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REPDIGITS IN NARAYANA’S COWS SEQUENCE AND THEIR

CONSEQUENCES
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Abstract. Narayana’s cows sequence satisfies the third-order linear recurrence relation

Nn = Nn−1 + Nn−3 for n ≥ 3 with initial conditions N0 = 0 and N1 = N2 = 1. In

this paper, we study b-repdigits which are sums of two Narayana numbers. We explicitly

determine these numbers for the bases 2 ≤ b ≤ 100 as an illustration. We also obtained

results on the existence of Mersenne prime numbers, 10-repdigits, and numbers with

distinct blocks of digits in the Narayana sequence. The proof of our main theorem

uses lower bounds for linear forms in logarithms and a version of the Baker-Davenport

reduction method in Diophantine approximation.
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In 1356, the Indian mathematician Narayana Pandit wrote his famous book titled

Ganita Kaumudi where he proposed the following problem of a herd of cows and calves:

A cow produces one calf every year. Beginning in its fourth year, each calf produces one

calf at the beginning of each year. How many calves are there altogether after 20 years?

[1].

We can translate this problem into our modern language of recurrence sequences. We

observe that the number of cows increased by one after one year, increased by one after

two years, increased by one after three years and increased by two after four years and so

on. Hence we obtain the sequence 1, 1, 1, 2, . . .. In the n-th year, Narayana’s problem can

be written as the following linear recurrence sequence:

Nn = Nn−1 +Nn−3

for n ≥ 3 with N0 = 0, N1 = N2 = 1 as initial conditions. The first few terms of the

sequence are

0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, . . . (sequence A000930).

In this sequence each number is computed recursively by adding the previous number in

the sequence and the number two places previous to the number. The defining relation in

the Narayana sequence is very similar to the famous Fibonacci sequence but with a delay

in the recursion which makes it a third-order linear recurrence sequence. This can be

thought of as a “delayed morphism” and has interesting applications in automata theory.

It has been considered by Allouche and Jhonson [1].
1
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Let b ≥ 2 be an integer. A positive integer greater than b is said to be a repdigit in base

b, or simply a b-repdigit, if it has only one distinct digit in its base b representation. In

particular, such numbers have the form a(bℓ−1)/(b−1) for some ℓ ≥ 2 and 1 ≤ a ≤ b−1.

For example, 11 is a repdigit in base 10 whereas 399 is not a repdigit in base 10. Although

399 = 19 · 20 + 19 = [19, 19]20 shows that it is a repdigit in base 20. We omit to mention

the base and simply write repdigit when the base b is 10.

There are several papers in the literature that have considered diophantine equations

involving repdigits in the Fibonacci, Lucas or Pell sequences. For example, Luca [13]

showed that 55 and 11 are the only repdigits in the Fibonacci and Lucas sequences, re-

spectively. Faye and Luca [11] proved that there are no repdigits in the Pell sequence.

Luca, Normenyo, and Togbé in [20, 21] determined repdigits which are sums of four Fi-

bonacci, Lucas or Pell numbers. The special cases of repdigits expressible as sums of

three Fibonacci, Lucas or Pell numbers were solved earlier by Normenyo, Luca, and Togbé

[14, 18, 19].

In this paper, we are interested in finding all b-repdigits which are the sum of two

Narayana numbers for the bases 2 ≤ b ≤ 100. More precisely, we determine all the

solutions of the Diophantine equation

(1) Nn +Nm = [a, . . . , a]b = a

(
bℓ − 1

b− 1

)
,

in integers (n,m, ℓ, a, b) with 0 ≤ m ≤ n, 2 ≤ b ≤ 100, 1 ≤ a ≤ b− 1 and ℓ ≥ 2.

Several authors have investigated variants of this problem. For instance, Bollman,

Hernández, and Luca [3] found all Fibonacci numbers which are sums of three factorials.

Luca and Siksek [15] found all factorials that can be written as sums of two and three

Fibonacci numbers. Furthermore, Dı́az and Luca [9] determined all Fibonacci numbers

that are the sum of two repdigits. Bravo, Luca and several other authors considered

[4, 5, 6, 7, 16] similar problems in generalized Fibonacci numbers.

Before presenting our result, we note that if ℓ = 2, then equation (1) can be written

as Nn + Nm = ab + a = [a, a]b. We have computed the long list of trivial solutions but

we will not list them in this paper. The solutions to the equation (1) are not particularly

interesting for ℓ = 2. In this paper, we call them trivial solutions. We are particularly

interested in solutions (non-trivial) for ℓ ≥ 3.

Our main result on the solutions of equation (1) is the following:

Theorem 1. The Diophantine equation

Nn +Nm = a

(
bℓ − 1

b− 1

)
,

has only finitely many non-trivial solutions in integers n,m, ℓ, a, b with 0 ≤ m ≤ n, 2 ≤

b ≤ 100, 1 ≤ a ≤ b − 1 and ℓ ≥ 3. Moreover, all the solutions for ℓ ≥ 3 are denoted by
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the tuple (n,m, ℓ, a, b) and they are listed in Section 4. In particular, equation (1) has no

solutions for ℓ ≥ 7.

As a consequence we obtain the following corollaries.

Corollary 2. All the solutions of the Diophantine equation

Nn = a

(
bℓ − 1

b− 1

)
,

in non-negative integers n, ℓ, a, b with 2 ≤ b ≤ 100, 1 ≤ a ≤ b − 1 and ℓ ≥ 3 are given by

the tuples

(n, ℓ, a, b) ∈ {(9, 3, 1, 3), (15, 3, 3, 6)}.

Namely, we have N9 = 13 = [1, 1, 1]3 and N15 = 129 = [3, 3, 3]6.

Corollary 3. The only repdigit in the Narayana sequence is N14 = 88. In addition, there

are no Mersenne prime numbers in the Narayana sequence.

Other consequences related to Narayana numbers which have only one distinct block

of digits are discussed in section 4 of this document (p. 11).

We would like to note that the recurrence relation for the Narayana sequence might

look similar to the Fibonacci sequence but they are very different. In fact, the Narayana

sequence is a recurrence sequence of order three, hence we do not get many nice properties

of binary recurrence sequences. The main tools used in this paper to prove the main result

are lower bounds for linear forms in logarithms of algebraic numbers and a version of the

reduction procedure due to Baker and Davenport [2].

1. Preliminaries and notations

We begin this section by giving a formal definition of the Narayana sequence and some

of its properties.

Definition 4. The Narayana sequence (Nn)n≥0 is defined by the third-order linear re-

currence relation Nn = Nn−1 +Nn−3 for n ≥ 3, where the initial conditions are given by

N0 = 0 and N1 = N2 = 1.

We next mention some facts about the Narayana sequence. First, it is known that the

characteristic polynomial for (Nn)n≥0 is given by

f(x) = x3 − x2 − 1.

This polynomial is irreducible in Q[x]. We note that it has a real zero α (> 1) and two

conjugate complex zeros β and γ with |β| = |γ| < 1. In fact, α ≈ 1.46557. We also have

the following properties of (Nn)n≥0.

Lemma 5. For the sequence (Nn)n≥0, we have

(a) αn−2 ≤ Nn ≤ αn−1 for all n ≥ 1.
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(b) (Nn)n≥0 satisfies the following “Binet-like” formula

Nn = a1α
n + a2β

n + a3γ
n for all n ≥ 0, where

a1 =
α

(α− β)(α − γ)
, a2 =

β

(β − α)(β − γ)
and a3 =

γ

(γ − α)(γ − β)
.

(c) The above Binet-like formula can also be written as

Nn = Cαα
n+2 + Cββ

n+2 + Cγγ
n+2 for all n ≥ 0, where

Cx =
1

x3 + 2
.

(d) 1.45 < α < 1.5 and 5 < Cα
−1 < 5.15.

(e) If we denote ζn = Cββ
n+2 + Cγγ

n+2, then |ζn| < 1/2 for all n ≥ 1.

Proof. The first part (a) is a simple exercise in induction on n. The proof of (b) can be

found in reference [22], and it is an easy exercise to deduce (c) from part (b). For the

proof of (d), we simply note that Cα
−1 = 5.1479 . . .. Finally, the proof of (e) follows from

the triangle inequality and the fact that |β| = |γ| < 1. We leave details to the reader. �

2. Upper bounds for the number of solutions

We assume throughout that the tuple (n,m, ℓ, a, b) denotes a solution of equation (1)

where m,n, ℓ, a, b are positive integers. In the next lemma, we find a relation between ℓ

and n, which we will be used in the proof of the main result Theorem 1.

Lemma 6. Let n ≥ 4 and assume that equation (1) holds. Then

(n − 2)
log α

log b
< ℓ < n.

Proof. From Lemma 5 (a), we get αn−2 ≤ Nn + Nm = a(bℓ − 1)/(b − 1) < bℓ. Thus we

have

(n− 2)
log α

log b
< ℓ.

Similarly, bℓ−1 < a(bℓ − 1)/(b − 1) = Nn + Nm ≤ 2αn−1. By using this and taking into

account that b ≥ 2 and α < 1.5, we obtain

ℓ < 1 +
log 2

log b
+ (n− 1)

log α

log b
< 2 + (n− 1)

log 1.5

log 2
< n,

which holds for all n ≥ 4. �

Now we find an upper bound on n.
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2.1. An upper bound on n. Using Lemma 5 and equation (1), we obtain that

Cαα
n+2 −

abℓ

b− 1
= −Nm −

a

b− 1
− ζn.

Taking absolute values in the above equality and dividing both sides of the resulting

expression by Cαα
n+2, we get

∣∣∣∣1−
abℓ

Cααn+2(b− 1)

∣∣∣∣ <
Nm

Cααn+2
+

3

2Cααn+2
≤

αm−1

Cααn+2
+

3

2Cααn+2

<
5.15αm−1

αn+2
+

7.725

αn+2
.

Since 1.45 < α, we obtain 5.15αm−1 + 7.725 < 17αm−1 for all m ≥ 0, and so

(2)

∣∣∣∣α
−(n+2)bℓ

a

Cα(b− 1)
− 1

∣∣∣∣ <
6

αn−m
.

We put

γ1 := α, γ2 := b, γ3 :=
a

Cα(b− 1)
,

b1 := −(n+ 2), b2 := ℓ, b3 := 1,

Λ1 := γb11 · γb22 · γb33 − 1.

(3)

So we obtain from (2) that

(4) |Λ1| <
6

αn−m
.

Our next step will be to find a lower bound for |Λ1|. For this purpose, we use the following

result of Matveev [17] (see also the paper of Bugeaud, Mignotte, and Siksek [8, Theorem

9.4]).

Theorem 7. Let K be a number field of degree D over Q, γ1, . . . , γt be positive real

numbers of K, and b1, . . . , bt rational integers. Put

Λ := γb11 · · · γbtt − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(γi), | log γi|, 0.16} be real numbers, for i = 1, . . . , t. Then, assuming that

Λ 6= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At).

In the above and in what follows, for an algebraic number η of degree d over Q and

minimal primitive polynomial over the integers

f(X) := a0

d∏

i=1

(X − η(i)) ∈ Z[X],

with positive leading coefficient a0, we write h(η) for its logarithmic height, given by

h(η) :=
1

d

(
log a0 +

d∑

i=1

log
(
max{|η(i)|, 1}

))
.
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In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) =

logmax{|p|, q}. The following properties of the function logarithmic height h(·), which

will be used in the next sections without special reference, are also known:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηs) = |s|h(η) (s ∈ Z).

We now apply the result of Mateveev Theorem 7 with t := 3 and the parameters given in

(3). We begin by noting that the algebraic number field containing γ1, γ2, γ3 is K := Q(α),

so we can take D = [K : Q] := 3. Since h(γ1) = (log α)/3 and h(γ2) = log b, we can take

A1 := log α and A2 := 3 log b. We need to estimate h(γ3). First of all, by the properties

of the logarithmic height, we obtain that

(5) h(γ3) ≤ h

(
a

b− 1

)
+ h(Cα) = log(b− 1) + h(Cα).

On the other hand, since 31x3− 31x2+10x− 1 is the minimal primitive polynomial of Cα

over Z and taking into account that all the zeros of it are strictly inside the unit circle, we

get that h(Cα) = (log 31)/3. Hence, it follows from (5) that

h(γ3) ≤ log(b− 1) +
log 31

3
< 2 log b.

Thus we can take A3 := 6 log b. Furthermore, since max{n + 2, ℓ, 1} = n + 2 by Lemma

6, we can take B := n+ 2. To apply Theorem 7, we need to prove that Λ1 6= 0. Observe

that imposing that Λ1 = 0, we get

(6) Cαα
n+2 =

abℓ

b− 1
.

Let G be the Galois group of the splitting field of f(x) over Q, and let σ ∈ G be an

automorphism such that σ(α) = β. The action of σ on the above relation (6) concludes

that

|Cββ
n+2| =

abℓ

b− 1
.

The above equality is not possible since |Cββ
n+2| < |Cβ| = 0.407506 . . . < 1, whereas

abℓ/(b− 1) ≥ 4 for ℓ ≥ 2. This is a contradiction. Thus Λ1 6= 0.

Therefore using Theorem 7 we get the following lower bound for |Λ1|:

exp(−1.4× 306 × 34.5 × 32(1 + log 3)(1 + log(n+ 2))(log α)(3 log b)(6 log b)),

which is smaller than 6/αn−m by inequality (4). We take logarithm on both sides to

conclude that

(n −m) logα− log 6 < 1.9 × 1013 (1 + log(n+ 2)) log2 b.

Since 1 + log(n+ 2) ≤ 2 log n for n ≥ 5, we obtain

(7) (n −m) log α < 1014 log n log2 b.
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In order to find an upper bound on n in terms of b, we return to our equation (1) and

rewrite it as

Cαα
n+2 + Cαα

m+2 −
abℓ

b− 1
= −ζn − ζm −

a

b− 1
.

This implies that ∣∣∣∣Cαα
n+2(1 + αm−n)−

abℓ

b− 1

∣∣∣∣ < 2.

Now dividing by Cαα
n+2(1 + αm−n) we obtain

(8)

∣∣∣∣α
−(n+2)bℓ

a

(b− 1)Cα(1 + αm−n)
− 1

∣∣∣∣ <
2

Cααn+2(1 + αm−n)
<

5

αn
.

In a second application of Theorem 7, we take the parameters t := 3 and

γ1 := α, γ2 := b, γ3 :=
a

(b− 1)Cα(1 + αm−n)
,

b1 := −(n+ 2), b2 := ℓ, b3 := 1,

Λ2 := γb11 · γb22 · γb33 − 1.

We have from equation (8),

(9) |Λ2| <
5

αn
.

We use similar arguments as before to conclude that Λ2 6= 0. In this application, we take

K := Q(α), D := 3, A1 := log α, A2 := 3 log b and B := n+ 2 as we did before. We begin

with the observation that

h(γ3) ≤ h

(
a

(b− 1)Cα

)
+ h(1 + αm−n)

≤ 2 log b+ h(αm−n) + log 2

= 2 log b+ |m− n|h(α) + log 2

≤ 3 log b+
(n−m) log α

3
.

Hence from (7), we get

h(γ3) < 3 log b+
1014 log n log2 b

3
.

Therefore we can take A3 := 1.1 × 1014 log n log2 b. This will allow us to obtain a lower

bound for |Λ2|. Then we compare the lower bound for |Λ2| from Theorem 7 with the upper

bound of |Λ2| from inequality (9) to conclude that

n logα− log 5 < 6.84 × 1027 log2 n log3 b.

Thus

n < 2× 1027 log2 n log3 b,

which can be written as

(10)
n

log2 n
< 2× 1027 log3 b.
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We next quote an analytical argument that leads to an upper bound of n in terms of b.

The following result was proved by Guzmán and Luca [12, Lemma 7].

Lemma 8. If x and T are real numbers such that T > 162 and

x

log2 x
< T, then x < 4T log2 T.

Taking T := 2 × 1027 log3 b, and applying the above Lemma in inequality (10), we

obtain

n < 4 (2× 1027 log3 b)
(
log
(
2× 1027 log3 b

))2

< (8× 1027 log3 b)(63 + 3 log log b)2

< (8× 1027 log3 b)(90 log b)2

< 6.5× 1031 log5 b.

In the above inequality, we have used the fact that 63 + 3 log log b < 90 log b which is true

for all b ≥ 2.

We know from Lemma 6 and equation (1) that ℓ < n and m ≤ n, respectively. At this

point, we summarize the result we obtained so far on the upper bound of n. The result is

the following:

Theorem 9. Let (n,m, ℓ, a, b) be a solution of equation (1) with ℓ ≥ 2, b ≥ 2 and 1 ≤

a ≤ b− 1, then

max{ℓ,m} ≤ n < 6.5 × 1031 log5 b.

Remark 10. For a fixed base b (≥ 2) the equation (1) has only finitely many solutions.

In the next section, we reduce the bounds on n using a reduction method due to Dujella

and Pethő [10], which is a generalization of a classical result of Baker and Davenport [2].

3. Reduction lemma and the reduced bounds

We begin this section with the following simple facts of the exponential function. We

list it as a lemma for further reference.

Lemma 11. For any non-zero real number x, we have

(a) 0 < x < |ex − 1|.

(b) If x < 0 and |ex − 1| < 1/2, then |x| < 2 |ex − 1|.

We write

z1 = ℓ log b− (n + 2) log α+ log

(
a

(b− 1)Cα

)
.

Notice that z1 6= 0 as ez1 − 1 = Λ1 6= 0.
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Lemma 12. Let m = 0 and suppose that n ≥ 7. Then

0 < |z1| <
12

αn
.

Proof. Since m = 0, inequality (2) can be written in the form |ez1 − 1| < 6/αn. If z1 > 0,

then we can apply Lemma 11 (a) to obtain |z1| = z1 < |ez1 − 1| < 6/αn. On the contrary,

if z2 < 0, then |ez1 − 1| < 6/αn < 1/2 for all n ≥ 7. It then follows from Lemma 11 (b)

that |z1| < 2|ez1 − 1| < 12/αn. In both cases, we get that |z1| < 12/αn which holds for all

n ≥ 7. �

Lemma 13. Let m ≥ 1. Then

0 < z1 <
6

αn−m
.

Proof. First of all we note that (2) can be rewritten as

|ez1 − 1| <
6

αn−m
.

Furthermore, using equation (1) and Lemma 5, we have

Cαα
n+2 = Nn − ζn < Nn +

1

2
< Nn +Nm = a

(
bℓ − 1

b− 1

)
<

abℓ

b− 1
,

and so z1 > 0. Hence, in view of Lemma 11 (a), we conclude that z1 < |ez1 − 1| <

6/αn−m. �

We note that the upper bound obtained in Theorem 9 is very large and depends on the

base b. We also note that we did not put any restrictions on the base b so far. Next we

restrict b in the set {2, . . . , 100} that will enable us to do the computation. We note that

the same computation can be done possibly for a larger set of values for b but it will not

add anything significantly new to the result. So we stop at b ≤ 100.

The following lemma by Bravo, Gómez, and Luca [4] is a slight variation of a result

due to Dujella and Pethő [10], which itself is a generalization of a result of Baker and

Davenport [2]. We will use this lemma for the reduction of the bounds on n.

Lemma 14. Let A,B, γ̂, µ̂ be positive real numbers and M a positive integer. Suppose

that p/q is a convergent of the continued fraction expansion of the irrational γ̂ such that

q > 6M . Put ǫ := ||µ̂q||−M ||γ̂q||, where ||·|| denotes the distance from the nearest integer.

If ǫ > 0, then there is no positive integer solution (u, v, w) to the inequality

0 < |uγ̂ − v + µ̂| < AB−w,

subject to the restrictions that

u ≤ M and w ≥
log(Aq/ǫ)

logB
.
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3.1. Reduction of n: Step 1. If m = 0, then from Lemma 12 we have

(11) 0 <

∣∣∣∣ℓ
(
log b

logα

)
− n+

(
log (a/((b − 1)Cα))

logα
− 2

)∣∣∣∣ < 32α−n.

We are now in a position to apply Lemma 14 with the parameters u := ℓ, v := n, w := n,

γ̂ = (log b)/ log α, A := 32, B := α and

µ̂ :=
log (a/((b − 1)Cα))

log α
− 2.

It is clear that γ̂ is an irrational number because α > 1 is a unit in OK, the ring of integers

of K. So α and b are multiplicatively independent.

We take M := Mb = 6.5 × 1031 log5 b. Then we apply Lemma 14 on the inequality

(11) for all the choices of b ∈ {2, . . . , 100} and a ∈ {1, . . . , b − 1}. For m = 0, a simple

computation in Mathematica for all possible choices of b allows us to conclude that a

possible solution (n, 0, ℓ, a, b) of the equation (1) satisfies n ≤ 260.

We now suppose that m ≥ 1. In this case, from Lemma 13 we obtain

(12) 0 < ℓ

(
log b

logα

)
− n+

(
log (a/((b − 1)Cα))

logα
− 2

)
< 16α−(n−m).

Again we apply Lemma 14 to inequality (12) for all the choices of b ∈ {2, . . . , 100} and

a ∈ {1, . . . , b − 1}. We conclude that the possible solutions (n,m, ℓ, a, b) of the equation

(1) for which m ≥ 1 satisfy n−m ∈ [0, 260].

3.2. Reduction on n: Step 2. In this section, we use the previous bound on n −m to

obtain a suitable upper bound on n. In order to do this, we let

z2 = ℓ log b− (n + 2) log α+ log
(
a/((b− 1)Cα(1 + α(m−n)))

)
,

and we observe that (8) can be rewritten as

(13) |ez2 − 1| <
5

αn
.

Notice that z2 6= 0 as ez2 − 1 = Λ2 6= 0. Now we proceed as in the previous section to

obtain, from inequality (13) and Lemma 11, that

0 < |z2| <
10

αn
.

Replacing z2 in the above inequality by its formula and dividing it across by logα, we

conclude that

(14) 0 <

∣∣∣∣∣ℓ
(
log b

logα

)
− n+

(
log
(
a/((b− 1)Cα(1 + α(m−n)))

)

logα
− 2

)∣∣∣∣∣ < 27α−n.

We apply Lemma 14 once again with the data u := ℓ, v := n, w := n, γ̂ := (log b)/ log α,

A := 27, B := α and

µ̂ :=
log
(
a/((b− 1)Cα(1 + α(m−n)))

)

log α
− 2.
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By taking M := Mb = 6.5 × 1031 log5 b, we apply Lemma 14 on inequality (14) for all

the choices of b ∈ {2, . . . , 100}, a ∈ {1, . . . , b − 1} and n−m ∈ {0, . . . , 260}. A computer

search with Mathematica finds that the possible solutions (n,m, ℓ, a, b) of the equation (1)

all have n ≤ 280.

4. Proof of Theorem 1

From the previous section, we conclude that the search for solutions (n,m, ℓ, a, b) to the

Diophantine equation (1) with 0 ≤ m ≤ n, 2 ≤ b ≤ 100, 1 ≤ a ≤ b− 1 and ℓ ≥ 2 reduces

to the range 1 ≤ n ≤ 280. We compute all the solutions with the help of Mathematica for

the above range. We note down all the solutions with ℓ ≥ 4 of equation (1).

N8 +N7 = 9 + 6 = 15 =
24 − 1

2− 1
= [1, 1, 1, 1]2

N9 +N4 = 13 + 2 = 15 =
24 − 1

2− 1
= [1, 1, 1, 1]2

N11 +N5 = 28 + 3 = 31 =
25 − 1

2− 1
= [1, 1, 1, 1, 1]2

N13 +N5 = 60 + 3 = 63 =
26 − 1

2− 1
= [1, 1, 1, 1, 1, 1]2

N15 +N12 = 129 + 41 = 170 = 2

(
44 − 1

4− 1

)
= [2, 2, 2, 2]4

N21 +N17 = 1278 + 277 = 1555 =
65 − 1

6− 1
= [1, 1, 1, 1, 1]6 .

In the following table we list down all the solutions (n,m, ℓ, a, b) of the equation (1) with

ℓ ≥ 3.

(6,5,3,1,2) (7,1,3,1,2) (7,2,3,1,2) (7,3,3,1,2) (8,6,3,1,3)

(8,7,4,1,2) (9,0,3,1,3) (9,4,4,1,2) (9,9,3,2,3) (10,4,3,1,4)

(11, 5, 5,1,2) (11,5,3,1,5) (12,1,3,2,4) (12,2,3,2,4) (12,3,3,2,4)

(12,4,3,1,6) (13,4,3,2,5) (13,5,6,1,2) (13,5,3,3,4) (13,9,3,1,8)

(14,5,3,1,9) (14,12,3,3,6) (15,0,3,3,6) (15,6,3,1,11) (15,11,3,1,12)

(15,12,4,2,4) (17,14,3,5,8) (19,7,3,1,24) (19,10,3,2,17) (21,5,3,7,13)

(21,15,3,1,37) (21,17,5,1,6) (21,18,3,4,20) (26,20,3,9,32) (26,22,3,2,72)

(28,13,3,20,30) (30,18,3,11,60)

Table 1. Solutions of equation (1) with ℓ ≥ 3

4.1. Consequences. We can take Nm = N0 = 0 in equation (1) and hence the Corollary

2 follows immediately. The Corollary 3 holds true with the choices of bases 10 and 2,

respectively. There are some other interesting corollaries of Theorem 1.

Definition 15. We define an (m× 1) array of decimal integers as an m-block.
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Example 16. 26 , 582 , 29156 denotes a two, three and five blocks, respectively.

Definition 17. Let N be a positive integer and suppose N can be written as n repetitive

m-blocks. Then we call it an m-block repdigit of length n.

For example,

N = ab · · · ab︸ ︷︷ ︸
n repetitive 2-blocks

where a, b ∈ {0, · · · , 9} and (a, b) 6= (0, 0) denotes a 2-block repdigit of length n.

Alternatively, N is a repdigit in base 100. We can study these special repdigits with

bases b = 10u in recurrence sequences for postive integers u. As a consequence of Theorem

1, we obtain the following corollaries.

Corollary 18. There are no 1-block repdigits of length ≥ 3 in the Narayana sequence. In

fact, the only 1-block repdigit of length 2 is given by N14 = 8 8 .

Corollary 19. There are no 2-block repdigits of length ≥ 2 in the Narayana sequence. In

other words, Nn = a(100ℓ − 1)/(100 − 1) has no solutions with ℓ ≥ 2 and a ∈ {1, . . . , 99}.

We believe m-block repdigits for arbitrary integer m are extremely rare in the Narayana

sequence. After a numerical evidence we pose the following conjecture in this context.

Conjecture 20. Let m ≥ 2 be an arbitrary integer. There are no m-block repdigits of

length ≥ 2 in the Narayana sequence.
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[19] B. Normenyo, F. Luca, and A. Togbé, Repdigits as sums of three Pell numbers, Per. Math. Hungarica

77 (2018), 318–328.
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Departamento de Matemáticas, Universidad del Cauca, Calle 5 No 4–70, Popayán, Colom-

bia.

E-mail address: jbravo@unicauca.edu.co

University of Waterloo, Pure Mathematics, Waterloo, Canada

E-mail address: pranabesh.math@gmail.com
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