsth. Verw. Geb. 10

(1968) 305–317.

[5] E.B. Davies, Embeddable Markov matrices, Electronic J. Probab. 15 (2010) paper 47, 1474–1486;

arXiv:1001.1693.

[6] T. Eisner and A. Radl, Embeddability of real and positive operators, preprint (2020);

arXiv:2003:08186.

[7] G. Elfving, Zur Theorie der Markoffschen Ketten, Acta Soc. Sci. Fennicae A2 (1937) 1–17.

[8] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed., Wiley,

New York (1971).

[9] F.R. Gantmacher, Matrizentheorie, Springer, Berlin (1986).
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