ON EQUAL-INPUT AND MONOTONE MARKOV MATRICES

MICHAEL BAAKE AND JEREMY SUMNER

Abstract

The classes of equal-input and of monotone Markov matrices are revisited, with special focus on embeddability, infinite divisibility, and mutual relations. Several uniqueness results for the embedding problem are obtained in the process. We employ various algebraic and geometric tools, including commutativity, permutation invariance and convexity. Of particular relevance in several demarcation results are Markov matrices that are idempotents.

1. Introduction

Let \mathcal{M}_{d} denote the set of d-dimensional Markov (or stochastic) matrices, which are the elements of $\operatorname{Mat}(d, \mathbb{R})$ with non-negative entries and all row sums equal to 1 . Clearly, \mathcal{M}_{d} is a compact convex set, with the d^{d} Markov matrices with entries in $\{0,1\}$ being its extremal points (or elements); see [22, Sec. II.1] for a summary. Another classic example is the subset of \mathcal{M}_{d} of doubly stochastic matrices, where both the matrix and its transpose are Markov. Here, the extremal elements are the d ! permutation matrices, which is known as Birkhoff's theorem. Concepts and methods from convexity will be employed throughout the manuscript; see [26] for general background on convex structures.

A Markov matrix M is called embeddable $[7,18,5,2]$ if it can be written as $M=\mathrm{e}^{Q}$ with a rate matrix Q, which is a matrix with non-negative off-diagonal elements and vanishing row sums. A rate matrix Q is also called a Markov generator, or simply generator, because $\left\{\mathrm{e}^{t Q}: t \geqslant 0\right\}$ is a semigroup of Markov matrices with unit, and is thus a monoid; see [23] for general background on Markov chains in continuous time. The set of embeddable matrices from \mathcal{M}_{d} is denoted by $\mathcal{M}_{d}^{\mathrm{E}}$. A Markov matrix is called infinitely divisible $[8,10]$ if it has a Markov n-th root for every $n \in \mathbb{N}$, where \mathbb{N} is the set of positive integers. It is a wellknown fact [18, Prop. 7] that a Markov matrix is embeddable if and only if it is non-singular and infinitely divisible; see [13, Sec. 2.3] as well as [11, 6] for related material. In the other direction of taking powers, whenever Q is a generator, $M_{\infty}:=\lim _{t \rightarrow \infty} \mathrm{e}^{t Q}$ exists, and is an idempotent Markov matrix by [1, Prop. 2.3(3)], so $M_{\infty}^{2}=M_{\infty}$.

To avoid trivial statements, we will generally assume $d \geqslant 2$. Let $C \in \operatorname{Mat}(d, \mathbb{R})$ have equal rows, each being $\left(c_{1}, \ldots, c_{d}\right)$, and define $c=c_{1}+\ldots+c_{d}$ as its parameter sum. A matrix C with $c=1$ and all $c_{i} \geqslant 0$ is Markov, but of rank 1 , so $\operatorname{det}(C)=0$ for $d>1$. For this reason, such matrices C are often of limited interest, for instance in the context of embeddability.

[^0]Instead, consider $M_{C}=(1-c) \mathbb{1}+C$, which is a matrix with each row summing to 1 . It is Markov if $c_{i} \geqslant 0$ and $c \leqslant 1+c_{i}$ for all i. Following [25], we call such Markov matrices equal-input, since they describe Markov chains where the probability of a transition $i \rightarrow j$, for $i \neq j$, depends on j only. All such matrices are of the above form, and the underlying c is called its summatory parameter. For a given d, they form another convex set, which we denote by \mathcal{C}_{d}; see Lemma 2.7 for more.

A seemingly unrelated concept, at least at first sight, is the following. Consider the standard simplex of d-dimensional probability vectors,

$$
\mathbb{P}_{d}:=\left\{\left(x_{1}, \ldots, x_{d}\right): \text { all } x_{i} \geqslant 0 \text { and } x_{1}+\ldots+x_{d}=1\right\}
$$

which is a compact convex set. Its extremal elements are the standard (row) basis vectors e_{i} with $1 \leqslant i \leqslant d$. One can introduce the partial order of stochastic monotonicity on \mathbb{P}_{d} by saying that x is dominated by y, written as $x \preccurlyeq y$, when $\sum_{i=m}^{d} x_{i} \leqslant \sum_{i=m}^{d} y_{i}$ holds for all $1 \leqslant m \leqslant d$; see Eq. (10) below for an alternative formulation. The corresponding partial order is well defined also on the positive multiples of \mathbb{P}_{d}, called level sets, hence extendable to convex combinations. Further, it is consistent on the entire positive cone, where two vectors can at most be compared when they lie in the same level set. This notion has its origin in an important class of stochastic processes [4] that show up in many places in probability theory and its applications [16, 20, 17].

A Markov matrix $M=\left(m_{i j}\right)_{1 \leqslant i, j \leqslant d}$ is called stochastically monotone, or monotone for short, when the mapping $x \mapsto x M$ preserves stochastic monotonicity; compare [4, 16]. It is well-known that M is monotone if and only if its rows $m_{i}=\left(m_{i 1}, \ldots, m_{i d}\right)=e_{i} M$ are ordered accordingly with increasing row numbers, meaning $m_{i} \preccurlyeq m_{j}$ for all $i \leqslant j$. More generally, the concept of being monotone is well defined for all non-negative matrices with equal row sums, which simply are multiples of Markov matrices. Then, preserving the partial order means that an inequality in one level set is turned into the corresponding one in another. The monotone Markov matrices in \mathcal{M}_{d} form a closed convex set, which we denote by $\mathcal{M}_{d, \preccurlyeq}$. All elements of $\mathcal{M}_{d, \preccurlyeq}$ have trace $\geqslant 1$, and the extremal points of $\mathcal{M}_{d, \preccurlyeq}$, as detailed in Lemma 3.4 below, are the $\binom{2 d-1}{d}$ monotone Markov matrices with entries in $\{0,1\}$. Monotone Markov matrices appear in many contexts; see [16, 20] as well as [17, Ch. 3] for examples.

A stationary vector of $M \in \mathcal{M}_{d}$ is any $x \in \mathbb{P}_{d}$ with $x M=x$. Given M, the set of all stationary vectors is convex. In fact, it is a subsimplex of \mathbb{P}_{d} that can be a singleton set (as for all irreducible M) or larger, up to \mathbb{P}_{d} itself (for $M=\mathbb{1}$). A Markov matrix M is an idempotent when $M^{2}=M$. This means that M maps any $x \in \mathbb{P}_{d}$ to a stationary vector in one step. Except for $M=\mathbb{1}$, any idempotent in \mathcal{M}_{d} has minimal polynomial $x(x-1)$. In particular, all idempotents in \mathcal{M}_{d} are diagonalisable.

As we shall see, the above two classes of matrices are intimately connected, and several of their properties can be derived and understood interactively. In our presentation below, idempotents will play an important role, which is an interesting point that does not seem to have attracted much attention in the past. Below, we build on terminology, methods
and results from [1], which makes a renewed section on preliminaries unnecessary. Thus, we immediately continue by recalling some results on equal-input matrices in Section 2 and then derive new results on their graded semigroup structure (Proposition 2.6), their embeddability (Proposition 2.11) and their multiplicative structure in exponential form (Theorem 2.14). We note that the latter can be viewed as a non-trivial, explicit version of the Baker-CampbellHausdorff (BCH) formula in this case.

Then, we turn to the monotone matrices in Section 3, where we first recall some of their elementary properties and then continue with results on embeddability (Theorem 3.8) and monotone generators (Proposition 3.11). Throughout the discussion, idempotent matrices will naturally appear, which can be explained by the intrinsic (pseudo-)Poissonian structure of infinitely divisible Markov matrices (Proposition 3.14 and Theorem 3.17). We consider the case $d=3$ in more detail in Section 4, where the embeddability can be decided completely (Proposition 4.3 and Theorem 4.4), and close with a general uniqueness result (Theorem 5.3 and Corollary 5.5) and some comments on Markov roots and limiting cases in Section 5.

2. Equal-Input matrices and some of their properties

From now on, we always use C to denote a non-negative matrix with equal rows and parameter sum $c \geqslant 0$, where $c=0$ then implies $C=0$. For any matrix C of this type, one has $M C=C$ for all $M \in \mathcal{M}_{d}$.
2.1. Equal-input Markov matrices. Given such a matrix C, the corresponding matrix

$$
\begin{equation*}
M_{C}:=(1-c) \mathbb{1}+C \tag{1}
\end{equation*}
$$

is Markov precisely when $0 \leqslant c_{i}$ for all i together with $c \leqslant 1+\min _{i} c_{i}$. It is then called an equal-input Markov matrix, and the set of all such matrices for a fixed d is denoted by \mathcal{C}_{d}. As $C \neq \mathbb{O}$ has eigenvalues c and 0 , the latter with multiplicity $d-1$, it is clear that

$$
\begin{equation*}
\operatorname{det}\left(M_{C}\right)=(1-c)^{d-1} \tag{2}
\end{equation*}
$$

A Markov generator Q is called equal-input if it is of the form $Q=Q_{C}=C-c \mathbb{1}$, with C as above and $c \geqslant 0$ without further restrictions. Clearly, $c=0$ means $Q=0$. Also here, we call c the summatory parameter, as it will always be clear from the context whether we refer to a Markov matrix or to a generator. Since $C^{2}=c C$, one gets $Q_{C}^{2}=-c Q_{C}$, so any equal-input generator is diagonalisable. When $c>0$, the matrix $\frac{1}{c} C$ is both Markov and an idempotent. As we shall see, the relation $Q_{C}=M_{C}-\mathbb{1}$ will become particularly important.
Fact 2.1. If $M \in \mathcal{C}_{d}$, with $d \geqslant 2$, its summatory parameter satisfies $c \in\left[0, \frac{d}{d-1}\right]$. Moreover, $M \in \mathcal{C}_{d}$ is an idempotent if and only if $c=1$ or $c=0$, where the latter case means $M=\mathbb{1}$, while all other idempotents are singular.

Proof. Assume that $M=M_{C}$ is Markov. Since $0 \leqslant c=c_{1}+\ldots+c_{d} \leqslant 1+\min _{i} c_{i}$, the maximal value of c is realised for $c_{1}=\ldots=c_{d}=\frac{c}{d}$, which gives the first claim. The second follows from considering the equation

$$
(1-c) \mathbb{1}+C=M_{C}=M_{C}^{2}=(1-c)^{2} \mathbb{1}+(2-c) C,
$$

which is solved by $C=\mathbb{O}$ with $c=0$ or, for any $c>0$, implies $(1-c) C=\mathbb{0}$ and hence $c=1$. This leads to the two cases stated, where $\mathbb{1}$ is the only non-singular idempotent by (2).

Let us next look at some asymptotic properties. Here, one has

$$
M_{C}^{n}=(1-c)^{n} \mathbb{1}+\frac{1-(1-c)^{n}}{c} C
$$

for $n \in \mathbb{N}_{0}$ and $c>0$ (so $\left.C \neq 0\right)$. If $|1-c|<1$, we see that M_{C}^{n}, as $n \rightarrow \infty$, converges to the Markov matrix $\frac{1}{c} C$. Adding the case with $c=0$, but excluding $c=2$ from the consideration (where convergence fails, occurring only for $d=2$), one can summarise as follows.

Fact 2.2. Let $d \geqslant 2$ and let C be a non-negative matrix with equal rows and parameter sum $0 \leqslant c<2$. Then, if the matrix M_{C} from (1) is Markov, one has

$$
\lim _{n \rightarrow \infty} M_{C}^{n}= \begin{cases}\mathbb{1}, & \text { if } c=0 \\ \frac{1}{c} C, & \text { otherwise },\end{cases}
$$

where all limits are idempotents. Here, the summatory parameter of M_{C}^{n} is $1-(1-c)^{n}$, which is 0 for $c=0$, or otherwise converges to 1 as $n \rightarrow \infty$.

Since idempotents will show up repeatedly below, we recall the following well-known property of Markov matrices.

Lemma 2.3. For $M \in \mathcal{M}_{d}$, the following properties are equivalent.
(1) M is a non-singular idempotent.
(2) 1 is the only eigenvalue of M.
(3) $M=\mathbb{1}$.
(4) M has minimal polynomial $q(x)=x-1$.

Proof. Clearly, M has 1 as an eigenvalue, because it is Markov. When $M^{2}=M$, the only possible other eigenvalue is 0 , and $(1) \Rightarrow(2)$ is clear. The implications $(3) \Rightarrow(4) \Rightarrow(1)$ are immediate, and it remains to show $(2) \Rightarrow(3)$.

By [9, Thm. 13.10], we know that the algebraic multiplicity of the eigenvalue 1 agrees with the geometric one. When no other eigenvalue exists, this means $M=\mathbb{1}$.

The set \mathcal{C}_{d} of equal-input matrices is important in many applications, see [25, 1] and references therein, and has interesting algebraic properties as follows.

Fact 2.4. Let C and C^{\prime} be two non-negative, equal-row matrices, with parameter sums c and c^{\prime}, such that M_{C} and $M_{C^{\prime}}$ are Markov matrices, so both lie in \mathcal{C}_{d}. Then, one also gets $M=M_{C} M_{C^{\prime}} \in \mathcal{C}_{d}$, where one has $M=M_{C^{\prime \prime}}$ with $C^{\prime \prime}=\left(1-c^{\prime}\right) C+C^{\prime}$ and parameter sum $c^{\prime \prime}=c+c^{\prime}-c c^{\prime}$.

The Markov property of $M=M_{C} M_{C^{\prime}}$ implies $0 \leqslant c_{i}^{\prime \prime} \leqslant c^{\prime \prime} \leqslant 1+c_{i}^{\prime \prime}$ for all i, which may not be obvious from the formula for $C^{\prime \prime}$. In fact, the relation between the summatory parameters can be further analysed as follows, where we refer to [19] for the grading notion.

Lemma 2.5. Consider $f(a, b)=a+b-a b$ for $a, b \in X:=[0,1) \cup(1,2]$. Then, one of the following three cases applies.
(1) If $\max (a, b)<1$, one has $0 \leqslant \max (a, b) \leqslant f(a, b)<1$.
(2) If $\min (a, b)>1$, one has $0 \leqslant 2-\min (a, b) \leqslant f(a, b)<1$.
(3) Otherwise, one has $1<f(a, b) \leqslant \max (a, b) \leqslant 2$.

In particular, the mapping $(a, b) \mapsto f(a, b)$ turns X into a C_{2}-graded, commutative monoid, with 0 as the neutral element of X and the grading being induced by the two connected components of X, for instance via the mapping $x \mapsto \operatorname{sgn}(1-x)$ for $x \in X$.

Proof. Without loss of generality, we may assume $a \leqslant b$. Also, observe that the function $x \mapsto x(2-x)$, on $[0,2]$, has a unique maximum at $x=1$, with value 1 , so $x(x-1)<1$ holds for all $x \in[0,1) \cup(1,2]$. Now, we can look at the three cases as follows.

When $0 \leqslant a \leqslant b<1$, where $1-b$ is positive, we obtain the estimate

$$
0 \leqslant b \leqslant b+(1-b) a=f(a, b)<b+(1-b)=1
$$

while $1<a \leqslant b \leqslant 2$, where $1-a$ is negative, leads to

$$
0 \leqslant 2-a=a+2(1-a) \leqslant a+b(1-a)=f(a, b) \leqslant a+a(1-a)=a(2-a)<1
$$

For the remaining case, it suffices to consider $0 \leqslant a<1<b \leqslant 2$, which gives

$$
1=b+(1-b)<b+a(1-b)=f(a, b) \leqslant a+b-a=b \leqslant 2
$$

from which claims $(1)-(3)$ follow.
Since $f(f(a, b), c)=a+b+c-a b-a c-b c+a b c=f(a, f(b, c))$, associativity of the mapping $(a, b) \mapsto f(a, b)$ is clear, and the C_{2}-graded monoid structure is now obvious.

Proposition 2.6. The set \mathcal{C}_{d} is a monoid under matrix multiplication, with the subset of non-singular elements forming a submonoid. The latter is C_{2}-graded by $\operatorname{sgn}(1-c)$, where c is the summatory parameter, which matches with the grading of X from Lemma 2.5. When d is even, the same grading emerges from the sign of the determinant.

Proof. The semigroup property follows from Fact 2.4 , and $\mathbb{1} \in \mathcal{C}_{d}$ shows that \mathcal{C}_{d} is a monoid. The non-singular matrices, which include $\mathbb{1}$, are closed under multiplication.

The formula for the summatory parameter of a product from Fact 2.4, in conjunction with Lemma 2.5, implies $c^{\prime \prime} \in[0,1)$ when c and c^{\prime} are either both in $[0,1)$ or both in $\left(1, \frac{d}{d-1}\right]$, where the ranges follow from Fact 2.1. Likewise, $c^{\prime \prime}>1$ if and only if $c<1<c^{\prime}$ or $c^{\prime}<1<c$. Together, this provides the claimed C_{2}-grading.

For even d, by Eq. (2), the sign of $1-c$ matches the sign of the determinant.
Given $d \geqslant 2$, one can consider $X_{d}:=\left\{x \in X: x \leqslant \frac{d}{d-1}\right\}$, which defines a submonoid of X, which is again C_{2}-graded. Then, we have two monoid homomorphisms, namely

$$
\mathcal{C}_{d} \longrightarrow X_{d} \longrightarrow C_{2},
$$

which summarises the grading structure. Let us mention in passing that the grading can be extended to include the singular matrices (that is, those with $c=1$), and thus cover all of \mathcal{C}_{d}, by employing the semigroup $\{-1,0,1\}$ instead of C_{2}.

Next, we consider the set \mathcal{C}_{d} in a little more detail. We begin with the closed subset (and semigroup) of non-trivial idempotents,

$$
\mathcal{C}_{d, 1}:=\left\{M \in \mathcal{C}_{d}: c=1\right\}=\left\{M \in \mathcal{C}_{d}: M^{2}=M \neq \mathbb{1}\right\}=\left\{M \in \mathcal{C}_{d}: \operatorname{det}(M)=0\right\},
$$

where the alternative characterisations immediately follow from Fact 2.1 and Eq. (2). Let $E_{i} \in \operatorname{Mat}(d, \mathbb{R})$ denote the matrix with 1 in all positions of column i and 0 everywhere else, which is an idempotent Markov matrix. In fact, these matrices satisfy

$$
\begin{equation*}
E_{i} E_{j}=E_{j} \quad \text { for all } 1 \leqslant i, j \leqslant d, \tag{3}
\end{equation*}
$$

and it is easy to see that any convex combination $M=\sum_{i=1}^{d} \beta_{i} E_{i}$, where all $\beta_{i} \geqslant 0$ and $\beta_{1}+\ldots+\beta_{d}=1$, is an idempotent as well. For $d \geqslant 2$, we also define the rational matrix

$$
G_{d}=\frac{1}{d-1}\left(\left(\begin{array}{ccc}
1 & \cdots & 1 \tag{4}\\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)-\mathbb{1}\right)=\frac{1}{d-1}\left(E_{1}+\ldots+E_{d}-\mathbb{1}\right),
$$

which is the unique element of \mathcal{C}_{d} with maximal summatory parameter, $c=\frac{d}{d-1}$.
Lemma 2.7. The sets \mathcal{C}_{d} and $\mathcal{C}_{d, 1}$ are convex. When $d \geqslant 2$, the extremal elements of $\mathcal{C}_{d, 1}$ are the idempotent matrices E_{1}, \ldots, E_{d}, which remain extremal in \mathcal{C}_{d}. There are two further extremal elements in \mathcal{C}_{d}, namely $\mathbb{1}$ and G_{d}.

Proof. The convexity of \mathcal{C}_{d} follows from

$$
\alpha M_{C}+(1-\alpha) M_{C^{\prime}}=\left(1-\left(\alpha c+(1-\alpha) c^{\prime}\right)\right) \mathbb{1}+\alpha C+(1-\alpha) C^{\prime}
$$

for $\alpha \in[0,1]$ together with the linearity of the summatory parameter. The convexity of the subset $\mathcal{C}_{d, 1}$ is then obvious because these are the elements with $c=1$. Clearly, the convex combinations of the d matrices E_{1}, \ldots, E_{d} span $\mathcal{C}_{d, 1}$. Since they are linearly independent, they must be extremal.

Let $M \in \mathcal{C}_{d}$, so $M=M_{C}$, where C has equal rows $\left(c_{1}, \ldots, c_{d}\right)$ with $c_{i} \geqslant 0$ and parameter sum $c \in\left[0, \frac{d}{d-1}\right]$, subject to the condition $c \leqslant 1+c_{\min }$ with $c_{\text {min }}=\min _{i} c_{i}$. Now, we will show that M is of the form $r \mathbb{1}+s G_{d}+\sum_{i} t_{i} E_{i}$ for some $r, s, t_{i} \geqslant 0$ that sum to 1 .

If $c \in[0,1]$, simply choose $s=0, t_{i}=c_{i}$ and $r=1-c$, which does the job. If $c>1$, we have $c_{\min }>0$ because $c \leqslant 1+c_{\text {min }}$ by the Markov property of M. Choose $s=(d-1) c_{\min }$ and $t_{i}=c_{i}-c_{\min }$, where $s \geqslant 0$ and all $t_{i} \geqslant 0$ by construction. Then, $s+\sum_{i} t_{i}=c-c_{\min } \leqslant 1$, so we can complete this with $r=1-s-\sum_{i} t_{i} \geqslant 0$. It is easy to check that this gives a convex combination with summatory parameter c, and also that the sum equals M.

Consequently, the compact set \mathcal{C}_{d} is the convex hull of $\left\{\mathbb{1}, G_{d}, E_{1}, \ldots, E_{d}\right\}$, and hence the smallest convex set that contains these $d+2$ matrices. In view of the Krein-Milman theorem [26, Thm. 2.6.16], it remains to show that they all are extremal. This is clear for $\mathbb{1}$, where
$c=0$, and for G_{d}, which is the only matrix in \mathcal{C}_{d} with $c=\frac{d}{d-1}$. Since the E_{i} are linearly independent, but all have $c=1$, none can be replaced by a convex combination of the other matrices (including $\mathbb{1}$ and G_{d}), which completes the argument.

Example 2.8. For $d=2$, all Markov matrices are of equal-input type. The four extremal elements of $\mathcal{C}_{2}=\mathcal{M}_{2}$ are given by

c	0	1	1	2
C	0	$\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
M_{C}	$\mathbb{1}$	$\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

where the two Markov matrices with $c=1$ span $\mathcal{C}_{2,1}$; see [1, Fig. 1] for an illustration.
The situation is a little more interesting for $d=3$, where $\mathcal{C}_{3} \subsetneq \mathcal{M}_{3}$, and one has

c	0	1	1	1	$\frac{3}{2}$
M_{C}	$\mathbb{1}$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$	$\frac{1}{2}\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$

part of which will reappear in Table 1 below.
2.2. Equal-input generators and embeddability. If Q is an equal-input generator with summatory parameter c, so $Q=C-c \mathbb{1}$, its exponential is

$$
\begin{equation*}
\mathrm{e}^{Q}=\mathbb{1}+\frac{1-\mathrm{e}^{-c}}{c} Q=\frac{1-\mathrm{e}^{-c}}{c} C+\mathrm{e}^{-c} \mathbb{1}, \tag{5}
\end{equation*}
$$

with $C=\mathbb{O}$ for $c=0$, so the summatory parameter of e^{Q} is always given by $\tilde{c}=1-\mathrm{e}^{-c}$. For embeddability, one has the following well-known result; see [18,5] for background.

Lemma 2.9. The Markov matrix $M=\left(\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right)$ with $a, b \in[0,1]$ is embeddable if and only if $\operatorname{det}(M)>0$, which is equivalent to the condition $0 \leqslant a+b<1$. In this case, there is precisely one generator Q such that $M=\mathrm{e}^{Q}$, namely $Q=-\frac{\log (1-a-b)}{a+b}(M-\mathbb{1})$, which is an equal-input generator.

Proof. The first statement is Kendall's theorem, see [1, Thm. 3.1] for a complete formulation, while the uniqueness claim is established in [1, Eq. (5) and Cor. 3.3].

Put differently, since $\mathcal{C}_{2}=\mathcal{M}_{2}$, a matrix $M \in \mathcal{M}_{2}$ is embeddable if and only if its summatory parameter satisfies $0 \leqslant c<1$. The closure of the set of embeddable matrices in \mathcal{M}_{2} consists of all infinitely divisible elements of \mathcal{M}_{2}, as we shall discuss in more detail later, in Theorem 3.8 and Example 3.15.

Remark 2.10. The equation $\mathrm{e}^{x}=1$ has precisely one solution $x \in \mathbb{R}$, namely $x=0$. In contrast, $\mathrm{e}^{A}=\mathbb{1}$ with $A \in \operatorname{Mat}(2, \mathbb{R})$ has already infinitely many solutions, including $A=n\left(\begin{array}{cc}0 & -2 \pi \\ 2 \pi & 0\end{array}\right)$ with $n \in \mathbb{Z}$. Restricting A to real matrices with zero row sums restores uniqueness, because one eigenvalue of A is then 0 , hence also the second, by the spectral mapping theorem (SMT), as A is real. Since A must be diagonalisable by [1, Fact 2.15], $A=0$ is the only solution.

When $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant d}$ is a Markov generator with $\mathrm{e}^{A}=\mathbb{1}$, for arbitrary d, one has $1=\operatorname{det}\left(\mathrm{e}^{A}\right)=\mathrm{e}^{\operatorname{tr}(A)}$ and thus $0=\operatorname{tr}(A)=-\sum_{i \neq j} a_{i j}$. With $a_{i j} \geqslant 0$ for all $i \neq j$ by the generator property, this gives $a_{i j}=0$ for all $i \neq j$, hence also $a_{i i}=0$ for all i. Consequently, $A=\mathbb{0}$ is the only generator with $\mathrm{e}^{A}=\mathbb{1}$. However, already for $d=3$, there are further solutions of $\mathrm{e}^{A}=\mathbb{1}$ among the real matrices with zero row sums, which is one reason why the embedding problem becomes more complicated for $d \geqslant 3$.

In general, when Q is an equal-input generator, then so is $\frac{1}{n} Q$, for every $n \in \mathbb{N}$. Now, we can reformulate results from [1] and combine them with Kingman's characterisation of embeddability via regularity in conjunction with infinite divisibility [18, Prop. 7]. As this is compatible with the equal-input structure, we can summarise the general situation as follows.

Proposition 2.11. When d is even, $M \in \mathcal{C}_{d}$ is embeddable if and only if $0 \leqslant c<1$. When $d \geqslant 3$ is odd, there are further embeddable cases with $c>1$.

For arbitrary d and $M \in \mathcal{C}_{d}$, the following properties are equivalent.
(1) M has positive spectrum.
(2) M is embeddable via an equal-input generator.
(3) M is non-singular and infinitely divisible within \mathcal{C}_{d}.
(4) The summatory parameter of M satisfies $0 \leqslant c<1$.

A concrete example of an embeddable matrix $M \in \mathcal{C}_{3}$ with $c>1$ is discussed in [5, Ex. 16] and [1, Ex. 4.3]. This M is infinitely divisible within \mathcal{M}_{3}, but not within \mathcal{C}_{3}. In fact, since $\sqrt[n]{M}$ has spectrum $\left\{1, \exp \left(\frac{-\pi \sqrt{3}}{n} \pm \frac{\mathrm{i} \pi}{n}\right)\right\}$ in this case, M does not possess an n-th root of equal-input type for any $n \geqslant 2$.

Example 2.12. Within \mathcal{C}_{d} lies the submonoid of constant-input matrices [1, Rem. 4.8], which all are of the form $M_{c}:=\mathbb{1}+c J_{d}$ with $0 \leqslant c \leqslant \frac{d}{d-1}$, where $J_{d}=\frac{d-1}{d}\left(G_{d}-\mathbb{1}\right)$ with G_{d} from (4) is a constant-input generator with summatory parameter 1 , hence $J_{d}^{2}=-J_{d}$. Clearly, J_{d}, as well as every constant-input matrix, is diagonalisable. If $c \in[0,1)$, the spectral radius of $c J_{d}$ is $c<1$, and a simple calculation with $\log \left(\mathbb{1}+c J_{d}\right)$ gives

$$
M_{c}:=\mathbb{1}+c J_{d}=\exp \left(-\log (1-c) J_{d}\right)
$$

For d even, by Proposition 2.11, no constant-input Markov matrix with $c>1$ can be embeddable, while this changes for $d \geqslant 3$ odd.

Assume that d is odd and M_{c} with $c>1$ is embeddable, so $M=\mathrm{e}^{Q}$, where we also have $\left[J_{d}, Q\right]=\mathbb{0}$. So, by [1, Lemma 4.10 and Fact 2.15], Q is doubly stochastic and diagonalisable. As the eigenvalues of M_{c} are 1 and $1-c<0$, the latter with multiplicity $d-1$, the spectrum of Q cannot be real. In particular, Q is not symmetric. Still, for any $a \in[0,1)$, we get

$$
M_{a} M_{c}=\mathrm{e}^{-\log (1-a) J_{d}} \mathrm{e}^{Q}=\mathrm{e}^{Q-\log (1-a) J_{d}}
$$

and $M_{f(a, c)}$ is embeddable as well, where f is the function from Lemma 2.5.
When $c>1$ is fixed and a varies in $[0,1), f(a, c)$ runs through ($1, c]$. Now, the infinitely divisible elements of \mathcal{M}_{d} form a closed subset, as follows by a standard compactness argument
via convergent subsequences. Since M_{c} with $c>1$ is non-singular, we see that there is a number $c_{\max } \in(1,2]$ such that M_{c} is embeddable precisely for all $c \in[0,1) \cup\left(1, c_{\max }\right]$. These constant-input matrices form a monoid that inherits the C_{2}-grading from Proposition 2.6. For the case $d=3$, we know from [1, Cor. 6.6] that $c_{\max }=1+\mathrm{e}^{-\pi \sqrt{3}}$. The determination of $c_{\max }>1$ for $d=2 m+1$ with $m \geqslant 2$ is an interesting open question.

When $d \geqslant 3$, the embedding of $M \in \mathcal{C}_{d}$ need no longer be unique as for $d=2$, but one still has the following property.

Lemma 2.13. Let $d \geqslant 2$ and let $M \in \mathcal{C}_{d}$ be embeddable. If M admits a representation of the form $M=\mathrm{e}^{Q}$ with a generator Q of equal-input type, the latter is unique in the sense that no other embedding can have an equal-input generator.

Proof. The claim is obvious for $M=\mathbb{1}$, where $Q=\mathbb{0}$ is the only generator solution; compare Remark 2.10. Next, let Q and Q^{\prime} be equal-input generators, with summatory parameters c and c^{\prime}, where we may now assume that $c c^{\prime}>0$. When $\mathrm{e}^{Q}=\mathrm{e}^{Q^{\prime}}$, Eq. (5) implies

$$
\mathrm{e}^{-c} \mathbb{1}+\frac{1-\mathrm{e}^{-c}}{c} C=\mathrm{e}^{-c^{\prime}} \mathbb{1}+\frac{1-\mathrm{e}^{-c^{\prime}}}{c^{\prime}} C^{\prime}
$$

As both C and C^{\prime} are equal-row matrices, this can only hold when $\mathrm{e}^{-c}=\mathrm{e}^{-c^{\prime}}$, hence $c=c^{\prime}$, which in turn forces $C=C^{\prime}$ and thus $Q=Q^{\prime}$ as claimed.

When $M \in \mathcal{C}_{d}$ is equal-input embeddable, so $M=M_{C}$ for some $C \geqslant \mathbb{0}$ with parameter sum $0 \leqslant c<1$ by Proposition 2.11, the unique generator from Lemma 2.13 is given by

$$
\begin{equation*}
Q=-\frac{\log (1-c)}{c}\left(M_{C}-\mathbb{1}\right), \tag{6}
\end{equation*}
$$

meaning $Q=\mathbb{O}$ for $c=0$, which is a nice extension of Lemma 2.9. The derivation rests on the observation that $c<1$ is the spectral radius of $M_{C}-\mathbb{1}$, which permits the use of the standard branch of the matrix logarithm and its power series.

Let us next expand on an observation made in [1], in the context of an effective BCH formula for embeddable equal-input matrices. Here, one considers products of exponentials of equal-input generators, including non-commuting ones.

Theorem 2.14. Let Q and Q^{\prime} be equal-input generators, with summatory parameters c and c^{\prime}, respectively. Then, one has $\mathrm{e}^{Q} \mathrm{e}^{Q^{\prime}}=\mathrm{e}^{Q^{\prime \prime}}$ with

$$
Q^{\prime \prime}=\frac{c+c^{\prime}}{c\left(1-\mathrm{e}^{-\left(c+c^{\prime}\right)}\right)}\left(\mathrm{e}^{-c^{\prime}}\left(1-\mathrm{e}^{-c}\right) Q+\frac{c}{c^{\prime}}\left(1-\mathrm{e}^{-c^{\prime}}\right) Q^{\prime}\right),
$$

interpreted appropriately for $c=0$ or $c^{\prime}=0$, where $Q^{\prime \prime}$ is again an equal-input generator. In particular, when $\left[Q, Q^{\prime}\right]=\mathbb{0}$, the formula simplifies to $Q^{\prime \prime}=Q+Q^{\prime}$.

Proof. Let C and C^{\prime} be the constant-row matrices underneath Q and Q^{\prime}. Using the second identity from Eq. (5) in conjunction with the relation $C C^{\prime}=c C^{\prime}$, one finds

$$
\begin{equation*}
\mathrm{e}^{Q} \mathrm{e}^{Q^{\prime}}=\mathrm{e}^{-\left(c+c^{\prime}\right)} \mathbb{1}+\frac{\mathrm{e}^{-c^{\prime}}\left(1-\mathrm{e}^{-c}\right)}{c} C+\frac{1-\mathrm{e}^{-c^{\prime}}}{c^{\prime}} C^{\prime} \tag{7}
\end{equation*}
$$

Since the summatory parameters of e^{Q} and $\mathrm{e}^{Q^{\prime}}$ are $\tilde{c}=1-\mathrm{e}^{-c}$ and $\tilde{c}^{\prime}=1-\mathrm{e}^{-c^{\prime}}$, which both lie in $[0,1)$, the product $\mathrm{e}^{Q} \mathrm{e}^{Q^{\prime}}$ is an equal-input matrix that has summatory parameter $\tilde{c}^{\prime \prime} \in[0,1)$ by Lemma 2.5. As such, it is equal-input embeddable by Proposition 2.11; see also [1, Thm. 4.6]. Consequently, there exists an equal-input generator $Q^{\prime \prime}=C^{\prime \prime}-c^{\prime \prime} \mathbb{1}$ such that

$$
\begin{equation*}
\mathrm{e}^{Q} \mathrm{e}^{Q^{\prime}}=\mathrm{e}^{Q^{\prime \prime}}=\mathrm{e}^{-c^{\prime \prime}} \mathbb{1}+\frac{1-\mathrm{e}^{-c^{\prime \prime}}}{c^{\prime \prime}} C^{\prime \prime}, \tag{8}
\end{equation*}
$$

where the last step follows once more from (5).
A comparison of (7) and (8) reveals that equality can only hold when the summatory parameters satisfy $c^{\prime \prime}=c+c^{\prime}$, which then gives

$$
C^{\prime \prime}=\frac{c+c^{\prime}}{1-\mathrm{e}^{-\left(c+c^{\prime}\right)}}\left(\frac{\mathrm{e}^{-c^{\prime}}\left(1-\mathrm{e}^{-c}\right)}{c} C+\frac{1-\mathrm{e}^{-c^{\prime}}}{c^{\prime}} C^{\prime}\right) .
$$

Inserting $C=Q+c \mathbb{1}$ and the analogous terms for C^{\prime} and $C^{\prime \prime}$ leads to the formula stated.
The condition $\left[Q, Q^{\prime}\right]=\mathbb{0}$, which includes the case that one generator is $\mathbb{0}$, is equivalent to $c^{\prime} C=c C^{\prime}$, which also gives $c^{\prime} Q=c Q^{\prime}$. Inserting this into the formula for $Q^{\prime \prime}$ produces the claimed simplification after a short calculation.

In Theorem 2.14, the summatory parameters of $e^{Q}, e^{Q^{\prime}}$ and $e^{Q^{\prime \prime}}$ are always related by

$$
\tilde{c}^{\prime \prime}=\tilde{c}+\tilde{c}^{\prime}-\tilde{c} \tilde{c}^{\prime}=f\left(\tilde{c}, \tilde{c}^{\prime}\right)=1-\mathrm{e}^{-\left(c+c^{\prime}\right)}<1,
$$

in accordance with Fact 2.4 and Lemma 2.5. Various other aspects of equal- and constantinput Markov matrices have been discussed in [1], wherefore we now proceed to the second matrix class described in the Introduction.

3. Monotone Markov matrices and embeddability

Let us begin this section with a formalisation of some of our previous recollections. To this end, we follow [16] and employ the lower-triangular matrix $T \in \operatorname{Mat}(d, \mathbb{R})$ given by

$$
T=\left(\begin{array}{ccc}
1 & & 0 \tag{9}\\
\vdots & \ddots & \\
1 & \cdots & 1
\end{array}\right)
$$

together with its inverse, T^{-1}, which has entries 1 on the diagonal, -1 on the first subdiagonal, and 0 everywhere else. With T and vectors $x, y \in \mathbb{P}_{d}$, one has the equivalence

$$
\begin{equation*}
x \preccurlyeq y \quad \Longleftrightarrow \quad x T \leqslant y T \tag{10}
\end{equation*}
$$

where the inequality on the right means that it is satisfied element-wise.
3.1. Monotone Markov matrices. If $E_{(i, j)} \in \operatorname{Mat}(d, \mathbb{R})$ denotes the elementary matrix with a single 1 in position (i, j) and 0 everywhere else, which results in

$$
\begin{equation*}
E_{(k, \ell)} E_{(m, n)}=\delta_{\ell, m} E_{(k, n)}, \tag{11}
\end{equation*}
$$

one obtains the relations

$$
E_{(i, j)} T=E_{(i, 1)}+\ldots+E_{(i, j)} \quad \text { and } \quad T^{-1} E_{(i, j)}=E_{(i, j)}-E_{(i+1, j)},
$$

where $E_{(d+1, j)}:=0$. Further, we call a column vector $v=\left(v_{1}, \ldots, v_{d}\right)^{T}$ non-decreasing if $v_{i} \leqslant v_{i+1}$ holds for all $1 \leqslant i \leqslant d-1$. Now, we can characterise monotone matrices as follows.

Fact 3.1. For a Markov matrix $M \in \mathcal{M}_{d}$, the following statements are equivalent.
(1) The matrix M is monotone.
(2) The mapping $x \mapsto x M$ preserves the partial order \preccurlyeq on the positive cone.
(3) One has $T^{-1} M T \geqslant \mathbb{0}$, understood element-wise, with T as in Eq. (9).
(4) Whenever v is a non-decreasing vector, $M v$ is also non-decreasing.

Further, the same equivalences hold for any non-negative $B \in \operatorname{Mat}(d, \mathbb{R})$ with equal row sums.
Proof. By our definition, (1) is equivalent to preserving \preccurlyeq on \mathbb{P}_{d}, which clearly extends to all level sets $\alpha \mathbb{P}_{d}$ with $\alpha>0$, so $(1) \Longleftrightarrow(2)$ is clear. The equivalences $(2) \Longleftrightarrow(3) \Longleftrightarrow(4)$ are now an immediate consequence of [16, Thm. 1.1].

The case $B=\mathbb{0}$ is trivial. When $B \neq \mathbb{0}$, with elements $b_{i j}$, is a non-negative matrix with equal row sums, meaning that $\sum_{j=1}^{d} b_{i j}=b>0$ for all $1 \leqslant i \leqslant d$, the matrix $M=\frac{1}{b} B$ is Markov, and the final claim follows from the compatibility of the partial order on the positive cone with scaling by b and the fact that the conditions in (3) and (4) are linear in M.

Example 3.2. Let $M=\left(m_{i j}\right)_{1 \leqslant i, j \leqslant d}$ be Markov. When $d=2$, the non-negativity of $T^{-1} M T$ is equivalent to the single condition $\operatorname{tr}(M) \geqslant 1$, alternatively to

$$
m_{22} \geqslant m_{12} .
$$

Likewise, for $d=3$, the original monotonicity condition for M, or equivalently the nonnegativity condition for $T^{-1} M T$, boils down to

$$
m_{33} \geqslant m_{23} \geqslant m_{13} \text { and } m_{11} \geqslant m_{21} \geqslant m_{31}
$$

where it was used that all rows of M sum to 1 .
Let $E_{\ell_{1}, \ldots, \ell_{d}}$ denote the $\{0,1\}$ Markov matrix with the row vector $e_{\ell_{i}}$ as row i, for $1 \leqslant i \leqslant d$, so $E_{\ell_{1}, \ldots, \ell_{d}}=E_{\left(1, \ell_{1}\right)}+\ldots+E_{\left(d, \ell_{d}\right)}$. There exist d^{d} such matrices, which are the extremal elements of \mathcal{M}_{d}. Since $e_{i} \preccurlyeq e_{j}$ if and only if $i \leqslant j$, it is clear that $E_{\ell_{1}, \ldots, \ell_{d}}$ is monotone precisely when $\ell_{1} \leqslant \ell_{2} \leqslant \cdots \leqslant \ell_{d}$. Using (11), or alternatively tracing the images of the basis vectors e_{i}, one verifies the multiplication rule

$$
\begin{equation*}
E_{k_{1}, \ldots, k_{d}} E_{\ell_{1}, \ldots, \ell_{d}}=E_{\ell_{k_{1}}, \ldots, \ell_{k_{d}}} . \tag{12}
\end{equation*}
$$

Due to the existence of singular idempotents among these matrices (when $d \geqslant 2$), one thus obtains the following structure result.

Fact 3.3. For $d \geqslant 2$, the set of $\{0,1\}$ Markov matrices, under matrix multiplication, is a monoid, but not a group. The same property holds for the subset of monotone matrices.

A $\{0,1\}$ Markov matrix in \mathcal{M}_{d} is non-singular if and only if it is a permutation matrix. The subset of the d ! permutation matrices is isomorphic with the symmetric group S_{d}.

Now, we turn to a well-known property of $\mathcal{M}_{d, \preccurlyeq}$, where we include a proof for convenience.
Lemma 3.4. The set $\mathcal{M}_{d, \preccurlyeq}$ is convex. It has $\binom{2 d-1}{d}$ extremal points, which are the monotone Markov matrices with entries in $\{0,1\}$, that is, the $E_{\ell_{1}, \ldots, \ell_{d}}$ with $1 \leqslant \ell_{1} \leqslant \ell_{2} \leqslant \cdots \leqslant \ell_{d} \leqslant d$.
Proof. Convexity is clear, for instance via Fact 3.1(3). Consequently, any convex combination of monotone $\{0,1\}$ Markov matrices must lie in $\mathcal{M}_{d, \preccurlyeq}$. Thus, we first have to show that such convex combinations exhaust $\mathcal{M}_{d, \preccurlyeq}$. This follows from a greedy algorithm that is based on the following reduction argument.

Consider a non-negative matrix $B \neq \mathbb{O}$ with equal row sums, b say, where $b>0$. Assume that B is monotone. Such a matrix, due to the monotonicity condition, appears in a (nonreduced) row-echelon form. This is captured in a set of integer pairs $\left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{r}, j_{r}\right)\right)$, where j_{1} is the position of the first (or left-most) non-zero column of B, with i_{1} the lowest position of a positive element in it, j_{2} then is the left-most position of a column that is nonzero below row i_{1}, with i_{2} the lowest position of a positive element in column j_{2}, and so on. Clearly, $r \geqslant 1$ and $i_{r}=d$ due to $b>0$ in conjunction with B being monotone.
For instance, B may have the row-echelon form

$$
B=\left(\begin{array}{c|ccccc}
0 & * & . & . & . & . \\
0 & * & \cdot & \cdot & \cdot & \cdot \\
0 & \bullet & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \bullet & \cdot & . & . \\
0 & 0 & 0 & 0 & * & \cdot \\
0 & 0 & 0 & 0 & \cdot & \cdot
\end{array}\right),
$$

here with $r=3$ and integer pairs $((3,2),(4,3),(6,5))$. A symbol \bullet marks the lowest positive element in a column, and $*$ any element in the same column (above \bullet) that cannot be smaller (as a consequence of monotonicity). In each row, there is thus either one $*$ or one \bullet by this rule. The total number of symbols of type \bullet or $*$ is d, so 6 in this particular case. To the left of them, all elements are 0 , while the remaining elements of B are left unspecified, as they play no role at this stage.

Now, let $\alpha>0$ be the minimal element in the \bullet positions, which are the $\left(i_{k}, j_{k}\right)$, and let E denote the matrix that has a 1 in every \bullet and in every $*$ position and a 0 anywhere else, which obviously is a monotone $\{0,1\}$ Markov matrix, namely the $E_{\ell_{1}, \ldots, \ell_{d}}$ where ℓ_{i} is the unique position of $*$ or \bullet in row i, for $1 \leqslant i \leqslant d$. Now, set $B^{\prime}=B-\alpha E$, which is still monotone and has constant row sums $b^{\prime}=b-\alpha \geqslant 0$, but one \bullet is now replaced by a 0 , which means that this \bullet is gone or has moved up or right (or both) in the matrix. Unless $B^{\prime}=\mathbb{0}$, we repeat the procedure with the new row-echelon form, which terminates after finitely many steps. The result is a decomposition of B as a sum of monotone $\{0,1\}$ Markov matrices with

$\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$	M	$\sigma(M)$	$p \quad q$	M^{2}
$(1,1,1)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 10 & 0 \\ 10 & 0\end{array}\right)$	$\{1,0,0\}$	$x^{2}(x-1) \quad x(x-1)$	$(1,1,1)$
$(1,1,2)$	$\left(\begin{array}{llll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$	$\{1,0,0\}$	$x^{2}(x-1) \quad p(x)$	$(1,1,1)$
$(1,1,3)$	$\left(\begin{array}{llll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\{1,1,0\}$	$x(x-1)^{2} \quad x(x-1)$	$(1,1,3)$
$(1,2,2)$	$\left(\begin{array}{llll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$	$\{1,1,0\}$	$x(x-1)^{2} \quad x(x-1)$	$(1,2,2)$
$(1,2,3)$	$\left(\begin{array}{llll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\{1,1,1\}$	$(x-1)^{3} \quad x-1$	$(1,2,3)$
$(1,3,3)$	$\left(\begin{array}{llll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$	$\{1,1,0\}$	$x(x-1)^{2} \quad x(x-1)$	$(1,3,3)$
(2, 2, 2)	$\left(\begin{array}{llll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$	$\{1,0,0\}$	$x^{2}(x-1) \quad x(x-1)$	$(2,2,2)$
$(2,2,3)$	$\left(\begin{array}{llll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\{1,1,0\}$	$x(x-1)^{2} \quad x(x-1)$	$(2,2,3)$
$(2,3,3)$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$	$\{1,0,0\}$	$x^{2}(x-1) \quad p(x)$	$(3,3,3)$
$(3,3,3)$	$\left(\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$	$\{1,0,0\}$	$x^{2}(x-1) \quad x(x-1)$	$(3,3,3)$

Table 1. The 10 extremal elements $E_{\ell_{1}, \ell_{2}, \ell_{3}}$ of $\mathcal{M}_{3, \preccurlyeq}$ with some of their properties. Here, $\sigma(M)$ is the spectrum of M with multiplicities, while p and q are, up to an overall sign, the characteristic and the minimal polynomial of M. Note that $p \neq q$ precisely when M is an idempotent. The last column gives M^{2} in terms of its index parameters.
positive weight factors. If we start with M, which has equal row sums $b=1$, it is clear that we end up with a convex combination.

No monotone $\{0,1\}$ Markov matrix can be written as a convex combination of the other ones, so their extremality is clear. Now, given d, the monotone $\{0,1\}$ Markov matrices are in obvious bijection with the possibilities to distribute d indistinguishable balls (the 1s) to d distinguishable boxes (the columns of the matrix), where an outcome (n_{1}, \ldots, n_{d}), with $n_{1}+\ldots+n_{d}=d$, parameterises the matrix M with the row vector e_{1} in the first n_{1} rows, then e_{2} in the next n_{2} rows, and so on. The total number of possible outcomes is well known to be $\binom{2 d-1}{d-1}=\binom{2 d-1}{d}$, as this is the number of choices to place $d-1$ separating walls between the d balls on the altogether $2 d-1$ positions; see [24, A001700] for details.

The case $d=3$ is summarised in Table 1. By Lemma 3.4, every monotone Markov matrix $M \in \mathcal{M}_{d}$ can be expressed as a convex combination of the form

$$
\begin{equation*}
M=\sum_{1 \leqslant \ell_{1} \leqslant \cdots \leqslant \ell_{d} \leqslant d} \alpha_{\ell_{1}, \ldots, \ell_{d}} E_{\ell_{1}, \ldots, \ell_{d}} \tag{13}
\end{equation*}
$$

with all coefficients $\alpha_{\ell_{1}, \ldots, \ell_{d}} \geqslant 0$, their sum being 1, and $E_{\ell_{1}, \ldots, \ell_{d}}$ as above. Observing that $\operatorname{tr}\left(E_{\ell_{1}, \ldots, \ell_{d}}\right) \geqslant 1$ whenever $\ell_{1} \leqslant \ell_{2} \leqslant \cdots \leqslant \ell_{d}$, one finds from (13) that $\operatorname{tr}(M) \geqslant 1$ holds for all monotone Markov matrices, which easily generalises as follows.

Corollary 3.5. Let $B \in \operatorname{Mat}(d, \mathbb{R})$ be a non-negative matrix with equal row sums, $b \geqslant 0$. If B is also monotone, one has $\operatorname{tr}(B) \geqslant b$.
3.2. Monotonicity and embeddability. Recall from [1] that \mathcal{E}_{d} denotes the semigroup generated by the embeddable Markov matrices of dimension d. For $d=2$, every element of \mathcal{E}_{2} is itself embeddable (so $\mathcal{E}_{2}=\mathcal{M}_{2}^{\mathrm{E}}$, which is no longer true for $d \geqslant 3$), and the set of monotone Markov matrices agrees with the closure of \mathcal{E}_{2}. In fact, $\mathcal{M}_{2, \preccurlyeq}$ is the closed triangle in \mathcal{M}_{2} with the vertices $\mathbb{1}_{2}, E_{1}=\left(\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right)$ and $E_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$. Only the line $\left\{\alpha E_{1}+(1-\alpha) E_{2}: 0 \leqslant \alpha \leqslant 1\right\}$ does not belong to \mathcal{E}_{2}, because it consists of singular idempotents. The only other idempotent in \mathcal{M}_{2} is $\mathbb{1}_{2}$, the trivial case. This leads to the following result.

Proposition 3.6. An element $M \in \mathcal{M}_{2}$ is monotone if and only if $\operatorname{tr}(M) \geqslant 1$. Thus, being monotone is equivalent to either being embeddable or being a non-trivial idempotent.

Proof. Observe that $\operatorname{tr}(M) \leqslant 2$ holds for all $M \in \mathcal{M}_{2}$. Since $M=\left(\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right)$ with $a, b \in[0,1]$ is monotone if and only if $1 \geqslant a+b$, compare Example 3.2, the first claim is immediate. By Lemma 2.9, $\operatorname{tr}(M)=1$ means M is monotone, but not embeddable.

For the second claim, observe that $M \in \mathcal{M}_{2}$ is an idempotent if and only if $M^{2}=M$, which implies $\sigma(M) \subseteq\{0,1\}$. Since $\lambda=1$ is always an eigenvalue, being an idempotent either means that the second eigenvalue is also 1 , hence $M=\mathbb{1}$ by Lemma 2.3 , or that $\operatorname{det}(M)=0$, which gives the line from E_{1} to E_{2} discussed above.

Corollary 3.7. Any $M \in \mathcal{M}_{2, \preccurlyeq}$ is infinitely divisible within $\mathcal{M}_{2, \preccurlyeq \text {. In fact, } M \in \mathcal{M}_{2} \text { is }{ }^{\text {a }} \text {. }}$ infinitely divisible if and only if it is monotone.

Proof. Let $M \in \mathcal{M}_{2}$ be monotone. By Proposition 3.6, the case $\operatorname{det}(M)=0$ means $M^{2}=M$, so also $M^{n}=M$ for all $n \in \mathbb{N}$ by induction, and M is a monotone n-th root of itself. Clearly, the latter statement also applies to $M=\mathbb{1}$.

When $M=\left(\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right) \neq \mathbb{1}$ is embeddable, we have $a+b>0$ and $M=\mathrm{e}^{Q}$ with the unique generator Q from Lemma 2.9. Then, for any $n \in \mathbb{N}$, a Markov n-th root of M is given by

$$
\exp \left(\frac{1}{n} Q\right)=\left(\begin{array}{cc}
1-\epsilon a & \epsilon a \\
\epsilon b & 1-\epsilon b
\end{array}\right) \quad \text { with } \epsilon=\frac{1-\sqrt[n]{1-a-b}}{a+b}
$$

as follows from the same standard calculation with the matrix exponential that was used to derive (6). Now, $\exp \left(\frac{1}{n} Q\right)$ is monotone if and only if $1 \geqslant \epsilon(a+b)$, by an application of the criterion from Example 3.2. But this estimate follows from $0<a+b<1$ because $\epsilon \in[0,1]$.

It remains to show that infinite divisibility of $M \in \mathcal{M}_{2}$ implies its monotonicity, which can be derived from the spectrum as follows. If 1 is the only eigenvalue of M, we have $M=\mathbb{1}$ by Lemma 2.3, which is embeddable. Otherwise, one has $\sigma(M)=\{1, \lambda\}$ where $\lambda \neq 1$ must be real, with $|\lambda| \leqslant 1$. Since M has a Markov square root by assumption, we get $\lambda \in[0,1)$. Now,
$\lambda=0$ means that M is an idempotent, while $\lambda>0 \operatorname{implies} \operatorname{det}(M)>0$, so M is embeddable by Lemma 2.9. Monotonicity of M now follows from Proposition 3.6.

Our next goal is a better understanding of the connection between $\mathcal{M}_{d, \preccurlyeq}$ and \mathcal{C}_{d}, aiming at generalisations of Corollary 3.7 to general d. To this end, we once more consider a nonnegative matrix C with equal rows and parameter sum c, with $C=\mathbb{0}$ only when $c=0$. For $c>0$, the matrix $\frac{1}{c} C$ is both Markov and monotone. Consequently, the Markov matrix M_{C} from Eq. (1), for any $c \in[0,1]$, is a convex combination of $\mathbb{1}$ and $\frac{1}{c} C$, hence monotone as well.

When $c=0$, which means $M_{C}=\mathbb{1}$, or when $c=1$, where $M_{C}=C$, the matrix M_{C} is a monotone idempotent. When $c \in(0,1)$, Eq. (6) implies

$$
\begin{equation*}
M_{C}=\mathrm{e}^{Q} \quad \text { with } Q=-\frac{\log (1-c)}{c} Q_{C} \tag{14}
\end{equation*}
$$

where $Q_{C}=M_{C}-\mathbb{1}$ as before, which is an equal-input generator. Now, for arbitrary $n \in \mathbb{N}$, a standard calculation with the exponential series gives the formula

$$
\begin{equation*}
\exp \left(\frac{1}{n} Q\right)=\mathbb{1}+\frac{1-\sqrt[n]{1-c}}{c} Q_{C}=\sqrt[n]{1-c} \mathbb{1}+(1-\sqrt[n]{1-c}) \frac{1}{c} C \tag{15}
\end{equation*}
$$

Since $\sqrt[n]{1-c} \in(0,1)$ under our assumptions, this is a convex combination of two monotone Markov matrices, hence monotone and Markov itself. We have thus proved the following generalisation of our previous statements, assuming $d \geqslant 2$ as usual. In particular, the idempotent elements play a similar role as in the two-dimensional case.

Theorem 3.8. Let C, Q_{C} and M_{C} be as above, and let $c=c_{1}+\ldots+c_{d}$ be the corresponding parameter sum. If $c \in[0,1], M_{C}$ is Markov and monotone, with the following properties.
(1) M_{C} is an idempotent if and only if $c \in\{0,1\}$, where $c=0$ means $M_{C}=\mathbb{1}$.
(2) M_{C} is embeddable if and only if $c \in[0,1)$, then with $Q=\mathbb{0}$ for $c=0$ or otherwise with the generator Q from (14).
In particular, $M_{C}=\mathbb{1}$ is the only embeddable idempotent. In both cases, for every $n \in \mathbb{N}$, M_{C} has a Markov n-th root that is both equal-input and monotone, which is to say that M_{C} is infinitely divisible within $\mathcal{M}_{d, \preccurlyeq} \cap \mathcal{C}_{d}$.

Note that, also in generalisation of the case $d=2$, the set of monotone Markov matrices of type M_{C} with summatory parameter $c \in[0,1]$ is the closure of the equal-input Markov matrices that are embeddable with an equal-input generator, with all non-embeddable boundary cases being non-trivial idempotents. In fact, one has more as follows.

Corollary 3.9. A Markov matrix $M \in \mathcal{C}_{d}$ is monotone if and only if its summatory parameter satisfies $c \in[0,1]$. So, one obtains the convex set

$$
\mathcal{C}_{d, \preccurlyeq}:=\mathcal{C}_{d} \cap \mathcal{M}_{d, \preccurlyeq}=\left\{M \in \mathcal{C}_{d}: c \in[0,1]\right\},
$$

with the $d+1$ extremal elements E_{1}, \ldots, E_{d} and $\mathbb{1}$.
Further, $\mathcal{C}_{d, \preccurlyeq}$ is the disjoint union of the set of equal-input embeddable elements from \mathcal{C}_{d} with the set $\mathcal{C}_{d, 1}$ of non-trivial idempotents in \mathcal{C}_{d}. The eigenvalues of any $M \in \mathcal{C}_{d, \preccurlyeq}$ are real and non-negative, and they are positive precisely for the embeddable cases.

Proof. It is clear from Theorem 3.8 that all $M \in \mathcal{C}_{d}$ with $c \in[0,1]$ are monotone, so we need to show that no further element of \mathcal{C}_{d} is. To this end, consider a Markov matrix of the form $M=(1-c) \mathbb{1}+C$ with $c>1$, which implies that all $c_{i}>0$. Then, it is easy to check that $T^{-1} M T$ fails to be a non-negative matrix, where T is the matrix from (9), and M fails to be monotone by Fact 3.1(3).

When $c \in[0,1]$, we have $0 \leqslant c_{i} \leqslant c_{1}+\ldots+c_{d}=c \leqslant 1$ for all $1 \leqslant i \leqslant d$, and

$$
M_{C}=(1-c) \mathbb{1}+C=(1-c) \mathbb{1}+\sum_{i=1}^{d} c_{i} E_{i}
$$

is a convex combination, where the extremality of E_{1}, \ldots, E_{d} and $\mathbb{1}$ is clear.
Another application of Theorem 3.8 gives the decomposition claimed, while the statement on the spectrum is clear because the eigenvalues of M_{C} are 1 and $1-c$.

Geometrically, the situation is that the simplex $\mathcal{C}_{d, \preccurlyeq}$ separates the compact set \mathcal{C}_{d} into the subset with $c \in[0,1$), which are the 'good' cases for embeddability, and the subset with $c \in\left(1, \frac{d}{d-1}\right]$, where embeddability requires d even and further conditions, but is never possible with an equal-input generator. For $d=2$, we refer to [1, Fig. 1] for an illustration.

One can view $\mathcal{C}_{d, \preccurlyeq}$ differently when starting in $\mathcal{M}_{d, \preccurlyeq}$. Let S_{d} be the symmetric (or permutation) group of d elements, and P_{π} the standard permutation matrix that represents the mapping $e_{i} \mapsto e_{\pi(i)}$ under multiplication to the right. P_{π} has elements $\delta_{i, \pi(j)}$ and satisfies $P_{\pi}^{-1}=P_{\pi^{-1}}$. There are $d!$ such matrices, which are the extremal elements among the doubly stochastic matrices mentioned earlier. The conjugation action by such a matrix gives

$$
P_{\pi} E_{(k, \ell)} P_{\pi}^{-1}=E_{(\pi(k), \pi(\ell))} \quad \text { and } \quad P_{\pi} E_{\ell_{1}, \ldots, \ell_{d}} P_{\pi}^{-1}=E_{\pi\left(\ell_{\pi}-1(1)\right), \ldots, \pi\left(\ell_{\pi^{-1}(d)}\right)},
$$

as follows from a simple calculation with $E_{\ell_{1}, \ldots, \ell_{d}}=E_{\left(1, \ell_{1}\right)}+\ldots+E_{\left(d, \ell_{d}\right)}$, or, alternatively, from tracing the images of the basis vectors e_{i} for $1 \leqslant i \leqslant d$.

Now, a set $\mathcal{F} \subseteq \mathcal{M}_{d}$ of Markov matrices is called permutation invariant if $P_{\pi} \mathcal{F} P_{\pi}^{-1}=\mathcal{F}$ holds for all $\pi \in S_{d}$. Clearly, \mathcal{M}_{d} itself is such a set, as is \mathcal{C}_{d} or its subset of constant-input matrices. The latter are also individually permutation invariant (which is also called exchangeable in probability theory [8]), that is, $P_{\pi} M P_{\pi}^{-1}=M$ holds for every constant-input matrix M and all $\pi \in S_{d}$. In fact, the Markov matrices that are individually permutation invariant are precisely the constant-input ones, without restriction on the summatory parameter c.

The set of all $\{0,1\}$ Markov matrices is permutation invariant as well, and partitions into S_{d}-orbits of the form $\mathcal{O}_{S_{d}}(M)=\left\{P_{\pi} M P_{\pi}^{-1}: \pi \in S_{d}\right\}$. Two such orbits are

$$
\mathcal{O}_{S_{d}}(\mathbb{1})=\{\mathbb{1}\} \quad \text { and } \quad \mathcal{O}_{S_{d}}\left(E_{1}\right)=\left\{E_{1}, \ldots, E_{d}\right\}
$$

which both consist of monotone matrices only. One can check that no other orbit of the decomposition has this property, which implies the following characterisation.

Fact 3.10. The convex set $\mathcal{C}_{d, \preccurlyeq}$ is the maximal subset of $\mathcal{M}_{d, \preccurlyeq}$ that is permutation invariant. The elements of $\mathcal{C}_{d, \preccurlyeq}$ that are individually permutation invariant are the constant-input matrices with $c \in[0,1]$.

Let us turn to Markov semigroups. Recall from [16] that a (homogeneous) Markov semigroup $\left\{\mathrm{e}^{t Q}: t \geqslant 0\right\}$, with generator Q, is called monotone when $\mathrm{e}^{t Q}$ is monotone for every $t \geqslant 0$. Moreover, a generator Q is called monotone if all off-diagonal elements of $T^{-1} Q T$ are non-negative, where T is the matrix from Eq. (9). This concept is motivated by the following connection, which is [16, Thm. 2.1]. Due to its importance, we include a short proof.

Proposition 3.11. If Q is a Markov generator, the following properties are equivalent.
(1) The semigroup $\left\{\mathrm{e}^{t Q}: t \geqslant 0\right\}$ is monotone.
(2) The generator Q is monotone.

Proof. For (1) $\Rightarrow(2)$, observe that $T^{-1} \mathrm{e}^{t Q} T \geqslant 0$ implies $\left(T^{-1} \frac{1}{t}\left(\mathrm{e}^{t Q}-\mathbb{1}\right) T\right)_{i j} \geqslant 0$ for $t>0$ and all $i \neq j$. Then, taking $t \searrow 0$ establishes this direction.

For $(2) \Rightarrow(1)$, is it clear that $T^{-1} Q T+\alpha \mathbb{1} \geqslant \mathbb{0}$ holds for any sufficiently large $\alpha>0$. Choose α also large enough so that $M_{\alpha}:=\mathbb{1}+\alpha^{-1} Q$ is Markov, which is clearly possible. Then, $T^{-1} M_{\alpha} T \geqslant \mathbb{0}$, and we get $T^{-1} M_{\alpha}^{m} T=\left(T^{-1} M_{\alpha} T\right)^{m} \geqslant \mathbb{D}$ for all integers $m \geqslant 0$. Now, observe

$$
\mathrm{e}^{t Q}=\mathrm{e}^{-\alpha t} \mathrm{e}^{\alpha t M_{\alpha}}=\sum_{m=0}^{\infty} \mathrm{e}^{-\alpha t} \frac{(\alpha t)^{m}}{m!} M_{\alpha}^{m},
$$

which, for all $t \geqslant 0$, constitutes a convergent sum that is a convex combination of monotone Markov matrices. Consequently, $\mathrm{e}^{t Q}$ is monotone as well.

Example 3.12. Let $Q=\left(q_{i j}\right)_{1 \leqslant i, j \leqslant d}$ be a Markov generator. When $d=2$, it is always monotone, that is, no extra condition emerges; compare Proposition 3.6. When $d=3$, being monotone is equivalent with the two conditions

$$
q_{23} \geqslant q_{13} \text { and } q_{21} \geqslant q_{31},
$$

which provide a surprisingly simple criterion for monotonicity in this case.
The above considerations have the following consequence.
Corollary 3.13. For $M \in \mathcal{M}_{d, \preccurlyeq \text {, }}$, the following properties are equivalent.
(1) M is embeddable via a monotone Markov generator.
(2) M is non-singular and infinitely divisible within $\mathcal{M}_{d, \preccurlyeq}$.

Proof. (1) \Rightarrow (2): Let $M=\mathrm{e}^{Q}$ with Q a monotone generator, so $\operatorname{det}(M)=\mathrm{e}^{\operatorname{tr}(Q)}>0$. Now, $\frac{1}{n} Q$ is still a monotone generator, for any $n \in \mathbb{N}$, and $\exp \left(\frac{1}{n} Q\right)$ is a monotone Markov matrix (by Proposition 3.11) that is also an n-th root of M.
$(2) \Rightarrow(1)$: By Kingman's characterisation [18, Prop. 7], M is embeddable, so $M=\mathrm{e}^{Q}$ with some generator Q. We need to show that Q can be chosen to be monotone. Let R_{n} be an n-th root of M that is Markov and monotone, which exists and implies that $A_{n}:=n\left(R_{n}-\mathbb{1}\right)$ is a monotone generator. By a standard compactness argument, there is a subsequence $\left(n_{i}\right)_{i \in \mathbb{N}}$ of increasing integers such that $Q^{\prime}=\lim _{i \rightarrow \infty} A_{n_{i}}$ is a monotone generator as well. From here
on, we can employ Kingman's original proof to conclude that

$$
M=\left(\mathbb{1}+\frac{Q^{\prime}}{n_{i}}\right)^{n_{i}}+o(1) \quad \text { as } i \rightarrow \infty,
$$

which gives $M=\mathrm{e}^{Q^{\prime}}$ as claimed.
3.3. Idempotents and infinite divisibility. At this point, it seems worthwhile to take a closer look at infinite divisibility in general. In this context, we refer to [8, Sec. X.9] for the underlying (pseudo-)Poissonian structures.

Proposition 3.14. Let $P_{0}, P \in \mathcal{M}_{d}$ be chosen such that $P_{0}^{2}=P_{0}$, so P_{0} is an idempotent, and that $P_{0} P=P P_{0}=P$. Then, the matrix family $\{M(t): t \geqslant 0\}$ with

$$
M(t):=\mathrm{e}^{-t}\left(P_{0}+\sum_{m=1}^{\infty} \frac{t^{m}}{m!} P^{m}\right)=\mathrm{e}^{-t}\left(P_{0}-\mathbb{1}+\mathrm{e}^{t P}\right)
$$

satisfies the following properties, where $A:=P-\mathbb{1}$ is a generator.
(1) The mapping $t \mapsto M(t)$ is continuous, with $M(0)=P_{0}$.
(2) $M(t) M(s)=M(t+s)$ holds for all $t, s \geqslant 0$.
(3) $M(t)$ is Markov, for all $t \geqslant 0$.
(4) $M(t)=\mathrm{e}^{-t}\left(P_{0}-\mathbb{1}\right)+\mathrm{e}^{t A}=P_{0} \mathrm{e}^{t A}$ for all $t \geqslant 0$.
(5) $P=P_{0}$ if and only if $M(t)=P_{0}$ holds for all $t \geqslant 0$.
(6) For $t \geqslant 0, M(t)$ is idempotent if and only if $M(t)=P_{0}$.

In particular, $\{M(t): t \geqslant 0\}$ always constitutes a continuous monoid, with P_{0} as its neutral element, while it is a homogeneous Markov semigroup if and only if $P_{0}=\mathbb{1}$.

Proof. (1) is obvious, while (2) follows from a standard calculation with the convergent series. Both P_{0} and P are Markov, and so is P^{m} for all $m \in \mathbb{N}$. Now, for any $t \geqslant 0, M(t)$ is a convergent, convex combination of Markov matrices, hence Markov as well, which shows (3).

Next, claim (4) and the easy direction of (5) follow from elementary calculations, using $P_{0} \mathrm{e}^{t P}=P_{0}+\sum_{m \geqslant 1} \frac{t^{m}}{m!} P^{m}$ together with $\mathrm{e}^{t P}=\mathrm{e}^{t} \mathrm{e}^{t A}$. When $M(t)=P_{0}$ for all $t \geqslant 0$, one obtains $P_{0}+\mathrm{e}^{t P}=\mathbb{1}+\mathrm{e}^{t} P_{0}$. But this implies $\mathrm{e}^{t P}=\mathrm{e}^{t P_{0}}$ for all $t \geqslant 0$ and thus $P=P_{0}$.

For (6), one direction is trivial. The other follows from (4) by observing that $M(t)$ idempotent implies $P_{0} \mathrm{e}^{t A}=M(t)=M(t)^{2}=M(2 t)=P_{0} \mathrm{e}^{2 t A}$ and hence gives the relation $P_{0}=P_{0} \mathrm{e}^{t A}=M(t)$ as claimed.

Finally, while the (abstract) semigroup and monoid properties are clear, the family can only be a homogeneous Markov semigroup when $M(t)=\mathrm{e}^{t Q}$ for some generator Q and all $t \geqslant 0$, so $M(0)=\mathbb{1}$, which is the only non-singular idempotent in \mathcal{M}_{d} by Lemma 2.3. We thus have $P_{0}=\mathbb{1}$ in this case, and (4) implies $M(t)=\mathrm{e}^{t A}$ as claimed.

Example 3.15. Let us analyse the meaning of Proposition 3.14 for $d \geqslant 2$. If $P_{0}=\mathbb{1}$, there is no further restriction on P, and $M(t)=\mathrm{e}^{t A}$ with $A=P-\mathbb{1}$, which can thus be any generator with diagonal elements in $[-1,0]$. This way, possibly after rescaling t, all embeddable matrices
are covered. For $P \in \mathcal{C}_{d}$ with $c \in[0,1)$, we see that $A=P-\mathbb{1}$ is a generator of equal-input type, in line with Lemma 2.9 and Proposition 2.11.

If $P_{0} \in \mathcal{C}_{d, 1}$, we get $P_{0}=\sum_{i=1}^{d} \beta_{i} E_{i}$ with $\beta_{i} \geqslant 0$ and $\beta_{1}+\ldots+\beta_{d}=1$, hence $P_{0}=P P_{0}$ for any $P \in \mathcal{M}_{d}$. Assuming $P P_{0}=P_{0} P=P$, we find $P=P_{0}$, which gives $M(t) \equiv P_{0}$ by Proposition 3.14(5).

For $d=2$, where $\mathcal{M}_{2}=\mathcal{C}_{2}$, this exhausts all cases because no further idempotents exist. Consequently, $M \in \mathcal{M}_{2}$ is infinitely divisible if and only if it is embeddable or an idempotent, with $M=\mathbb{1}$ being the only case that is both; compare Proposition 3.6 and Corollary 3.7.

When $d \geqslant 3$, one obtains mixtures via direct sums, where $\mathbb{1} \oplus P_{0}$ and $(\mathbb{1}+A) \oplus P_{0}$ lead to $M(t)=\mathrm{e}^{t A} \oplus P_{0}$. There are further examples already for $d=3$, such as

$$
P_{0}=\alpha E_{1,1,3}+(1-\alpha) E_{1,3,3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\alpha & 0 & 1-\alpha \\
0 & 0 & 1
\end{array}\right), \quad \text { with } \operatorname{det}\left(P_{0}\right)=0
$$

which is idempotent for any $\alpha \in[0,1]$. Then, $P \in \mathcal{M}_{3}$ with $P P_{0}=P_{0} P=P$ leads to

$$
P=\left(\begin{array}{ccc}
a & 0 & 1-a \\
c & 0 & 1-c \\
1-b & 0 & b
\end{array}\right)
$$

with $a, b \in[0,1]$ and $c=\alpha a+(1-\alpha)(1-b)$. Here, $M(t)=P_{0} \mathrm{e}^{t A}$ is singular for all $t \geqslant 0$ and thus never embeddable. Moreover, for $P \neq P_{0}$, the matrix $M(t)$ can only be idempotent for $t=0$ and possibly for isolated further values of $t>0$. This is so because $M(t)=M(t)^{2}=M(2 t)$ implies $\mathrm{e}^{t P}=\mathrm{e}^{t P_{0}}$ via an elementary calculation. When this holds for t from a set with an accumulation point, t_{0} say, standard arguments imply $P=P_{0}$. So, more interesting as well as more complicated cases emerge in $\mathcal{M}_{d} \backslash \mathcal{C}_{d}$ as d grows.

Lemma 3.16. With P_{0}, P and $M(t)$ as in Proposition 3.14, one has either $\operatorname{det}(M(t))>0$ for all $t \geqslant 0$, which happens if and only if $P_{0}=\mathbb{1}$, or $\operatorname{det}(M(t))=0$ for all $t \geqslant 0$, which is true whenever $P_{0} \neq \mathbb{1}$, equivalently whenever P_{0} is singular.

Proof. Recall via Lemma 2.3 that $P_{0}^{2}=P_{0}$ either means $\operatorname{det}\left(P_{0}\right)=1$, which forces $P_{0}=\mathbb{1}$, or $\operatorname{det}\left(P_{0}\right)=0$. Now, observe that $P_{0} M(t)=M(t)$ holds for all $t \geqslant 0$, so

$$
\operatorname{det}\left(P_{0}\right) \operatorname{det}(M(t))=\operatorname{det}(M(t))
$$

and $\operatorname{det}(M(t)) \equiv 0$ for singular P_{0} is immediate.
The only remaining case is $P_{0}=\mathbb{1}$. Here, Proposition $3.14(3)$ implies $M(t)=\mathrm{e}^{t A}$ with $A=P-\mathbb{1}$ and hence $\operatorname{det}(M(t))=\mathrm{e}^{\operatorname{tr}(t A)}>0$.

A semigroup as in Proposition 3.14 is called Poissonian if $P_{0}=\mathbb{1}$, and pseudo-Poissonian otherwise [8, Sec. X.1]. We can now recall the central classification result on infinitely divisible, finite-dimensional Markov matrices from [10] as follows. In particular, it underpins the role of idempotents in the embedding problem.

Theorem 3.17. A Markov matrix $M \in \mathcal{M}_{d}$ is infinitely divisible if and only if there are Markov matrices $P_{0}, P \in \mathcal{M}_{d}$, with $P_{0}^{2}=P_{0}$ and $P_{0} P=P P_{0}=P$, and some $s \geqslant 0$ such that

$$
M=\mathrm{e}^{-s}\left(P_{0}+\sum_{m=1}^{\infty} \frac{s^{m}}{m!} P^{m}\right)
$$

Moreover, M is embeddable if and only if one also has $P_{0}=\mathbb{1}$.
Proof. For the proof of the first claim, we refer to [10].
For the second claim, we know that M embeddable implies $\operatorname{det}(M)>0$, and we are in the case with $P_{0}=\mathbb{1}$ by Lemma 3.16. Conversely, when $P_{0}=\mathbb{1}$, Proposition 3.14(4) gives $M=\mathrm{e}^{s A}$ with the generator $A=P-\mathbb{1}$.

Note that the parameter s cannot be avoided in this formulation because a generator Q can have arbitrarily large diagonal entries, whence $\mathbb{1}+Q$ need not be Markov, while $\mathbb{1}+s Q$, for all suitably small $s>0$, will be; compare Example 3.15 and Proposition 3.14.

Further consequences can be derived from $\left[P_{0}, P\right]=\mathbb{O}$ when P is cyclic, which means that minimal and characteristic polynomial of P agree. In particular, this is the case when P is simple; see [1, Fact 2.10] for a systematic characterisation of cyclic matrices. Whenever $P \in \mathcal{M}_{d}$ is cyclic, its centraliser is the Abelian ring

$$
\operatorname{cent}(P)=\{B \in \operatorname{Mat}(d, \mathbb{R}):[P, B]=\mathbb{0}\}=\mathbb{R}[P]
$$

where each element of this ring is of the form $\sum_{n=0}^{d-1} \alpha_{n} P^{n}$ with all $\alpha_{n} \in \mathbb{R}$, as a consequence of the Cayley-Hamilton theorem. In particular, P_{0} is then an idempotent from this ring. We leave further details to the interested reader.

4. Monotone Markov matrices in three dimensions

Let us now look at $d=3$ in more detail, where we state the following simple and certainly well-known property, which we prove due to lack of reference.

Proposition 4.1. The eigenvalues of any $M \in \mathcal{M}_{3, \preccurlyeq}$ are real. Moreover, at most one eigenvalue of M can be negative, which happens if and only if $\operatorname{det}(M)<0$.

Further, if $d=3$ and Q is a monotone Markov generator, its eigenvalues are non-positive, real numbers.

Proof. First, $M \in \mathcal{M}_{3, \preccurlyeq} \subset \mathcal{M}_{3}$ implies $1 \in \sigma(M)$. As $d=3$, the characteristic polynomial of M then is $(1-x)\left(x^{2}-(\operatorname{tr}(M)-1) x+\operatorname{det}(M)\right)$, and the remaining two eigenvalues are

$$
\begin{equation*}
\lambda_{ \pm}=\frac{1}{2}(\operatorname{tr}(M)-1 \pm \sqrt{\Delta}) \tag{16}
\end{equation*}
$$

with the discriminant $\Delta=(\operatorname{tr}(M)-1)^{2}-4 \operatorname{det}(M)$. By an explicit calculation, where one first eliminates m_{22} and later also m_{11} via the row sum condition, one verifies that

$$
\Delta=\left(m_{11}-m_{21}+m_{23}-m_{33}\right)^{2}+4\left(m_{23}-m_{13}\right)\left(m_{21}-m_{31}\right) \geqslant 0
$$

where the inequality follows from the monotonicity of M via Example 3.2.

This implies $\sigma(M) \subset \mathbb{R}$, and the formula for $\lambda_{ \pm}$from Eq. (16) shows that at most λ_{-}can be negative, because $\operatorname{tr}(M) \geqslant 1$ by Corollary 3.5. Also, when $\operatorname{det}(M)=0$, the spectrum is $\sigma(M)=\{1, \operatorname{tr}(M)-1,0\}$, which is non-negative. This establishes the claims on M.

If $Q=\left(q_{i j}\right)_{1 \leqslant i, j \leqslant 3}$ is a Markov generator, its spectrum contains 0 , while the other two eigenvalues are given by

$$
\begin{equation*}
\mu_{ \pm}=\frac{1}{2}(\operatorname{tr}(Q) \pm \sqrt{D}), \tag{17}
\end{equation*}
$$

where, in analogy to above, one finds

$$
D=\left(q_{11}-q_{21}+q_{23}-q_{33}\right)^{2}+4\left(q_{23}-q_{13}\right)\left(q_{21}-q_{31}\right) \geqslant 0 .
$$

Here, the inequality follows via the monotonicity criterion from Example 3.12.
Consequently, all eigenvalues are real. They are then non-positive because all eigenvalues of Markov generators have real part $\leqslant 0$, compare [1, Prop. 2.3(1)], as can also be checked explicitly from (17), where $\operatorname{tr}(Q) \leqslant 0 \leqslant \sqrt{D} \leqslant|\operatorname{tr}(Q)|$.

Considering the convex combinations

$$
M(\alpha):=\alpha E_{1,1,2}+(1-\alpha) E_{2,3,3}=\left(\begin{array}{ccc}
\alpha & 1-\alpha & 0 \\
\alpha & 0 & 1-\alpha \\
0 & \alpha & 1-\alpha
\end{array}\right) \quad \text { with } \alpha \in(0,1)
$$

in the notation of Table 1, one finds $\operatorname{tr}(M(\alpha))=1$ and $\operatorname{det}(M(\alpha))=-\alpha(1-\alpha)<0$. This shows that cases with a simple negative eigenvalue exist. On the other hand, Proposition 4.1 also means that the spectrum of a matrix $M \in \mathcal{M}_{3, \preccurlyeq}$ is positive if and only if $\operatorname{det}(M)>0$.
Corollary 4.2. Consider any $M \in \mathcal{M}_{3, \preccurlyeq}$ with $\operatorname{det}(M)<0$. Then, M is neither embeddable nor can it have a monotone n-th Markov root for n even. In fact, M has no Markov or, indeed, real square root at all, and M is not infinitely divisible.

Proof. Since $\operatorname{det}(M)<0$, embeddability is ruled out immediately, and so is the existence of a real square root because M has only a simple negative eigenvalue; compare [13, Thm. 6.6] or [14]. Consequently, M cannot be infinitely divisible.

Further, $B \in \mathcal{M}_{3, \preccurlyeq}$ with $B^{2 m}=M$ for any $m \in \mathbb{N}$ implies non-negative spectrum for M due to $\sigma(B) \subset \mathbb{R}$, which contradicts $\operatorname{det}(M)<0$.

Let us now analyse when a matrix $M \in \mathcal{M}_{3, \preccurlyeq}$ is embeddable. For this, M must be nonsingular and thus, by Corollary 4.2, have positive spectrum. So, all eigenvalues of M must satisfy $0<\lambda \leqslant 1$. Further, $A=M-\mathbb{1}$ is a generator that inherits monotonicity from M as all off-diagonal elements of $T^{-1} A T$ are non-negative. Since the spectral radius of A is $\varrho_{A}<1$,

$$
\begin{equation*}
Q:=\log (\mathbb{1}+A)=\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m} A^{m} \tag{18}
\end{equation*}
$$

converges and defines a real matrix with zero row sums and $M=e^{Q}$. As we are not interested in other types of solutions, we now introduce the non-unital, real algebra

$$
\begin{equation*}
\mathcal{A}_{0}^{(3)}:=\{B \in \operatorname{Mat}(3, \mathbb{R}): \text { all row sums of } B \text { are } 0\} \tag{19}
\end{equation*}
$$

which certainly contains the Q from (18). Since positive spectrum of M means $\sigma(M) \subset(0,1]$, all eigenvalues of Q are non-positive real numbers by the SMT. It remains to analyse the generator property and potential uniqueness of Q.

Let q be the minimal polynomial of A. Its degree satisfies $\operatorname{deg}(q) \in\{1,2,3\}$ and equals the degree of the minimal polynomial of M. Further, let

$$
\operatorname{alg}(A):=\left\langle A^{m}: m \in \mathbb{N}\right\rangle_{\mathbb{R}}
$$

be the real algebra spanned by the positive powers of A, which does not contain $\mathbb{1}$, as one can check easily. In fact, one has $\operatorname{alg}(A)=\left\langle A, A^{2}\right\rangle_{\mathbb{R}}$ by the Cayley-Hamilton theorem, so alg (A) is a subalgebra of $\mathcal{A}_{0}^{(3)}$ of dimension $\leqslant 2$. Indeed, we clearly get

$$
\begin{equation*}
\operatorname{dim}(\operatorname{alg}(A))=\operatorname{deg}(q)-1 \in\{0,1,2\} \tag{20}
\end{equation*}
$$

together with $Q \in \operatorname{alg}(A)$ due to (18), which leads to different situations as follows.
Proposition 4.3. Let the matrix $M \in \mathcal{M}_{3, \preccurlyeq}$ have a minimal polynomial of degree $\leqslant 2$. Then, the following properties are equivalent.
(1) The spectrum of M is positive.
(2) One has $\operatorname{det}(M)>0$.
(3) M is embeddable.
(4) M is embeddable with a monotone generator.

If M is embeddable, there is precisely one monotone generator Q with $M=\mathrm{e}^{Q}$, namely the one given in Eq. (18).

Proof. The implications $(4) \Rightarrow(3) \Rightarrow(2)$ are clear, while $(2) \Longleftrightarrow(1)$ follows from Proposition 4.1. It remains to show $(1) \Rightarrow(4)$, so assume $\sigma(M) \subset \mathbb{R}_{+}:=\{x \in \mathbb{R}: x>0\}$. As above, let q be the minimal polynomial of $A=M-\mathbb{1}$, which has the same degree as that of M.

When $\operatorname{deg}(q)=1$, since 0 is always an eigenvalue of A, the only possibility is $q(x)=x$, hence $A=\mathbb{0}$ and thus also $Q=\mathbb{0}$ from (18), which gives the trivial case $\mathbb{1}=\exp (\mathbb{0})$, where $\mathbb{1}$ is the only matrix in $\mathcal{M}_{3, \preccurlyeq}$ with a minimal polynomial of degree 1 . By Remark $2.10, Q=\mathbb{0}$ is the only generator with $\mathrm{e}^{Q}=\mathbb{1}$, which is trivially monotone.

When $\operatorname{deg}(q)=2$, we have $A \neq \mathbb{0}$, hence $\operatorname{tr}(A)<0$, so by (20) we get $A^{2}=-\alpha A$ for some $\alpha \in \mathbb{R}$, where $\operatorname{tr}\left(A^{2}\right)>0$ implies $\alpha>0$. Here, $A=M-\mathbb{1}$ is diagonalisable, with eigenvalues 0 and $-\alpha>-1$, in line with $\sigma(M) \subset \mathbb{R}_{+}$. Then, (18) simplifies to $Q=-\frac{\log (1-\alpha)}{\alpha} A$, which is a positive multiple of A and hence a monotone generator, so M is embeddable as $M=\mathrm{e}^{Q}$.

To establish the uniqueness claim, consider any $Q^{\prime} \in \mathcal{A}_{0}^{(3)}$ such that $M=\mathrm{e}^{Q^{\prime}}$, where M is diagonalisable by assumption, hence also Q^{\prime} by $\left[1\right.$, Fact 2.15]. We then still have $\left[Q^{\prime}, A\right]=\mathbb{0}$, but not necessarily $Q^{\prime} \in \operatorname{alg}(A)$. Now, by [1, Lemma 6.1], there are two possibilities, namely $\operatorname{dim}\left(\operatorname{alg}\left(Q^{\prime}\right)\right) \in\{1,2\}$. Here, if the dimension is $2, Q^{\prime}$ must be simple, which is only possible if Q^{\prime} has a complex-conjugate pair of (non-real) eigenvalues. But then, Q^{\prime} cannot be monotone, by Proposition 4.1. It remains to consider $\operatorname{dim}\left(\operatorname{alg}\left(Q^{\prime}\right)\right)=1$, where we get $\operatorname{alg}\left(Q^{\prime}\right)=\operatorname{alg}(A)$ from [1, Lemma 6.1(1)], hence $Q^{\prime}=a A$ for some $a>0$. By taking the determinant on both
ends of $\mathrm{e}^{Q^{\prime}}=M=\mathrm{e}^{Q}$, which gives a positive number, one finds

$$
a \operatorname{tr}(A)=-\frac{\log (1-\alpha)}{\alpha} \operatorname{tr}(A) .
$$

As $\operatorname{tr}(A) \neq 0$, this implies $a=-\frac{\log (1-\alpha)}{\alpha}$ and thus $Q^{\prime}=Q$.
Let us pause to state the asymptotic behaviour of M^{n} for the embeddable matrices covered by Proposition 4.3. In the above notation, one trivially has $M^{n}=\mathbb{1}$ for all n when $\operatorname{deg}(q)=1$, while a simple calculation gives

$$
M_{\infty}:=\lim _{n \rightarrow \infty} M^{n}=\mathbb{1}+\lim _{n \rightarrow \infty} \frac{1-(1-\alpha)^{n}}{\alpha} A=\mathbb{1}+\frac{1}{\alpha} A
$$

for the more interesting case that $\operatorname{deg}(q)=2$.
When $\operatorname{deg}(q)=3$, the situation becomes a little more complex. Here, $A=M-\mathbb{1}$ is always cyclic, with 0 being a simple eigenvalue. Then, we obtain $A^{3}=r A+s A^{2}$ with $r=\operatorname{tr}(M)-\operatorname{det}(M)-2$ and $s=\operatorname{tr}(A)$. Since $\sigma(A)=\left\{0, \mu_{+}, \mu_{-}\right\}$, where $\mu_{ \pm}$are negative numbers by Proposition 4.1, we get $r=-\mu_{+} \mu_{-}<0$ and $s=\mu_{+}+\mu_{-}<0$. This remains correct when $\mu_{+}=\mu_{-}$, where A has a non-trivial Jordan normal form ${ }^{1}$ (as it is cyclic).

Let us first consider the case that A is simple (and hence also diagonalisable). Here, we have $-1<\mu_{-}<\mu_{+}<0$ together with $\sigma(M)=\left\{1,1+\mu_{+}, 1+\mu_{-}\right\}$. As A is cyclic, any matrix $Q \in \mathcal{A}_{0}^{(3)}$ with $M=\mathrm{e}^{Q}$ must lie in $\operatorname{alg}(A)=\mathbb{R}[A] \cap \mathcal{A}_{0}^{(3)}$, so $Q=\alpha A+\beta A^{2}$ for some $\alpha, \beta \in \mathbb{R}$, again by Frobenius' theorem. Then, the SMT implies

$$
\alpha \mu_{ \pm}+\beta \mu_{ \pm}^{2}=\log \left(1+\mu_{ \pm}\right) \in \mathbb{R}
$$

which is an inhomogeneous system of linear equations for α and β. As

$$
\operatorname{det}\left(\begin{array}{ll}
\mu_{+} & \mu_{+}^{2} \\
\mu_{-} & \mu_{-}^{2}
\end{array}\right)=\mu_{+} \mu_{-}\left(\mu_{-}-\mu_{+}\right)<0
$$

we get a unique solution, which is given by

$$
\begin{equation*}
\alpha=\frac{\mu_{-}^{2} \log \left(1+\mu_{+}\right)-\mu_{+}^{2} \log \left(1+\mu_{-}\right)}{\mu_{+} \mu_{-}\left(\mu_{-}-\mu_{+}\right)}, \quad \beta=\frac{\mu_{+} \log \left(1+\mu_{-}\right)-\mu_{-} \log \left(1+\mu_{+}\right)}{\mu_{+} \mu_{-}\left(\mu_{-}-\mu_{+}\right)} . \tag{21}
\end{equation*}
$$

This shows that $M=\mathrm{e}^{Q}$ has precisely one solution with $Q \in \mathcal{A}_{0}^{(3)}$, which must be the one from (18). One can check via the Taylor series that $\alpha>0$ and $\beta<0$, though this is not sufficient to guarantee the generator or the monotonicity property of Q. So, we have derived the following result.

Theorem 4.4. Let $M \in \mathcal{M}_{3, \preccurlyeq}$ have simple spectrum with $\operatorname{det}(M)>0$, and set $A=M-\mathbb{1}$, with $\sigma(A)=\left\{0, \mu_{+}, \mu_{-}\right\}$as above. Then, there is precisely one $Q \in \mathcal{A}_{0}^{(3)}$ such that $M=\mathrm{e}^{Q}$, namely the matrix Q from (18), which also satisfies $Q=\alpha A+\beta A^{2}$ with α, β from (21).

Further, Q is a generator, and $M=\mathrm{e}^{Q}$, precisely when $\left(\alpha A+\beta A^{2}\right)_{i j} \geqslant 0$ holds for all $i \neq j$, and Q is also monotone when the criterion from Example 3.12 is satisfied by $\alpha A+\beta A^{2}$.

[^1]It remains to consider the case that A is cyclic, but not simple. Then, its eigenvalues are 0 and $-1<\mu<0$, the latter twice. Also here, any solution of $M=\mathrm{e}^{Q}$ with $Q \in \mathcal{A}_{0}^{(3)}$ must be of the form $Q=\alpha A+\beta A^{2}$, which implies the condition $\alpha \mu+\beta \mu^{2}=\log (1+\mu)$ by the SMT. Using the standard Jordan normal form of A, which must comprise the Jordan block $\left(\begin{array}{ll}\mu & 1 \\ 0 & \mu\end{array}\right)$ due to our assumption, one obtains another condition from $\mathrm{e}^{Q}=\mathbb{1}+A$, this time from the superdiagonal element of the Jordan block, namely $(1+\mu)(\alpha+2 \beta \mu)=1$. This results in the unique solution

$$
\begin{equation*}
\alpha=2 \frac{\log (1+\mu)}{\mu}-\frac{1}{1+\mu} \quad \text { and } \quad \beta=\frac{1}{\mu(1+\mu)}-\frac{\log (1+\mu)}{\mu^{2}} . \tag{22}
\end{equation*}
$$

Note that (22) also follows from (21) by an approximation argument of de L'Hospital type, via setting $\mu_{-}=\mu=\mu_{+}+x$ and letting $x \rightarrow 0$. So, the Q from (18) is once more the only solution for $M=\mathrm{e}^{Q}$ with $Q \in \mathcal{A}_{0}^{(3)}$. Here, $\alpha>0$ for μ sufficiently large (approx. above -0.7) and $\beta<0$, which is more complicated than in the previous case. Nevertheless, we have the following result.

Corollary 4.5. Let $M \in \mathcal{M}_{3, \preccurlyeq}$ be cyclic, but not simple. Then, $A=M-\mathbb{1}$ has spectrum $\sigma(A)=\{0, \mu\}$ with $-1<\mu<0$, where μ has algebraic multiplicity 2 , but geometric multiplicity 1. Further, all statements of Theorem 4.4 remain true, this time with the coefficients α, β from (22).

Not all $M \in \mathcal{M}_{3, \preccurlyeq}$ with positive determinant (and hence spectrum) can be embeddable, as there are cases with a single 0 in one position; see $[5,11,1]$ and references therein for further examples. For $d \geqslant 4$, the possibility of complex conjugate pairs of eigenvalues increases the complexity of the treatment, which is nevertheless possible with the recent results from [2].

5. Uniqueness of embedding and further directions

The explicit treatment of $\mathcal{M}_{3, \preccurlyeq}$ in the previous section shows that some useful sufficient criteria for unique embeddability should be in store, such as the one stated in [13, Sec. 2.3] for Markov matrices with distinct positive eigenvalues. Let us first recall a classic result on the existence of a real logarithm, which can be found in many places, for instance in [9, Sec. 8.8.2] or as [3, Thm. 1].

Fact 5.1. For $B \in \operatorname{GL}(d, \mathbb{R})$, the equation $B=\mathrm{e}^{R}$ has a solution $R \in \operatorname{Mat}(d, \mathbb{R})$ if and only if every elementary Jordan block of B with an eigenvalue on the negative real axis occurs with even multiplicity. When B is diagonalisable, this simplifies to the condition that each eigenvalue of B on the negative real axis has even algebraic multiplicity.

Any matrix $R \in \operatorname{Mat}(d, \mathbb{R})$ that solves $B=\mathrm{e}^{R}$ is called a real logarithm of B. When considering a non-singular Markov matrix M, we are only interested in real logarithms of M with zero row sums, that is, in elements from the subalgebra $\mathcal{A}_{0}^{(d)} \subset \operatorname{Mat}(d, \mathbb{R})$. This is justified by the following observation. Suppose e^{R} has unit row sums with a real matrix R that fails to have zero row sums. Then, the set of matrices $\mathrm{e}^{t R}$ with unit row sums and
$t \in \mathbb{R}$ forms a discrete subgroup of $\left\{\mathrm{e}^{t R}: t \in \mathbb{R}\right\} \simeq \mathbb{R}$. This is so because the existence of an accumulation point with unit row sums, t_{0} say, would result in $(1, \ldots, 1)^{T}$ being an eigenvector of R with eigenvalue 0 , which is a contradiction.

In analogy to the previous case with $d=3$, now for $A \in \mathcal{A}_{0}^{(d)}$ with arbitrary $d \geqslant 2$, we define the non-unital algebra

$$
\operatorname{alg}(A):=\left\langle A^{m}: m \in \mathbb{N}\right\rangle_{\mathbb{R}}=\left\langle A, A^{2}, \ldots, A^{d-1}\right\rangle_{\mathbb{R}} \subset \mathcal{A}_{0}^{(d)}
$$

where the second formulation follows from the Cayley-Hamilton theorem in conjunction with the fact that $\mathcal{A}_{0}^{(d)}$ is non-unital.

Lemma 5.2. Let $M \in \mathcal{M}_{d}$ be cyclic and non-singular, and assume that M possesses at least one real logarithm, according to Fact 5.1. Then, with $A=M-\mathbb{1}$, any real logarithm R of M satisfies $R \in \operatorname{alg}(A)$.

Proof. Clearly, we have $[R, M]=[R, A]=\mathbb{0}$, so M cyclic implies $R \in \mathbb{R}[A]$ by Frobenius' theorem, and thus $R=\alpha_{0} \mathbb{1}+\sum_{n=1}^{d-1} \alpha_{n} A^{n}$ for some $\alpha_{0}, \ldots, \alpha_{d-1} \in \mathbb{R}$. Hence, $R=\alpha_{0} \mathbb{1}+X$ with $X \in \mathcal{A}_{0}^{(d)}$, where e^{X} then has unit row sums. Consequently, all row sums of $\mathrm{e}^{R}=\mathrm{e}^{\alpha_{0}} \mathrm{e}^{X}$ equal $\mathrm{e}^{\alpha_{0}}$, which must be 1 . So, we get $\alpha_{0}=0$ and $R \in \operatorname{alg}(A) \subset \mathcal{A}_{0}^{(d)}$ as claimed.

Now, we can extend the uniqueness result mentioned earlier to cyclic matrices. It is a variant of [3, Thm. 2], but we give a different and constructive proof that later leads to an effective (and numerically stable) criterion for embeddability. It generalises what we saw in Theorem 4.4 and Corollary 4.5, and also differs from the approach used in [2].

Theorem 5.3. Suppose $M \in \mathcal{M}_{d}$ is cyclic and has real spectrum. Then, M possesses a real logarithm R, so $M=\mathrm{e}^{R}$, if and only if the spectrum of M is positive. In this case, R is unique, and is always an element of $\operatorname{alg}(A) \subset \mathcal{A}_{0}^{(d)}$, where $A=M-\mathbb{1}$.

Proof. When M is cyclic, no elementary Jordan block can occur twice, and the first implication follows from Fact 5.1. When $\sigma(M) \subset \mathbb{R}_{+}$, due to Fact 5.1 and Lemma 5.2, all real $\operatorname{logarithms}$ of M must lie in $\operatorname{alg}(A)$, and there is at least one $R \in \operatorname{alg}(A)$ with $\mathrm{e}^{R}=M$, so we have $R=\sum_{i=1}^{d-1} \alpha_{i} A^{i}$ for some $\alpha_{1}, \ldots, \alpha_{d-1} \in \mathbb{R}$. It remains to establish uniqueness.

First, assume that A is simple. As A is a generator, this means $\sigma(A)=\left\{0, \mu_{1}, \ldots, \mu_{d-1}\right\}$, with distinct $\mu_{i} \in(-1,0)$ due to our assumptions. Then, since all α_{i} and μ_{j} are real, the SMT implies the $d-1$ identities

$$
\begin{equation*}
\sum_{\ell=1}^{d-1} \alpha_{\ell} \mu_{i}^{\ell}=\log \left(1+\mu_{i}\right), \quad 1 \leqslant i \leqslant d-1 \tag{23}
\end{equation*}
$$

They constitute an inhomogeneous system of linear equations for the α_{i} with the matrix

$$
B=\left(\begin{array}{cccc}
\mu_{1} & \mu_{1}^{2} & \cdots & \mu_{1}^{d-1} \tag{24}\\
\mu_{2} & \mu_{2}^{2} & \cdots & \mu_{2}^{d-1} \\
\vdots & \vdots & & \vdots \\
\mu_{d-1} & \mu_{d-1}^{2} & \cdots & \mu_{d-1}^{d-1}
\end{array}\right)
$$

Since $\operatorname{det}(B)=\left(\prod_{i} \mu_{i}\right) \prod_{k>\ell}\left(\mu_{k}-\mu_{\ell}\right)$ by an obvious variant of the standard Vandermonde determinant formula, B is invertible when A is simple, and (23) has a unique real solution.

When A is cyclic, but not simple, the appearance of non-trivial Jordan blocks necessitates a more refined argument. Clearly, as A is a generator and also cyclic, 0 is a simple eigenvalue of A by [1, Prop. 2.3(2)]. Let $\mu \in(-1,0)$ be any of the other eigenvalues, say with algebraic multiplicity m. When $m=1$, we get one condition from the SMT, and nothing else is needed. So, assume $m \geqslant 2$. As A is cyclic, the geometric multiplicity of μ is 1 , and the corresponding Jordan block in standard form is $\mathbb{J}_{\mu}=\mu \mathbb{1}_{m}+N_{m}$, where N_{m} is the nilpotent matrix with entries 1 on the first superdiagonal and 0 everywhere else. It satisfies $N_{m}^{m}=\mathbb{0}$, while N_{m}^{k}, for $1 \leqslant k<m$, has entries 1 on the k-th superdiagonal and 0 elsewhere. In this case, we get only one condition from the SMT, namely

$$
\begin{equation*}
\sum_{\ell=1}^{d-1} \alpha_{\ell} \mu^{\ell}=\log (1+\mu) \tag{25}
\end{equation*}
$$

as in (23), while we need $m-1$ independent further ones. They will come from derivatives of (25), which needs a justification as follows.

First, from $\mathrm{e}^{R}=\mathbb{1}+A$, one concludes that we must have

$$
\begin{equation*}
\exp \left(\sum_{\ell=1}^{d-1} \alpha_{\ell} \mathbb{J}_{\mu}^{\ell}\right)=\mathbb{1}_{m}+\mathbb{J}_{\mu}=(1+\mu) \mathbb{1}_{m}+N_{m} \tag{26}
\end{equation*}
$$

Now, defining the polynomial $\phi(x)=\sum_{\ell=1}^{d-1} \alpha_{\ell} x^{\ell}$ and the function $\psi(x)=\mathrm{e}^{\phi(x)}$, one can employ the standard method from [13, Sec. 1.2.1] to calculate the exponential in (26) as

$$
\psi\left(\mathbb{J}_{\mu}\right)=\psi(\mu) \mathbb{1}_{m}+\sum_{k=1}^{m-1} \frac{\psi^{(k)}(\mu)}{k!} N_{m}^{k},
$$

where $\psi^{(k)}$ denotes the k-th derivative of ψ. As $\psi(\mu)=1+\mu$ by (25), a comparison with (26) leads to the conditions $\psi^{(k)}(\mu)=\delta_{k, 1}$ for $1 \leqslant k \leqslant m-1$, noting that $1+\mu \neq 0$. Iterating the product rule on $\psi=\mathrm{e}^{\phi}$ and inserting (25) then results in

$$
\begin{equation*}
\frac{\mathrm{d}^{k}}{\mathrm{~d} \mu^{k}} \sum_{\ell=k}^{d-1} \alpha_{\ell} \mu^{\ell}=\phi^{(k)}(\mu)=\frac{(-1)^{k-1}(k-1)!}{(1+\mu)^{k}}=\frac{\mathrm{d}^{k}}{\mathrm{~d} \mu^{k}} \log (1+\mu) \tag{27}
\end{equation*}
$$

which shows that the additional conditions on the α_{ℓ} emerge via derivatives of the fundamental relation (25). It remains to check when we obtain a unique solution $\alpha_{1}, \ldots, \alpha_{d-1}$ this way.

Here, the matrix B that generalises (24) is specified by an n-tuple $\left(\left(\mu_{1}, m_{1}\right), \ldots,\left(\mu_{n}, m_{n}\right)\right)$ of distinct non-zero eigenvalues μ_{i} of A with their algebraic multiplicities m_{i}, where $n \leqslant d-1$ and $m_{1}+\ldots+m_{n}=d-1$. A pair $\left(\mu_{i}, m_{i}\right)$ is responsible for m_{i} rows of B of length $d-1$, where the first derives from (25), followed by $m_{i}-1$ rows induced by (27). Here, each new row emerges from the previous one by differentiation with respect to μ_{i}. The resulting matrix is a variant of the confluent Vandermonde matrix, see [12, Sec. 22.2] or [21], which is known from Hermite interpolation. It is invertible if and only if the μ_{i} are distinct.

To substantiate the latter claim, define the sequence $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ by

$$
\gamma_{n}=\operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 4 & \ldots & 2^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & n & n^{2} & \ldots & n^{n-1}
\end{array}\right)
$$

which starts as $1,1,2,12,288,34560$; compare [24, A000178]. Then, one finds

$$
\operatorname{det}(B)=\left(\prod_{i=1}^{n} \mu_{i}^{m_{i}} \gamma_{m_{i}}\right) \prod_{k>\ell}\left(\mu_{k}-\mu_{\ell}\right)^{m_{k} m_{\ell}}
$$

compare [12, Exc. 22.6], which reduces to the determinant formula stated previously for the special case $m_{1}=\ldots=m_{n}=1$. Since the μ_{i} are distinct, $\operatorname{det}(B) \neq 0$ is clear, and the claimed uniqueness follows.

The benefit of this approach is that one can calculate B^{-1} and thus determine the coefficients purely from the eigenvalues of A. In particular, the unique R is a generator if and only if $\sum_{i=1}^{d-1} \alpha_{i} A^{i}$ satisfies the corresponding conditions.

Remark 5.4. The Vandermonde matrix and its inverse is well known from Lagrange interpolation theory. Therefore, in minor modification of the results from [15, Sec. 0.9.11], one finds the matrix elements of the inverse of B from (24) as

$$
\left(B^{-1}\right)_{i j}=\frac{(-1)^{i-1} S_{d-1-i}^{(d-2)}\left(\left\{\mu_{1}, \ldots, \mu_{d-1}\right\} \backslash\left\{\mu_{j}\right\}\right)}{\mu_{j} \prod_{k \neq j}\left(\mu_{k}-\mu_{j}\right)}
$$

where $S_{m}^{(n)}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$ is the elementary symmetric polynomial as defined by $S_{0}^{(n)} \equiv 1$, $S_{1}^{(n)}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)=a_{1}+\ldots+a_{n}, S_{2}^{(n)}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)=\sum_{i<j} a_{i} a_{j}$ and so on, up to the final one, which is $S_{n}^{(n)}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)=\prod_{i} a_{i}$.

With a little more effort, this formula can be extended to the cyclic situation as well; see [21] for a constructive approach to B^{-1} in this case.

The above result leads to the following sufficient criterion for unique embeddability.
Corollary 5.5. Let $M \in \mathcal{M}_{d}$ be cyclic and have real spectrum, $\sigma(M) \subset \mathbb{R}$. Then, M has a real logarithm if and only if $\sigma(M) \subset \mathbb{R}_{+}$.

In this case, the spectral radius of $A=M-\mathbb{1}$ is $\varrho_{A}<1$, and there is at most one Markov generator Q such that $M=\mathrm{e}^{Q}$. The only choice is $Q=\log (\mathbb{1}+A) \in \operatorname{alg}(A) \subset \mathcal{A}_{0}^{(d)}$, calculated with the standard branch of the matrix logarithm as a convergent series. In particular, M is embeddable if and only if the matrix $\log (\mathbb{1}+A)$ is a generator.

Proof. The first claim follows from Theorem 5.3. If $\sigma(M) \subset \mathbb{R}_{+}$, all eigenvalues of A lie in the half-open interval $(-1,0]$, so $\varrho_{A}<1$ is clear. By Theorem 5.3 , as M is cyclic with
$\sigma(M) \subset(0,1]$, there is precisely one real matrix R with $M=\mathrm{e}^{R}$. Due to $\varrho_{A}<1$, the series

$$
\log (\mathbb{1}+A)=\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m} A^{m}
$$

converges. The limit is then an element of $\operatorname{alg}(A)$, because this algebra is a closed subset of $\operatorname{Mat}(d, \mathbb{R})$. So, we get $R=\log (\mathbb{1}+A) \in \operatorname{alg}(A)$ in this case, which has zero row sums, but need not be a generator.

One can go beyond this result, but care is required with the branches of the complex logarithm; see [13, Ch. 11] for background and [2] for recent progress in this direction.

Remark 5.6. The results from Theorem 4.4 and Corollary 4.5 apply to all cyclic matrices $M \in \mathcal{M}_{3}$ with positive spectrum in that the embeddability of M can most easily be verified via testing whether $\alpha A+\beta A^{2}$ is a generator, where $A=M-\mathbb{1}$ and $\alpha, \beta \in \mathbb{R}$ are the numbers from Eq. (21), if M is simple, or from Eq. (22) otherwise.

Clearly, uniqueness results have interesting consequences on the structure of Markov roots, as can be seen in the following refinement of $[1$, Ex. 3.9].

Example 5.7. The two-dimensional Markov matrix

$$
M=\left(\begin{array}{ll}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

is uniquely embeddable by Lemma 2.9 , so $M=\mathrm{e}^{Q}$ with a unique generator Q. Nevertheless, as follows from a simple calculation, it has precisely two Markov square roots, namely

$$
M_{1}=\left(\begin{array}{cc}
\frac{5}{6} & \frac{1}{6} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right) \quad \text { and } \quad M_{2}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
1 & 0
\end{array}\right) .
$$

Of these, $M_{1}=\exp \left(\frac{1}{2} Q\right)$ is embeddable, while M_{2} is not. So, in the embeddable case, there is always at least one Markov n-th root for every $n \in \mathbb{N}$ of the form $\exp \left(\frac{1}{n} Q\right)$, but there can still be others. A uniqueness result for the embedding of M then means that, among all Markov roots, there is precisely one sequence of embeddable Markov n-th roots of M.

The set $\mathcal{M}_{d}^{\mathrm{E}}$ of embeddable matrices is a relatively closed subset of $\left\{M \in \mathcal{M}_{d}: \operatorname{det}(M)>0\right\}$ by [18, Prop. 3], but (for $d \geqslant 2$) it is not a closed subset of \mathcal{M}_{d}. The closure of $\mathcal{M}_{d}^{\mathrm{E}}$ is still a subset of the infinitely divisible elements of \mathcal{M}_{d}, and it is a natural question which matrices lie on the boundary, which we denote by $\partial \mathcal{M}_{d}^{\mathrm{E}}$. Clearly, there can be embeddable cases, such as $\left(\begin{array}{cc}1 & 0 \\ 1-\alpha & \alpha\end{array}\right)$ or $\left(\begin{array}{cc}\alpha & 1-\alpha \\ 0 & 1\end{array}\right)$ for $d=2$ and $0<\alpha \leqslant 1$, as well as (singular) idempotent ones, such as $M_{\infty}=\lim _{t \rightarrow \infty} \mathrm{e}^{t Q}$ for any generator $Q \neq \mathbb{0}$. For $d>2$, there are further possibilities. Any $M \in \partial \mathcal{M}_{d}^{\mathrm{E}}$ satisfies $M=\lim _{n \rightarrow \infty} \mathrm{e}^{Q_{n}}$ for some sequence $\left(Q_{n}\right)_{n \in \mathbb{N}}$ of generators, which implies $\lim _{n \rightarrow \infty} \mathrm{e}^{\operatorname{tr}\left(Q_{n}\right)}=\operatorname{det}(M) \geqslant 0$.

When $M \in \partial \mathcal{M}_{d}^{\mathrm{E}}$ has $\operatorname{det}(M)>0$, it is embeddable by Kingman's infinite divisibility criterion. Alternatively, a positive determinant implies that the sequence $\left(\operatorname{tr}\left(Q_{n}\right)\right)_{n \in \mathbb{N}}$ converges and is thus bounded. Since all diagonal elements of a generator are non-positive, they are
bounded as well, hence also all elements of the Q_{n} due to the vanishing row sums. By a standard compactness argument, there is thus a subsequence $\left(Q_{n_{i}}\right)_{i \in \mathbb{N}}$ such that $\lim _{i \rightarrow \infty} Q_{n_{i}}=Q$ is a generator with $M=\mathrm{e}^{Q}$ as expected, and M lies in the Markov semigroup $\left\{\mathrm{e}^{t Q}: t \geqslant 0\right\}$.

When $\operatorname{det}(M)=0$, the sequence $\left(\operatorname{tr}\left(Q_{n}\right)\right)_{n \in \mathbb{N}}$ must be (negatively) unbounded, and we may assume that, at least at one off-diagonal position, the entries of the Q_{n} are (positively) unbounded. When $d=2$, this suffices to show that M is a singular idempotent. Already for $d=3$, the situation becomes more complex, since one can have a limiting M with $\operatorname{det}(M)=0$ that is not an idempotent, by considering

$$
\exp \left(\begin{array}{ccc}
-a-b & a & b \\
c & -c-d & d \\
e & f & -e-f
\end{array}\right)
$$

for $a, b, \ldots, f \geqslant 0$. Then, fixing b, \ldots, f at generic values and letting $a \rightarrow \infty$ produces such examples, and similarly for various other choices. When $d=4$, one can have mixtures in block matrix form, such as

$$
M=\left(\begin{array}{cc}
1 & 0 \\
1-\alpha & \alpha
\end{array}\right) \oplus\left(\begin{array}{ll}
\beta & 1-\beta \\
\beta & 1-\beta
\end{array}\right)
$$

for $\alpha \in(0,1)$ and $\beta \in[0,1]$, which is singular but not idempotent.
It seems worthwhile to characterise the boundary more completely, for instance by relating semigroups with reducible generators to properties of the boundary, which we leave as an open problem at this point. More generally, a simplified systematic treatment of the embeddability problem for $d \leqslant 4$ would be helpful in view of the applications in phylogeny; see [2] for recent progress in this direction. Finally, even some of the elementary questions become much harder in the situation of countable states, where many new phenomena occur; see [6] and references therein for some recent results.

Acknowledgements

It is our pleasure to thank Frederic Alberti and Martin Möhle for valuable discussions and suggestions, as well as Tanja Eisner and Agnes Radl for helpful comments on the manuscript. This work was supported by the German Research Foundation (DFG), within the CRC 1283 at Bielefeld University, and by the Australian Research Council (ARC), via Discovery Project DP 180102215.

References

[1] M. Baake and J. Sumner, Notes on Markov embedding, Lin. Alg. Appl. 594 (2020) 262-299; arXiv:1903.08736.
[2] M. Casanellas, J. Fernández-Sánchez and J. Roca-Lacostena, The embedding problem for Markov matrices, preprint (2020); arXiv:2005.00818.
[3] W.J. Culver, On the existence and uniqueness of the real logarithm of a matrix, Proc. Amer. Math. Soc. 17 (1966) 1146-1151.
[4] D.J. Daley, Stochastically monotone Markov chains, Z. Wahrscheinlichkeitsth. Verw. Geb. 10 (1968) 305-317.
[5] E.B. Davies, Embeddable Markov matrices, Electronic J. Probab. 15 (2010) paper 47, 1474-1486; arXiv:1001.1693.
[6] T. Eisner and A. Radl, Embeddability of real and positive operators, preprint (2020); arXiv:2003:08186.
[7] G. Elfving, Zur Theorie der Markoffschen Ketten, Acta Soc. Sci. Fennicae A2 (1937) 1-17.
[8] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed., Wiley, New York (1971).
[9] F.R. Gantmacher, Matrizentheorie, Springer, Berlin (1986).
[10] F. Göndőcs, G. Michaletzky, T.F. Móri and G.J. Székely, A characterisation of infinitely divisible Markov chains with finite state space, Ann. Univ. Sci. Budap. R. Eötvös Nom. 27 (1985) 137-141.
[11] M.-A. Guerry, Sufficient embedding conditions for three-state discrete-time Markov chains with real eigenvalues, Lin. Multilin. Alg. 67 (2019) 106-120.
[12] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, PD (2002).
[13] N.J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA (2008).
[14] N.J. Higham and L. Lin, On pth roots of stochastic matrices, Lin. Alg. Appl. 435 (2011) 448-463.
[15] R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge (2013).
[16] J. Keilson and A. Kester, Monotone Markov matrices and monotone Markov processes, Stoch. Proc. Appl. 5 (1977) 231-241.
[17] M. Kijima, Markov Processes for Stochastic Modeling, Springer, Boston, MA (1997).
[18] J.F.C. Kingman, The imbedding problem for finite Markov chains, Z. Wahrscheinlichkeitsth. Verw. Geb. 1 (1962) 14-24.
[19] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, MA (1993).
[20] B.H. Lindqvist, Monotone and associated Markov chains, with applications to reliability theory, J. Appl. Prob. 24 (1987) 679-695.
[21] U. Luther and K. Rost, Matrix exponentials and inversion of confluent Vandermonde matrices, Electr. Trans. Num. Anal. (ETNA) 18 (2004) 91-100.
[22] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, reprint, Dover, New York (1992).
[23] J.R. Norris, Markov Chains, reprint, Cambridge University Press, Cambridge (2005).
[24] N.J.A. Sloane, The Online Encyclopedia of Integer Sequences, https://oeis.org.
[25] M. Steel, Phylogeny - Discrete and Random Processes in Evolution, SIAM, Philadelphia, PA (2016).
[26] R. Webster, Convexity, Oxford University Press, New York (1994).
Fakultät für Mathematik, Universität Bielefeld,
Postfach 100131, 33501 Bielefeld, Germany
School of Natural Sciences, Discipline of Mathematics, University of Tasmania, Private Bag 37, Hobart, TAS 7001, Australia

[^0]: 2010 Mathematics Subject Classification. 60J10.
 Key words and phrases. Markov matrix, embedding problem, monotone partial order, convexity.

[^1]: ${ }^{1}$ Although A is a real matrix, it is more convenient, and also completely consistent, to always employ the complex Jordan normal form of A in our arguments.

