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Abstract

We survey and develop the most elementary model of electron motion introduced by
R.Feynman. It is a game, in which a checker moves on a checkerboard by simple rules, and
we count the turns. It is also known as a one-dimensional quantum walk or an Ising model
at imaginary temperature. We solve mathematically a problem by R.Feynman from 1965,
which was to prove that the model reproduces the usual quantum-mechanical free-particle
kernel for large time, small average velocity, and small lattice step. We compute the
small-lattice-step and the large-time limits, justifying heuristic derivations by J.Narlikar
from 1972 and by A.Ambainis et al. from 2001. For the first time we observe and prove
concentration of measure in the former limit. We perform the second quantization of the
model. The main tools are the Fourier transform and the stationary phase method.
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1 Introduction
We survey and develop the most elementary model of electron motion introduced by R. Feyn-

man (see Figure 1). It is a game, in which a checker moves on a checkerboard by simple rules,
and we count the number of turns (see Definition 2). It can be viewed as a particular case of a
1-dimensional quantum walk, or an Ising model, or count of Young diagrams of certain type.

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.001 0.002 0.003 0.004 0.005 25 50 75 100 125 150 175 200

Figure 1: The probability to find an electron in a small square around a given point (white
depicts strong oscillations of the probability). Left: in the basic model from §2 (cf. [45, Fig-
ure 6]). Middle: in the upgrade from §3 for smaller square side. Right: in continuum theory.
For the latter, the relative probability density is depicted.

1.1 Motivation

The simplest way to understand what is the model about is the classical double-slit experi-
ment (see Figure 2). In this experiment, a (coherent) beam of electrons is directed towards a
plate pierced by two parallel slits, and the part of the beam passing through the slits is observed
on a screen behind the plate. If one of the slits is closed, then the beam illuminates a spot on
the screen. If both slits are open, one would expect a larger spot, but in fact one observes a
sequence of bright and dark bands (interferogram).

This shows that electrons behave like a wave: the waves travel through both slits, and the
contributions of the two paths either amplify or cancel each other depending on the final phases.

Further, if the electrons are sent through the slits one at time, then single dots appear on
the screen, as expected. Remarkably, however, the same interferogram with bright and dark
bands emerges when the electrons are allowed to build up one by one. One cannot predict
where a particular electron hits the screen; all we can do is to compute the probability to find
the electron at a given place.

The Feynman sum-over-paths (or path integral) method of computing such probabilities is
to assign phases to all possible paths and to sum up the resulting waves (see [10, 11]). Feynman
checkers (or Feynman checkerboard) is a particularly simple combinatorial rule for those phases
in the case of an electron freely moving (or better jumping) in 1 space and 1 time dimension.

Figure 2: (from Wikipedia) Double-slit experiment

1.2 Background

The beginning. The checkers model was invented by R. Feynman in 1940s [39] and first
published in 1965 [11]. In Problem 2.6 there, a function on a lattice of small step 𝜀 was
constructed (called kernel ; see (5)) and the following task was posed:

If the time interval is very long (𝑡𝑏−𝑡𝑎 ≫ ~/𝑚𝑐2) and the average velocity is small
[𝑥𝑏 − 𝑥𝑎 ≪ 𝑐(𝑡𝑏 − 𝑡𝑎)], show that the resulting kernel is approximately the same as
that for a free particle [given in Eq. (3-3)], except for a factor exp[(𝑖𝑚𝑐2/~)(𝑡𝑏− 𝑡𝑎)].
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Mathematically, this means that the kernel (divided by 2𝑖𝜀 exp[(−𝑖𝑚𝑐2/~)(𝑡𝑏 − 𝑡𝑎)]) asymptot-
ically equals free-particle kernel (4) (this is Eq. (3-3) from [11]) in the triple limit when time
tends to infinity, whereas the average velocity and the lattice step tend to zero (see Table 1 and
Figure 3). Both scaling by the lattice step and tending it to zero were understood, otherwise
the mentioned “exceptional” factor would be different (see the end of §2). We show that the
assertion, although incorrect literally, holds under mild assumptions (see Corollary 4).

Although the Feynman problem might seem self-evident for theoretical physicists, even
the first step of a mathematical solution (disproving the assertion as stated) is not found in
literature. As usual, the main difficulty is to prove the convergence rather than to guess the
limit. The same concerns the results below: previously they were derived heuristically rather
than proved mathematically, by an approximate computation without estimating the error.

propagator continuum lattice context references
free-particle kernel (4) - quantum mechanics [11, (3-3)]
spin-1/2 retarded propagator (20),(21) (5) relativistic cf. [22, (13)]

quantum mechanics and [11, (2-27)]
spin-1/2 Feynman propagator (28),(29) (26) quantum field theory cf. [3, §9F]

Table 1: Expressions for the propagators of a particle freely moving in 1 space and 1 time
dimension. The meaning of the norm square of a propagator is the relative probability density
to find the particle at a particular point, or alternatively, the charge density at the point.

Figure 3: (by V. Skopenkova) The Feynman triple limit: 𝑡→ +∞, 𝑥/𝑡→ 0, 𝜀→ 0

In 1972 J. Narlikar discovered that the above kernel reproduces the spin-1/2 retarded prop-
agator in the different limit when the lattice step tends to zero but time stays fixed [33] (see
Table 1, Figures 4 and 1, Corollary 5). In 1984 T.Jacobson–L.Schulman repeated this deriva-
tion, applied stationary phase method among other bright ideas, and found the probability of
changing the movement direction [22] (cf. Theorem 5).

Figure 4: Continuum limit: the point (𝑥, 𝑡) stays fixed while the lattice step 𝜀 tends to zero

Ising model. In 1981 H. Gersch noticed that Feynman checkers can be viewed as a 1-
dimensional Ising model with imaginary temperature or edge weights (see §2.2 and [16], [22,
§3]). Imaginary values of these quantities are usual in physics (e.g., in quantum field theory or
in alternating current networks). Due to the imaginarity, contributions of most configurations
cancel each other, which makes the model highly nontrivial in spite of being 1-dimensional.
In particular, the model exhibits a phase transition (see Figures 1 and 5). Surprisingly, the
latter seems to have never been reported before. Phase transitions were studied only in more
complicated 1-dimensional Ising models [24, §III], [32, 19], in spite of a known equivalent result,
which we are going to discuss now (see Theorem 1(B)).

Quantum walks. In 2001 A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous
performed a breakthrough [2]. They studied Feynman checkers under names one-dimensional
quantum walk and Hadamard walk ; although those cleverly defined models were completely
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equivalent to Feynman’s simple one. They computed the large-time limit of the model (see
Theorem 3). They discovered several striking properties having sharp contrast with both con-
tinuum theory and the classical random walks. First, the most probable average electron
velocity in the model equals 1/

√
2 of the speed of light, and the probability of exceeding this

value is very small (see Figures 5 and 1 to the left and Theorem 1(B)). Second, if an absorbing
boundary is put immediately to the left of the starting position, then the probability that the
electron is absorbed is 2/𝜋. Third, if an additional absorbing boundary is put at location 𝑥 > 0,
the probability that the electron is absorbed to the left actually increases, approaching 1/

√
2

in the limit 𝑥 → +∞. Recall that in the classical case both absorption probabilities are 1. In
addition, they found many combinatorial identities and expressed the above kernel through the
values of Jacobi polynomials at a particular point (see Remark 3; cf. [42, §2]).

N. Konno generalized those results to a biased quantum walk [28, 29], which is still essentially
equivalent to Feynman checkers. He found the distribution of the electron position in the
(weak) large-time limit (see Figure 5 and Theorem 1(B)). Later those results were generalized
to quantum walks on graphs and applied to quantum algorithms. We refer to the surveys by
N. Konno, J. Kempe, and S.E. Venegas-Andraca [29, 26, 44] for further details in this direction.
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Figure 5: The distribution (left) and the cumulative distribution function (right) of the electron
position 𝑥 at time 𝑡 = 100 in natural units for the basic model from §2 (dots). Their (weak)
scaling limits as 𝑡 → ∞ (curves). The left curve is also the “limiting partition function norm
squared” in the Ising model. The discontinuity of the function reflects a phase transition.

Lattice quantum field theories. In a more general context, this is a direction towards
creation of Minkowskian lattice quantum field theory, with both space and time being dis-
crete [3]. In 1970s F. Wegner and K. Wilson introduced lattice gauge theory as a computational
tool for gauge theory describing all known interactions (except gravity); see [31] for a popular-
science introduction. This culminated in determining the proton mass theoretically with error
less than 2% in a sense. This theory is Euclidean in the sense that it involves imaginary
time. Likewise, an asymptotic formula for the Green function for the (massless) Euclidean
lattice Dirac equation [27, Theorem 4.3] played a crucial role in the continuum limit of the
Ising model performed by D. Chelkak–S. Smirnov [8]. Similarly, asymptotic formulae for the
Minkowskian one (Theorems 3–4) can be useful for missing Minkowskian lattice quantum field
theory. Several authors argue that Feynman checkers has the advantage of no fermion doubling
and avoids the Nielsen–Ninomiya no-go theorem [5, 14].

Several upgrades of Feynman checkers have been discussed. For instance, around 1990s
B. Gaveau–L. Schulman and G. Ord added electromagnetic field to the model [15, 35]. That
time they achieved neither exact charge conservation nor generalization to non-Abelian gauge
fields; this is fixed in Definition 3. Another example is adding mass matrix by P. Jizba [23].

It is an old dream to incorporate also checker paths turning backwards in time or forming
cycles [39, p. 481–483], [21]; this would mean creation of electron-positron pairs, celebrating
a passage from quantum mechanics to quantum field theory. One looks for a combinatorial
model reproducing the Feynman propagator rather than the retarded one in the continuum
limit (see Table 1). So far, most of the known constructions just redefine the same model (e.g.,
the title of [36] is misleading: the Feynman propagator is not discussed there). In the massless
case, a Feynman propagator on the lattice was constructed by C. Bender–L. Mead–K. Milton–
D. Sharp in [3, §9F] and [4, §IV], but the construction was not combinatorial; cf. Definition 5.
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Another long-standing open problem is to generalize the model to the 4-dimensional real
world. In his Nobel prize lecture, R. Feynman mentioned his own unsuccessful attempts. There
are several recent approaches, e.g., by B. Foster–T. Jacobson from 2017 [14]. Those are not yet
as simple and beautiful as the original 2-dimensional model, as it is written in [14, §7.1] itself.

On physical and mathematical works. The physical literature on the subject is quite
extensive [44], and we cannot mention all remarkable works in this brief overview. Many papers
are well-written, insomuch that the physical theorems and proofs there could be carelessly
taken for mathematical ones (see the end of §12). Conversely, we have found a paper [18] by
G.R. Grimmett–S. Janson–P.F. Scudo in a physical journal, containing a mathematical proof
of an important result (Theorem 1). Surprisingly, in the whole literature we have not found the
shouting property of concentration of measure for lattice step tending to zero (see Corollary 6).
We are also not aware of a single mathematical work on the subject before the present paper.

1.3 Contributions

We solve mathematically a problem by R. Feynman from 1965, which was to prove that
his model reproduces the usual quantum-mechanical free-particle kernel for large time, small
average velocity, and small lattice step (see Corollary 4). We compute the large-time and
small-lattice-step limits (see Corollaries 1 and 5) and asymptotic formulae (see Theorems 3–
4). For the first time we observe and prove concentration of measure in the latter limit: the
average velocity of an electron emitted by a point source is close to the speed of light with high
probability (see Corollary 6). The results can be interpreted as asymptotic properties of Young
diagrams (see Corollary 2) and Jacobi polynomials (see Remark 3).

All these results are proved mathematically for the first time. For their statements, just
Definition 2 and Remark 1 are sufficient. In Definitions 3–5 we perform a coupling to lattice
gauge theory and the second quantization of the model, promoting Feynman checkers to a
full-fledged lattice quantum field theory.

1.4 Organization of the paper and further directions

First we give the definitions and precise statements of the results, and in the process provide
a zero-knowledge examples for basic concepts of quantum theory. These are precisely those
examples that Feynman presents first in his own books: Feynman checkers (see §3) is the first
specific example in the whole book [11]. The thin-film reflection (see §7) is the first example
in [10]; see Figures 10–11 there. Thus we hope that these examples could be enlightening to
readers unfamiliar with quantum theory.

We start with the simplest (and rough) particular case of the model and upgrade it step by
step in each subsequent section. Before each upgrade, we summarize which physical question
does it address, which simplifying assumptions does it resolve or impose additionally, and which
experimental or theoretical results does it explain. Some upgrades (§§7–9) are just announced
to be discussed in a subsequent publication. Our aim is (1+1)-dimensional lattice quantum
electrodynamics (“QED”) but the last step on this way (mentioned in §10) is still undone. Open
problems are collected in §11. For easier navigation, we present the upgrades-dependence chart:

2. Basic model //

�� ))

3. Mass //

))

6. Source // 7. Medium

4. Spin

))

5. External field

))

9. Antiparticles

��

8. Identical particles // 10. QED

Hopefully this is a promising path to making quantum field theory rigorous and algorithmic.
An algorithmic quantum field theory would be a one which, given an experimentally observable
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quantity and a number 𝛿 > 0, would provide a precise statement of an algorithm predicting a
value for the quantity within accuracy 𝛿. (Surely, the predicted value needs not to agree with
the experiment for 𝛿 less than accuracy of theory itself.) See Algorithm 1 for a toy example.
This would be an extension of constructive quantum field theory (currently far from being
algorithmic). Application of quantum theory to computer science is in mainstream now, but
the opposite direction could provide benefit as well. (Re)thinking algorithmically is a way to
make a subject available to nonspecialists, as it is happening with, say, algebraic topology.

The paper is written in a mathematical level of rigor, in the sense that all the definitions,
conventions, and theorems (including corollaries, propositions, lemmas) should be understood
literally. Theorems remain true, even if cut out from the text. The proofs of theorems use the
statements but not the proofs of the other ones. Most statements are much less technical than
the proofs; hence the proofs are kept in a separate section (§12) and long computations are kept
in [40]. In the process of the proofs, we give a zero-knowledge introduction to the main tools to
study the model: combinatorial identities, the Fourier transform, the method of moments, the
stationary phase method, contour integration, the Hardy–Littlewood circle method. Remarks
are informal and usually not used elsewhere (hence skippable).

2 Basic model (Hadamard walk)
Question: what is the probability to find an electron in the square (𝑥, 𝑡), if it was emitted from (0, 0)?
Assumptions: no self-interaction, no creation of electron-positron pairs, fixed mass and lattice step, point
source; the electron moves either in a plane “uniformly along the 𝑡-axis”, or along a line (and then 𝑡 is time).
Results: double-slit experiment (qualitative explanation), charge conservation, large-time limiting distribution.

2.1 Definition and examples

We first give an informal definition of the model in the spirit of [10] and then a precise one.
On an infinite checkerboard, a checker moves to the diagonal-neighboring squares, either

upwards-right or upwards-left. To each path 𝑠 of the checker, assign a vector 𝑎(𝑠) as follows.
Take a stopwatch that can time the checker as it moves. Initially the stopwatch hand points
upwards. While the checker moves straightly, the hand does not rotate, but each time when
the checker changes the direction, the hand rotates through 90∘ clockwise (independently of
the direction the checker turns). The final direction of the hand is the direction of the required
vector 𝑎(𝑠). The length of the vector is set to be 1/2(𝑡−1)/2, where 𝑡 is the total number of
moves (this is just a normalization). For instance, for the path in Figure 6 to the top-left, the
vector 𝑎(𝑠) = (1/8, 0) points to the right and has length 1/8.

Figure 6: (by V. Skopenkova, M. Fedorov) Checker paths (left). The arrows 𝑎(𝑥, 𝑡) and 𝑃 (𝑥, 𝑡)
for small 𝑥, 𝑡 (middle; the scale depends on the row). The arrows 10 · 𝑎(𝑥, 𝑡) for 𝑡 ≤ 50 (right).

Denote by 𝑎(𝑥, 𝑡) :=
∑︀

𝑠 𝑎(𝑠) the sum over all the checker paths from the square (0, 0) to the
square (𝑥, 𝑡), starting with the upwards-right move. For instance, 𝑎(1, 3) = (0,−1/2)+(1/2, 0) =
(1/2,−1/2); see Figure 6 to the bottom-left. The length square of the vector 𝑎(𝑥, 𝑡) is called
the probability to find an electron in the square (𝑥, 𝑡), if it was emitted from (0, 0) (see §2.2 for
a discussion of the terminology). The vector 𝑎(𝑥, 𝑡) itself is called the arrow [10, Figure 6].
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Let us summarize this construction rigorously.

Definition 1. A checker path is a finite sequence of integer points in the plane such that the
vector from each point (except the last one) to the next one equals either (1, 1) or (−1, 1). A
turn is a point of the path (not the first and not the last one) such that the vectors from the
point to the next and to the previous ones are orthogonal. The arrow is the complex number

𝑎(𝑥, 𝑡) := 2(1−𝑡)/2 𝑖
∑︁
𝑠

(−𝑖)turns(𝑠),

where the sum over all checker paths 𝑠 from (0, 0) to (𝑥, 𝑡) with the first step to (1, 1), and
turns(𝑠) is the number of turns in 𝑠. Hereafter an empty sum is 0 by definition. Denote

𝑃 (𝑥, 𝑡) := |𝑎(𝑥, 𝑡)|2, 𝑎1(𝑥, 𝑡) := Re 𝑎(𝑥, 𝑡), 𝑎2(𝑥, 𝑡) := Im 𝑎(𝑥, 𝑡).

Points (or squares) (𝑥, 𝑡) with even and odd 𝑥+ 𝑡 are called black and white respectively.

Figure 6 to the middle and right depicts the arrows 𝑎(𝑥, 𝑡) and the probabilities 𝑃 (𝑥, 𝑡) for
small 𝑥, 𝑡. Figure 7 depicts the graphs of 𝑃 (𝑥, 1000), 𝑎1(𝑥, 1000), and 𝑎2(𝑥, 1000) as functions
in an even number 𝑥. We see that under variation of the final position 𝑥 at a fixed large time
𝑡, right after the peak the probability falls to very small although still nonzero values. What is
particularly interesting is the unexpected position of the peak, far from 𝑥 = 1000. In Figure 1
to the left, the color of a point (𝑥, 𝑡) with even 𝑥+ 𝑡 depicts the value 𝑃 (𝑥, 𝑡). Notice that the
sides of the apparent angle are not the lines 𝑡 = ±𝑥, in contrast to what one could expect.
The sides are 𝑡 = ±

√
2𝑥 (see Theorem 1(A)).

Figure 7: (byA.Daniyarkhodzhaev–F.Kuyanov) The plots of 𝑃 (𝑥, 1000), 𝑎1(𝑥, 1000), 𝑎2(𝑥, 1000)

2.2 Physical interpretation

Let us comment on the physical interpretation of the model and ensure that it captures
unbelievable behavior of electrons. In fact there are two different interpretations; see Table 2.

object standard interpretation spin-chain interpretation
𝑠 path configuration of “+” and “−” in a row
turns(𝑠) number of turns half of the configuration energy
𝑡 time volume
𝑥 position difference between the number of “+” and “−”
𝑥/𝑡 average velocity magnetization
𝑎(𝑥, 𝑡) probability amplitude partition function up to constant
𝑃 (𝑥, 𝑡) probability partition function norm squared
𝑖 𝑎2(𝑥, 𝑡)

𝑎(𝑥, 𝑡)

conditional probability amplitude
of the last move upwards-right

“probability” of equal signs at the ends of the
spin chain

Table 2: Physical interpretations of Feynman checkers

Standard interpretation. Here the 𝑥- and 𝑡-coordinates are interpreted as the electron
position and time respectively. Sometimes (e.g., in Example 1) we a bit informally interpret
both as position, and assume that the electron performs a “uniform classical motion” along
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the 𝑡-axis. We work in the natural system of units, where the speed of light, the Plank and
the Boltzmann constants equal 1. Thus the lines 𝑥 = ±𝑡 represent motion with the speed of
light. Any checker path lies above both lines, i.e in the light cone, which means agreement with
relativity: the speed of electron cannot exceed the speed of light.

To think of 𝑃 (𝑥, 𝑡) as a probability, consider the 𝑡-coordinate as fixed, and the squares
(−𝑡, 𝑡), (−𝑡+ 2, 𝑡), . . . , (𝑡, 𝑡) as all the possible outcomes of an experiment. For instance, the 𝑡-
th horizontal might be a screen detecting the electron. We shall see that all the numbers 𝑃 (𝑥, 𝑡)
on one horizontal sum up to 1 (Proposition 2), thus indeed can be considered as probabilities.
Notice that the probability to find the electron in a set 𝑋 ⊂ Z is 𝑃 (𝑋, 𝑡) :=

∑︀
𝑥∈𝑋 𝑃 (𝑥, 𝑡) =∑︀

𝑥∈𝑋 |𝑎(𝑥, 𝑡)|2 rather than
⃒⃒∑︀

𝑥∈𝑋 𝑎(𝑥, 𝑡)
⃒⃒2 (cf. [10, Figure 50]).

In reality, one cannot measure the electron position exactly. A fundamental limitation is
the electron reduced Compton wavelength 𝜆 = 1/𝑚 ≈ 4 · 10−13 meters, where 𝑚 is the electron
mass. Physically, the basic model approximates the continuum by a lattice of step exactly 𝜆.
But that is still a rough approximation: one needs even smaller step to prevent accumulation
of approximation error at larger distances and times. For instance, Figures 1 and 8 to the left
show a finite-lattice-step effect: the average velocity 𝑥/𝑡 cannot exceed 1/

√
2 of the speed of

light with high probability. (An explanation in physical terms: lattice regularization cuts off
distances smaller than the lattice step, hence small wavelengths, hence large momenta, and
hence large velocities.) A more precise model is given in §3: compare the plots in Figure 1.
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Figure 8: The plots of 𝑡
2
𝑃 (2⌈𝑣𝑡

2
⌉, 𝑡), 𝐹𝑡(𝑣) :=

∑︀
𝑥≤𝑣𝑡

𝑃 (𝑥, 𝑡),
⃒⃒⃒
𝑎2(2⌈𝑣𝑡/2⌉,𝑡)
𝑎(2⌈𝑣𝑡/2⌉,𝑡)

⃒⃒⃒2
, 𝐺𝑡(𝑣) :=

∑︀
𝑥≤𝑣𝑡

2
𝑡

⃒⃒⃒
𝑎2(𝑥,𝑡)
𝑎(𝑥,𝑡)

⃒⃒⃒2
(dark) for 𝑡 = 100 (top), 𝑡 = 1000 (bottom), and their distributional limits as 𝑡→ ∞ (light).

As we shall see now, the model qualitatively captures unbelievable behavior of electrons.
(For correct quantitative results, an upgrade involving a coherent source is required; see §6.)

The probability to find an electron in the square (𝑥, 𝑡) subject to absorption in the square
(𝑥′, 𝑡′) is defined analogously to 𝑃 (𝑥, 𝑡), only the summation is over those checker paths 𝑠 that
do not pass through (𝑥′, 𝑡′). The probability is denoted by 𝑃 (𝑥, 𝑡 bypass 𝑥′, 𝑡′). Informally, this
means an additional outcome of the experiment: the electron has been absorbed and has not
reached the screen. For a while let us view the two black squares (±1, 1) on the horizontal
𝑡 = 1 as two slits in a horizontal plate (cf. Figure 2).

Example 1 (Double-slit experiment). Distinct paths cannot be viewed as “mutually exclusive”:

𝑃 (0, 4) ̸= 𝑃 (0, 4 bypass 2, 2) + 𝑃 (0, 4 bypass 0, 2).

Absorption might increase probabilities at some places: 𝑃 (0, 4) = 1/8 < 1/4 = 𝑃 (0, 4 bypass 2, 2).

The standard interpretation of Feynman checkers is also known as the Hadamard walk,
the 1-dimensional quantum walk, or quantum lattice gas. Those are all equivalent but lead to
generalizations of the model in distinct directions [44, 29, 45].

Spin-chain interpretation. There is a very different physical interpretation of the same
model: a 1-dimensional Ising model with imaginary temperature and fixed magnetization.
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Recall that a configuration in the Ising model is a sequence 𝜎 = (𝜎1, . . . , 𝜎𝑡) of ±1 of fixed
length. The magnetization and the energy of the configuration are

∑︀𝑡
𝑘=1 𝜎𝑘/𝑡 and 𝐻(𝜎) =∑︀𝑡−1

𝑘=1(1− 𝜎𝑘𝜎𝑘+1) respectively. The probability of the configuration is 𝑒−𝛽𝐻(𝜎)/𝑍(𝛽), where the
inverse temperature 𝛽 = 1/𝑇 > 0 is a parameter and the partition function 𝑍(𝛽) :=

∑︀
𝜎 𝑒

−𝛽𝐻(𝜎)

is a normalization factor. Additional restrictions on configurations 𝜎 are usually imposed.
Now, moving the checker along a path 𝑠, write “+” for each upwards-right move, and “−” for

each upwards-left one; see Figure 9 to the left. The resulting sequence of signs is a configuration
in the Ising model, the number of turns in 𝑠 is one half of the configuration energy, and the ratio
of the final 𝑥- and 𝑡-coordinates is the magnetization. Thus 𝑎(𝑥, 𝑡) =

∑︀
𝑠 𝑎(𝑠) coincides up to

constant with the partition function for the Ising model at the imaginary inverse temperature
𝛽 = 𝑖𝜋/4 under the fixed magnetization 𝑥/𝑡:

𝑎(𝑥, 𝑡) = 2(1−𝑡)/2 𝑖
∑︁

(𝜎1,...,𝜎𝑡)∈{+1,−1}𝑡:
𝜎1=+1,

∑︀𝑡−1
𝑘=1 𝜎𝑘=𝑥

exp

(︃
𝑖𝜋

4

𝑡−1∑︁
𝑘=1

(𝜎𝑘𝜎𝑘+1 − 1)

)︃
.

Figure 9: Young diagrams (the arrows point to steps) and the Ising model. The auxiliary grid.

Notice a crucial difference of the resulting spin-chain interpretation from both the usual Ising
model and the above standard interpretation. In the latter two models, the magnetization 𝑥/𝑡
and the average velocity 𝑥/𝑡 were random variables ; now the magnetization 𝑥/𝑡 (not to be
confused with an external magnetic field) is an external condition. The configuration space in
the spin-chain interpretation consists of sequences of “+” and “−” with fixed numbers of “+”
and “−”. Summation over configurations with different 𝑥 or 𝑡 would make no sense: e.g., recall
that 𝑃 (𝑋, 𝑡) =

∑︀
𝑥∈𝑋 |𝑎(𝑥, 𝑡)|2 rather than

⃒⃒∑︀
𝑥∈𝑋 𝑎(𝑥, 𝑡)

⃒⃒2.
Varying the magnetization 𝑥/𝑡, viewed as an external condition, we observe a phase transi-

tion. So far it has been proved in a toy sense: the limiting partition function 𝑎(𝑥, 𝑡) is discon-
tinuous when 𝑥/𝑡 passes through ±1/

√
2 (see Theorem 1(B)). The phase transition emerges as

𝑡→ ∞. Actually the number of oscillations of 𝑎(𝑥, 𝑡) increases with 𝑡; thus the limit exists only
in the distributional (weak) sense, and 𝑎(𝑥, 𝑡) should be scaled by a suitable power of 𝑡.

More reasonable order parameters could be the free energy density − log 𝑎(𝑥, 𝑡)/𝛽𝑡 and the
“probability” 𝑖 𝑎2(𝑥, 𝑡)/𝑎(𝑥, 𝑡) of equal signs at the ends of the spin chain. These quantities are
complex (and even multi-valued) just because the temperature is imaginary. Numerical exper-
iments then confirm the phase transition in the sense of nonanalyticity of the order parameters
at the same points 𝑥/𝑡 = ±1/

√
2; see Figures 10 and 8, and Problems 4–6.

(A comment for specialists: the phase transition is not related to accumulation of zeroes
of the partition function in the plane of complex parameter 𝛽 as in [24, §III] and [32]. In our
situation, 𝛽 = 𝑖𝜋/4 is fixed, the real parameter 𝑥/𝑡 varies, and the partition function 𝑎(𝑥, 𝑡)
has no zeroes at all [34, Theorem 1].)

Young-diagram interpretation. Our results have also a combinatorial interpretation.
The number of steps (or inner corners) in a Young diagram with 𝑤 columns of heights

𝑥1, . . . , 𝑥𝑤 is the number of elements in the set {𝑥1, . . . , 𝑥𝑤}; see Figure 9. Then the value
2(ℎ+𝑤−1)/2 𝑎1(ℎ − 𝑤, ℎ + 𝑤) is the difference between the number of Young diagrams with an
odd and an even number of steps, having exactly 𝑤 columns and ℎ rows.

Interesting behaviour starts already for ℎ = 𝑤 (see Proposition 4). For ℎ = 𝑤 even, the
difference vanishes. For ℎ = 𝑤 = 2𝑛 + 1 odd, it is (−1)𝑛

(︀
2𝑛
𝑛

)︀
. Such 4-periodicity roughly
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Figure 10: The graphs of the imaginary part of the free energy density Im 𝑓𝑡(𝑣) :=
− 4

𝜋𝑡
log
⃒⃒
𝑎(2⌈𝑣𝑡

2
⌉, 𝑡)

⃒⃒
for 𝑡 = 100 (left) and 𝑡 = 1000 (right)

remains for ℎ close to 𝑤 (see Theorem 2). For fixed half-perimeter ℎ+𝑤, the difference slowly
oscillates as ℎ/𝑤 increases, attains a peak at ℎ/𝑤 ≈ 3 + 2

√
2, and then harshly falls to very

small values (see Corollary 2 and Theorem 3).
Similarly, 2(ℎ+𝑤−1)/2𝑎2(ℎ−𝑤, ℎ+𝑤) is the difference between the number of Young diagrams

with an even and an odd number of steps, having exactly 𝑤 columns and less than ℎ rows. The
behaviour is similar. The upgrade in §3 is related to Stanley character polynomials [42, §2].

Discussion of the definition. Now compare Definition 1 with the ones in the literature.
The notation “𝑎” comes from “arrow” and “probability amplitude”; other names are “wave-

function”, “kernel”, “the Green function”, “propagator”. More traditional notations are “𝜓”, “𝐾”,
“𝐺”, “∆”, “𝑆” depending on the context. We prefer a neutral one suitable for all contexts.

The factor of 𝑖 and the minus sign in the definition are irrelevant (and absent in the original
definition [11, Problem 2.6]). They come from the ordinary starting direction and rotation
direction of the stopwatch hand, and reduce the number of minus signs in what follows.

The normalization factor 2(1−𝑡)/2 can be explained by analogy to the classical random walk.
If the checker were performing just a random walk, choosing one of the two possible directions
at each step (after the obligatory first upwards-right move), then |𝑎(𝑠)|2= 21−𝑡 would be the
probability of a path 𝑠. This analogy should be taken with a grain of salt: in quantum theory,
the “probability of a path” has absolutely no sense (recall Example 1). The reason is that the
path is not something one can measure: a measurement of the electron position at one moment
𝑡 strongly affects the motion for all later moments 𝑡.

Conceptually, one should also fix the direction of the last move of the path 𝑠 (see [11, bottom
of p.35]). Luckily, this is not required in the present paper (and thus is not done), but becomes
crucial in further upgrades (see §4 for an explanation).

One could ask where does the definition come from. Following Feynman, we do not try to
explain or “derive” it physically. This quantum model cannot be obtained from a classical one
by the standard Feynman sum-over-paths approach: there is simply no clear classical analogue
of a spin 1/2 particle (cf. §4). An attempt to “derive” the model would appeal to much more
complicated notions than the model itself, and would inevitably face the problem of absence of
a true understanding of spin (however, see [2, 5, 33]). The true motivation for the introduced
model is its simplicity, agreement with basic principles (like probability conservation), and with
experiment (which here means the correct continuum limit; see Corollary 5).

2.3 Identities

Let us state several well-known basic properties of the model. The proofs are given in §12.1.
First, the arrow coordinates 𝑎1(𝑥, 𝑡) and 𝑎2(𝑥, 𝑡) satisfy the following recurrence relation.

Proposition 1 (Dirac equation). For each integer 𝑥 and each positive integer 𝑡 we have

𝑎1(𝑥, 𝑡+ 1) =
1√
2
𝑎2(𝑥+ 1, 𝑡) +

1√
2
𝑎1(𝑥+ 1, 𝑡);

𝑎2(𝑥, 𝑡+ 1) =
1√
2
𝑎2(𝑥− 1, 𝑡) − 1√

2
𝑎1(𝑥− 1, 𝑡).
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This mimics the (1+1)-dimensional Dirac equation in the Weyl basis [38, (19.4) and (3.31)](︂
𝑚 𝜕/𝜕𝑥− 𝜕/𝜕𝑡

𝜕/𝜕𝑥+ 𝜕/𝜕𝑡 𝑚

)︂(︂
𝑎2(𝑥, 𝑡)
𝑎1(𝑥, 𝑡)

)︂
= 0, (1)

only the derivatives are replaced by finite differences, 𝑚 is set to 1, and the normalization factor
1/
√

2 is added. For the upgrade in §3, this analogy becomes transparent (see Remark 2). The
Weyl basis is not unique, thus there are several forms of equation (1); cf. [22, (1)].

The Dirac equation implies the conservation of probability.

Proposition 2 (Probability/charge conservation). For each integer 𝑡 ≥ 1 we get
∑︀
𝑥∈Z

𝑃 (𝑥, 𝑡) = 1.

For 𝑎1(𝑥, 𝑡) and 𝑎2(𝑥, 𝑡), there is an “explicit” formula (more ones are given in Appendix A).

Proposition 3 (“Explicit” formula). For each integers |𝑥| < 𝑡 such that 𝑥+ 𝑡 is even we have

𝑎1(𝑥, 𝑡) = 2(1−𝑡)/2

(𝑡−|𝑥|)/2∑︁
𝑟=0

(−1)𝑟
(︂

(𝑥+ 𝑡− 2)/2

𝑟

)︂(︂
(𝑡− 𝑥− 2)/2

𝑟

)︂
,

𝑎2(𝑥, 𝑡) = 2(1−𝑡)/2

(𝑡−|𝑥|)/2∑︁
𝑟=1

(−1)𝑟
(︂

(𝑥+ 𝑡− 2)/2

𝑟

)︂(︂
(𝑡− 𝑥− 2)/2

𝑟 − 1

)︂
.

The following proposition is a straightforward corollary.

Proposition 4 (Particular values). For each 1 ≤ 𝑘 ≤ 𝑡 − 1 the numbers 𝑎1(−𝑡 + 2𝑘, 𝑡) and
𝑎2(−𝑡 + 2𝑘, 𝑡) are the coefficients before 𝑧𝑡−𝑘−1 and 𝑧𝑡−𝑘 in the expansion of the polynomial
2(1−𝑡)/2(1 + 𝑧)𝑡−𝑘−1(1 − 𝑧)𝑘−1. In particular,

𝑎1(0, 4𝑛+ 2) =
(−1)𝑛

2(4𝑛+1)/2

(︂
2𝑛

𝑛

)︂
, 𝑎1(0, 4𝑛) = 0,

𝑎2(0, 4𝑛+ 2) = 0, 𝑎2(0, 4𝑛) =
(−1)𝑛

2(4𝑛−1)/2

(︂
2𝑛− 1

𝑛

)︂
.

In §3.1 we give more identities. The sequences 2(𝑡−1)/2𝑎1(𝑥, 𝑡) and 2(𝑡−1)/2𝑎2(𝑥, 𝑡) are present
in the on-line encyclopedia of integer sequences [41, A098593 and A104967].

2.4 Asymptotic formulae

The following remarkable result was observed in [2, §4] (see Figures 5 and 8), stated precisely
and derived heuristically in [28, Theorem 1], and proved mathematically in [18, Theorem 1].
See a short exposition of the latter proof in §12.2, and generalizations in §3.2.

Theorem 1 (Large-time limiting distribution; see Figure 8). (A) For each 𝑣 ∈ R we have

lim
𝑡→∞

∑︁
𝑥≤𝑣𝑡

𝑃 (𝑥, 𝑡) = 𝐹 (𝑣) :=

⎧⎪⎨⎪⎩
0, if 𝑣 ≤ −1/

√
2;

1
𝜋

arccos 1−2𝑣√
2(1−𝑣)

, if |𝑣| < 1/
√

2;

1, if 𝑣 ≥ 1/
√

2.

(B) We have the following convergence in distribution as 𝑡→ ∞:

𝑡𝑃 (⌈𝑣𝑡⌉, 𝑡) 𝑑→ 𝐹 ′(𝑣) =

{︃
1

𝜋(1−𝑣)
√
1−2𝑣2

, if |𝑣| < 1/
√

2;

0, if |𝑣| ≥ 1/
√

2.

(C) For each integer 𝑟 ≥ 0 we have lim𝑡→∞
∑︀

𝑥∈Z
(︀
𝑥
𝑡

)︀𝑟
𝑃 (𝑥, 𝑡) =

∫︀ 1

−1
𝑣𝑟𝐹 ′(𝑣) 𝑑𝑣.
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Theorem 1(B) demonstrates a phase transition in Feynman checkers, if interpreted as an
Ising model at imaginary temperature and fixed magnetization. Recall that then the mag-
netization 𝑣 is an external condition (rather than a random variable) and 𝑃 (⌈𝑣𝑡⌉, 𝑡) is the
norm square of the partition function (rather than a probability). The distributional limit of
𝑡𝑃 (⌈𝑣𝑡⌉, 𝑡) is discontinuous at 𝑣 = ±1/

√
2, reflecting a phase transition.

Our first new result is an analytic approximation of 𝑎(𝑥, 𝑡) accurate for small |𝑥|/𝑡 (see Fig-
ure 11). This solves an analogue of the Feynman problem for the basic model (cf. Corollary 4).

Theorem 2 (Large-time limit near the origin). For each integers 𝑥, 𝑡 such that |𝑥| < 𝑡3/4 and
𝑥+ 𝑡 is even we have

𝑎(𝑥, 𝑡) = 𝑖

√︂
2

𝜋𝑡
exp

(︂
−𝑖𝜋𝑡

4
+
𝑖𝑥2

2𝑡

)︂
+ 𝑖

2𝑥√
𝜋𝑡3

cos

(︂
−𝜋(𝑡+ 1)

4
+
𝑥2

2𝑡

)︂
+𝑂

(︂
log2 𝑡

𝑡3/2
+

𝑥4

𝑡7/2

)︂
,

(2)

𝑃 (𝑥, 𝑡) =
2

𝜋𝑡

[︂
1 +

𝑥

𝑡

(︂
1 +

√
2 cos

(︂
𝜋(2𝑡+ 1)

4
− 𝑥2

𝑡

)︂)︂
+𝑂

(︂
log2 𝑡

𝑡
+
𝑥4

𝑡3

)︂]︂
. (3)

Recall that 𝑓(𝑥, 𝑡) = 𝑂 (𝑔(𝑥, 𝑡)) means that there is a constant 𝐶 (not depending on 𝑥, 𝑡)
such that for each 𝑥, 𝑡 satisfying the assumptions of the theorem we have |𝑓(𝑥, 𝑡)| ≤ 𝐶 𝑔(𝑥, 𝑡).
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Figure 11: The graphs of 𝑃 (𝑥, 100), 𝑎1(𝑥, 100), 𝑎2(𝑥, 100) (dots) and their analytic approxima-
tions from Theorem 2 (dark) and Theorem 3 (light).

Thus for 𝑥/𝑡 = 𝑜(𝑡−1/4) the model asymptotically reproduces the free-particle kernel

𝐾(𝑥, 𝑡) =

√︂
𝑚

2𝜋𝑡
exp

(︂
𝑖𝑚𝑥2

2𝑡
− 𝑖𝜋

4

)︂
. (4)

The first term in (2) is kernel (4) for 𝑚 = 1 times 2𝑖3/2𝑒−𝑖𝜋𝑡/4. The latter “exceptional” factor
essentially differs from the one in the Feynman problem by 𝜋/4 before 𝑡 in the exponential;
this additional 𝜋/4 is due to the finite lattice step 1/𝑚. The second term in (2) is a kind
of relativistic correction responsible for the dependence of the probability 𝑃 (𝑥, 𝑡) on 𝑥. The
second term coincides with the one in asymptotic expansion of the Bessel functions in spin-1/2
retarded propagator (20) for𝑚 = 1, up to a factor of 𝜋/4 in the argument of cosine. We shall see
that the assumption |𝑥| < 𝑡3/4 is essential in the Feynman problem (see Example 4). Although
Theorem 2 is an easy corollary of Theorem 3, we give a direct alternative proof in §12.3.

3 Mass (biased quantum walk)
Question: what is the probability to find an electron of mass 𝑚 in the square (𝑥, 𝑡), if it was emitted from (0, 0)?
Assumptions: the mass and the lattice step are now arbitrary.
Results: analytic expressions for the probability for large time or small lattice step, concentration of measure.

3.1 Identities

Definition 2. Fix 𝜀 > 0 and 𝑚 ≥ 0 called lattice step and particle mass respectively. Consider
the lattice 𝜀Z2 = { (𝑥, 𝑡) : 𝑥/𝜀, 𝑡/𝜀 ∈ Z } (see Figure 3). A checker path 𝑠 is a finite sequence
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of lattice points such that the vector from each point (except the last one) to the next one
equals either (𝜀, 𝜀) or (−𝜀, 𝜀). Denote by turns(𝑠) the number of points in 𝑠 (not the first and
not the last one) such that the vectors from the point to the next and to the previous ones are
orthogonal. For each (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 0, denote by

𝑎(𝑥, 𝑡,𝑚, 𝜀) := (1 +𝑚2𝜀2)(1−𝑡/𝜀)/2 𝑖
∑︁
𝑠

(−𝑖𝑚𝜀)turns(𝑠) (5)

the sum over all checker paths 𝑠 on 𝜀Z2 from (0, 0) to (𝑥, 𝑡) with the first step to (𝜀, 𝜀). Denote

𝑃 (𝑥, 𝑡,𝑚, 𝜀) := |𝑎(𝑥, 𝑡,𝑚, 𝜀)|2, 𝑎1(𝑥, 𝑡,𝑚, 𝜀) := Re 𝑎(𝑥, 𝑡,𝑚, 𝜀), 𝑎2(𝑥, 𝑡,𝑚, 𝜀) := Im 𝑎(𝑥, 𝑡,𝑚, 𝜀).

Remark 1. In particular, 𝑃 (𝑥, 𝑡) = 𝑃 (𝑥, 𝑡, 1, 1) and 𝑎(𝑥, 𝑡) = 𝑎(𝑥, 𝑡, 1, 1) = 𝑎(𝑥𝜀, 𝑡𝜀, 1/𝜀, 𝜀).
One interprets 𝑃 (𝑥, 𝑡,𝑚, 𝜀) as the probability to find an electron of mass 𝑚 in the square

𝜀 × 𝜀 with the center (𝑥, 𝑡), if the electron was emitted from the origin. Notice that the value
𝑚𝜀, hence 𝑃 (𝑥, 𝑡,𝑚, 𝜀), is dimensionless in the natural units, where ~ = 𝑐 = 1. In Figure 1 to
the middle, the color of a point (𝑥, 𝑡) depicts the value 𝑃 (𝑥, 𝑡, 1, 0.5) (if 𝑥 + 𝑡 is an integer).
Recently I. Novikov elegantly proved that the probability vanishes nowhere inside the light
cone: 𝑃 (𝑥, 𝑡,𝑚, 𝜀) ̸= 0 for 𝑚 > 0, |𝑥| < 𝑡 and even (𝑥+ 𝑡)/𝜀 [34, Theorem 1].

Example 2 (Boundary values). We have 𝑎(𝑡, 𝑡,𝑚, 𝜀) = 𝑖(1+𝑚2𝜀2)(1−𝑡/𝜀)/2 and 𝑎(2𝜀−𝑡, 𝑡,𝑚, 𝜀) =
𝑚𝜀(1 +𝑚2𝜀2)(1−𝑡/𝜀)/2 for each 𝑡 ∈ 𝜀Z, 𝑡 > 0, and 𝑎(𝑥, 𝑡,𝑚, 𝜀) = 0 for each 𝑥 > 𝑡 or 𝑥 ≤ −𝑡.

Example 3 (Massless and heavy particles). For each (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 0, we have

𝑃 (𝑥, 𝑡, 0, 𝜀) =

{︃
1, for 𝑥 = 𝑡;

0, for 𝑥 ̸= 𝑡.
and lim

𝑚→∞
𝑃 (𝑥, 𝑡,𝑚, 𝜀) =

{︃
1, for 𝑥 = 0 or 𝜀, and 𝑥+𝑡

𝜀
even;

0, otherwise.

Let us list known combinatorial properties of the model [44, 29]; see §12.1 for simple proofs.

Proposition 5 (Dirac equation). For each (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 0, we have

𝑎1(𝑥, 𝑡+ 𝜀,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎1(𝑥+ 𝜀, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎2(𝑥+ 𝜀, 𝑡,𝑚, 𝜀)), (6)

𝑎2(𝑥, 𝑡+ 𝜀,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎2(𝑥− 𝜀, 𝑡,𝑚, 𝜀) −𝑚𝜀𝑎1(𝑥− 𝜀, 𝑡,𝑚, 𝜀)). (7)

Remark 2. This equation reproduces Dirac equation (1) in the continuum limit 𝜀 → 0: for
𝐶2 functions 𝑎1, 𝑎2 : R × (0,+∞) → R satisfying (6)–(7) on 𝜀Z2, the left-hand side of (1) is
𝑂𝑚 (𝜀 · (‖𝑎1‖𝐶2 + ‖𝑎2‖𝐶2)).

Proposition 6 (Probability conservation). For each 𝑡 ∈ 𝜀Z, 𝑡 > 0, we get
∑︀
𝑥∈𝜀Z

𝑃 (𝑥, 𝑡,𝑚, 𝜀) = 1.

Proposition 7 (Klein–Gordon equation). For each (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 𝜀, we have
√

1 +𝑚2𝜀2 𝑎(𝑥, 𝑡+ 𝜀,𝑚, 𝜀) +
√

1 +𝑚2𝜀2 𝑎(𝑥, 𝑡− 𝜀,𝑚, 𝜀) − 𝑎(𝑥+ 𝜀, 𝑡,𝑚, 𝜀) − 𝑎(𝑥− 𝜀, 𝑡,𝑚, 𝜀) = 0.

This equation reproduces the Klein–Gordon equation 𝜕2𝑎
𝜕𝑡2

− 𝜕2𝑎
𝜕𝑥2 +𝑚2𝑎 = 0 in the limit 𝜀→ 0.

Proposition 8 (Symmetry). For each (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 0, we have

𝑎1(𝑥, 𝑡,𝑚, 𝜀) = 𝑎1(−𝑥, 𝑡,𝑚, 𝜀), (𝑡− 𝑥) 𝑎2(𝑥, 𝑡,𝑚, 𝜀) = (𝑡+ 𝑥− 2𝜀) 𝑎2(2𝜀− 𝑥, 𝑡,𝑚, 𝜀),

𝑎1(𝑥, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎2(𝑥, 𝑡,𝑚, 𝜀) = 𝑎1(2𝜀− 𝑥, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎2(2𝜀− 𝑥, 𝑡,𝑚, 𝜀).

Proposition 9 (Huygens’ principle). For each 𝑥, 𝑡, 𝑡′ ∈ 𝜀Z, where 𝑡 > 𝑡′ > 0, we have

𝑎1(𝑥, 𝑡,𝑚, 𝜀) =
∑︁
𝑥′∈𝜀Z

[𝑎2(𝑥
′, 𝑡′,𝑚, 𝜀)𝑎1(𝑥− 𝑥′ + 𝜀, 𝑡− 𝑡′ + 𝜀,𝑚, 𝜀) + 𝑎1(𝑥

′, 𝑡′,𝑚, 𝜀)𝑎2(𝑥
′ − 𝑥+ 𝜀, 𝑡− 𝑡′ + 𝜀,𝑚, 𝜀)] ,

𝑎2(𝑥, 𝑡,𝑚, 𝜀) =
∑︁
𝑥′∈𝜀Z

[𝑎2(𝑥
′, 𝑡′,𝑚, 𝜀)𝑎2(𝑥− 𝑥′ + 𝜀, 𝑡− 𝑡′ + 𝜀,𝑚, 𝜀) − 𝑎1(𝑥

′, 𝑡′,𝑚, 𝜀)𝑎1(𝑥
′ − 𝑥+ 𝜀, 𝑡− 𝑡′ + 𝜀,𝑚, 𝜀)] .
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Informally, Huygens’ principle means that each black square (𝑥′, 𝑡′) on the 𝑡′-th horizontal
acts like an independent point source, with the amplitude and phase determined by 𝑎(𝑥′, 𝑡′,𝑚, 𝜀).
Proposition 10 (Equal-time recurrence relation). For each (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 0, we have

(𝑥+ 𝜀)((𝑥− 𝜀)2 − (𝑡− 𝜀)2)𝑎1(𝑥− 2𝜀, 𝑡,𝑚, 𝜀) + (𝑥− 𝜀)((𝑥+ 𝜀)2 − (𝑡− 𝜀)2)𝑎1(𝑥+ 2𝜀, 𝑡,𝑚, 𝜀) =

= 2𝑥
(︀
(1 + 2𝑚2𝜀2)(𝑥2 − 𝜀2) − (𝑡− 𝜀)2

)︀
𝑎1(𝑥, 𝑡,𝑚, 𝜀), (8)

𝑥((𝑥− 2𝜀)2 − 𝑡2)𝑎2(𝑥− 2𝜀, 𝑡,𝑚, 𝜀) + (𝑥− 2𝜀)(𝑥2 − (𝑡− 2𝜀)2)𝑎2(𝑥+ 2𝜀, 𝑡,𝑚, 𝜀) =

= 2(𝑥− 𝜀)
(︀
(1 + 2𝑚2𝜀2)(𝑥2 − 2𝜀𝑥) − 𝑡2 + 2𝜀𝑡

)︀
𝑎2(𝑥, 𝑡,𝑚, 𝜀).

This allows to compute 𝑎1(𝑥, 𝑡) and 𝑎2(𝑥, 𝑡) quickly on far horizontals, starting from 𝑥 =
2𝜀− 𝑡 and 𝑥 = 𝑡 respectively (see Example 2).
Proposition 11 (“Explicit” formula). For each (𝑥, 𝑡) ∈ 𝜀Z2 with |𝑥| < 𝑡 and (𝑥+ 𝑡)/𝜀 even,

𝑎1(𝑥, 𝑡,𝑚, 𝜀) = (1 +𝑚2𝜀2)(1−𝑡/𝜀)/2

𝑡−|𝑥|
2𝜀∑︁
𝑟=0

(−1)𝑟
(︂

(𝑥+ 𝑡)/2𝜀− 1

𝑟

)︂(︂
(𝑡− 𝑥)/2𝜀− 1

𝑟

)︂
(𝑚𝜀)2𝑟+1, (9)

𝑎2(𝑥, 𝑡,𝑚, 𝜀) = (1 +𝑚2𝜀2)(1−𝑡/𝜀)/2

𝑡−|𝑥|
2𝜀∑︁
𝑟=1

(−1)𝑟
(︂

(𝑥+ 𝑡)/2𝜀− 1

𝑟

)︂(︂
(𝑡− 𝑥)/2𝜀− 1

𝑟 − 1

)︂
(𝑚𝜀)2𝑟; (10)

Remark 3. For each |𝑥| ≥ 𝑡 we have 𝑎(𝑥, 𝑡,𝑚, 𝜀) = 0 unless 0 < 𝑡 = 𝑥 ∈ 𝜀Z, which gives
𝑎(𝑡, 𝑡,𝑚, 𝜀) = (1 +𝑚2𝜀2)(1−𝑡/𝜀)/2𝑖. Beware that the proposition is not applicable for |𝑥| ≥ 𝑡.

By the definition of Gauss hypergeometric function, we can rewrite the formula as follows:

𝑎1(𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀
(︀
1 +𝑚2𝜀2

)︀(1−𝑡/𝜀)/2 · 2𝐹1

(︂
1 − 𝑥+ 𝑡

2𝜀
, 1 +

𝑥− 𝑡

2𝜀
; 1;−𝑚2𝜀2

)︂
,

𝑎2(𝑥, 𝑡,𝑚, 𝜀) = 𝑚2𝜀2
(︀
1 +𝑚2𝜀2

)︀(1−𝑡/𝜀)/2 · 2𝐹1

(︂
2 − 𝑥+ 𝑡

2𝜀
, 1 +

𝑥− 𝑡

2𝜀
; 2;−𝑚2𝜀2

)︂
·
(︂

1 − 𝑥+ 𝑡

2𝜀

)︂
.

This gives a lot of identities. E.g., Gauss contiguous relations connect the values 𝑎(𝑥, 𝑡,𝑚, 𝜀) at
any 3 neighboring lattice points; cf. Propositions 5 and 10. In terms of the Jacobi polynomials,

𝑎1(𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀(1 +𝑚2𝜀2)(𝑥/𝜀−1)/2𝑃
(0,−𝑥/𝜀)
(𝑥+𝑡)/2𝜀−1

(︂
1 −𝑚2𝜀2

1 +𝑚2𝜀2

)︂
,

𝑎2(𝑥, 𝑡,𝑚, 𝜀) = −𝑚2𝜀2(1 +𝑚2𝜀2)(𝑥/𝜀−3)/2𝑃
(1,1−𝑥/𝜀)
(𝑥+𝑡)/2𝜀−2

(︂
1 −𝑚2𝜀2

1 +𝑚2𝜀2

)︂
.

There is a similar expression through Kravchuk polynomials (cf. Propostion 4). In terms of
Stanley character polynomials (defined in [42, §2]),

𝑎2(0, 𝑡,𝑚, 𝜀) = (−1)𝑡/2𝜀−1(1 +𝑚2𝜀2)(1−𝑡/𝜀)/2
(︀

𝑡
2𝜀

− 1
)︀
𝐺𝑡/2𝜀−1(1;𝑚2𝜀2).

Proposition 12 (Fourier integral). Set 𝜔𝑝 := 1
𝜀

arccos( cos 𝑝𝜀√
1+𝑚2𝜀2

). Then for each 𝑥, 𝑡 ∈ 𝜀Z such
that 𝑡 > 0 and (𝑥+ 𝑡)/𝜀 is even we have

𝑎1(𝑥, 𝑡,𝑚, 𝜀) =
𝑖𝑚𝜀2

2𝜋

∫︁ 𝜋/𝜀

−𝜋/𝜀

𝑒𝑖𝑝𝑥−𝑖𝜔𝑝(𝑡−𝜀) 𝑑𝑝√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

,

𝑎2(𝑥, 𝑡,𝑚, 𝜀) =
𝜀

2𝜋

∫︁ 𝜋/𝜀

−𝜋/𝜀

(︃
1 +

sin(𝑝𝜀)√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︃
𝑒𝑖𝑝(𝑥−𝜀)−𝑖𝜔𝑝(𝑡−𝜀) 𝑑𝑝.

Fourier integral represents a wave emitted by a point source as a superposition of waves of
wavelength 2𝜋/𝑝 and frequency 𝜔𝑝.
Proposition 13 (Full space-time Fourier transform). Denote 𝛿𝑥𝜀 := 1, if 𝑥 = 𝜀, and 𝛿𝑥𝜀 := 0,
if 𝑥 ̸= 𝜀. For each 𝑚 > 0 and (𝑥, 𝑡) ∈ 𝜀Z such that 𝑡 > 0 and (𝑥+ 𝑡)/𝜀 is even we get

𝑎1(𝑥, 𝑡,𝑚, 𝜀) = lim
𝛿→+0

𝑚𝜀3

4𝜋2

∫︁ 𝜋/𝜀

−𝜋/𝜀

∫︁ 𝜋/𝜀

−𝜋/𝜀

𝑒𝑖𝑝𝑥−𝑖𝜔(𝑡−𝜀) 𝑑𝜔𝑑𝑝√
1 +𝑚2𝜀2 cos(𝜔𝜀) − cos(𝑝𝜀) − 𝑖𝛿

,

𝑎2(𝑥, 𝑡,𝑚, 𝜀) = lim
𝛿→+0

−𝑖𝜀2

4𝜋2

∫︁ 𝜋/𝜀

−𝜋/𝜀

∫︁ 𝜋/𝜀

−𝜋/𝜀

√
1 +𝑚2𝜀2 sin(𝜔𝜀) + sin(𝑝𝜀)√

1 +𝑚2𝜀2 cos(𝜔𝜀) − cos(𝑝𝜀) − 𝑖𝛿
𝑒𝑖𝑝(𝑥−𝜀)−𝑖𝜔(𝑡−𝜀) 𝑑𝜔𝑑𝑝+ 𝛿𝑥𝜀𝛿𝑡𝜀.
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3.2 Asymptotic formulae

Large-time limit. Now we state the main theorem: an analytic approximation of 𝑎(𝑥, 𝑡,𝑚, 𝜀),
very accurate for 𝑥/𝑡 not too close to the (approximate) peaks ±1/

√
1 +𝑚2𝜀2 (see Figure 12).

-40 -20 20 40
x

-0.2

-0.1

0.1

0.2

a1

-20 -10 10 20

-0.004

-0.002

0.002

0.004

Figure 12: Graphs of 𝑎1(𝑥, 50, 4, 0.5) (left, dots), its analytic approximation given by Theorem 3
(left, curve), their difference (right)

Theorem 3 (Large-time asymptotic formula; see Figure 12). (A) For each 𝛿 > 0 there is
𝐶𝛿 > 0 such that for each 𝑚, 𝜀 > 0 and each (𝑥, 𝑡) ∈ 𝜀Z2 satisfying

|𝑥|/𝑡 < 1/
√

1 +𝑚2𝜀2 − 𝛿, 𝜀 ≤ 1/𝑚, 𝑡 > 𝐶𝛿/𝑚, (11)

we have

𝑎1 (𝑥, 𝑡+ 𝜀,𝑚, 𝜀) = 𝜀

√︂
2𝑚

𝜋

(︀
𝑡2 − (1 +𝑚2𝜀2)𝑥2

)︀−1/4
sin 𝜃(𝑥, 𝑡,𝑚, 𝜀) +𝑂𝛿

(︁ 𝜀

𝑚1/2𝑡3/2

)︁
, (12)

𝑎2 (𝑥+ 𝜀, 𝑡+ 𝜀,𝑚, 𝜀) = 𝜀

√︂
2𝑚

𝜋

(︀
𝑡2 − (1 +𝑚2𝜀2)𝑥2

)︀−1/4

√︂
𝑡+ 𝑥

𝑡− 𝑥
cos 𝜃(𝑥, 𝑡,𝑚, 𝜀) +𝑂𝛿

(︁ 𝜀

𝑚1/2𝑡3/2

)︁
,

(13)

for (𝑥+ 𝑡)/𝜀 odd and even respectively, where

𝜃(𝑥, 𝑡,𝑚, 𝜀) :=
𝑡

𝜀
arcsin

𝑚𝜀𝑡√︀
(1 +𝑚2𝜀2) (𝑡2 − 𝑥2)

− 𝑥

𝜀
arcsin

𝑚𝜀𝑥√
𝑡2 − 𝑥2

+
𝜋

4
. (14)

(B) For each 𝑚, 𝜀, 𝛿 > 0 and each (𝑥, 𝑡) ∈ 𝜀Z2 satisfying

|𝑥|/𝑡 > 1/
√

1 +𝑚2𝜀2 + 𝛿 and 𝜀 ≤ 1/𝑚,

we have

𝑎 (𝑥, 𝑡,𝑚, 𝜀) = 𝑂
(︁ 𝜀

𝑚𝑡2𝛿3

)︁
.

Recall that notation 𝑓(𝑥, 𝑡,𝑚, 𝜀) = 𝑂𝛿 (𝑔(𝑥, 𝑡,𝑚, 𝜀)) means that there is a constant 𝐶(𝛿)
(depending on 𝛿 but not on 𝑥, 𝑡,𝑚, 𝜀) such that for each 𝑥, 𝑡,𝑚, 𝜀, 𝛿 satisfying the assumptions
of the theorem we have |𝑓(𝑥, 𝑡,𝑚, 𝜀)| ≤ 𝐶(𝛿) 𝑔(𝑥, 𝑡,𝑚, 𝜀).

The main terms in Theorem 3(A) were computed in [2, Theorem 2] in the particular case
𝑚 = 𝜀 = 1. It was one of the key discoveries of that breakthrough paper. To be precise, there
is a minor difference in the main terms in [2, Theorem 2] and (12); but that difference is within
the error term. Practically, the approximation in (12) is better by several orders of magnitude.
In [2, §4] two ways to compute the main terms were suggested: via Jacobi polynomials (see
Remark 3) using the Darboux method and via the Fourier integral (see Proposition 12) using
the stationary phase method. The former way is currently far from a mathematical proof (see
the end of §12), although it allows to prove (12) in the particular case when 𝑥 = 0 and 1/𝑚𝜀 is
bounded [7, Theorem 3]. The latter way is actually Step 1 of the proof of the theorem in §12.4.

Concerning Theorem 3(B), a much stronger estimate was heuristically derived in [2, Theo-
rem 1] for 𝑚 = 𝜀 = 1. It is interesting to get a mathematical proof of that estimate.

Theorem 3 has several interesting corollaries. First, it allows to pass to the large-time
distributional limit (see Figure 8). Compared to Theorem 1, it provides convergence in a
stronger sense, not accessible by the method of moments.
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Corollary 1 (Large-time limiting distribution). For each 𝑚 > 0 and 𝜀 ≤ 1/𝑚 we have

lim
𝑡→∞
𝑡∈𝜀Z

∑︁
𝑥≤𝑣𝑡
𝑥∈𝜀Z

𝑃 (𝑥, 𝑡,𝑚, 𝜀) ⇒ 𝐹 (𝑣,𝑚, 𝜀) :=

⎧⎪⎨⎪⎩
0, if 𝑣 ≤ −1/

√
1 +𝑚2𝜀2;

1
𝜋

arccos 1−(1+𝑚2𝜀2)𝑣√
1+𝑚2𝜀2(1−𝑣)

, if |𝑣| < 1/
√

1 +𝑚2𝜀2;

1, if 𝑣 ≥ 1/
√

1 +𝑚2𝜀2

as 𝑡→ ∞ uniformly in 𝑣.

Another result not accessible by known methods is stated in terms of Young diagrams.

Corollary 2 (Steps of Young diagrams; see Figure 9). Denote by 𝑛+(ℎ × 𝑤) and 𝑛−(ℎ × 𝑤)
the number of Young diagrams with exactly ℎ rows and 𝑤 columns, having an even and an odd
number of steps (defined in page 9) respectively. Then for almost every 𝑟 > 1 we have

lim sup
𝑤→∞

√
𝑤

2(𝑟+1)𝑤/2
|𝑛+(⌈𝑟𝑤⌉ × 𝑤) − 𝑛−(⌈𝑟𝑤⌉ × 𝑤)| =

{︃
1√
𝜋
(6𝑟 − 𝑟2 − 1)−1/4, if 𝑟 < 3 + 2

√
2;

0, if 𝑟 > 3 + 2
√

2.

Feynman triple limit. Theorem 3 allows to pass to the limit (1/𝑡, 𝑥/𝑡, 𝜀) → 0 as follows.

Corollary 3 (Simpler and rougher asymptotic formula). Under the assumptions of Theo-
rem 3(A) we have

𝑎 (𝑥, 𝑡,𝑚, 𝜀) = 𝜀

√︂
2𝑚

𝜋𝑡
exp

(︂
−𝑖𝑚

√
𝑡2 − 𝑥2 +

𝑖𝜋

4

)︂(︂
1 +𝑂𝛿

(︂
1

𝑚𝑡
+

|𝑥|
𝑡

+𝑚3𝜀2𝑡

)︂)︂
. (15)

Corollary 4 (Feynman triple limit; see Figure 3). For each 𝑚 ≥ 0 and each sequence (𝑥𝑛, 𝑡𝑛, 𝜀𝑛)
such that (𝑥𝑛, 𝑡𝑛) ∈ 𝜀𝑛Z2, (𝑥𝑛 + 𝑡𝑛)/𝜀𝑛 is even, and

1/𝑡𝑛, 𝑥𝑛/𝑡
3/4
𝑛 , 𝜀𝑛𝑡

1/2
𝑛 → 0 as 𝑛→ ∞, (16)

we have the equivalence

1

2𝑖𝜀𝑛
𝑎 (𝑥𝑛, 𝑡𝑛,𝑚, 𝜀𝑛) ∼

√︂
𝑚

2𝜋𝑡𝑛
exp

(︂
−𝑖𝑚𝑡𝑛 −

𝑖𝜋

4
+
𝑖𝑚𝑥2𝑛
2𝑡𝑛

)︂
as 𝑛→ ∞. (17)

For equivalence (17), assumptions (16) are essential and sharp, as the next example shows.

Example 4. Equivalence (17) does not hold for (𝑥𝑛, 𝑡𝑛, 𝜀𝑛) = (0, 𝑛, 1/
√
𝑛) or (𝑛3/4, 𝑛, 1/𝑛): by

Theorem 3, the ratio of the left- and the right-hand side tends to 𝑒−𝑖𝜋/6 and 𝑒−𝑖𝑚/8 respectively
rather than to 1.

Corollary 4 solves the Feynman problem (and moreover corrects the statement, by revealing
the required sharp assumptions). The main difficulty here is that it concerns triple rather than
iterated limit. We are not aware of any approach which could solve the problem without proving
the whole Theorem 3. E.g., the Darboux asymptotic formula for the Jacobi polynomials (see
Remark 3) is suitable for the iterated limit when first 𝑡→ +∞, then 𝜀→ 0, giving a (weaker)
result already independent on 𝑥. Neither the Darboux nor Mehler–Heine nor more recent
asymptotic formulae [30] are applicable when 1/𝑚𝜀 or 𝑥/𝜀 is unbounded. Conversely, the next
theorem is suitable for the iterated limit when first 𝜀 → 0, then 𝑥/𝑡 → 0, then 𝑡 → +∞, but
not for the triple limit because the remainder blows up as 𝑡→ ∞.

Continuum limit. The limit 𝜀→ 0 involves the Bessel functions of the first kind :

𝐽0(𝑧) :=
∞∑︁
𝑘=0

(−1)𝑘
(𝑧/2)2𝑘

(𝑘!)2
, 𝐽1(𝑧) :=

∞∑︁
𝑘=0

(−1)𝑘
(𝑧/2)2𝑘+1

𝑘!(𝑘 + 1)!
.

Theorem 4 (Asymptotic formula in the continuum limit). For each 𝑚, 𝜀, 𝛿 > 0 and (𝑥, 𝑡) ∈ 𝜀Z2

such that (𝑥+ 𝑡)/𝜀 even, 𝑡− |𝑥| ≥ 𝛿, and 𝜀 < 𝛿 𝑒−3𝑚𝑠/16, where 𝑠 :=
√
𝑡2 − 𝑥2, we have

𝑎 (𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀

(︂
𝐽0(𝑚𝑠) − 𝑖

𝑡+ 𝑥

𝑠
𝐽1(𝑚𝑠) +𝑂

(︂
𝜀

𝛿
log2 𝛿

𝜀
· 𝑒𝑚2𝑡2

)︂)︂
.
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The main term in Theorem 4 was computed in [33, §1]. Numerical experiment shows that
the error term decreases faster than asserted (see Table 3 computed in [40, §14]).

In the next corollary, we approximate a fixed point (𝑥, 𝑡) in the plane by the lattice point(︀
2𝜀
⌈︀

𝑥
2𝜀

⌉︀
, 2𝜀
⌈︀

𝑡
2𝜀

⌉︀)︀
(see Figure 4). The factors of 2 make the latter accessible for the checker.

Corollary 5 (Uniform continuum limit; see Figure 4). For each fixed 𝑚 ≥ 0 we have

1

2𝜀
𝑎

(︂
2𝜀
⌈︁ 𝑥

2𝜀

⌉︁
, 2𝜀

⌈︂
𝑡

2𝜀

⌉︂
,𝑚, 𝜀

)︂
⇒

𝑚

2
𝐽0(𝑚

√
𝑡2 − 𝑥2) − 𝑖

𝑚

2

√︂
𝑡+ 𝑥

𝑡− 𝑥
𝐽1(𝑚

√
𝑡2 − 𝑥2) (18)

as 𝜀→ 0 uniformly on compact subsets of the angle |𝑥| < 𝑡.

The proof of pointwise convergence is simpler and is presented in Appendix B.

Corollary 6 (Concentration of measure). For each 𝑡,𝑚, 𝛿 > 0 we have∑︁
𝑥∈𝜀Z : 0≤𝑡−|𝑥|≤𝛿

𝑃 (𝑥, 𝑡,𝑚, 𝜀) → 1 as 𝜀→ 0 so that
𝑡

2𝜀
∈ Z.

This result, although expected, is not found in literature. An elementary proof is given
in §12.7. We remark a sharp contrast between the continuum and the large-time limit here: by
Corollary 1, there is no concentration of measure as 𝑡→ ∞ for fixed 𝜀.

𝜀 5𝜀 log2
10(5𝜀) max

𝑥∈(−0.8,0.8)∩2𝜀Z

⃒⃒
1
2𝜀
𝑎(𝑥, 1, 10, 𝜀) −𝐺𝑅

11(𝑥, 1) − 𝑖𝐺𝑅
12(𝑥, 1)

⃒⃒
0.02 0.1 1.1
0.002 0.04 0.06
0.0002 0.009 0.006

Table 3: Approximation of spin-1/2 retarded propagator (20) by Feynman checkers (𝑚 = 10,
𝛿 = 0.2, 𝑡 = 1)

3.3 Physical interpretation

Let us discuss the meaning of the continuum limit. In this subsection we omit some technical
definitions not used in the sequel.

Limit (18) reproduces the spin-1/2 retarded propagator describing motion of an electron
along a line. More precisely, the spin-1/2 retarded propagator, or the retarded Green function
for Dirac equation (1) is a matrix-valued tempered distribution 𝐺𝑅(𝑥, 𝑡) = (𝐺𝑅

𝑘𝑙(𝑥, 𝑡)) on R2

vanishing for 𝑡 < |𝑥| and satisfying(︂
𝑚 𝜕/𝜕𝑥− 𝜕/𝜕𝑡

𝜕/𝜕𝑥+ 𝜕/𝜕𝑡 𝑚

)︂(︂
𝐺𝑅

11(𝑥, 𝑡) 𝐺𝑅
12(𝑥, 𝑡)

𝐺𝑅
21(𝑥, 𝑡) 𝐺𝑅

22(𝑥, 𝑡)

)︂
= 𝛿(𝑥)𝛿(𝑡)

(︂
1 0
0 1

)︂
, (19)

where 𝛿(𝑥) is the Dirac delta function. The propagator is given by (cf. [22, (13)], [38, (3.117)])

𝐺𝑅(𝑥, 𝑡) =
𝑚

2

⎛⎝ 𝐽0(𝑚
√
𝑡2 − 𝑥2) −

√︁
𝑡+𝑥
𝑡−𝑥

𝐽1(𝑚
√
𝑡2 − 𝑥2)√︁

𝑡−𝑥
𝑡+𝑥

𝐽1(𝑚
√
𝑡2 − 𝑥2) 𝐽0(𝑚

√
𝑡2 − 𝑥2)

⎞⎠ for |𝑥| < 𝑡. (20)

In addition, 𝐺𝑅(𝑥, 𝑡) involves a generalized function supported on the lines 𝑡 = ±𝑥, not observed
in the limit (18) and not specified here. A more common expression is (cf. Proposition 13)

𝐺𝑅(𝑥, 𝑡) =
1

4𝜋2

∫︁ +∞

−∞

∫︁ +∞

−∞
lim
𝛿→+0

(︂
𝑚 −𝑖𝑝− 𝑖𝜔

−𝑖𝑝+ 𝑖𝜔 𝑚

)︂
𝑒𝑖𝑝𝑥−𝑖𝜔𝑡 𝑑𝑝𝑑𝜔

𝑚2 + 𝑝2 − (𝜔 + 𝑖𝛿)2
, (21)

where the limit is taken in the weak topology of matrix-valued tempered distributions and the
integral is understood as the Fourier transform of tempered distributions (cf. [13, (6.47)]).
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The propagator “square” 𝐺𝑅
11(𝑥, 𝑡)

2 + 𝐺𝑅
12(𝑥, 𝑡)

2 is ill-defined (because of the square of the
Dirac delta-function supported on the lines 𝑡 = ±𝑥 involved). Thus the propagator lacks
probabilistic interpretation, and global charge conservation (Proposition 6) has no continuum
analogue. For instance,

∫︀
(−𝑡,𝑡)

(𝐺𝑅
11(𝑥, 𝑡)

2+𝐺𝑅
12(𝑥, 𝑡)

2) 𝑑𝑥 = 𝑡/2 ̸= const paradoxically. A physical
explanation: the line 𝑡 = 𝑥 carries infinite charge flowing inside the angle |𝑥| < 𝑡. One can
interpret the propagator “square” for |𝑥| ≠ 𝑡 as a relative probability density or charge density
(see Figure 1). In the spin-chain interpretation, the propagator is the limit of the partition
function for one-dimensional Ising model at the inverse temperature 𝛽 = 𝑖𝜋/4 − log(𝑚𝜀)/2.
Those are essentially the values of 𝛽 for which phase transition is possible [32].

The normalization factor 1/2𝜀 before “𝑎” in (18) can be explained as division by the length
associated to a black lattice point in the 𝑥-direction. On a deeper level, it comes from the
normalization of 𝐺𝑅(𝑥, 𝑡) arising from (19).

Theorem 4 is a toy result in algorithmic quantum field theory : it determines the lattice
step to compute the propagator with given accuracy. So far this is not a big deal, because
the propagator has a known analytic expression and is not really experimentally-measurable;
neither the efficiency of the algorithm is taken into account. But that is a first step.

Algorithm 1 (Approximation algorithm for spin-1/2 retarded propagator (20)). Input: mass
𝑚 > 0, coordinates |𝑥| < 𝑡, accuracy level ∆.

Output: an approximate value 𝐺𝑘𝑙 of 𝐺𝑅
𝑘𝑙(𝑥, 𝑡) within distance ∆ from the true value (20).

Algorithm: compute 𝐺𝑘𝑙 = (−1)(𝑘−1)𝑙

2𝜀
𝑎(𝑘+𝑙) mod 2+1

(︁
2𝜀
⌈︁
(−1)(𝑘−1)𝑙𝑥

2𝜀

⌉︁
, 2𝜀
⌈︀

𝑡
2𝜀

⌉︀
,𝑚, 𝜀

)︁
by (5) for

𝜀 = (𝑡− |𝑥|) min

{︃
1

16 𝑒3𝑚𝑡
,

(︂
∆

9𝐶 𝑚𝑒𝑚2𝑡2

)︂3
}︃
, where 𝐶 = 100.

Here we used an explicit estimate for the constant 𝐶 understood in the big-O notation in
Theorem 4; it is easily extracted from the proof. The theorem and the estimate remain true, if
𝑎 (𝑥, 𝑡,𝑚, 𝜀) with (𝑥, 𝑡) ∈ 𝜀Z2 is replaced by 𝑎

(︀
2𝜀
⌈︀

𝑥
2𝜀

⌉︀
, 2𝜀
⌈︀

𝑡
2𝜀

⌉︀
,𝑚, 𝜀

)︀
with arbitrary (𝑥, 𝑡) ∈ R2.

4 Spin
Question: what is the probability to find a right electron at (𝑥, 𝑡), if a right electron was emitted from (0, 0)?
Assumptions: electron chirality is now taken into account.
Results: the probability of chirality flip.

A feature of the model is that the electron spin emerges naturally rather than is added
artificially.

It goes almost without saying to view the electron as being in one of the two states depending
on the last-move direction: right-moving or left-moving (or just ‘right ’ or ‘left ’ for brevity).

The probability to find a right electron in the square (𝑥, 𝑡), if a right electron was emitted
from the square (0, 0), is the length square of the vector

∑︀
𝑠 𝑎(𝑠), where the sum is over only

those paths from (0, 0) to (𝑥, 𝑡), which both start and finish with an upwards-right move.
The probability to find a left electron is defined analogously, only the sum is taken over paths
which start with an upwards-right move but finish with an upwards-left move. Clearly, these
probabilities equal 𝑎2(𝑥, 𝑡)2 and 𝑎1(𝑥, 𝑡)2 respectively, because the last move is directed upwards-
right if and only if the number of turns is even.

These right and left electrons are exactly the (1+1)-dimensional analogue of chirality states
for a spin 1/2 particle [38, §19.1]. Indeed, it is known that the components 𝑎2(𝑥, 𝑡) and 𝑎1(𝑥, 𝑡)
in Dirac equation in the Weyl basis (1) are interpreted as wave functions of right- and left-
handed particles respectively. The relation to the movement direction becomes transparent
for 𝑚 = 0: a general solution of (1) is (𝑎2(𝑥, 𝑡), 𝑎1(𝑥, 𝑡)) = (𝑎2(𝑥 − 𝑡, 0), 𝑎1(𝑥 + 𝑡, 0)); thus
the maxima of 𝑎2(𝑥, 𝑡) and 𝑎1(𝑥, 𝑡) (if any) move to the right and to the left respectively as 𝑡
increases. Beware that in 3 or more dimensions, spin is not the movement direction and cannot
be explained in nonquantum terms.
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This gives a more conceptual interpretation of the model: an experiment outcome is a
pair (final 𝑥-coordinate, last-move direction), whereas the final 𝑡-coordinate is fixed. The
probabilities to find a right/left electron are the fundamental ones. In further upgrades, 𝑎1(𝑥, 𝑡)
and 𝑎2(𝑥, 𝑡) become complex numbers and 𝑃 (𝑥, 𝑡) should be defined as |𝑎1(𝑥, 𝑡)|2 + |𝑎2(𝑥, 𝑡)|2
rather than by the above formula 𝑃 (𝑥, 𝑡) = |𝑎(𝑥, 𝑡)|2 = |𝑎1(𝑥, 𝑡)+𝑖𝑎2(𝑥, 𝑡)|2, being a coincidence.

Theorem 5 (Probability of chirality flip). For integer 𝑡 > 0 we get
∑︀
𝑥∈Z

𝑎1(𝑥, 𝑡)
2 = 1

2
√
2
+𝑂

(︁
1√
𝑡

)︁
.

See Figure 13 for an illustration and comparison with the upgrade from §5. The physical
interpretation of the theorem is limited: in continuum theory, the probability of chirality flip
(for an electron emitted by a point source) is ill-defined similarly to the propagator “square”
(see §3.3). A related more reasonable quantity is studied in [22, p. 381] (cf. Problem 6).
Recently I. Bogdanov has generalized the theorem to an arbitrary mass and lattice step (see
Definition 2): if 0 ≤ 𝑚𝜀 ≤ 1 then lim𝑡→+∞,𝑡∈𝜀Z

∑︀
𝑥∈𝜀Z 𝑎1(𝑥, 𝑡,𝑚, 𝜀)

2 = 𝑚𝜀
2
√
1+𝑚2𝜀2

[7, Theorem 2].
This has confirmed a conjecture by I. Gaidai-Turlov–T. Kovalev–A. Lvov.
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Figure 13: (by G. Minaev–I. Russkikh) The graphs of the probabilities 𝑃 (𝑡) =
∑︀

𝑥∈Z 𝑎1(𝑥, 𝑡)
2

and 𝑃 (𝑡, 𝑢) =
∑︀

𝑥∈Z 𝑎1(𝑥, 𝑡, 𝑢)2 of chirality flip with magnetic field off and on respectively

5 External field
Question: what is the probability to find an electron at (𝑥, 𝑡), if it moves in a given electromagnetic field 𝑢?
Assumptions: the electromagnetic field vanishes outside the 𝑥𝑡-plane; it is not affected by the electron.
Results: “spin precession” in a magnetic field (qualitative explanation), charge conservation.

Figure 14: Paths in a field

Another feature of the model is that external electro-
magnetic field emerges naturally rather than is added ar-
tificially. We start with an informal definition, then give a
precise one, and finally show exact charge conservation.

In the basic model, the stopwatch hand did not rotate
while the checker moved straightly. It goes without saying
to modify the model, rotating the hand uniformly during
the motion. This does not change the model essentially:
since all the paths from the initial to the final position have
the same length, their vectors are rotated through the same angle, not affecting probabilities.
A more interesting modification is when the current rotation angle depends on the checker
position. This is exactly what electromagnetic field does. In what follows, the rotation angle
assumes only the two values 0∘ and 180∘ for simplicity, meaning just multiplication by ±1.

Thus an electromagnetic field is viewed as a fixed assignment 𝑢 of numbers +1 and −1 to
all the vertices of the squares. For instance, in Figure 14, the field equals −1 at the top-right
vertex of each square (𝑥, 𝑡) with both 𝑥 and 𝑡 even. Modify the definition of the vector 𝑎(𝑠) by
reversing the direction each time when the checker passes through a vertex with the field −1.
Denote by 𝑎(𝑠, 𝑢) the resulting vector. Define 𝑎(𝑥, 𝑡, 𝑢) and 𝑃 (𝑥, 𝑡, 𝑢) analogously to 𝑎(𝑥, 𝑡)
and 𝑃 (𝑥, 𝑡) replacing 𝑎(𝑠) by 𝑎(𝑠, 𝑢) in the definition. For instance, if 𝑢 = +1 identically, then
𝑃 (𝑥, 𝑡, 𝑢) = 𝑃 (𝑥, 𝑡).

Let us slightly rephrase this construction, making the relation to lattice gauge theory more
transparent. We introduce an auxiliary grid with the vertices at the centers of black squares
(see Figure 9 to the right). It is the graph where the checker actually moves.

19



Definition 3. An edge is a segment joining nearest-neighbor integer points with even sum of
the coordinates. Let 𝑢 be a map from the set of all edges to {+1,−1}. Denote by

𝑎(𝑥, 𝑡, 𝑢) := 2(1−𝑡)/2 𝑖
∑︁
𝑠

(−𝑖)turns(𝑠)𝑢(𝑠0𝑠1)𝑢(𝑠1𝑠2) . . . 𝑢(𝑠𝑡−1𝑠𝑡)

the sum over all checker paths 𝑠 = (𝑠0, 𝑠1, . . . , 𝑠𝑡) with 𝑠0 = (0, 0), 𝑠1 = (1, 1), and 𝑠𝑡 = (𝑥, 𝑡).
Set 𝑃 (𝑥, 𝑡, 𝑢) := |𝑎(𝑥, 𝑡, 𝑢)|2. Define 𝑎1(𝑥, 𝑡, 𝑢) and 𝑎2(𝑥, 𝑡, 𝑢) analogously to 𝑎(𝑥, 𝑡, 𝑢), only add
the condition 𝑠𝑡−1 = (𝑥 + 1, 𝑡 − 1) and 𝑠𝑡−1 = (𝑥 − 1, 𝑡 − 1) respectively. For half-integers 𝑥, 𝑡
denote by 𝑢(𝑥, 𝑡) the value of 𝑢 on the edge with the midpoint (𝑥, 𝑡).

Remark 4. Here the field 𝑢 is a fixed external classical field not affected by the electron.
This definition is analogous to one of the first constructions of gauge theory by Weyl–Fock–

London, and gives a coupling of Feynman checkers to the Wegner–Wilson Z/2Z lattice gauge
theory. In particular, it reproduces the correct spin 1 for the electromagnetic field: a function
defined on the set of edges is a discrete analogue of a vector field, i.e., a spin 1 field. Although
this way of coupling is classical, it has never been explicitly applied to Feynman checkers (cf. [15,
p. 36]), and is very different from both the approach of [35] and Feynman-diagram intuition [10].

For an arbitrary gauge group, 𝑎1(𝑥, 𝑡, 𝑢) and 𝑎2(𝑥, 𝑡, 𝑢) are defined analogously, only 𝑢 be-
comes a map from the set of edges to a matrix group, e.g., 𝑈(1) or 𝑆𝑈(𝑛). Then we set
𝑃 (𝑥, 𝑡, 𝑢) :=

∑︀
𝑘 (|(𝑎1(𝑥, 𝑡, 𝑢))𝑘1|2 + |(𝑎2(𝑥, 𝑡, 𝑢))𝑘1|2), where (𝑎𝑗)𝑘𝑙 are the entries of a matrix 𝑎𝑗.

Example 5 (“Spin precession” in a magnetic field). Let 𝑢(𝑥+ 1/2, 𝑡+ 1/2) = −1, if both 𝑥 and
𝑡 even, and 𝑢(𝑥+ 1/2, 𝑡+ 1/2) = +1 otherwise (“homogeneous magnetic field”; see Figure 14).
Then the probability 𝑃 (𝑡, 𝑢) :=

∑︀
𝑥∈Z 𝑎1(𝑥, 𝑡, 𝑢)2 of detecting a left electron (see §4) is plotted in

Figure 13 to the right. It apparently tends to a “periodic regime” as 𝑡→ ∞ (see Problem 11).

The following propositions are proved analogously to Propositions 5–6, only a factor of
𝑢(𝑥± 1

2
, 𝑡+ 1

2
) is added due to the last step of the path passing through the vertex (𝑥± 1

2
, 𝑡+ 1

2
).

Proposition 14 (Dirac equation in electromagnetic field). For each integers 𝑥 and 𝑡 ≥ 1,

𝑎1(𝑥, 𝑡+ 1, 𝑢) =
1√
2
𝑢

(︂
𝑥+

1

2
, 𝑡+

1

2

)︂
(𝑎1(𝑥+ 1, 𝑡, 𝑢) + 𝑎2(𝑥+ 1, 𝑡, 𝑢)),

𝑎2(𝑥, 𝑡+ 1, 𝑢) =
1√
2
𝑢

(︂
𝑥− 1

2
, 𝑡+

1

2

)︂
(𝑎2(𝑥− 1, 𝑡, 𝑢) − 𝑎1(𝑥− 1, 𝑡, 𝑢)).

Proposition 15 (Probability/charge conservation). For each integer 𝑡 ≥ 1,
∑︀
𝑥∈Z

𝑃 (𝑥, 𝑡, 𝑢) = 1.

6 Source
Question: what is the probability to find an electron at (𝑥, 𝑡), if it was emitted by a source of wavelength 𝜆?
Assumptions: the source is now realistic.
Results: wave propagation, dispersion relation.

A realistic source produces a wave rather than electrons localized at 𝑥 = 0 (as in the basic
model). This means solving Dirac equation (6)–(7) with (quasi-)periodic initial conditions.

To state the result, it is convenient to rewrite Dirac equation (6)–(7) using the notation

�̃�1(𝑥, 𝑡) = 𝑎1(𝑥, 𝑡+ 𝜀,𝑚, 𝜀), �̃�2(𝑥, 𝑡) = 𝑎2(𝑥+ 𝜀, 𝑡+ 𝜀,𝑚, 𝜀),

so that it gets form

�̃�1(𝑥, 𝑡) =
1√

1 +𝑚2𝜀2
(�̃�1(𝑥+ 𝜀, 𝑡− 𝜀) +𝑚𝜀 �̃�2(𝑥, 𝑡− 𝜀)), (22)

�̃�2(𝑥, 𝑡) =
1√

1 +𝑚2𝜀2
(�̃�2(𝑥− 𝜀, 𝑡− 𝜀) −𝑚𝜀 �̃�1(𝑥, 𝑡− 𝜀)). (23)

The following proposition is proved by direct checking (available in [40, §12]).
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Proposition 16 (Wave propagation, dispersion relation). Equations (22)–(23) with the initial
condition

�̃�1(𝑥, 0) = �̃�1(0, 0)𝑒2𝜋𝑖𝑥/𝜆,

�̃�2(𝑥, 0) = �̃�2(0, 0)𝑒2𝜋𝑖𝑥/𝜆;

have the unique solution

�̃�1(𝑥, 𝑡) = 𝑎 cos 𝛼
2
𝑒2𝜋𝑖(𝑥/𝜆+𝑡/𝑇 ) + 𝑏 sin 𝛼

2
𝑒2𝜋𝑖(𝑥/𝜆−𝑡/𝑇 ), (24)

�̃�2(𝑥, 𝑡) = 𝑖𝑎 sin 𝛼
2
𝑒2𝜋𝑖(𝑥/𝜆+𝑡/𝑇 ) − 𝑖𝑏 cos 𝛼

2
𝑒2𝜋𝑖(𝑥/𝜆−𝑡/𝑇 ), (25)

where the numbers 𝑇 ≥ 2, 𝛼 ∈ [0, 𝜋], and 𝑎, 𝑏 ∈ C are given by

cos(2𝜋𝜀/𝑇 ) =
cos(2𝜋𝜀/𝜆)√

1 +𝑚2𝜀2
, cot𝛼 =

sin(2𝜋𝜀/𝜆)

𝑚𝜀
,

𝑎 = �̃�1(0, 0) cos 𝛼
2
− 𝑖�̃�2(0, 0) sin 𝛼

2
,

𝑏 = �̃�1(0, 0) sin 𝛼
2

+ 𝑖�̃�2(0, 0) cos 𝛼
2
.

Remark 5. General solution of (22)–(23) in appropriate functional space is obtained by replacing
𝑎 and 𝑏 by sufficiently general functions in 𝜆 and integration of (24)–(25) over 𝑝 = 2𝜋/𝜆.

The solution of continuum Dirac equation (1) is given by the same expression (24)–(25), only
2𝜋/𝑇 and 𝛼 are redefined by 4𝜋2

𝑇 2 = 4𝜋2

𝜆2 + 𝑚2 and cot𝛼 = 2𝜋/𝑚𝜆 instead. In both continuum
and discrete setup, these are the hypotenuse and the angle in a right triangle with one leg 2𝜋/𝜆
and another leg either 𝑚 or (arctan𝑚𝜀)/𝜀 respectively, lying in the plane or a sphere of radius
1/𝜀 respectively. This spherical-geometry interpretation is new and totally unexpected.

A comment for specialists: replacing 𝑎 and 𝑏 by creation and annihilation operators, i.e.,
the second quantization of the lattice Dirac equation, leads to the model from §9.

For the next upgrades, we just announce results to be discussed in subsequent publications.

7 Medium
Question: which part of light of given color is reflected from a glass plate of given width?
Assumptions: right angle of incidence, no polarization of light; mass now depends on 𝑥 but not on the color.
Results: thin-film reflection (quantitative explanation).

Feynman checkers can be applied to describe propagation of light in transparent media
such as glass. Light propagates as if it had acquired some nonzero mass plus potential energy
(depending on the refractive index) inside the media, while both remain zero outside. In general
the model is inappropriate to describe light; partial reflection is a remarkable exception. Notice
that similar classical phenomena are described by quantum models [44, §2.7].

In Feynman checkers, we announce a rigorous derivation of the following well-known formula
for the percentage 𝑃 of light of wavelength 𝜆 reflected from a transparent plate of width 𝐿 and
refractive index 𝑛:

𝑃 =
(𝑛2 − 1)2

(𝑛2 + 1)2 + 4𝑛2 cot2(2𝜋𝐿𝑛/𝜆)
.

This makes Feynman’s popular-science discussion of partial reflection [10] completely rigorous
and shows that his model has experimentally-confirmed predictions in the real world, not just
a 2-dimensional one.

8 Identical particles
Question: what is the probability to find electrons at 𝐹 and 𝐹 ′, if they were emitted from 𝐴 and 𝐴′?
Assumptions: motion of several electrons is now described.
Results: exclusion principle, locality, charge conservation.

We announce a simple-to-define upgrade describing the motion of several electrons, respect-
ing exclusion principle, locality, and probability conservation (cf. [45, §4.2]).
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Definition 4. Fix integer points 𝐴 = (0, 0), 𝐴′ = (𝑥0, 0), 𝐹 = (𝑥, 𝑦), 𝐹 ′ = (𝑥′, 𝑦) and their
diagonal neighbors 𝐵 = (1, 1), 𝐵′ = (𝑥0 + 1, 1), 𝐸 = (𝑥− 1, 𝑦 − 1), 𝐸 ′ = (𝑥′ − 1, 𝑦 − 1), where
𝑥0 ̸= 0, 𝑥′ ≥ 𝑥. Denote

𝑎(𝐴𝐵,𝐴′𝐵′ → 𝐸𝐹,𝐸 ′𝐹 ′) :=
∑︁

𝑠:𝐴𝐵→𝐸𝐹
𝑠′:𝐴′𝐵′→𝐸′𝐹 ′

𝑎(𝑠)𝑎(𝑠′) −
∑︁

𝑠:𝐴𝐵→𝐸′𝐹 ′
𝑠′:𝐴′𝐵′→𝐸𝐹

𝑎(𝑠)𝑎(𝑠′),

where the first sum is over all pairs consisting of a checker path 𝑠 starting with the move 𝐴𝐵
and ending with the move 𝐸𝐹 , and a path 𝑠′ starting with the move 𝐴′𝐵′ and ending with the
move 𝐸 ′𝐹 ′, whereas in the second sum the final moves are interchanged.

The length square 𝑃 (𝐴𝐵,𝐴′𝐵′ → 𝐸𝐹,𝐸 ′𝐹 ′) := |𝑎(𝐴𝐵,𝐴′𝐵′ → 𝐸𝐹,𝐸 ′𝐹 ′)|2 is called the
probability to find right electrons at 𝐹 and 𝐹 ′, if they are emitted from 𝐴 and 𝐴′. Define
𝑃 (𝐴𝐵,𝐴′𝐵′ → 𝐸𝐹,𝐸 ′𝐹 ′) analogously also for 𝐸 = (𝑥± 1, 𝑦− 1), 𝐸 ′ = (𝑥′ ± 1, 𝑦− 1). Here we
require 𝑥′ ≥ 𝑥, if both signs are the same, and allow arbitrary 𝑥′ and 𝑥, otherwise.

9 Antiparticles
Question: what is the expected charge in the square (𝑥, 𝑡), if an electron was emitted from the square (0, 0)?
Assumptions: electron-positron pairs now created and annihilated, the 𝑡-axis is time.
Results: spin-1/2 Feynman propagator in the continuum limit, an analytic expression for the large-time limit.

9.1 Identities

Finally, we introduce a completely new upgrade (Feynman anti-checkers), allowing creation
and annihilation of electron-positron pairs during the motion. The upgrade is defined just by
allowing odd (𝑥 + 𝑡)/𝜀 in the Fourier integral (Proposition 12), that is, computing the same
integral in white checkerboard squares in addition to black ones. This is equivalent to the second
quantization of lattice Dirac equation (22)–(23), which we do not need to work out (cf. [3, §9F]
and [4, §IV] for the massless case). Anyway, the true motivation of the upgrade is a remarkable
analogy with the initial model and appearance of spin-1/2 Feynman propagator (28) in the
continuum limit (see Figure 15).
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Figure 15: Plots of 𝑏1(𝑥, 6, 4, 0.03)/0.12 (left, dots), 𝑏2(𝑥, 6, 4, 0.03)/0.12 (right, dots), their
analytic approximation from Theorem 6 (light), the imaginary part of the Feynman propagator
Im𝐺𝐹

11(𝑥, 6) (left, dark) and Im𝐺𝐹
12(𝑥, 6) (right, dark) given by (28) for 𝑚 = 4 and 𝑡 = 6.

Definition 5. (Cf. Proposition 12, see Figure 15.) Fix 𝑚 ≥ 0 and 𝜀 > 0. For each (𝑥, 𝑡) ∈ 𝜀Z2,
where 𝑡 > 0, denote 𝜔𝑝 := 1

𝜀
arccos( cos 𝑝𝜀√

1+𝑚2𝜀2
) and

𝐴1(𝑥, 𝑡,𝑚, 𝜀) :=
𝑖𝑚𝜀2

2𝜋

∫︁ 𝜋/𝜀

−𝜋/𝜀

𝑒𝑖𝑝𝑥−𝑖𝜔𝑝(𝑡−𝜀) 𝑑𝑝√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

;

𝐴2(𝑥, 𝑡,𝑚, 𝜀) :=
𝜀

2𝜋

∫︁ 𝜋/𝜀

−𝜋/𝜀

(︃
1 +

sin(𝑝𝜀)√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︃
𝑒𝑖𝑝(𝑥−𝜀)−𝑖𝜔𝑝(𝑡−𝜀) 𝑑𝑝.

(26)

For 𝑡 ≤ 0 the definition is the same, only the overall sign is changed for (𝑥 + 𝑡)/𝜀 even. In
particular, 𝐴𝑘(𝑥, 𝑡,𝑚, 𝜀) = 𝑎𝑘(𝑥, 𝑡,𝑚, 𝜀) for (𝑥 + 𝑡)/𝜀 even, 𝑡 > 0, and 𝑘 = 1, 2. Denote
𝐴𝑘(𝑥, 𝑡,𝑚, 𝜀) =: 𝑖𝑏𝑘(𝑥, 𝑡,𝑚, 𝜀) for (𝑥+ 𝑡)/𝜀 odd. Set 𝑏𝑘(𝑥, 𝑡,𝑚, 𝜀) := 0 for (𝑥+ 𝑡)/𝜀 even.

22



Thus the real and the imaginary part “lives” on the black and white squares respectively,
analogously to discrete analytic functions [8]. The sign convention for 𝑡 ≤ 0 is dictated by the
analogy to continuum theory (cf. (27) and (29)).

Example 6. The value 𝑏1(0, 1, 1, 1) = Γ(1
4
)2/(2𝜋)3/2 = 2

𝜋
𝐾(𝑖) =: 𝐺 ≈ 0.83463 is the Gauss

constant and −𝑏2(0, 1, 1, 1) = 2
√

2𝜋/Γ(1
4
)2 = 2

𝜋
(𝐸(𝑖) − 𝐾(𝑖)) = 1/𝜋𝐺 =: 𝐿′ ≈ 0.38138 is the

inverse lemniscate constant, where 𝐾(𝑧) and 𝐸(𝑧) are the complete elliptic integrals of the 1st
and 2nd kind respectively (cf. [12, §6.1]).

The other values are even more complicated irrationalities (see Table 4).

𝑏1(𝑥, 𝑡, 1, 1)

2 𝐺−𝐿′
√
2

𝐺−𝐿′
√
2

7𝐺−15𝐿′

3
√
2

1 𝐺 𝐺− 2𝐿′

0 𝐺−𝐿′
√
2

𝐺−𝐿′
√
2

7𝐺−15𝐿′

3
√
2

−1 −𝐿′ 2𝐺−3𝐿′

3

𝑡 𝑥 −1 0 1 2 3

𝑏2(𝑥, 𝑡, 1, 1)

2 𝐺−3𝐿′

3
√
2

−𝐺−𝐿′
√
2

−𝐺+3𝐿′
√
2

1 −𝐿′ 𝐿′

0 𝐺−3𝐿′
√
2

𝐺+𝐿′
√
2

−𝐺+3𝐿′

3
√
2

−1 𝐺 𝐺
3

𝑡 𝑥 −1 0 1 2 3

Table 4: The values 𝑏1(𝑥, 𝑡, 1, 1) and 𝑏2(𝑥, 𝑡, 1, 1) for small 𝑥, 𝑡 (see Definition 5 and Example 6)

We announce that the analogues of Propositions 5–10 remain true literally, if 𝑎1 and 𝑎2
are replaced by 𝑏1 and 𝑏2 respectively (the assumption 𝑡 > 0 can then be dropped). As a
consequence, 2(𝑡−1)/2𝑏1(𝑥, 𝑡, 1, 1) and 2(𝑡−1)/2𝑏2(𝑥, 𝑡, 1, 1) are all rational linear combinations of
the Gauss constant 𝐺 and the inverse lemniscate constant 𝐿′ for each (𝑥, 𝑡) ∈ Z2.

We also announce an “explicit” formula: for 𝑚, 𝜀 > 0, (𝑥, 𝑡) ∈ 𝜀Z2 with (𝑥+ 𝑡)/𝜀 odd we get

𝑏1(𝑥, 𝑡,𝑚, 𝜀) =
(︀
1 +𝑚2𝜀2

)︀ 1
2
− 𝑡

2𝜀 (−𝑚2𝜀2)
𝑡−|𝑥|
2𝜀

− 1
2

(︂ 𝑡+|𝑥|
2𝜀

− 1

|𝑥|/𝜀

)︂
· 2𝐹1

(︂
1 +

|𝑥| − 𝑡

2𝜀
, 1 +

|𝑥| − 𝑡

2𝜀
; 1 +

|𝑥|
𝜀

;− 1

𝑚2𝜀2

)︂
,

𝑏2(𝑥+ 𝜀, 𝑡+ 𝜀,𝑚, 𝜀) =
(︀
1 +𝑚2𝜀2

)︀− 𝑡
2𝜀 (𝑚𝜀)

𝑡−|𝑥|
𝜀 (−1)

𝑡−|𝑥|
2𝜀

+ 1
2

(︂ 𝑡+|𝑥|
2𝜀

− 1 + 𝜃(𝑥)

|𝑥|/𝜀

)︂
· 2𝐹1

(︂
|𝑥| − 𝑡

2𝜀
, 1 +

|𝑥| − 𝑡

2𝜀
; 1 +

|𝑥|
𝜀

;− 1

𝑚2𝜀2

)︂
, where 𝜃(𝑥) :=

{︃
1, if 𝑥 ≥ 0,

0, if 𝑥 < 0.

The idea of the proof is induction on 𝑡/𝜀 ≥ 1: the base is given by [17, 9.112, 9.131.1, 9.134.3]
and the step is given by the analogue of (6)–(7) for 𝑏1 and 𝑏2 plus [17, 9.137].
Remark 6. (Cf. Remark 3) These expressions can be rewritten as the Jacobi functions of the
second kind of half-integer order (see the definition in [43, (4.61.1)]). For instance, for each
(𝑥, 𝑡) ∈ 𝜀Z2 such that |𝑥| > 𝑡 and (𝑥+ 𝑡)/𝜀 is odd we have

𝑏1(𝑥, 𝑡,𝑚, 𝜀) =
2𝑚𝜀

𝜋

(︀
1 +𝑚2𝜀2

)︀(𝑡/𝜀−1)/2
𝑄

(0,𝑡/𝜀−1)
(|𝑥|−𝑡)/2𝜀(1 + 2𝑚2𝜀2).

Remark 7. The number 𝑏1(𝑥, 𝜀,𝑚, 𝜀) equals (1 +
√

1 +𝑚2𝜀2)/𝑚𝜀 times the probability that a
planar simple random walk over white squares dies at (𝑥, 𝜀), if it starts at (0, 𝜀) and dies with
the probability 1 − 1/

√
1 +𝑚2𝜀2 before each step. Nothing like that is known for 𝑏1(𝑥, 𝑡,𝑚, 𝜀)

and 𝑏2(𝑥, 𝑡,𝑚, 𝜀) with 𝑡 ̸= 𝜀 (see Problem 15).
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The following results are proved almost literally as Proposition 13 and Theorem 3(A).
(The only difference is negation of the summands involving 𝑓−(𝑝) in (56), (61) (65), (67); the
analogues of Lemmas 11 and 17 are then obtained by direct checking.)

Proposition 17 (Full space-time Fourier transform). Denote 𝛿𝑥𝜀 := 1, if 𝑥 = 𝜀, and 𝛿𝑥𝜀 := 0,
if 𝑥 ̸= 𝜀. For each 𝑚 > 0 and (𝑥, 𝑡) ∈ 𝜀Z2 we get

𝐴1(𝑥, 𝑡,𝑚, 𝜀) = lim
𝛿→+0

𝑚𝜀3

4𝜋2

∫︁ 𝜋/𝜀

−𝜋/𝜀

∫︁ 𝜋/𝜀

−𝜋/𝜀

𝑒𝑖𝑝𝑥−𝑖𝜔(𝑡−𝜀) 𝑑𝜔𝑑𝑝√
1 +𝑚2𝜀2 cos(𝜔𝜀) − cos(𝑝𝜀) − 𝑖𝛿

,

𝐴2(𝑥, 𝑡,𝑚, 𝜀) = lim
𝛿→+0

−𝑖𝜀2

4𝜋2

∫︁ 𝜋/𝜀

−𝜋/𝜀

∫︁ 𝜋/𝜀

−𝜋/𝜀

√
1 +𝑚2𝜀2 sin(𝜔𝜀) + sin(𝑝𝜀)√

1 +𝑚2𝜀2 cos(𝜔𝜀) − cos(𝑝𝜀) − 𝑖𝛿
𝑒𝑖𝑝(𝑥−𝜀)−𝑖𝜔(𝑡−𝜀) 𝑑𝜔𝑑𝑝+ 𝛿𝑥𝜀𝛿𝑡𝜀.

(27)

Theorem 6 (Large-time asymptotic formula; see Figure 15). For each 𝛿 > 0 there is 𝐶𝛿 > 0
such that for each 𝑚, 𝜀 > 0 and each (𝑥, 𝑡) ∈ 𝜀Z2 satisfying (11) we have

𝑏1 (𝑥, 𝑡+ 𝜀,𝑚, 𝜀) = 𝜀

√︂
2𝑚

𝜋

(︀
𝑡2 − (1 +𝑚2𝜀2)𝑥2

)︀−1/4
cos 𝜃(𝑥, 𝑡,𝑚, 𝜀) +𝑂𝛿

(︁ 𝜀

𝑚1/2𝑡3/2

)︁
,

𝑏2 (𝑥+ 𝜀, 𝑡+ 𝜀,𝑚, 𝜀) = −𝜀
√︂

2𝑚

𝜋

(︀
𝑡2 − (1 +𝑚2𝜀2)𝑥2

)︀−1/4

√︂
𝑡+ 𝑥

𝑡− 𝑥
sin 𝜃(𝑥, 𝑡,𝑚, 𝜀) +𝑂𝛿

(︁ 𝜀

𝑚1/2𝑡3/2

)︁
,

for (𝑥+ 𝑡)/𝜀 even and odd respectively, where 𝜃(𝑥, 𝑡,𝑚, 𝜀) is given by (14).

9.2 Physical interpretation

One interprets 1
2
|𝐴1 (𝑥, 𝑡,𝑚, 𝜀) |2 + 1

2
|𝐴2 (𝑥, 𝑡,𝑚, 𝜀) |2 as the expected charge in a square (𝑥, 𝑡)

with 𝑡 > 0, in the units of electron charge. The numbers cannot be anymore interpreted as
probabilities to find the electron in the square. The reason is that now the outcomes of the
experiment are not mutually exclusive: one can detect an electron in two distinct squares simul-
taneously. There is nothing mysterious about that: Any measurement necessarily influences the
electron. This influence might be enough to create an electron-positron pair from the vacuum.
Thus one can detect a newborn electron in addition to the initial one; and there is no way to
distinguish one from another. (A more formal explanation for specialists: the states in the Fock
space representing the electron localized at distant regions are not mutually orthogonal; their
inner product is essentially provided by the Feynman propagator.)

Numerical experiments confirm that the model reproduces the Feynman propagator rather
than the retarded one in the continuum limit (see Figure 15 and Problem 13). The spin-1/2
Feynman propagator equals

𝐺𝐹 (𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑚

4

(︃
𝐽0(𝑚𝑠) − 𝑖𝑌0(𝑚𝑠) − 𝑡+𝑥

𝑠
(𝐽1(𝑚𝑠) − 𝑖𝑌1(𝑚𝑠))

𝑡−𝑥
𝑠

(𝐽1(𝑚𝑠) − 𝑖𝑌1(𝑚𝑠)) 𝐽0(𝑚𝑠) − 𝑖𝑌0(𝑚𝑠)

)︃
, if |𝑥| < |𝑡|;

𝑖𝑚

2𝜋

(︃
𝐾0(𝑚𝑠)

𝑡+𝑥
𝑠
𝐾1(𝑚𝑠)

𝑥−𝑡
𝑠
𝐾1(𝑚𝑠) 𝐾0(𝑚𝑠)

)︃
, if |𝑥| > |𝑡|;

(28)

where 𝑌𝑛(𝑧) and 𝐾𝑛(𝑧) are Bessel functions of the 2nd kind and modified Bessel functions of
the 2nd kind, and 𝑠 :=

√︀
|𝑡2 − 𝑥2|. In addition, there is a generalized function supported on

the lines 𝑡 = ±𝑥 which we do not specify. The Feynman propagator satisfies (19). We see that
it has additional imaginary part (and an overall factor of 1/2) compared to retarded one (20).
In particular, it does not vanish for |𝑥| > |𝑡|: annihilation of electron at one point and creation
at another one may result in apparent motion faster than light.

A more common expression is the Fourier transform of a weak limit (cf. (21) and [13, (6.51)])

𝐺𝐹 (𝑥, 𝑡) =
1

4𝜋2

∫︁ +∞

−∞

∫︁ +∞

−∞
lim
𝛿→+0

(︂
𝑚 −𝑖𝑝− 𝑖𝜔

−𝑖𝑝+ 𝑖𝜔 𝑚

)︂
𝑒𝑖𝑝𝑥−𝑖𝜔𝑡 𝑑𝑝𝑑𝜔

𝑚2 + 𝑝2 − 𝜔2 − 𝑖𝛿
. (29)

Overall, a small correction introduced by the upgrade reflects some fundamental limitations
on measurement rather than adds something meaningful to description of the motion. The
upgrade should only be viewed as an ingredient for more realistic models with interaction.
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10 Towards (1 + 1)-dimensional quantum electrodynamics
Question: what is the probability to find electrons (or an electron and a positron) with momenta 𝑞 and 𝑞′ in
the far future, if they were emitted with momenta 𝑝 and 𝑝′ in the far past?
Assumptions: interaction now switched on; all simplifying assumptions removed except the default ones:
no nuclear forces, no gravitation, electron moves along the 𝑥-axis only, and the 𝑡-axis is time.
Results: repulsion of like charges and attraction of opposite charges (qualitative explanation expected).

Construction of the required model is a widely open problem because in particular it requires
the missing mathematically rigorous construction of the Minkowskian lattice gauge theory.

11 Open problems
We start with problems relying on Definition 1. The first one is simple-looking but open.

Problem 1. (A.Daniyarkhodzhaev–F.Kuyanov; see Figure 7 to the left) Denote by 𝑥max(𝑡) a
point where 𝑃 (𝑥, 𝑡) has a maximum for fixed 𝑡. Is 𝑥max(𝑡) − 𝑡/

√
2 bounded as 𝑡→ ∞?

Problem 2. (S. Nechaev; see Figure 7 to the left) Find the positions of “wide gaps” in the plot
of 𝑃 (𝑥, 𝑡) for fixed large 𝑡. (Cf. asymptotic formulae (12)–(13).)

Problem 3. (A. Borodin) Find an asymptotic formula for 𝑎(2⌈𝑣𝑡
2
⌉, 𝑡) as 𝑡→ ∞ for 𝑣 > 1/

√
2.

The aim of the next 3 problems is to prove the phase transition in a strong sense: the limiting
free energy density and other order parameters are nonanalytic at 𝑣 = ±1/

√
2 (see page 9).

Problem 4. (See Figure 10) For each 𝑣 ∈ [−1, 1] find lim𝑡→∞
1
𝑡

log
⃒⃒
𝑎(2⌈𝑣𝑡

2
⌉, 𝑡)

⃒⃒
and prove that

it has discontinuous derivative at 𝑣 = ±1/
√

2. (Cf. the proof of Corollary 1 in §12.5.)

The next problem is on the “probability” of equal signs at the ends of the spin-chain.

Problem 5. (See Figure 8) Prove that for each 0 < 𝑣 < 1/
√

2 we have

lim
𝑡→∞

∑︁
0≤𝑥≤𝑣𝑡

2

𝑡

⃒⃒⃒⃒
𝑎2(𝑥, 𝑡)

𝑎(𝑥, 𝑡)

⃒⃒⃒⃒2
=

1

2

(︂
1 + 𝑣 −

√
1 − 𝑣2 + log

1 +
√

1 − 𝑣2

2

)︂
.

Compute the same limit for 1/
√

2 < 𝑣 < 1. (Cf. the proof of Corollary 1 in §12.5.)

The next one is on the “probability” of equal signs at the ends and the middle of the chain.

Problem 6. (Cf. [22, p. 381].) Find the weak limit lim𝑡→∞

⃒⃒⃒⃒∑︀
𝑥∈Z

𝑎2(𝑥, 𝑡)
2

𝑎2(2⌈𝑣𝑡⌉ − 1, 2𝑡− 1)

⃒⃒⃒⃒2
.

For a set 𝑀 ⊂ Z2 define 𝑃 (𝑥, 𝑡 bypass 𝑀) analogously to 𝑃 (𝑥, 𝑡), only the summation
is over checker paths disjoint with 𝑀 . Denote by 𝑃hit(𝑀) =

∑︀
𝑝∈𝑀

𝑃 (𝑝 bypass 𝑀 ∖ {𝑝}) the

probability that the electron is absorbed in the set 𝑀 .

Problem 7. (G. Minaev–I. Russkikh; cf. [2, §5], [34, §4]) Do the following equations hold:

𝑃hit({(−1, 𝑡) : 𝑡 ≥ 3 odd}) =
1

2
𝑃hit({(3, 𝑡) : 𝑡 ≥ 3 odd}) =

4

𝜋
− 1?

Notice that similar numbers appear in the simple random walk on Z2 [37, Table 2].
The following problem generalizes and specifies Problem 1 above; it relies on Definition 2.

Problem 8. (A.Daniyarkhodzhaev–F.Kuyanov, cf. [2, §4]) Denote by 𝑥max = 𝑥max(𝑡,𝑚, 𝜀)
the point where 𝑃 (𝑥) := 𝑃 (𝑥, 𝑡,𝑚, 𝜀) has a maximum. Is 𝑥max/𝜀 − 𝑡/𝜀

√
1 +𝑚2𝜀2 uniformly

bounded? Does 𝑃 (𝑥) decrease for 𝑥 > 𝑥max? Find an asymptotic formula for 𝑎(𝑥, 𝑡,𝑚, 𝜀) for 𝑥
in a neighborhood of 𝑡/

√
1 +𝑚2𝜀2.
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Problem 9. (M. Blank–S. Shlosman) Is the number of times the function 𝑎1(𝑥) := 𝑎1(𝑥, 𝑡,𝑚, 𝜀)
changes the sign on [−𝑡, 𝑡] bounded as 𝜀→ 0 for fixed 𝑡,𝑚?

Corollary 5 gives uniform limit on compact subsets of the angle |𝑥| < 𝑡, hence misses the
main contribution to the probability. Now we ask for the weak limit detecting the peak.

Problem 10. Find the weak limits lim
𝜀→0

1
2𝜀
𝑎
(︀
2𝜀
⌈︀

𝑥
2𝜀

⌉︀
, 2𝜀
⌈︀

𝑡
2𝜀

⌉︀
,𝑚, 𝜀

)︀
and lim

𝜀→0

1
4𝜀2

𝑃
(︀
2𝜀
⌈︀

𝑥
2𝜀

⌉︀
, 2𝜀
⌈︀

𝑡
2𝜀

⌉︀
,𝑚, 𝜀

)︀
on the whole R2. Is the former limit equal to propagator (21) including the generalized func-
tion supported on the lines 𝑡 = ±𝑥? What is the physical interpretation of the latter limit
(providing a value to the ill-defined square of the propagator)?

The following problem relying on Definition 3 would demonstrate “spin precession”.

Problem 11. (See Figure 13 to the right) Is 𝑃 (𝑥) =
∑︀
𝑥∈Z

𝑎1(𝑥, 𝑡, 𝑢)2 a periodic function asymp-

totically as 𝑡→ ∞ for 𝑢(𝑥+ 1
2
, 𝑡+ 1

2
) = (−1)(𝑥−1)(𝑡−1)?

Define 𝑎(𝑥, 𝑡,𝑚, 𝜀, 𝑢) analogously to 𝑎(𝑥, 𝑡,𝑚, 𝜀) and 𝑎(𝑥, 𝑡, 𝑢), unifying Definitions 2–3 and
Remark 4. The next problem asks if this reproduces Dirac equation in electromagnetic field.

Problem 12. (Cf. [15]) Fix 𝐴0(𝑥, 𝑡), 𝐴1(𝑥, 𝑡) ∈ 𝐶2(R2). For each edge 𝑠1𝑠2 set

𝑢(𝑠1𝑠2) := exp

(︂
−𝑖
∫︁ 𝑠2

𝑠1

(𝐴0(𝑥, 𝑡) 𝑑𝑡+ 𝐴1(𝑥, 𝑡) 𝑑𝑥)

)︂
.

Denote 𝜓𝑘(𝑥, 𝑡) := lim𝜀→0
1
2𝜀
𝑎𝑘
(︀
2𝜀
⌈︀

𝑥
2𝜀

⌉︀
, 2𝜀
⌈︀

𝑡
2𝜀

⌉︀
,𝑚, 𝜀, 𝑢

)︀
for 𝑘 = 1, 2. Does the limit satisfy(︂

𝑚 𝜕/𝜕𝑥− 𝜕/𝜕𝑡+ 𝑖𝐴0(𝑥, 𝑡) − 𝑖𝐴1(𝑥, 𝑡)
𝜕/𝜕𝑥+ 𝜕/𝜕𝑡− 𝑖𝐴0(𝑥, 𝑡) − 𝑖𝐴1(𝑥, 𝑡) 𝑚

)︂(︂
𝜓2(𝑥, 𝑡)
𝜓1(𝑥, 𝑡)

)︂
= 0 for 𝑡 > 0?

The next problem is to show that Definition 5 reproduces Feynman propagator (28).

Problem 13. (See Figure 15) Prove that

1

4𝜀
𝑏1

(︂
2𝜀
⌈︁ 𝑥

2𝜀

⌉︁
, 2𝜀

⌈︂
𝑡

2𝜀

⌉︂
+ 𝜀,𝑚, 𝜀

)︂
⇒ Im𝐺𝐹

11(𝑥, 𝑡);

1

4𝜀
𝑏2

(︂
2𝜀
⌈︁ 𝑥

2𝜀

⌉︁
, 2𝜀

⌈︂
𝑡

2𝜀

⌉︂
+ 𝜀,𝑚, 𝜀

)︂
⇒ Im𝐺𝐹

12(𝑥, 𝑡)

as 𝜀→ 0 uniformly on compact subsets of R2 ∖ {|𝑡| = |𝑥|}.

This problem can perhaps be approached by expressing 𝑏1 and 𝑏2 through Jacobi functions
of the 2nd kind (see Remark 6), and applying the Liouville–Steklov method to their differential
equation [43, (4.2.1)].

Problem 14. (Cf. Corollary 1) Prove that lim
𝑡→∞
𝑡∈𝜀Z

∑︀
𝑥≤𝑣𝑡
𝑥∈𝜀Z

|𝐴1(𝑥, 𝑡,𝑚, 𝜀)|2 + |𝐴2(𝑥, 𝑡,𝑚, 𝜀)|2

2
= 𝐹 (𝑣,𝑚, 𝜀).

Problem 15. (Cf. Remark 7) Find a “combinatorial definition” of numbers (26) as a sum over
paths with common starting- and end-points, possibly with downwards-left and downwards-
right moves, where each summand depends only on the number of turns of each possible “type”
in a path.

The last problem is informal; it stands for half a century.

Problem 16. (Cf. [14]) Generalize the model to 4 dimensions so that the pointwise/weak limit

lim
𝜀→0

1

2𝜀
𝑎

(︂
2𝜀
⌈︁ 𝑥

2𝜀

⌉︁
, 2𝜀
⌈︁ 𝑦

2𝜀

⌉︁
, 2𝜀
⌈︁ 𝑧

2𝜀

⌉︁
, 2𝜀

⌈︂
𝑡

2𝜀

⌉︂
,𝑚, 𝜀

)︂
coincides with the spin-1/2 retarded propagator, now in 3 space- and 1 time-dimension.
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12 Proofs
Let us present a chart showing the dependence of the above results and further subsections:

12.2. (Theorem 1) 12.1. (Propositions 1–13)
5,12oo

1−4,8,9

tt
6,11

��

3−4

**

5,12 // 12.4. (Theorem 3) //

))��

12.6. (Corollaries 3–4)

12.8. (Theorem 5) 12.7. (Theorem 4, Corollaries 5–6) 12.3. (Theorem 2) 12.5. (Corollaries 1–2)

Particular proposition numbers are shown above the arrows. Propositions 7, 10, and 13 are
not used in the main results. The dashed arrow depicts an alternative proof.

In the process of the proofs, we give a zero-knowledge introduction to the used methods.
Some proofs are simpler than the original ones.

12.1 Identities: elementary combinatorics (Propositions 1–13)

Let us prove the identities from §3; the ones from §2 are the particular case 𝑚 = 𝜀 = 1.

Proof of Propositions 1 and 5. Let us derive a recurrence for 𝑎2(𝑥, 𝑡,𝑚, 𝜀). Take a path 𝑠 on 𝜀Z2

from (0, 0) to (𝑥, 𝑡) with the first step to (𝜀, 𝜀). Set 𝑎(𝑠,𝑚𝜀) := 𝑖(−𝑖𝑚𝜀)turns(𝑠)(1+𝑚2𝜀2)(1−𝑡/𝜀)/2.
The last move in the path 𝑠 is made either from (𝑥−𝜀, 𝑡−𝜀) or from (𝑥+𝜀, 𝑡−𝜀). If it is from

(𝑥+ 𝜀, 𝑡− 𝜀), then turns(𝑠) must be odd, hence 𝑠 does not contribute to 𝑎2(𝑥, 𝑡,𝑚, 𝜀). Assume
further that the last move in 𝑠 is made from (𝑥−𝜀, 𝑡−𝜀). Denote by 𝑠′ the path 𝑠 without the last
move. If the directions of the last moves in 𝑠 and 𝑠′ coincide, then 𝑎(𝑠,𝑚𝜀) = 1√

1+𝑚2𝜀2
𝑎(𝑠′,𝑚𝜀),

otherwise 𝑎(𝑠,𝑚𝜀) = −𝑖𝑚𝜀√
1+𝑚2𝜀2

𝑎(𝑠′,𝑚𝜀) = 𝑚𝜀√
1+𝑚2𝜀2

(Im 𝑎(𝑠′,𝑚𝜀) − 𝑖Re 𝑎(𝑠′,𝑚𝜀)).
Summation over all paths 𝑠′ gives the required equation

𝑎2(𝑥, 𝑡,𝑚, 𝜀) = Im
∑︁

𝑠∋(𝑥−𝜀,𝑡−𝜀)

𝑎(𝑠,𝑚𝜀) =
∑︁

𝑠′∋(𝑥−2𝜀,𝑡−2𝜀)

Im 𝑎(𝑠′,𝑚𝜀)√
1 +𝑚2𝜀2

−
∑︁

𝑠′∋(𝑥,𝑡−2𝜀)

𝑚𝜀Re 𝑎(𝑠′,𝑚𝜀)√
1 +𝑚2𝜀2

=
1√

1 +𝑚2𝜀2
(𝑎2(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀) −𝑚𝜀𝑎1(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀)) .

The recurrence for 𝑎1(𝑥, 𝑡+ 𝜀,𝑚, 𝜀) is proved analogously.

Proof of Propositions 2 and 6. The proof is by induction over 𝑡/𝜀. The base 𝑡/𝜀 = 1 is obvious.
The step of induction follows immediately from the following computation using Proposition 5:∑︁

𝑥𝜀∈Z

𝑃 (𝑥, 𝑡+ 𝜀,𝑚, 𝜀) =
∑︁
𝑥∈𝜀Z

[︀
𝑎1(𝑥, 𝑡+ 𝜀,𝑚, 𝜀)2 + 𝑎2(𝑥, 𝑡+ 𝜀,𝑚, 𝜀)2

]︀
= 1

1+𝑚2𝜀2

(︃∑︁
𝑥∈𝜀Z

[𝑎1(𝑥+ 𝜀, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎2(𝑥+ 𝜀, 𝑡,𝑚, 𝜀)]2 +
∑︁
𝑥∈𝜀Z

[𝑎2(𝑥− 𝜀, 𝑡,𝑚, 𝜀) −𝑚𝜀𝑎1(𝑥− 𝜀, 𝑡,𝑚, 𝜀)]2

)︃

= 1
1+𝑚2𝜀2

(︃∑︁
𝑥∈𝜀Z

[𝑎1(𝑥, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎2(𝑥, 𝑡,𝑚, 𝜀)]
2 +

∑︁
𝑥∈𝜀Z

[𝑎2(𝑥, 𝑡,𝑚, 𝜀) −𝑚𝜀𝑎1(𝑥, 𝑡,𝑚, 𝜀)]
2

)︃
=
∑︁
𝑥∈𝜀Z

[︀
𝑎1(𝑥, 𝑡,𝑚, 𝜀)

2 + 𝑎2(𝑥, 𝑡,𝑚, 𝜀)
2
]︀

=
∑︁
𝑥∈𝜀Z

𝑃 (𝑥, 𝑡,𝑚, 𝜀).

Lemma 1 (Conjugate Dirac equation). For each (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 𝜀, we have

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎1(𝑥− 𝜀, 𝑡,𝑚, 𝜀) −𝑚𝜀𝑎2(𝑥+ 𝜀, 𝑡,𝑚, 𝜀));

𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑚𝜀𝑎1(𝑥− 𝜀, 𝑡,𝑚, 𝜀) + 𝑎2(𝑥+ 𝜀, 𝑡,𝑚, 𝜀)).
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Proof of Lemma 1. The second equation is obtained from Proposition 5 by substituting (𝑥, 𝑡)
by (𝑥−𝜀, 𝑡−𝜀) and (𝑥+𝜀, 𝑡−𝜀) in (6) and (7) respectively and adding them with the coefficients
𝑚𝜀/

√
1 +𝑚2𝜀2 and 1/

√
1 +𝑚2𝜀2. The first equation is obtained analogously.

Proof of Proposition 7. The real part of the desired equation is the sum of the first equations
of Lemma 1 and Proposition 5. The imaginary part the sum of the second ones.

Proof of Proposition 8. Let us prove the first identity. For a path 𝑠 denote by 𝑠′ the reflection
of 𝑠 with respect to the 𝑡 axis, and by 𝑠′′ the path consisting of the same moves as 𝑠′, but in
the opposite order.

Take a path 𝑠 from (0, 0) to (𝑥, 𝑡) with the first move upwards-right such that turns(𝑠) is
odd (the ones with turns(𝑠) even do not contribute to 𝑎1(𝑥, 𝑡,𝑚, 𝜀)). Then the last move in 𝑠
is upwards-left. Therefore, the last move in 𝑠′ is upwards-right, hence the first move in 𝑠′′ is
upwards-right. The endpoint of both 𝑠′ and 𝑠′′ is (−𝑥, 𝑡), because reordering of moves does not
affect the endpoint. Thus 𝑠 ↦→ 𝑠′′ is a bijection between the paths to (𝑥, 𝑡) and to (−𝑥, 𝑡) with
turns(𝑠) odd. Thus 𝑎1(𝑥, 𝑡,𝑚, 𝜀) = 𝑎1(−𝑥, 𝑡,𝑚, 𝜀).

We prove the second identity by induction on 𝑡/𝜀 (this proof was found and written by
E. Kolpakov). The base of induction (𝑡/𝜀 = 1 and 𝑡/𝜀 = 2) is obvious.

Step of induction: take 𝑡 ≥ 3𝜀. Applying the inductive hypothesis for the three points
(𝑥− 𝜀, 𝑡− 𝜀), (𝑥+ 𝜀, 𝑡− 𝜀), (𝑥, 𝑡− 2𝜀) and the identity just proved, we get

(𝑡− 𝑥)𝑎2(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀) = (𝑥+ 𝑡− 4𝜀)𝑎2(3𝜀− 𝑥, 𝑡− 𝜀,𝑚, 𝜀),

(𝑡− 𝑥− 2𝜀)𝑎2(𝑥+ 𝜀, 𝑡− 𝜀,𝑚, 𝜀) = (𝑥+ 𝑡− 2𝜀)𝑎2(𝜀− 𝑥, 𝑡− 𝜀,𝑚, 𝜀),

(𝑡− 𝑥− 2𝜀)𝑎2(𝑥, 𝑡− 2𝜀,𝑚, 𝜀) = (𝑥+ 𝑡− 4𝜀)𝑎2(2𝜀− 𝑥, 𝑡− 2𝜀,𝑚, 𝜀),

𝑎1(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀) = 𝑎1(𝜀− 𝑥, 𝑡− 𝜀,𝑚, 𝜀).

Summing up the 4 equations with the coefficients 1, 1,−
√

1 +𝑚2𝜀2,−2𝑚𝜀2 respectively, we get

(𝑡− 𝑥)
(︁
𝑎2(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀) + 𝑎2(𝑥+ 𝜀, 𝑡− 𝜀,𝑚, 𝜀) −

√
1 +𝑚2𝜀2 𝑎2(𝑥, 𝑡− 2𝜀,𝑚, 𝜀)

)︁
− 2𝑚𝜀2 𝑎1(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀) − 2𝜀 𝑎2(𝑥+ 𝜀, 𝑡− 𝜀,𝑚, 𝜀) + 2𝜀

√
1 +𝑚2𝜀2 𝑎2(𝑥, 𝑡− 2𝜀,𝑚, 𝜀) =

= −2𝑚𝜀2 𝑎1(𝜀− 𝑥, 𝑡− 𝜀,𝑚, 𝜀)− 2𝜀 𝑎2(3𝜀− 𝑥, 𝑡− 𝜀,𝑚, 𝜀) + 2𝜀
√

1 +𝑚2𝜀2 𝑎2(2𝜀− 𝑥, 𝑡− 2𝜀,𝑚, 𝜀)

+(𝑡+𝑥−2𝜀)
(︁
𝑎2(3𝜀− 𝑥, 𝑡− 𝜀,𝑚, 𝜀) + 𝑎2(𝜀− 𝑥, 𝑡− 𝜀,𝑚, 𝜀) −

√
1 +𝑚2𝜀2 𝑎2(2𝜀− 𝑥, 𝑡− 2𝜀,𝑚, 𝜀)

)︁
.

Here the 3 terms in the 2nd line, as well as the 3 terms in the 3rd line, cancel each other by
Lemma 1. Applying the Klein–Gordon equation (Proposition 7) to the expressions in the 1st
and 4th line and cancelling the common factor

√
1 +𝑚2𝜀2, we get the desired identity

(𝑡− 𝑥)𝑎2(𝑥, 𝑡,𝑚, 𝜀) = (𝑡+ 𝑥− 2𝜀)𝑎2(2𝜀− 𝑥, 𝑡,𝑚, 𝜀).

The third identity follows from the first one and Proposition 5:

𝑎1(𝑥, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎2(𝑥, 𝑡,𝑚, 𝜀) =
√

1 +𝑚2𝜀2 𝑎1(𝑥− 𝜀, 𝑡+ 𝜀,𝑚, 𝜀) =

=
√

1 +𝑚2𝜀2 𝑎1(𝜀− 𝑥, 𝑡+ 𝜀,𝑚, 𝜀) = 𝑎1(2𝜀− 𝑥, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎2(2𝜀− 𝑥, 𝑡,𝑚, 𝜀).

The 1st and the 3rd identities can also be proved simultaneously by induction on 𝑡/𝜀 using
Proposition 5.

Figure 16: (by I. Bogdanov) The path cut into two parts (see the proof of Proposition 9).
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Proof of Proposition 9. Take a checker path 𝑠 from (0, 0) to (𝑥, 𝑡). Denote by (𝑥′, 𝑡′) the point
where 𝑠 intersects the line 𝑡 = 𝑡′. Denote by 𝑠1 the part of 𝑠 that joins (0, 0) with (𝑥′, 𝑡′).
Denote by 𝑠2 the part starting at the intersection point of 𝑠 with the line 𝑡 = 𝑡′ − 𝜀 and ending
at (𝑥, 𝑡) (see Figure 16). Translate the path 𝑠2 so that it starts at (0, 0). Set 𝑎(𝑠,𝑚𝜀) :=
𝑖(−𝑖𝑚𝜀)turns(𝑠)(1 +𝑚2𝜀2)(1−𝑡/𝜀)/2. Since turns(𝑠) = turns(𝑠1) + turns(𝑠2), it follows that

Re 𝑎(𝑠,𝑚𝜀) =

{︃
Re 𝑎(𝑠1,𝑚𝜀)Im 𝑎(𝑠2,𝑚𝜀), if the move to (𝑥′, 𝑡′) is upwards-left,
Im 𝑎(𝑠1,𝑚𝜀)Re 𝑎(𝑠2,𝑚𝜀), if the move to (𝑥′, 𝑡′) is upwards-right.

In the former case replace the path 𝑠2 by the path 𝑠′2 obtained by the reflection with respect to
the line 𝑥 = 0 (and starting at the origin). We have Im 𝑎(𝑠′2,𝑚𝜀) = Im 𝑎(𝑠2,𝑚𝜀). Therefore,

𝑎1(𝑥, 𝑡,𝑚, 𝜀) =
∑︁
𝑠

Re 𝑎(𝑠,𝑚𝜀) =
∑︁
𝑥′

∑︁
𝑠∋(𝑥′,𝑡′)

Re 𝑎(𝑠,𝑚𝜀)

=
∑︁
𝑥′

⎛⎝ ∑︁
𝑠∋(𝑥′,𝑡′),(𝑥′−𝜀,𝑡′−𝜀)

Im 𝑎(𝑠1,𝑚𝜀)Re 𝑎(𝑠2,𝑚𝜀) +
∑︁

𝑠∋(𝑥′,𝑡′),(𝑥′+𝜀,𝑡′−𝜀)

Re 𝑎(𝑠1,𝑚𝜀)Im 𝑎(𝑠′2,𝑚𝜀)

⎞⎠
=
∑︁
𝑥′

[𝑎2(𝑥
′, 𝑡′,𝑚, 𝜀)𝑎1(𝑥− 𝑥′ + 𝜀, 𝑡− 𝑡′ + 𝜀,𝑚, 𝜀) + 𝑎1(𝑥

′, 𝑡′,𝑚, 𝜀)𝑎2(𝑥
′ − 𝑥+ 𝜀, 𝑡− 𝑡′ + 𝜀,𝑚, 𝜀)] .

The formula for 𝑎2(𝑥, 𝑡,𝑚, 𝜀) is proven analogously.

Proof of Proposition 10. Denote by 𝑓(𝑥, 𝑡) the difference between the left- and the right-hand
side of (8). Introduce the operator

[�𝑚𝑓 ](𝑥, 𝑡) :=
√

1 +𝑚2𝜀2 𝑓(𝑥, 𝑡+ 𝜀) +
√

1 +𝑚2𝜀2 𝑓(𝑥, 𝑡− 𝜀) − 𝑓(𝑥+ 𝜀, 𝑡) − 𝑓(𝑥− 𝜀, 𝑡).

It suffices to prove that
[�4

𝑚𝑓 ](𝑥, 𝑡) = 0 for 𝑡 ≥ 5𝜀. (30)

Then (8) will follow by induction on 𝑡/𝜀: (30) expresses 𝑓(𝑥, 𝑡 + 4𝜀) as a linear combination
of 𝑓(𝑥′, 𝑡′) with smaller 𝑡′, and it remains to check that 𝑓(𝑥, 𝑡) = 0 for 𝑡 ≤ 8𝜀, which is done
in [40, §11].

To prove (30), write

𝑓(𝑥, 𝑡) =: 𝑝1(𝑥, 𝑡)𝑎(𝑥− 2𝜀, 𝑡,𝑚, 𝜀) + 𝑝2(𝑥, 𝑡)𝑎(𝑥+ 2𝜀, 𝑡,𝑚, 𝜀) + 𝑝3(𝑥, 𝑡)𝑎(𝑥, 𝑡,𝑚, 𝜀)

for certain cubic polynomials 𝑝𝑘(𝑥, 𝑡) (see (8)), and observe the Leibnitz rule

�𝑚(𝑓𝑔) = 𝑓 ·�𝑚𝑔 +
√

1 +𝑚2𝜀2(∇𝑡+𝑓 · 𝑇𝑡+𝑔 −∇𝑡−𝑓 · 𝑇𝑡−𝑔) −∇𝑥+𝑓 · 𝑇𝑥+𝑔 + ∇𝑥−𝑓 · 𝑇𝑥−𝑔,

where [∇𝑡±𝑓 ](𝑥, 𝑡) := ±(𝑓(𝑥, 𝑡 ± 𝜀) − 𝑓(𝑥, 𝑡)) and [∇𝑥±𝑓 ](𝑥, 𝑡) := ±(𝑓(𝑥 ± 𝜀, 𝑡) − 𝑓(𝑥, 𝑡)) are
the finite difference operators, [𝑇𝑡±𝑔](𝑥, 𝑡) := 𝑔(𝑥, 𝑡 ± 𝜀) and [𝑇𝑥±𝑔](𝑥, 𝑡) := 𝑔(𝑥 ± 𝜀, 𝑡) are the
translation operators. Since �𝑚 𝑎(𝑥, 𝑡,𝑚, 𝜀) = 0 by Proposition 7, each operator ∇𝑡±,∇𝑥±
decreases deg 𝑝𝑘(𝑥, 𝑡), and all the above operators commute, by the Leibnitz rule we get (30).
This proves the first identity in the proposition; the second one is proved analogously (the
induction step is checked in [40, §11]).

Alternatively, Proposition 10 can be derived by applying the Gauss contiguous relations to
the hypergeometric expression from Remark 3 seven times.

Proof of Propositions 3 and 11. Let us find 𝑎1(𝑥, 𝑡,𝑚, 𝜀). Consider a path with an odd number
of turns; the other ones do not contribute to 𝑎1(𝑥, 𝑡,𝑚, 𝜀). Denote by 2𝑟 + 1 the number of
turns in the path. Denote by 𝑅 and 𝐿 the number of upwards-right and upwards-left moves
respectively. Let 𝑥1, 𝑥2, . . . , 𝑥𝑟+1 be the number of upwards-right moves before the first, the
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third, . . . , the last turn respectively. Let 𝑦1, 𝑦2, . . . , 𝑦𝑟+1 be the number of upwards-left moves
after the first, the third, . . . , the last turn respectively. Then 𝑥𝑘, 𝑦𝑘 ≥ 1 for 1 ≤ 𝑘 ≤ 𝑟 + 1 and

𝑅 = 𝑥1 + · · · + 𝑥𝑟+1;

𝐿 = 𝑦1 + · · · + 𝑦𝑟+1.

The problem now reduces to a combinatorial one: the number of paths with 2𝑟+1 turns equals
the number of positive integer solutions of the resulting equations. For the first equation, this
number equals to the number of ways to put 𝑟 sticks between 𝑅 coins in a row, that is,

(︀
𝑅−1
𝑟

)︀
.

Thus

𝑎1(𝑥, 𝑡,𝑚, 𝜀) = (1 +𝑚2𝜀2)(1−𝑡/𝜀)/2

min{𝑅,𝐿}∑︁
𝑟=0

(−1)𝑟
(︂
𝑅− 1

𝑟

)︂(︂
𝐿− 1

𝑟

)︂
(𝑚𝜀)2𝑟+1.

Thus (9) follows from 𝐿+𝑅 = 𝑡/𝜀 and 𝑅− 𝐿 = 𝑥/𝜀. Formula (10) is derived analogously.

Proof of Proposition 12. The proof is by induction on 𝑡/𝜀. The base 𝑡/𝜀 = 1 is obvious. The
inductive step is the following computation and an analogous computation for 𝑎2(𝑥, 𝑡+𝜀,𝑚, 𝜀):

𝑎1(𝑥, 𝑡+ 𝜀,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎1(𝑥+ 𝜀, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎2(𝑥+ 𝜀, 𝑡,𝑚, 𝜀))

=
𝑚𝜀2

2𝜋
√

1 +𝑚2𝜀2

∫︁ 𝜋/𝜀

−𝜋/𝜀

(︃
𝑖𝑒𝑖𝑝𝜀√︀

𝑚2𝜀2 + sin2(𝑝𝜀)
+ 1 +

sin(𝑝𝜀)√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︃
𝑒𝑖𝑝𝑥−𝑖𝜔𝑝(𝑡−𝜀) 𝑑𝑝

=
𝑚𝜀2

2𝜋

∫︁ 𝜋/𝜀

−𝜋/𝜀

(𝑖 cos(𝜔𝑝𝜀) + sin(𝜔𝑝𝜀)) 𝑒
𝑖𝑝𝑥−𝑖𝜔𝑝(𝑡−𝜀) 𝑑𝑝√︀

𝑚2𝜀2 + sin2(𝑝𝜀)
=
𝑖𝑚𝜀2

2𝜋

∫︁ 𝜋/𝜀

−𝜋/𝜀

𝑒𝑖𝑝𝑥−𝑖𝜔𝑝𝑡 𝑑𝑝√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

.

Here the 1st equality is Proposition 5. The 2nd one is the inductive hypothesis. The 3rd one
follows from cos𝜔𝑝𝜀 = cos 𝑝𝜀√

1+𝑚2𝜀2
and sin𝜔𝑝𝜀 =

√︁
1 − cos2 𝑝𝜀

1+𝑚2𝜀2
=
√︁

𝑚2𝜀2+sin2 𝑝𝜀
1+𝑚2𝜀2

.

Alternatively, Proposition 12 can be derived by integration of (24)–(25) over 𝑝 = 2𝜋/𝜆 for
�̃�1(0, 0) = 0, �̃�2(0, 0) = 1.

Proof of Proposition 13. To prove the formula for 𝑎1(𝑥, 𝑡,𝑚, 𝜀), we do the 𝜔-integral:

𝜀

2𝜋

𝜋/𝜀∫︁
−𝜋/𝜀

𝑒−𝑖𝜔(𝑡−𝜀) 𝑑𝜔√
1 +𝑚2𝜀2 cos(𝜔𝜀) − cos(𝑝𝜀) − 𝑖𝛿

(*)
=

1

2𝜋𝑖

∮︁
|𝑧|=1

2 𝑧𝑡/𝜀−1 𝑑𝑧√
1 +𝑚2𝜀2𝑧2 − 2(cos(𝑝𝜀) + 𝑖𝛿)𝑧 +

√
1 +𝑚2𝜀2

(**)
=

(︁(︁
cos 𝑝𝜀+ 𝑖𝛿 − 𝑖

√︀
𝑚2𝜀2 + sin2 𝑝𝜀+ 𝛿2 − 2𝑖𝛿 cos 𝑝𝜀

)︁
/
√

1 +𝑚2𝜀2
)︁𝑡/𝜀−1

−𝑖
√︀
𝑚2𝜀2 + sin2 𝑝𝜀+ 𝛿2 − 2𝑖𝛿 cos 𝑝𝜀

(***)
⇒

𝑖 𝑒−𝑖𝜔𝑝(𝑡−𝜀)√︀
𝑚2𝜀2 + sin2 𝑝𝜀

as 𝛿 → 0 uniformly in 𝑝. Here we assume that 𝑚, 𝑡, 𝛿 > 0 and 𝛿 is sufficiently small. Equality (*)
is obtained by the change of variables 𝑧 = 𝑒−𝑖𝜔𝜀 and then the change of the contour direction
to the counterclockwise one. To prove (**), we find the roots of the denominator

𝑧± =
cos 𝑝𝜀+ 𝑖𝛿 ± 𝑖

√︀
𝑚2𝜀2 + sin2 𝑝𝜀+ 𝛿2 − 2𝑖𝛿 cos 𝑝𝜀√

1 +𝑚2𝜀2
,

where
√
𝑧 denotes the value of the square root with positive real part. Then (**) follows from

the residue formula: the expansion

𝑧± =
cos 𝑝𝜀√
1 +𝑚2𝜀2

(︃
1 ± 𝛿√︀

𝑚2𝜀2 + sin2 𝑝𝜀

)︃
+

𝑖√
1 +𝑚2𝜀2

(︂
𝛿 ±

√︁
𝑚2𝜀2 + sin2 𝑝𝜀

)︂
+𝑂𝑚,𝜀

(︀
𝛿2
)︀

shows that 𝑧− is inside the unit circle, whereas 𝑧+ is outside, for sufficiently small 𝛿 > 0.

In (* * *) we denote 𝜔𝑝 := 1
𝜀

arccos( cos 𝑝𝜀√
1+𝑚2𝜀2

) so that sin𝜔𝑝𝜀 =
√︁

𝑚2𝜀2+sin2 𝑝𝜀
1+𝑚2𝜀2

and pass to the
limit 𝛿 → 0 which is uniform in 𝑝 by the assumption 𝑚 > 0.

The resulting uniform convergence allows to interchange the limit and the 𝑝-integral, and
we arrive at Fourier integral for 𝑎1(𝑥, 𝑡,𝑚, 𝜀) in Proposition 12. The formula for 𝑎2(𝑥, 𝑡,𝑚, 𝜀)
is proved analogously, with the case 𝑡 = 𝜀 considered separately.
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12.2 Phase transition: the method of moments (Theorem 1)

In this subsection we give a simple exposition of the proof of Theorem 1 from [18] using the
method of moments. The theorem also follows from Corollary 1 obtained by another method
in §12.5. We rely on the following well-known result.

Lemma 2. (See [6, Theorems 30.1–30.2]) Let 𝑓𝑡 : R → [0,+∞), where 𝑡 = 0, 1, 2, . . . , be
piecewise continuous functions such that 𝛼𝑟,𝑡 :=

∫︀ +∞
−∞ 𝑣𝑟𝑓𝑡(𝑣) 𝑑𝑣 is finite and 𝛼0,𝑡 = 1 for

each 𝑟, 𝑡 = 0, 1, 2, . . . . If the series
∑︀∞

𝑟=0 𝛼𝑟,0𝑧
𝑟/𝑟! has positive radius of convergence and

lim𝑡→∞ 𝛼𝑟,𝑡 = 𝛼𝑟,0 for each 𝑟 = 0, 1, 2, . . . , then 𝑓𝑡 converges to 𝑓0 in distribution.

Proof of Theorem 1. Let us prove (C); then (A) and (B) will follow from Lemma 2 for 𝑓0(𝑣) :=
𝐹 ′(𝑣) and 𝑓𝑡(𝑣) := 𝑃 (⌈𝑣𝑡⌉, 𝑡)/𝑡 because those functions vanish for |𝑣| > 1, hence 𝛼𝑟,𝑡 ≤ 1.

Rewrite Proposition 12 in a form, valid for each 𝑥, 𝑡 ∈ Z independently on the parity:(︂
𝑎1(𝑥, 𝑡)
𝑎2(𝑥, 𝑡)

)︂
=

∫︁ 𝜋

−𝜋

(︂
�̂�1(𝑝, 𝑡)
�̂�2(𝑝, 𝑡)

)︂
𝑒𝑖𝑝(𝑥−1) 𝑑𝑝

2𝜋
:=

∫︁ 𝜋

−𝜋

(︂
�̂�1+(𝑝, 𝑡) + 𝑎1−(𝑝, 𝑡)
�̂�2+(𝑝, 𝑡) + 𝑎2−(𝑝, 𝑡)

)︂
𝑒𝑖𝑝(𝑥−1) 𝑑𝑝

2𝜋
, (31)

where
�̂�1±(𝑝, 𝑡) = ∓ 𝑖𝑒𝑖𝑝

2
√︀

1 + sin2 𝑝
𝑒±𝑖𝜔𝑝(𝑡−1);

�̂�2±(𝑝, 𝑡) =
1

2

(︃
1 ∓ sin 𝑝√︀

1 + sin2 𝑝

)︃
𝑒±𝑖𝜔𝑝(𝑡−1);

(32)

and 𝜔𝑝 := arccos cos 𝑝√
2

. Now (31) holds for each 𝑥, 𝑡 ∈ Z: Indeed, the identity

𝑒−𝑖𝜔𝑝+𝜋(𝑡−1)+𝑖(𝑝+𝜋)(𝑥−1) = 𝑒−𝑖(𝜋−𝜔𝑝)(𝑡−1)+𝑖𝑝(𝑥−1)+𝑖𝜋(𝑥−1) = (−1)(𝑥+𝑡)𝑒𝑖𝜔𝑝(𝑡−1)+𝑖𝑝(𝑥−1)

shows that the contributions of the two summands �̂�𝑘±(𝑝, 𝑡) to integral (31) are equal for 𝑡+ 𝑥
even and cancel for 𝑡+𝑥 odd. The summand �̂�𝑘−(𝑝, 𝑡) contributes 𝑎𝑘(𝑥, 𝑡)/2 by Proposition 12.

By the derivative property of Fourier series and the Parseval theorem, we have

∑︁
𝑥∈Z

𝑥𝑟

𝑡𝑟
𝑃 (𝑥, 𝑡) =

∑︁
𝑥∈Z

(︂
𝑎1(𝑥, 𝑡)
𝑎2(𝑥, 𝑡)

)︂*
𝑥𝑟

𝑡𝑟

(︂
𝑎1(𝑥, 𝑡)
𝑎2(𝑥, 𝑡)

)︂
=

𝜋∫︁
−𝜋

(︂
�̂�1(𝑝, 𝑡)
�̂�2(𝑝, 𝑡)

)︂*
𝑖𝑟

𝑡𝑟
𝜕𝑟

𝜕𝑝𝑟

(︂
�̂�1(𝑝, 𝑡)
�̂�2(𝑝, 𝑡)

)︂
𝑑𝑝

2𝜋
. (33)

The derivative is estimated as follows:

𝜕𝑟

𝜕𝑝𝑟
�̂�𝑘±(𝑝, 𝑡) =

(︂
±𝑖(𝑡− 1)

𝜕𝜔𝑝

𝜕𝑝

)︂𝑟

�̂�𝑘±(𝑝, 𝑡)+𝑂𝑟(𝑡
𝑟−1) =

(︃
±𝑖(𝑡− 1) sin 𝑝√︀

1 + sin2 𝑝

)︃𝑟

�̂�𝑘±(𝑝, 𝑡)+𝑂𝑟(𝑡
𝑟−1).

(34)
Indeed, differentiate (32) 𝑟 times using the Leibnitz rule. If we differentiate the exponential
factor 𝑒±𝑖𝜔𝑝(𝑡−1) each time, then we get the main term. If we differentiate a factor rather than
the exponential 𝑒±𝑖𝜔𝑝(𝑡−1) at least once, then we get less than 𝑟 factors of (𝑡 − 1), hence the
resulting term is 𝑂𝑟(𝑡

𝑟−1) by compactness because it is continuous and 2𝜋-periodic in 𝑝.
Substituting (34) into (33) we arrive at

∑︁
𝑥∈Z

𝑥𝑟

𝑡𝑟
𝑃 (𝑥, 𝑡) =

∫︁ 𝜋

−𝜋

(︂
�̂�1(𝑝, 𝑡)
�̂�2(𝑝, 𝑡)

)︂*
(︃

sin 𝑝√︀
1 + sin2 𝑝

)︃𝑟 (︂
(−1)𝑟�̂�1+(𝑝, 𝑡) + �̂�1−(𝑝, 𝑡)
(−1)𝑟�̂�2+(𝑝, 𝑡) + �̂�2−(𝑝, 𝑡)

)︂
𝑑𝑝

2𝜋
+𝑂𝑟

(︂
1

𝑡

)︂

=

∫︁ 𝜋

−𝜋

(︃
sin 𝑝√︀

1 + sin2 𝑝

)︃𝑟
1

2

(︃
(−1)𝑟

(︃
1 − sin 𝑝√︀

1 + sin2 𝑝

)︃
+ 1 +

sin 𝑝√︀
1 + sin2 𝑝

)︃
𝑑𝑝

2𝜋
+𝑂𝑟

(︂
1

𝑡

)︂

=

∫︁ 𝜋/2

−𝜋/2

(︃
sin 𝑝√︀

1 + sin2 𝑝

)︃𝑟(︃
1 +

sin 𝑝√︀
1 + sin2 𝑝

)︃
𝑑𝑝

𝜋
+𝑂𝑟

(︂
1

𝑡

)︂
=

∫︁ 1/
√
2

−1/
√
2

𝑣𝑟 𝑑𝑣

𝜋(1 − 𝑣)
√

1 − 2𝑣2
+𝑂𝑟

(︂
1

𝑡

)︂
.
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Here the 2nd equality follows from �̂�1±(𝑝, 𝑡)*�̂�1±(𝑝, 𝑡) + �̂�2±(𝑝, 𝑡)*�̂�2±(𝑝, 𝑡) = 1
2

(︂
1 ∓ sin 𝑝√

1+sin2 𝑝

)︂
and �̂�1±(𝑝, 𝑡)*�̂�1∓(𝑝, 𝑡) + �̂�2±(𝑝, 𝑡)*�̂�2∓(𝑝, 𝑡) = 0. The 3rd one is obtained by the changes of
variables 𝑝 ↦→ −𝑝 and 𝑝 ↦→ 𝜋 − 𝑝 applied to the integral over [−𝜋/2, 𝜋/2]. The 4th one
is obtained by the change of variables 𝑣 = sin 𝑝/

√︀
1 + sin2 𝑝 so that 𝑑𝑝 = 𝑑 arcsin 𝑣√

1−𝑣2
=

𝑑𝑣/(1 − 𝑣2)
√

1 − 2𝑣2.

12.3 Large-time limit near the origin: the circle method (Theorem 2)

In this subsection we prove Theorem 2. Although the theorem follows easily from Theorem 3
by the Taylor expansion of (14) in 𝑥 up to order 4, we present a direct proof relying on
Proposition 4 only. It uses the Hardy–Littlewood circle method in the simplest form, when the
main contribution to an integral comes from just 4 stationary points.

Let us give the plan of the proof: introduce some notation and state some lemmas.

Lemma 3. Take integers

𝑛 ≥ 𝑘 ≥ 0, 𝑥 := 2𝑘 − 𝑛, and 𝑡 := 𝑛+ 2. (35)

Then

𝑎1(𝑥, 𝑡) =2(𝑛−1)/2𝑖−𝑘𝑓(−𝑥), (36)

𝑎2(𝑥, 𝑡) =2(𝑛−1)/2𝑖−𝑘𝑓(2 − 𝑥), (37)

where
𝑓(𝑞) :=

1

2𝜋

∫︁ 𝜋

−𝜋

𝑓(𝑝)𝑒−𝑖𝑝𝑞 𝑑𝑝 and 𝑓(𝑝) := cos𝑛−𝑘 𝑝 sin𝑘 𝑝. (38)

Notice that 𝑓(𝑝) is not proportional to the Fourier series
∑︀

𝑥∈Z 𝑎1(𝑥, 𝑡)𝑒
−𝑖𝑝𝑥 because both 𝑥

and 𝑓(𝑝) depend on 𝑘, and thus Fourier inversion formula is not applicable.
Throughout this subsection assume that

|𝑥|
𝑡
<

1

20
. (39)

This inequality follows from the assumption |𝑥| < 𝑡3/4 in Theorem 2 for sufficiently large 𝑡.
The Fourier integral 𝑓(𝑞) is estimated in several steps. The main contribution comes from

the sharp extrema of the function 𝑓(𝑝). The derivative is

𝑓 ′(𝑝) = 𝑓(𝑝)(𝑘 cot 𝑝− (𝑛− 𝑘) tan 𝑝).

Here 𝑘 ̸= 0, 𝑛 by (39); we ignore the points where 𝑓(𝑝) = 0 because they cannot be global
extrema. Thus the global extrema on [−𝜋, 𝜋] are the 4 points ±𝑐 and ±𝑐∓ 𝜋, where

𝑐 := arctan

√︂
𝑘

𝑛− 𝑘
. (40)

Lemma 4. Assume (35)–(40). Then |𝑐− 𝜋/4| < 1/9 and 9/10 < tan 𝑐 < 10/9.

Decompose [−𝜋, 𝜋] = 𝐸0 ⊔ 𝐸1 ⊔ · · · ⊔ 𝐸4, where 𝐸1, . . . , 𝐸4 are 𝛿-neighborhoods of these
extrema and 𝐸0 = [−𝜋, 𝜋] ∖ (𝐸1 ∪ · · · ∪ 𝐸4) is the remaining set. The parameter 𝛿 is going to
be determined later. Write

𝑓(𝑞) = 𝑓0(𝑞) + · · · + 𝑓4(𝑞), (41)

where
𝑓𝑗(𝑞) =

1

2𝜋

∫︁
𝐸𝑗

𝑓(𝑝)𝑒−𝑖𝑝𝑞 𝑑𝑝 for each 𝑗 = 0, 1, 2, 3, 4. (42)

We start with a rough estimate of the function 𝑓(𝑝) through the distance to the extremum 𝑐.

32



Lemma 5. Assume (35)–(42) and 0 < 𝑐+ 𝑝 < 𝜋/2. Then

𝑓(𝑐+ 𝑝) ≤ 𝑓(𝑐)𝑒−𝑛𝑝2/4.

This immediately gives an estimate for the integral on the set 𝐸0:

𝑓0(𝑞) = 𝑓(𝑐)𝑂(𝑒−𝑛𝛿2/4). (43)

Next we expand the function 𝑓(𝑝) in a neighborhood of 𝑐. We consider complex 𝑝 as well.

Lemma 6. Assume (35)–(42). Then for each complex number 𝑝 with |𝑝| < 1/2 we have

𝑓(𝑐+ 𝑝) = 𝑓(𝑐) exp
(︀
−𝑛𝑝2 +𝑂(|𝑥| |𝑝|3 + 𝑡|𝑝|4)

)︀
. (44)

Recall that notation 𝑓(𝑝, 𝑥, 𝑡) = exp(𝑂(𝑔(𝑝, 𝑥, 𝑡))) means that there is a number 𝐶 > 0 (not
depending on 𝑝, 𝑥, 𝑡) and a complex-valued function ℎ(𝑝, 𝑥, 𝑡) such that 𝑓(𝑝, 𝑥, 𝑡) = 𝑒ℎ(𝑝,𝑥,𝑡) and
|ℎ(𝑝, 𝑥, 𝑡)| ≤ 𝐶𝑔(𝑝, 𝑥, 𝑡) for each 𝑝, 𝑥, 𝑡 satisfying the assumptions of the lemma.

Next we substitute expansion (44) into (42) and apply the method of steepest descent.

Lemma 7. Assume (35)–(42) and |𝑞|/𝑡 < 𝛿/2 < 1/8. Then

𝑓1(𝑞) =
𝑓(𝑐)

2
√
𝜋𝑛

exp

(︂
− 𝑞2

4𝑛
− 𝑖𝑐𝑞 +𝑂(|𝑥|𝛿3 + 𝑡𝛿4)

)︂(︁
1 +𝑂

(︁
𝑒−𝑡𝛿2/4

)︁)︁
(45)

The integrals 𝑓2(𝑞), 𝑓3(𝑞), 𝑓4(𝑞) are estimated analogously. Finally, applying Lemma 6 for
𝑝 = 𝜋/4 − 𝑐, we arrive at the following lemma.

Lemma 8. Assume (35)–(42). Then

𝑓(𝑐) = 2−𝑛/2 exp

(︂
𝑥2

4𝑛
+𝑂

(︂
𝑥4

𝑡3

)︂)︂
. (46)

Substituting the resulting asymptotic formulae (45), (46), and estimate (43) into (41), we
obtain an asymptotic formula for 𝑓(𝑞) and thus for 𝑎(𝑥, 𝑡).

Now realize this plan.

Proof of Lemma 3. Applying the Cauchy formula to Proposition 4, we get

𝑎1(−𝑛+ 2𝑘, 𝑛+ 2) =
2−(𝑛+1)/2

2𝜋𝑖𝑟

∫︁
𝛾

(1 + 𝑧)𝑛−𝑘(1 − 𝑧)𝑘

𝑧𝑛−𝑘+1
𝑑𝑧,

where 𝛾 is a contour performing 𝑟 counterclockwise turns around the origin. Taking the contour
𝑧 = 𝑒2𝑖𝑝, where 𝑝 ∈ [−𝜋, 𝜋], performing 𝑟 = 2 turns, we get

(1 + 𝑧)𝑛−𝑘(1 − 𝑧)𝑘 = 2𝑛𝑖−𝑘𝑒𝑖𝑝𝑛𝑓(𝑝) and 𝑧−𝑛+𝑘−1 𝑑𝑧 = 2𝑖 𝑒−2𝑖(𝑛−𝑘)𝑝 𝑑𝑝.

This gives (36); analogously one gets (37).

Remark 8. A contour 𝛾 performing just one turn gives the formula 𝑎1(𝑥, 𝑡) = 1
𝜋
2(𝑛−1)/2𝑖−𝑘

∫︀ 𝜋

0
𝑓(𝑝)𝑒𝑖𝑝𝑥 𝑑𝑝.

It can be alternatively used in the proof of Theorem 2; nothing changes essentially.

Proof of Lemma 4. By (39) we get (𝑛− 2𝑘)/𝑛 ≤ 2|𝑥|/𝑡 < 1/10, thus 9/11 < 𝑘/(𝑛− 𝑘) < 11/9,
hence 9/10 < tan 𝑐 =

√︁
𝑘

𝑛−𝑘
< 10/9. By the Lagrange theorem, tan 𝑐 − tan(𝜋/4) = (𝑐 −

𝜋/4)/ cos2 𝜁 for some 𝜁 ∈ (𝑐, 𝜋/4). Hence |𝑐−𝜋/4| ≤ | tan 𝑐− tan(𝜋/4)| < |10/9−1| = 1/9.
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Proof of Lemma 5. Since the sine and the cosine are concave on the interval [0, 𝜋/2], they can
be estimated from above by a linear function representing the tangent line at the point 𝑐:

sin 𝜋(𝑐+ 𝑝) ≤ sin 𝑐(1 + 𝑝 cot 𝑐), cos 𝜋(𝑐+ 𝑝) ≤ cos 𝑐(1 − 𝑝 tan 𝑐).

Thus

|𝑓(𝑐+ 𝑝)| ≤ 𝑓(𝑐)(1 + 𝑝 cot 𝑐)𝑘(1 − 𝑝 tan 𝑐)𝑛−𝑘 = 𝑓(𝑐) exp (𝑘 log(1 + 𝑝 cot 𝑐) + (𝑛− 𝑘) log(1 − 𝑝 tan 𝑐)) .

To estimate the logarithms, we apply the inequality

log(1 + 𝑧) ≤ 𝑧 − 𝑧2

4
for 𝑧 ∈ (−1; 1). (47)

The inequality follows from

𝑒𝑧𝑒−𝑧2/4 ≥
(︂

1 + 𝑧 +
𝑧2

2
+
𝑧3

6

)︂(︂
1 − 𝑧2

4

)︂
= 1 + 𝑧 +

𝑧2

4

(︂
1 − 𝑧

3
− 𝑧2

2
− 𝑧3

6

)︂
≥ 1 + 𝑧.

We are going to apply inequality (47) at the points 𝑧1 = 𝑝 cot 𝑐 and 𝑧2 = −𝑝 tan 𝑐. Let us
check that indeed 𝑧1, 𝑧2 ∈ (−1; 1). Since 0 < 𝑐+ 𝑝 < 𝜋/2, by Lemma 4 it follows that

|𝑧2| = |𝑝| tan 𝑐 <
(︁𝜋

4
+
(︁𝜋

4
− 𝑐
)︁)︁

tan 𝑐 <

(︂
𝜋

4
+

1

9

)︂
· 10

9
< 1.

Analogously |𝑧1| < 1, as required.
By inequality (47) we get

𝑓(𝑐+ 𝑝) ≤ 𝑓(𝑐) exp

(︂
𝑘

(︂
𝑧1 −

𝑧21
4

)︂
+ (𝑛− 𝑘)

(︂
𝑧2 −

𝑧22
4

)︂)︂
=

= 𝑓(𝑐) exp

(︂
𝑝
√︀
𝑘(𝑛− 𝑘) − 𝑝

√︀
𝑘(𝑛− 𝑘) − 𝑝2

4
(𝑛− 𝑘) − 𝑝2

4
𝑘

)︂
= 𝑓(𝑐)𝑒−𝑛𝑝2/4.

Proof of Lemma 6. Take the Taylor expansions with remainders in the Lagrange form:

sin(𝑐+ 𝑝) = sin 𝑐+ 𝑝 cos 𝑐− 𝑝2

2
sin 𝑐− 𝑝3

6
cos 𝑐+

𝑝4

24
sin(𝑐+ 𝜁𝑝), (48)

cos(𝑐+ 𝑝) = cos 𝑐− 𝑝 sin 𝑐− 𝑝2

2
cos 𝑐+

𝑝3

6
sin 𝑐+

𝑝4

24
cos(𝑐+ 𝜂𝑝), (49)

where 0 ≤ 𝜁, 𝜂 ≤ 1. Since |𝑝| < 1/2 it follows that | sin(𝑐+ 𝜁𝑝)| ≤ 𝑒𝜁|𝑝| < 2 and | cos(𝑐+ 𝜂𝑝)| ≤
𝑒𝜂|𝑝| < 2. By definition of 𝑐, we have

sin 𝑐 =

√︂
𝑘

𝑛
, cos 𝑐 =

√︂
𝑛− 𝑘

𝑛
, tan 𝑐 =

√︂
𝑘

𝑛− 𝑘
, cot 𝑐 =

√︂
𝑛− 𝑘

𝑘
.

By (39) we get |𝑛− 2𝑘| ≤ 𝑛/2, thus 𝑛/4 ≤ 𝑘 ≤ 3𝑛/4, hence sin 𝑐 ≥ 1/2 and cos 𝑐 ≥ 1/2. Thus

sin(𝑐+ 𝑝) = sin 𝑐

(︂
1 + 𝑝 cot 𝑐− 𝑝2

2
− 𝑝3

6
cot 𝑐+

|𝑝|4

6
𝜁 ′
)︂

=: sin 𝑐 (1 + 𝑧1) , (50)

cos(𝑐+ 𝑝) = cos 𝑐

(︂
1 − 𝑝 tan 𝑐− 𝑝2

2
+
𝑝3

6
tan 𝑐+

|𝑝|4

6
𝜂′
)︂

=: cos 𝑐 (1 + 𝑧2) , (51)

for some complex 𝜁 ′, 𝜂′ of absolute value < 1. Since |𝑝| < 1/2 and 9/10 < tan 𝑐 < 10/9 by
Lemma 4, we get

|𝑧1,2| ≤ |𝑝|max{cot 𝑐, tan 𝑐} +
|𝑝|2

2
+

|𝑝|3

6
max{cot 𝑐, tan 𝑐} +

|𝑝|4

6
<

3

4
.
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Substituting expansions (50) and (51) into the Taylor expansion

log(1 + 𝑧) = 𝑧 − 𝑧2

2
+
𝑧3

3
+𝑂(𝑧4) for |𝑧| < 3/4,

and then into (38), by a direct computation (available in [40, §10]) we get

𝑓(𝑐+ 𝑝)

𝑓(𝑐)
= exp

(︃
−𝑛𝑝2 +

(𝑛− 2𝑘)𝑛𝑝3

3
√︀
𝑘(𝑛− 𝑘)

+𝑂(𝑛|𝑝|4)

)︃
= exp

(︀
−𝑛𝑝2 +𝑂(|𝑥||𝑝|3) +𝑂(𝑡|𝑝|4)

)︀
.

Here we used that 𝑛/3 <
√︀
𝑘(𝑛− 𝑘) < 𝑛 by assumption (39).

Proof of Lemma 7. Denote 𝑔(𝑝) := 𝑓(𝑐+ 𝑝)𝑒𝑛𝑝
2
/𝑓(𝑐), so that

𝑓1(𝑞) =

𝛿∫︁
−𝛿

𝑓(𝑐+ 𝑝)𝑒−𝑖(𝑐+𝑝)𝑞 𝑑𝑝

2𝜋
=
𝑓(𝑐)

2𝜋
𝑒−𝑖𝑐𝑞

𝛿∫︁
−𝛿

𝑒−𝑛𝑝2−𝑖𝑝𝑞𝑔(𝑝) 𝑑𝑝 =
𝑓(𝑐)

2𝜋
𝑒−𝑞2/4𝑛−𝑖𝑐𝑞

𝛿∫︁
−𝛿

𝑒−(
√
𝑛𝑝+𝑖𝑞/2

√
𝑛)

2

𝑔(𝑝) 𝑑𝑝.

Switch to complex variable 𝑧 =
√
𝑛𝑝 + 𝑖𝑞/2

√
𝑛. Then the limits of integration become 𝐵1 :=

−𝛿
√
𝑛+ 𝑖𝑞/2

√
𝑛 and 𝐵2 := 𝛿

√
𝑛+ 𝑖𝑞/2

√
𝑛:

𝑓1(𝑞) =
𝑓(𝑐)

2𝜋
√
𝑛
𝑒−𝑞2/4𝑛−𝑖𝑐𝑞

∫︁ 𝐵2

𝐵1

𝑒−𝑧2𝑔

(︂
𝑧√
𝑛
− 𝑖𝑞

2𝑛

)︂
𝑑𝑧. (52)

The function under the integral is analytic in the whole complex plane, thus the integral over
the interval 𝐵1𝐵2 can be replaced by the integral over the broken line 𝐵1𝐴1𝐴2𝐵2 with the
corners at 𝐴1 := −𝛿

√
𝑛 and 𝐴2 := 𝛿

√
𝑛.

Estimate the contribution from the integrals over the intervals 𝐴1𝐵1 and 𝐴2𝐵2. Since
|𝑞|/𝑡 < 𝛿/2 < 1/8, it follows that for each 𝑧 ∈ 𝐵1𝐴1𝐴2𝐵2 we have⃒⃒⃒⃒

𝑧√
𝑛
− 𝑖𝑞

2𝑛

⃒⃒⃒⃒
< 2𝛿 <

1

2
. (53)

Then by Lemma 6 for each 𝑧 ∈ 𝐵1𝐴1𝐴2𝐵2 we get

𝑔

(︂
𝑧√
𝑛
− 𝑖𝑞

2𝑛

)︂
= exp

(︀
𝑂(|𝑥|𝛿3 + 𝑡𝛿4)

)︀
. (54)

Then ∫︁ 𝐵𝜈

𝐴𝜈

𝑒−𝑧2𝑔

(︂
𝑧√
𝑛
− 𝑖𝑞

2𝑛

)︂
𝑑𝑧 ≤ |𝑞|

2
√
𝑛

max
𝑧∈𝐴𝜈𝐵𝜈

⃒⃒⃒
𝑒−𝑧2

⃒⃒⃒
max

𝑧∈𝐴𝜈𝐵𝜈

⃒⃒⃒⃒
𝑔

(︂
𝑧√
𝑛
− 𝑖𝑞

𝑛

)︂⃒⃒⃒⃒
=

=
|𝑞|

2
√
𝑛

exp

(︂
−𝑛𝛿2 +

|𝑞|2

4𝑛
+𝑂(|𝑥|𝛿3 + 𝑡𝛿4)

)︂
= 𝑂

(︂
exp

(︂
−𝑛𝛿

2

4

)︂)︂
exp

(︀
𝑂(|𝑥|𝛿3 + 𝑡𝛿4)

)︀
.

In the latter estimate we used the inequality |𝑞|/𝑡 < 𝛿/2, which implies |𝑞| < 𝑛𝛿, so that

|𝑞|
2
√
𝑛

exp

(︂
−𝑛𝛿2 +

|𝑞|2

4𝑛

)︂
≤

√
𝑛𝛿

2
exp

(︂
−𝑛𝛿

2

2

)︂
≤ exp

(︂
−𝑛𝛿

2

4

)︂
.

Now compute the contribution from the integral over the interval 𝐴1𝐴2. Using asymptotic
formula (54), let us show that∫︁ 𝐴2

𝐴1

𝑒−𝑧2𝑔

(︂
𝑧√
𝑛
− 𝑖𝑞

2𝑛

)︂
𝑑𝑧 = exp

(︀
𝑂(|𝑥|𝛿3 + 𝑡𝛿4)

)︀ ∫︁ 𝛿
√
𝑛

−𝛿
√
𝑛

𝑒−𝑧2 𝑑𝑧.

Indeed, if |𝑥|𝛿3 + 𝑡𝛿4 ≤ 2𝜋, then exp (𝑂(|𝑥|𝛿3 + 𝑡𝛿4)) is the same as 1 +𝑂(|𝑥|𝛿3 + 𝑡𝛿4), and the
formula follows. If |𝑥|𝛿3+𝑡𝛿4 > 2𝜋, then exp (𝑂(|𝑥|𝛿3 + 𝑡𝛿4)) is the same as 𝑂 (exp(|𝑥|𝛿3 + 𝑡𝛿4)),
and the formula follows again.
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It remains to compute∫︁ 𝛿
√
𝑛

−𝛿
√
𝑛

𝑒−𝑧2 𝑑𝑧 =

∫︁ +∞

−∞
𝑒−𝑧2 𝑑𝑧 − 2

∫︁ +∞

𝛿
√
𝑛

𝑒−𝑧2 𝑑𝑧 =
√
𝜋 +𝑂

(︁
𝑒−𝑛𝛿2

)︁
,

where we applied the estimate for the complimentary error function [1, Eq. 7.1.13]∫︁ ∞

𝑁

𝑒−𝑧2 𝑑𝑧 ≤ 𝑒−𝑁2

𝑁 + 1
= 𝑂

(︁
𝑒−𝑁2

)︁
for 𝑁 > 0.

Combining the estimates for the integrals over 𝐴1𝐵1, 𝐴1𝐴2, 𝐴2𝐵2, we get the desired result.

Proof of Lemma 8. Take the Taylor expansion

arcsin

√︂
1

2
+ 𝑧 =

𝜋

4
+ 𝑧 +𝑂(|𝑧|3) for 𝑧 ∈

(︂
−1

4
,
1

4

)︂
.

Substituting 𝑧 = 𝑥/2𝑛 so that |𝑧| = |𝑥|/2𝑛 ≤ |𝑥|/𝑡 < 1/4 by (39), we get

𝑐 = arcsin

√︂
𝑘

𝑛
=
𝜋

4
+

𝑥

2𝑛
+𝑂

(︂
|𝑥|3

𝑛3

)︂
. (55)

Apply Lemma 6 for 𝑝 = 𝜋/4 − 𝑐. Then by (44) we get

𝑓
(︁𝜋

4

)︁
= 𝑓(𝑐) exp

(︃
−𝑛
(︂
𝑥

2𝑛
+𝑂

(︂
|𝑥|3

𝑛3

)︂)︂2

+𝑂

(︂
𝑥4

𝑛3

)︂)︃
= 𝑓(𝑐) exp

(︂
−𝑥2

4𝑛
+𝑂

(︂
𝑥4

𝑡3

)︂)︂
.

It remains to notice that

𝑓
(︁𝜋

4

)︁
=
(︁

sin
𝜋

4

)︁𝑘 (︁
cos

𝜋

4

)︁𝑛−𝑘

= 2−𝑛/2.

Proof of Theorem 2. We may assume 𝑡 > 106 because only finitely many pairs (𝑥, 𝑡) with
𝑡 ≤ 106 satisfy the assumptions of the theorem. For 𝑡 > 106 the assumption |𝑥| < 𝑡3/4 implies
inequality (39).

We need to find asymptotic formulae for the integral 𝑓(𝑞) for 𝑞 = −𝑥 and 𝑞 = 2 − 𝑥 (see
Lemma 3). Thus assume further that |𝑞| ≤ |𝑥|+2 and 𝑞+𝑡 is even. To guarantee the inequality
|𝑞|/𝑡 < 𝛿/2 required for Lemma 7, we need to take 𝛿 > 2(|𝑥| + 2)/𝑡. To guarantee that the

right-hand side of (43) is small enough, we need to take 𝛿 > 4
√︁

log𝑛
𝑛

. The remainder under the
first exponential in (45) increases with 𝛿, thus we assign the least possible value

𝛿 := max

{︃
4

√︂
log 𝑛

𝑛
, 2

|𝑥| + 2

𝑡

}︃
.

Then clearly 𝛿 < 1/4 by the inequalities 𝑡 > 106 and (39). The assumption |𝑥| < 𝑡3/4 implies
that |𝑥|𝛿3 + 𝑡𝛿4 = 𝑂(1), hence

exp
(︀
𝑂(|𝑥|𝛿3 + 𝑡𝛿4)

)︀
= 1 +𝑂(𝑅(𝑡)), where 𝑅(𝑡) = 𝑡−1 log2 𝑡+ 𝑥4𝑡−3.

For such choice of 𝛿, formula (45) becomes

𝑓1(𝑞) =
𝑓(𝑐)

2
√
𝜋𝑛

exp

(︂
− 𝑞2

4𝑛
− 𝑖𝑐𝑞

)︂
(1 +𝑂(𝑅(𝑡))) ,

Analogous formulae hold for 𝑓2(𝑞), 𝑓3(𝑞), 𝑓4(𝑞) with 𝑐 replaced by −𝑐 and ±𝜋∓𝑐. Estimate (43)
becomes

𝑓0(𝑞) = 𝑓(𝑐)𝑂(𝑒−𝑛𝛿2/4) =
𝑓(𝑐)

2
√
𝜋𝑛

𝑒−𝑞2/4𝑛𝑂

(︂√
𝑛 exp

(︂
𝑞2

4𝑛
− 𝑛𝛿2

4

)︂)︂
=

𝑓(𝑐)

2
√
𝜋𝑛

𝑒−𝑞2/4𝑛𝑂(𝑅(𝑡)),
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because
√
𝑛 exp

(︁
𝑞2

4𝑛
− 𝑛𝛿2

4

)︁
≤

√
𝑛 exp

(︁
−𝑛𝛿2

8

)︁
≤ 𝑛−3/2 by the inequalities |𝑞| ≤ |𝑥|+2 < 𝛿𝑡/2 <

𝛿
√

2𝑛/2 for 𝑡 > 106 and 𝛿 > 4
√︁

log𝑛
𝑛

.

Substituting the resulting formulae for 𝑓0(𝑞), . . . , 𝑓4(𝑞) into (41), then applying Lemma 8
and substituting (55), and using that 𝑞 + 𝑛 even and |𝑞| ≤ |𝑥| + 2, we find

𝑓(𝑞) =
𝑓(𝑐)√
𝜋𝑛

𝑒−
𝑞2

4𝑛

(︀
𝑒−𝑖𝑐𝑞 + (−1)𝑘𝑒𝑖𝑐𝑞 +𝑂(𝑅(𝑡))

)︀
= 2𝑖𝑘

𝑓(𝑐)√
𝜋𝑛

𝑒−
𝑞2

4𝑛

(︂
cos

(︂
𝑐𝑞 +

𝜋𝑘

2

)︂
+𝑂(𝑅(𝑡))

)︂
= 𝑖𝑘

2
2−𝑛
2

√
𝜋𝑛

𝑒
𝑥2−𝑞2

4𝑛

(︂
cos

(︂
𝑐𝑞 +

𝜋𝑘

2

)︂
+𝑂(𝑅(𝑡))

)︂
= 𝑖𝑘

2
2−𝑛
2

√
𝜋𝑛

𝑒
𝑥2−𝑞2

4𝑛

(︂
cos

(︂
𝜋(2𝑘 + 𝑞)

4
+
𝑥𝑞

2𝑛

)︂
+𝑂 (𝑅(𝑡))

)︂
.

Substituting the resulting expression into equations (36)–(37), we get

𝑎1(𝑥, 𝑡) =

√︂
2

𝜋𝑛

(︂
sin

(︂
𝜋𝑡

4
− 𝑥2

2𝑛

)︂
+𝑂 (𝑅(𝑡))

)︂
;

𝑎2(𝑥, 𝑡) =

√︂
2

𝜋𝑛
𝑒(𝑥−1)/𝑛

(︂
cos

(︂
𝜋𝑡

4
− 𝑥2

2𝑛
+
𝑥

𝑛

)︂
+𝑂 (𝑅(𝑡))

)︂
.

Let us simplify these expressions further. Denote 𝜃 := 𝜋𝑡/4 − 𝑥2/2𝑛. By the Cauchy
inequality, 𝑥2/𝑡2 ≤ 1/𝑡+ 𝑥4/𝑡3 ≤ 𝑅(𝑡) for all 𝑥. Thus 𝑒(𝑥−1)/𝑛 = 1 + 𝑥/𝑛+𝑂(𝑅(𝑡)) and

cos
(︁
𝜃 +

𝑥

𝑛

)︁
= cos 𝜃 cos

𝑥

𝑛
− sin 𝜃 sin

𝑥

𝑛
= cos 𝜃 − 𝑥

𝑛
sin 𝜃 +𝑂 (𝑅(𝑡)) .

This allows to rewrite

𝑎2(𝑥, 𝑡) =

√︂
2

𝜋𝑛

(︁
1 +

𝑥

𝑛

)︁(︁
cos 𝜃 − 𝑥

𝑛
sin 𝜃 +𝑂 (𝑅(𝑡))

)︁
=

√︂
2

𝜋𝑛

(︃
cos 𝜃 +

√
2𝑥

𝑛
cos
(︁
𝜃 +

𝜋

4

)︁
+𝑂 (𝑅(𝑡))

)︃
.

Here we can replace 𝑛 by 𝑡 = 𝑛+ 2 (inside 𝜃 as well) because

1√
𝑛

=
1√
𝑡

√︂
𝑛+ 2

𝑛
=

1√
𝑡

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
=

1√
𝑡

(1 +𝑂 (𝑅(𝑡))) ,

𝑥

𝑛
=
𝑥

𝑡
· 𝑛+ 2

𝑛
=
𝑥

𝑡
(1 +𝑂 (𝑅(𝑡))) , and

𝑥2

𝑛
=
𝑥2

𝑡
+

2𝑥2

𝑛𝑡
=
𝑥2

𝑡
+𝑂 (𝑅(𝑡)) .

We arrive at the required result.

12.4 The main result: the stationary phase method (Theorem 3)

In this subsection we prove Theorem 3. First we outline the plan of the argument, then
prove the theorem modulo some technical lemmas, and finally the lemmas themselves.

The plan is to apply the Fourier transform and the stationary phase method to the resulting
oscillatory integral. The proof consists of 5 steps, with the first one known before [2, §4]:

Case (A): |𝑥|/𝑡 < 1/
√

1 +𝑚2𝜀2 − 𝛿.

Step 1: computing the main term in the asymptotic formula;

Step 2: estimating approximation error arising from neighborhoods of stationary points;

Step 3: estimating approximation error arising from a neighborhood of the origin;

Step 4: estimating error arising from the complements to those neighborhoods.

Case (B): |𝑥|/𝑡 > 1/
√

1 +𝑚2𝜀2 + 𝛿.

Step 5: estimating approximation error without stationary points.
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Proof of Theorem 3 modulo some lemmas. Derive the asymptotic formula for 𝑎1 (𝑥, 𝑡+ 𝜀,𝑚, 𝜀);
the derivation for 𝑎2 (𝑥+ 𝜀, 𝑡+ 𝜀,𝑚, 𝜀) is analogous and is discussed at the end of the proof.
By Proposition 12 and the identity 𝑒𝑖𝜔𝑝+𝜋/𝜀𝑡−𝑖(𝑝+𝜋/𝜀)𝑥 = 𝑒𝑖(𝜋/𝜀−𝜔𝑝)𝑡−𝑖𝑝𝑥−𝑖𝜋𝑥/𝜀 = −𝑒−𝑖𝜔𝑝𝑡−𝑖𝑝𝑥 for
(𝑡+ 𝑥)/𝜀 odd, we get

𝑎1(𝑥, 𝑡+ 𝜀,𝑚, 𝜀) =
𝑚𝜀2

2𝜋𝑖

∫︁ 𝜋/𝜀

−𝜋/𝜀

𝑒𝑖𝜔𝑝𝑡−𝑖𝑝𝑥√︀
𝑚2𝜀2 + sin(𝑝𝜀)

𝑑𝑝 =

∫︁ 𝜋/2𝜀

−𝜋/2𝜀

𝑔(𝑝)(𝑒(𝑓+(𝑝) − 𝑒(𝑓−(𝑝))) 𝑑𝑝, (56)

where 𝑒(𝑧) := 𝑒2𝜋𝑖𝑧 and

𝑓±(𝑝) =
1

2𝜋

(︂
−𝑝𝑥± 𝑡

𝜀
arccos

cos(𝑝𝜀)√
1 +𝑚2𝜀2

)︂
, (57)

𝑔(𝑝) =
𝑚𝜀2

2𝜋𝑖
√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

. (58)

Case (A): |𝑥|/𝑡 < 1/
√

1 +𝑚2𝜀2 − 𝛿.
Step 1. We estimate oscillatory integral (56) using the following known technical result.

Lemma 9 (Weighted stationary phase integral). [20, Lemma 5.5.6] Let 𝑓(𝑝) be a real function,
four times continuously differentiable for 𝛼 ≤ 𝑝 ≤ 𝛽, and let 𝑔(𝑝) be a real function, three
times continuously differentiable for 𝛼 ≤ 𝑝 ≤ 𝛽. Suppose that there are positive parameters
𝑀,𝑁, 𝑇, 𝑈 , with

𝑀 ≥ 𝛽 − 𝛼, 𝑁 ≥𝑀/
√
𝑇 ,

and positive constants 𝐶𝑟 such that, for 𝛼 ≤ 𝑝 ≤ 𝛽,⃒⃒
𝑓 (𝑟)(𝑝)

⃒⃒
≤ 𝐶𝑟𝑇/𝑀

𝑟,
⃒⃒
𝑔(𝑠)(𝑝)

⃒⃒
≤ 𝐶𝑠𝑈/𝑁

𝑠,

for 𝑟 = 2, 3, 4 and 𝑠 = 0, 1, 2, 3, and

𝑓 ′′(𝑝) ≥ 𝑇/𝐶2𝑀
2.

Suppose also that 𝑓 ′(𝑝) changes sign from negative to positive at a point 𝑝 = 𝛾 with 𝛼 < 𝛾 < 𝛽.
If 𝑇 is sufficiently large in terms of the constants 𝐶𝑟, then we have∫︁ 𝛽

𝛼

𝑔(𝑝)𝑒(𝑓(𝑝)) 𝑑𝑝 =
𝑔(𝛾)𝑒(𝑓(𝛾) + 1/8)√︀

𝑓 ′′(𝛾)
+
𝑔(𝛽)𝑒(𝑓(𝛽))

2𝜋𝑖𝑓 ′(𝛽)
− 𝑔(𝛼)𝑒(𝑓(𝛼))

2𝜋𝑖𝑓 ′(𝛼)

+𝑂𝐶0,...,𝐶4

(︃
𝑀4𝑈

𝑇 2

(︂
1 +

𝑀

𝑁

)︂2
(︃

1

(𝛾 − 𝛼)3
+

1

(𝛽 − 𝛾)3
+

√
𝑇

𝑀3

)︃)︃
. (59)

Here the first term involving the values at the stationary point 𝛾 is the main term, and the
boundary terms involving the values at the endpoints 𝛼 and 𝛽 are going to cancel out in Step 3
because of the periodicity.

Lemma 10. (Cf. [22, (25)], [2, §4]) Assume (11); then on [− 𝜋
2𝜀
, 𝜋
2𝜀

], the function 𝑓±(𝑝) given
by (57) has a unique critical point

𝛾± = ±1

𝜀
arcsin

𝑚𝜀𝑥√
𝑡2 − 𝑥2

. (60)

To estimate integral (56), we are going to apply Lemma 9 twice, for the functions 𝑓(𝑝) =
±𝑓±(𝑝) in appropriate neighborhoods of their critical points 𝛾±. In the case of 𝑓(𝑝) = −𝑓−(𝑝),
we perform complex conjugation of both sides of (59). Then the total contribution of the two
resulting main terms is

MainTerm :=
𝑔(𝛾+)𝑒(𝑓+(𝛾+) + 1/8)√︀

𝑓 ′′
+(𝛾+)

− 𝑔(𝛾−)𝑒(𝑓−(𝛾−) − 1/8)√︀
−𝑓 ′′

−(𝛾−)
. (61)

A direct but long computation (see [40, §2]) then gives the desired main term in the theorem:
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Lemma 11. (See [40, §2]) Assume (11), (14), (57)–(58), (60); then expression (61) equals

MainTerm = 𝜀

√︂
2𝑚

𝜋

(︀
𝑡2 − (1 +𝑚2𝜀2)𝑥2

)︀−1/4
sin 𝜃(𝑥, 𝑡,𝑚, 𝜀).

Step 2. To estimate the approximation error, we need to specify the particular values of
parameters which Lemma 9 is applied for:

𝑀 = 𝑁 = 𝑚, 𝑇 = 𝑚𝑡, 𝑈 = 𝜀. (62)

Lemma 12. If 𝜀 ≤ 1/𝑚 then functions (57)–(58) and parameters (62) satisfy the inequalities⃒⃒⃒
𝑓
(𝑟)
± (𝑝)

⃒⃒⃒
≤ 3𝑇/𝑀 𝑟,

⃒⃒
𝑔(𝑠)(𝑝)

⃒⃒
≤ 3𝑈/𝑁 𝑠 for 𝑝 ∈ R, 𝑟 = 2, 3, 4, 𝑠 = 0, 1, 2, 3.

We also need to specify the interval

[𝛼±, 𝛽±] := [𝛾± −𝑚𝛿/2, 𝛾± +𝑚𝛿/2]. (63)

To estimate the derivative |𝑓 ′′
±(𝑝)| from below, we make sure that we are apart its roots ±𝜋/2𝜀.

Lemma 13. Assume (11), (60); then interval (63) is contained in [−𝜋/2𝜀+𝑚𝛿/2, 𝜋/2𝜀−𝑚𝛿/2].

The wise choice of the interval provides the following more technical estimate.

Lemma 14. Assume (11), (57), (60), and (63). Then for each 𝑝 ∈ [𝛼±, 𝛽±] we have

|𝑓 ′′
±(𝑝)| ≥ 𝑡𝛿3/2

24𝜋𝑚
.

This gives |𝑓 ′′
±(𝑝)| ≥ 𝑇/𝐶2𝑀

2 for 𝐶2 := 24𝜋𝛿−3/2 under notation (62). Now all the assump-
tions of Lemma 9 have been verified (𝑀 ≥ 𝛽± − 𝛼± and 𝑁 ≥ 𝑀/

√
𝑇 are automatic because

𝛿 ≤ 1 and 𝑡 > 𝐶𝛿/𝑚 by (11)). Apply the lemma to 𝑔(𝑝) and ±𝑓±(𝑝) on [𝛼±, 𝛽±] (the minus
sign before 𝑓−(𝑝) guarantees the inequality 𝑓 ′′(𝑝) > 0 and the factor of 𝑖 inside 𝑔(𝑝) is irrelevant
for application of the lemma). We arrive at the following estimate for the approximation error
on those intervals.

Lemma 15. (See [40, §4]) Parameters (60) and (62)–(63) satisfy

𝑀4𝑈

𝑇 2

(︂
1 +

𝑀

𝑁

)︂2
(︃

1

(𝛾± − 𝛼±)3
+

1

(𝛽± − 𝛾±)3
+

√
𝑇

𝑀3

)︃
= 𝑂𝛿

(︁ 𝜀

𝑚1/2𝑡3/2

)︁
.

Although that is only a part of the error, it is already of the same order as in the theorem.
Step 3. To estimate the approximation error outside [𝛼±, 𝛽±], we use another known

technical result.

Lemma 16 (Weighted first derivative test). [20, Lemma 5.5.5] Let 𝑓(𝑝) be a real function,
three times continuously differentiable for 𝛼 ≤ 𝑝 ≤ 𝛽, and let 𝑔(𝑝) be a real function, twice con-
tinuously differentiable for 𝛼 ≤ 𝑝 ≤ 𝛽. Suppose that there are positive parameters 𝑀,𝑁, 𝑇, 𝑈 ,
with 𝑀 ≥ 𝛽 − 𝛼, and positive constants 𝐶𝑟 such that, for 𝛼 ≤ 𝑝 ≤ 𝛽,⃒⃒

𝑓 (𝑟)(𝑝)
⃒⃒
≤ 𝐶𝑟𝑇/𝑀

𝑟,
⃒⃒
𝑔(𝑠)(𝑝)

⃒⃒
≤ 𝐶𝑠𝑈/𝑁

𝑠,

for 𝑟 = 2, 3 and 𝑠 = 0, 1, 2. If 𝑓 ′(𝑝) and 𝑓 ′′(𝑝) do not change sign on the interval [𝛼, 𝛽], then∫︁ 𝛽

𝛼

𝑔(𝑝)𝑒(𝑓(𝑝)) 𝑑𝑝 =
𝑔(𝛽)𝑒(𝑓(𝛽))

2𝜋𝑖𝑓 ′(𝛽)
− 𝑔(𝛼)𝑒(𝑓(𝛼))

2𝜋𝑖𝑓 ′(𝛼)

+𝑂𝐶0,...,𝐶3

(︂
𝑇𝑈

𝑀2

(︂
1 +

𝑀

𝑁
+
𝑀3 min |𝑓 ′(𝑝)|

𝑁2𝑇

)︂
1

min |𝑓 ′(𝑝)|3

)︂
.
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This lemma in particular requires the interval to be sufficiently small. By this reason we
decompose the initial interval [−𝜋/2𝜀, 𝜋/2𝜀] into a large number of intervals by the points

− 𝜋

2𝜀
= 𝛼−𝐾 < 𝛽−𝐾 = 𝛼−𝐾+1 < 𝛽−𝐾+1 = 𝛼−𝐾+2 < · · · = 𝛼𝑖 < 𝛽𝑖 = 𝛼± < 𝛽± = �̂�𝑗 < 𝛽𝑗 = · · · < 𝛽𝐾−1 =

𝜋

2𝜀
.

Here 𝛼± and 𝛽± are given by (63) above. The other points are given by

𝛼𝑘 =
𝑘𝜋

2𝜀𝐾
, 𝛽𝑘 =

(𝑘 + 1)𝜋

2𝜀𝐾
, where 𝐾 = 2

⌈︁ 𝜋
𝑚𝜀

⌉︁
and 𝑘 = −𝐾, . . . , 𝑖, 𝑗 + 1, . . . , 𝐾 − 1.

(64)
The indices 𝑖 and 𝑗 are the minimal ones such that (𝑖+1)𝜋

2𝜀𝐾
> 𝛼± and (𝑗+1)𝜋

2𝜀𝐾
> 𝛽±. Thus all the

resulting intervals except [𝛼±, 𝛽±] and its neighbors have the same length 𝜋
2𝜀𝐾

. (Although it
is more conceptual to decompose using a geometric sequence rather than arithmetic one, this
does not affect the final estimate here.)

We have already applied Lemma 9 to [𝛼±, 𝛽±] and we are going to apply Lemma 16 to each
of the remaining intervals in the decomposition for 𝑓(𝑝) = 𝑓±(𝑝) (this time it is not necessary to
change the sign of 𝑓−(𝑝)). After summation of the resulting estimates, all the terms involving
the values 𝑓±(𝛼𝑘) and 𝑓±(𝛽𝑘) at the endpoints, except the leftmost and the rightmost ones, are
going to cancel out. The remaining boundary terms give

BoundaryTerm :=
𝑔( 𝜋

2𝜀
)𝑒(𝑓+( 𝜋

2𝜀
))

2𝜋𝑖𝑓 ′
+( 𝜋

2𝜀
)

−
𝑔(− 𝜋

2𝜀
)𝑒(𝑓+(− 𝜋

2𝜀
))

2𝜋𝑖𝑓 ′
+(− 𝜋

2𝜀
)

−
𝑔( 𝜋

2𝜀
)𝑒(𝑓−( 𝜋

2𝜀
))

2𝜋𝑖𝑓 ′
−( 𝜋

2𝜀
)

+
𝑔(− 𝜋

2𝜀
)𝑒(𝑓−(− 𝜋

2𝜀
))

2𝜋𝑖𝑓 ′
−(− 𝜋

2𝜀
)

.

(65)

Lemma 17. (See [40, §5]) For (𝑥, 𝑡) ∈ 𝜀Z2 such that (𝑥+ 𝑡)/𝜀 is odd, expression (65) vanishes.

It remains to estimate the error terms. We start estimates with the central intervals [𝛼0, 𝛽0]
and [𝛼−1, 𝛽−1] (possibly without parts cut out by [𝛼±, 𝛽±]); they require a special treatment.
Apply Lemma 16 to the intervals for the same functions (57)–(58) and the same values (62) of
the parameters 𝑀,𝑁, 𝑇, 𝑈 as in Step 2. All the assumptions of the lemma have been already
verified in Lemma 12; we have 𝛽0 −𝛼0 ≤ 𝜋/2𝜀𝐾 = 𝜋/4𝜀⌈ 𝜋

𝑚𝜀
⌉ < 𝑚 = 𝑀 and 𝑓 ′′

±(𝑝) ̸= 0 as well.
We are thus left to estimate |𝑓 ′

±(𝑝)| from below.

Lemma 18. Assume (11), (57), (60), (63); then for each 𝑝 ∈ [−𝜋/2𝜀, 𝜋/2𝜀] ∖ [𝛼±, 𝛽±] we get

|𝑓 ′
±(𝑝)| ≥ 𝑡𝛿5/2/48𝜋.

Then the approximation error on the central intervals is estimated as follows.

Lemma 19. (See [40, §6]) Assume (11), (60), and (63). Then parameters (62) and func-
tions (57) satisfy

𝑇𝑈

𝑀2

(︂
1 +

𝑀

𝑁
+
𝑀3 min𝑝∈[𝛼±,𝛽±] |𝑓 ′

±(𝑝)|
𝑁2𝑇

)︂
1

min𝑝∈[𝛼±,𝛽±] |𝑓 ′
±(𝑝)|3

= 𝑂
(︁ 𝜀

𝑚𝑡2𝛿15/2

)︁
.

This value is 𝑂𝛿

(︀
𝜀/𝑚1/2𝑡3/2

)︀
because 𝑡 > 𝐶𝛿/𝑚 by (11). Hence the approximation error on

the central intervals is within the remainder of the theorem.

Step 4. To estimate the approximation error on the other intervals [𝛼𝑘, 𝛽𝑘], where we
assume that 𝑘 > 0 without loss of generality, we apply Lemma 16 with slightly different
parameters:

𝑇 = 𝑚𝑡/𝑘, 𝑀 = 𝑚𝑘, 𝑈 = 𝜀/𝑘, 𝑁 = 𝑚𝑘. (66)

Lemma 20. For 0 < 𝑘 < 𝐾 and 𝜀 ≤ 1/𝑚, parameters (66) and (64), functions (57)–(58) on
[𝛼𝑘, 𝛽𝑘] satisfy all the assumptions of Lemma 16 possibly except the one on the sign of 𝑓 ′(𝑝).

Since the neighborhood [𝛼±, 𝛽±] of the root of 𝑓 ′(𝑝) is cut out, it follows that 𝑓 ′(𝑝) has
constant sign on the remaining intervals, and by Lemma 16 their contribution to the error is
estimated as follows.
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Lemma 21. (See [40, §7]) Assume (11), (60), (63), 0 < 𝑘 < 𝐾. Then functions (57) and
parameters (66) satisfy

𝑇𝑈

𝑀2

(︂
1 +

𝑀

𝑁
+
𝑀3 min�̸�∈[𝛼±,𝛽±] |𝑓 ′

±(𝑝)|
𝑁2𝑇

)︂
1

min𝑝 ̸∈[𝛼±,𝛽±] |𝑓 ′
±(𝑝)|3

= 𝑂
(︁ 𝜀

𝑘2𝑚𝑡2𝛿15/2

)︁
.

Summation over all 𝑘 gives the approximation error

𝐾∑︁
𝑘=1

𝑂
(︁ 𝜀

𝑘2𝑚𝑡2𝛿15/2

)︁
= 𝑂

(︃
𝜀

𝑚𝑡2𝛿15/2

∞∑︁
𝑘=1

1

𝑘2

)︃
= 𝑂𝛿

(︁ 𝜀

𝑚1/2𝑡3/2

)︁
.

because the series inside big-O converges and 𝑡 > 𝐶𝛿/𝑚. Thus the total approximation error on
all the intervals is within the remainder of the theorem, which completes the proof of Case (A)
(namely, of (12)).

Case (B): |𝑥|/𝑡 > 1/
√

1 +𝑚2𝜀2 + 𝛿.
Step 5. The argument is analogous to Steps 3–4, but much simpler because there are no

stationary points to worry about, and the main term vanishes. We decompose [−𝜋/2𝜀,−𝜋/2𝜀]
into 2⌈𝜋/𝑚𝜀⌉ equal intervals [𝛼𝑘, 𝛽𝑘]. We apply Lemma 16 to each of them for the same func-
tions (57)–(58) and the same values (62) and (66) of the parameters 𝑀,𝑁, 𝑇, 𝑈 as in Steps 3–4;
parameters are chosen depending on if [𝛼𝑘, 𝛽𝑘] contains the origin. All the assumptions of the
lemma but one have been already verified in Lemmas 12 and 20. We are thus left to verify that
|𝑓 ′

±(𝑝)| has no zeroes and estimate it from below.

Lemma 22. If |𝑥|/𝑡 ≥ 1/
√

1 +𝑚2𝜀2 + 𝛿 then for each 𝑝 ∈ R we have |𝑓 ′
±(𝑝)| ≥ 𝑡𝛿/2𝜋 > 0.

Lemma 23. (See [40, §8]) If |𝑥|/𝑡 ≥ 1/
√

1 +𝑚2𝜀2 +𝛿 then parameters (66) and functions (57)
satisfy

𝑇𝑈

𝑀2

(︂
1 +

𝑀

𝑁
+
𝑀3 min |𝑓 ′

±(𝑝)|
𝑁2𝑇

)︂
1

min |𝑓 ′
±(𝑝)|3

= 𝑂
(︁ 𝜀

𝑘2𝑚𝑡2𝛿3

)︁
.

Summation over all the intervals completes the proof of Case (B).
The derivation of the asymptotic formula for 𝑎2 (𝑥+ 𝜀, 𝑡+ 𝜀,𝑚, 𝜀) is analogous. By Propo-

sition 12 for (𝑥+ 𝑡)/𝜀 even we get

𝑎2 (𝑥+ 𝜀, 𝑡+ 𝜀,𝑚, 𝜀) =
𝜀

2𝜋

∫︁ 𝜋/𝜀

−𝜋/𝜀

(︃
1 +

sin(𝑝𝜀)√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︃
𝑒𝑖𝜔𝑝𝑡−𝑖𝑝𝑥 𝑑𝑝

=

∫︁ 𝜋/2𝜀

−𝜋/2𝜀

[𝑔+(𝑝)𝑒(𝑓+(𝑝)) + 𝑔−(𝑝)𝑒(𝑓−(𝑝))] 𝑑𝑝, (67)

where 𝑓±(𝑝) are the same as above (see (57)) and

𝑔±(𝑝) =
𝜀

2𝜋

(︃
1 ± sin(𝑝𝜀)√︀

𝑚2𝜀2 + sin2(𝑝𝜀)

)︃
. (68)

One repeats the argument of Steps 1–5 with 𝑔(𝑝) replaced by 𝑔±(𝑝). The particular form of
𝑔(𝑝) was only used in Lemmas 11, 12, 17, 20. The analogues of Lemmas 11 and 17 for 𝑔±(𝑝) are
obtained by direct checking [40, §13]. Lemma 12 holds for 𝑔±(𝑝): one needs not to repeat the
proof because 𝑔±(𝑝) = (𝜀/𝑡)(𝑓 ′

±(𝑝) + (𝑥 + 𝑡)/2𝜋) [40, §1]. But parameters (66) and Lemma 20
should be replaced by the following ones (then the analogues of Lemmas 21 and 23 hold):

𝑇 = 𝑚𝑡/𝑘, 𝑀 = 𝑚𝑘, 𝑈 = 𝜀, 𝑁 = 𝑚𝑘3/2. (69)

Lemma 24. For 0 < 𝑘 < 𝐾 and 𝜀 ≤ 1/𝑚, parameters (69) and (64), functions (57) and (68)
on [𝛼𝑘, 𝛽𝑘] satisfy all the assumptions of Lemma 16 possibly except the one on the sign of 𝑓 ′(𝑝).

This concludes the proof of Theorem 3 modulo the lemmas.
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Now we prove the lemmas. Lemmas 11, 15, 17, 19, 23, 21 are proved by direct checking [40].
The following expressions [40, §1,3] are used frequently in the proofs of the other lemmas:

𝑓 ′
±(𝑝) =

1

2𝜋

(︃
−𝑥± 𝑡 sin 𝑝𝜀√︀

𝑚2𝜀2 + sin2 𝑝𝜀

)︃
; (70)

𝑓 ′′
±(𝑝) = ± 𝑚2𝜀3𝑡 cos(𝑝𝜀)

2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀3/2 (71)

Proof of Lemma 10. Using (70) and solving the quadratic equation 𝑓 ′
±(𝑝) = 0 in sin 𝑝𝜀, we

get (60). The assumption |𝑥|/𝑡 < 1/
√

1 +𝑚2𝜀2 from (11) guarantees that the arcsine exists.

Proof of Lemma 12. By the computation of the derivatives in [40, §3] and the assumption
𝑚𝜀 ≤ 1 we get

|𝑔(𝑝)| =
𝑚𝜀2

2𝜋
√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

≤ 𝑚𝜀2

2𝜋
√
𝑚2𝜀2 + 0

≤ 𝜀 = 𝑈,

|𝑔(1)(𝑝)| =
𝑚𝜀3| sin(𝑝𝜀) cos(𝑝𝜀)|

2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀3/2 ≤ 𝑚𝜀3| sin(𝑝𝜀) cos(𝑝𝜀)|
2𝜋 (𝑚2𝜀2 + 0)

(︀
0 + sin2(𝑝𝜀)

)︀1/2 ≤ 𝜀

𝑚
=
𝑈

𝑁
,

|𝑔(2)(𝑝)| =
𝑚𝜀4

⃒⃒
𝑚2𝜀2 + sin4(𝑝𝜀) − 2(1 +𝑚2𝜀2) sin2(𝑝𝜀)

⃒⃒
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀5/2 ≤
𝑚𝜀4

(︀
3𝑚2𝜀2 + 3 sin2(𝑝𝜀)

)︀
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀5/2 ≤ 𝜀

𝑚2
=

𝑈

𝑁2
,

|𝑔(3)(𝑝)| =
𝑚𝜀5| sin(𝑝𝜀) cos(𝑝𝜀)| ·

⃒⃒
4𝑚4𝜀4 + 9𝑚2𝜀2 + sin4(𝑝𝜀) − (6 + 10𝑚2𝜀2) sin2(𝑝𝜀)

⃒⃒
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀7/2 ≤ 3𝜀

𝑚3
=

3𝑈

𝑁3
,

|𝑓 (2)
± (𝑝)| =

𝑚2𝜀3𝑡 cos(𝑝𝜀)

2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀3/2 ≤ 𝑡

𝑚
=

𝑇

𝑀2
,

|𝑓 (3)
± (𝑝)| =

𝑚2𝜀4𝑡| sin(𝑝𝜀)| (𝑚2𝜀2 + cos(2𝑝𝜀) + 2)

2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀5/2 ≤ 4𝑚2𝜀4𝑡| sin(𝑝𝜀)|
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀5/2 ≤ 𝑡

𝑚2
=

𝑇

𝑀3
,

|𝑓 (4)
± (𝑝)| =

𝑚2𝜀5𝑡 cos(𝑝𝜀)
⃒⃒
𝑚4𝜀4 + 3𝑚2𝜀2 + 4 sin4(𝑝𝜀) − 2(6 + 5𝑚2𝜀2) sin2(𝑝𝜀)

⃒⃒
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀7/2 ≤ 3𝑡

𝑚3
=

3𝑇

𝑀4
.

Proof of Lemma 13. The lemma follows from the sequence of estimates

𝜋

2𝜀
− |𝛾±| =

sin(𝜋/2) − sin |𝛾±𝜀|
𝜀 cos(𝜃𝜀)

≥ sin(𝜋/2) − sin |𝛾±𝜀|
𝜀 cos(𝛾±𝜀)

=
1 −𝑚𝜀|𝑥|/

√
𝑡2 − 𝑥2

𝜀
√︀

1 −𝑚2𝜀2𝑥2/(𝑡2 − 𝑥2)

=

√︀
1 − 𝑥2/𝑡2 −𝑚𝜀|𝑥|/𝑡

𝜀
√︀

1 − (1 +𝑚2𝜀2)𝑥2/𝑡2
≥ 1

𝜀

(︃√︂
1 − 𝑥2

𝑡2
− 𝑚𝜀|𝑥|

𝑡

)︃

≥ 1

𝜀

(︃√︂
1 − 1

1 +𝑚2𝜀2
− 𝑚𝜀|𝑥|

𝑡

)︃
= 𝑚

(︂
1√

1 +𝑚2𝜀2
− |𝑥|

𝑡

)︂
≥ 𝑚𝛿.

Here the first equality holds for some 𝜃 ∈ [|𝛾±|, 𝜋/2𝜀] by the Lagrange theorem. The next
inequality holds because the cosine is decreasing on the interval. The next one is obtained by
substituting (60). The rest is straightforward because |𝑥|/𝑡 < 1/

√
1 +𝑚2𝜀2 − 𝛿 by (11).

Proof of Lemma 14. Let us prove the lemma for 𝑓+(𝑝) and 𝛾+ ≥ 0; the other signs are con-
sidered analogously. Omit the index + in the notation of 𝑓+, 𝛼+, 𝛽+, 𝛾+. The lemma follows
from

|𝑓 (2)(𝑝)|
(*)
≥ |𝑓 (2)(𝛽)| =

𝑚2𝜀3𝑡 cos(𝛽𝜀)

2𝜋
(︀
𝑚2𝜀2 + sin2(𝛽𝜀)

)︀3/2 (**)
≥ 𝑚2𝜀3𝑡 cos(𝛾𝜀)

4𝜋
(︀
𝑚2𝜀2 + sin2(𝛾𝜀) + 2𝑚2𝜀2𝑡2/(𝑡2 − 𝑥2)

)︀3/2
(***)
=

𝑚2𝜀3𝑡
√︀
𝑡2 − (1 +𝑚2𝜀2)𝑥2(𝑡2 − 𝑥2)

4𝜋 (3𝑚2𝜀2𝑡2)3/2
≥
𝑡
√︀

1 − (1 +𝑚2𝜀2)𝑥2/𝑡2(1 − 𝑥2/𝑡2)

24𝜋𝑚
≥ 𝑡𝛿3/2

24𝜋𝑚
.
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Here inequality (*) is proved as follows. By (71), 𝑓 (2)(𝑝) is increasing on [−𝜋/2𝜀, 0] and
decreasing on [0, 𝜋/2𝜀], because it is even, the numerator is decreasing on [0, 𝜋/2𝜀] and the
denominator is increasing on [0, 𝜋/2𝜀]. Thus |𝑓 (2)(𝑝)| ≥ min{|𝑓 (2)(𝛽)|, |𝑓 (2)(𝛼)|} for 𝑝 ∈ [𝛼, 𝛽]
by Lemma 13. But since 𝑓 (2)(𝑝) is even and 𝛾 ≥ 0, by (63) we get

|𝑓 (2)(𝛼)| = |𝑓 (2)(𝛾 −𝑚𝛿/2)| = |𝑓 (2)(|𝛾 −𝑚𝛿/2|)| ≥ |𝑓 (2)(𝛾 +𝑚𝛿/2)| = |𝑓 (2)(𝛽)|.

Inequality (**) follows from the following two estimates. First, by Lemma 13 and the
convexity of the cosine on the interval [𝛾𝜀, 𝜋/2] we obtain

cos(𝛽𝜀) ≥ cos
(︁𝛾𝜀

2
+
𝜋

4

)︁
≥ 1

2

(︁
cos(𝛾𝜀) + cos

𝜋

2

)︁
=

cos(𝛾𝜀)

2
.

Second, using the inequality sin 𝑧−sin𝑤 ≤ 𝑧−𝑤 for 0 ≤ 𝑤 ≤ 𝑧 ≤ 𝜋/2, then 𝛿 ≤ 1 and (60)–(63),
we get

sin2(𝛽𝜀) − sin2(𝛾𝜀) ≤ 𝜀(𝛽 − 𝛾) (sin(𝛽𝜀) + sin(𝛾𝜀)) ≤ 𝜀(𝛽 − 𝛾) (𝜀(𝛽 − 𝛾) + 2 sin(𝛾𝜀))

=
𝑚𝜀𝛿

2

(︂
𝑚𝜀𝛿

2
+

2𝑚𝜀𝑥√
𝑡2 − 𝑥2

)︂
≤ 𝑚𝜀𝑡

2
√
𝑡2 − 𝑥2

(︂
2𝑚𝜀𝑡√
𝑡2 − 𝑥2

+
2𝑚𝜀𝑡√
𝑡2 − 𝑥2

)︂
=

2𝑚2𝜀2𝑡2

𝑡2 − 𝑥2
.

Equality (* * *) is obtained from (60). The remaining estimates are straightforward.

Proof of Lemma 18. By Lemmas 10 and 14, for 𝑝 ∈ [𝛽+, 𝜋/2𝜀] we have

𝑓 ′
+(𝑝) = 𝑓 ′

+(𝛾+) +

∫︁ 𝑝

𝛾+

𝑓 ′′
+(𝑝) 𝑑𝑝 ≥ 0 + (𝑝− 𝛾+)

𝑡𝛿3/2

24𝜋𝑚
≥ (𝛽+ − 𝛾+)

𝑡𝛿3/2

24𝜋𝑚
=
𝑡𝛿5/2

48𝜋

because 𝑓 ′′
+(𝑝) ≥ 0 by (71). For 𝑝 ∈ [−𝜋/2𝜀, 𝛼+] and for 𝑓 ′

−(𝑝) the proof is analogous.

Proof of Lemma 20. Take 𝑝 ∈ [𝛼𝑘, 𝛽𝑘]. By (64), the inequalities sin 𝑧 ≥ 𝑧/2 for 𝑧 ∈ [0, 𝜋/2],
and 𝑚𝜀 ≤ 1 we get

|𝑔(𝑝)| =
𝑚𝜀2

2𝜋
√︀
𝑚2𝜀2 + sin2(𝑝𝜀)

≤ 𝑚𝜀2

2𝜋 sin(𝑝𝜀)
≤ 𝑚𝜀2

𝜋𝑝𝜀
≤ 2𝑚𝜀2𝐾

𝜋2𝑘
=

4𝑚𝜀2

𝜋2𝑘

⌈︁ 𝜋
𝑚𝜀

⌉︁
= 𝑂

(︁ 𝜀
𝑘

)︁
= 𝑂 (𝑈) ,

|𝑔(1)(𝑝)| =
𝑚𝜀3| sin(𝑝𝜀) cos(𝑝𝜀)|

2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀3/2 ≤ 𝑚𝜀3

2𝜋 sin2(𝑝𝜀)
= 𝑂

(︁ 𝜀

𝑚𝑘2

)︁
= 𝑂

(︂
𝑈

𝑁

)︂
,

|𝑔(2)(𝑝)| =
𝑚𝜀4

⃒⃒
𝑚2𝜀2 + sin4(𝑝𝜀) − 2(1 +𝑚2𝜀2) sin2(𝑝𝜀)

⃒⃒
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀5/2 ≤
𝑚𝜀4

(︀
3𝑚2𝜀2 + 3 sin2(𝑝𝜀)

)︀
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀5/2 = 𝑂

(︂
𝑈

𝑁2

)︂
,

|𝑔(3)(𝑝)| =
𝑚𝜀5| sin(𝑝𝜀) cos(𝑝𝜀)| ·

⃒⃒
4𝑚4𝜀4 + 9𝑚2𝜀2 + sin4(𝑝𝜀) − (6 + 10𝑚2𝜀2) sin2(𝑝𝜀)

⃒⃒
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀7/2 = 𝑂

(︂
𝑈

𝑁3

)︂
,

|𝑓 (2)
± (𝑝)| =

𝑚2𝜀3𝑡 cos(𝑝𝜀)

2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀3/2 = 𝑂

(︂
𝑡

𝑚𝑘3

)︂
= 𝑂

(︂
𝑇

𝑀2

)︂
,

|𝑓 (3)
± (𝑝)| =

𝑚2𝜀4𝑡| sin(𝑝𝜀)| (𝑚2𝜀2 + cos(2𝑝𝜀) + 2)

2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀5/2 = 𝑂

(︂
𝑡

𝑚2𝑘4

)︂
= 𝑂

(︂
𝑇

𝑀3

)︂
,

|𝑓 (4)
± (𝑝)| =

𝑚2𝜀5𝑡 cos(𝑝𝜀)
⃒⃒
𝑚4𝜀4 + 3𝑚2𝜀2 + 4 sin4(𝑝𝜀) − 2(6 + 5𝑚2𝜀2) sin2(𝑝𝜀)

⃒⃒
2𝜋
(︀
𝑚2𝜀2 + sin2(𝑝𝜀)

)︀7/2 = 𝑂

(︂
𝑡

𝑚3𝑘5

)︂
= 𝑂

(︂
𝑇

𝑀4

)︂
.

Further, 𝑓 ′′
±(𝑝) does not change sign on the interval [𝛼𝑘, 𝛽𝑘] because it vanishes only at ±𝜋/2𝜀.

We also have 𝛽𝑘 − 𝛼𝑘 ≤ 𝜋/2𝜀𝐾 = 𝜋/4𝜀⌈ 𝜋
𝑚𝜀

⌉ < 𝑚 ≤ 𝑚𝑘 = 𝑀 .

Proof of Lemma 22. By (71) it follows that 𝑓 ′
±(𝑝) has extrema 𝑝 = 𝜋/2𝜀+ 𝜋𝑘/𝜀, where 𝑘 ∈ Z.

Thus by (70) and the assumption |𝑥|/𝑡 ≥ 1/
√

1 +𝑚2𝜀2 + 𝛿, we get

|𝑓 ′
±(𝑝)| ≥ min

𝑘

⃒⃒⃒⃒
𝑓 ′
±

(︂
𝜋

2𝜀
+
𝜋𝑘

𝜀

)︂⃒⃒⃒⃒
=

1

2𝜋

(︂
|𝑥| − 𝑡√

1 +𝑚2𝜀2

)︂
≥ 𝑡𝛿

2𝜋
.
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Proof of Lemma 24. The assumptions on 𝑓±(𝑝) have been checked in the proof of Lemma 20.
The assumptions on 𝑔(𝑠)± (𝑝) for 𝑠 = 1, 2, 3 and 𝑝 ∈ [𝛼𝑘, 𝛽𝑘] follow from the ones on 𝑓±(𝑝):

|𝑔±(𝑝)| =
𝜀

2𝜋

(︃
1 ± sin(𝑝𝜀)√︀

𝑚2𝜀2 + sin2(𝑝𝜀)

)︃
≤ 𝜀 = 𝑈,

|𝑔(𝑠)± (𝑝)| =
⃒⃒⃒𝜀
𝑡
𝑓
(𝑠+1)
± (𝑝)

⃒⃒⃒
= 𝑂

(︁ 𝜀

𝑚𝑠𝑘𝑠+2

)︁
= 𝑂

(︁ 𝜀

𝑚𝑠𝑘3𝑠/2

)︁
= 𝑂

(︂
𝑈

𝑁 𝑠

)︂
.

12.5 Large-time limit: the stationary phase method again (Corollar-
ies 1–2)

In this section we prove Corollaries 1–2. First we outline the plan of the argument, then
prove Corollary 1 modulo a technical lemma, then the lemma itself, and finally Corollary 2.

The plan of the proof of Corollary 1 (and results such as Problems 5–6) consists of 3 steps:

Step 1: computing the main contribution to the sum, using asymptotic formulae (12)–(13);

Step 2: estimating the contribution coming from a trigonometric sum;

Step 3: estimating the error coming from replacing sum by an integral;

Step 4: estimating the contribution coming from outside of the interval where (12)–(13) hold.

Proof of Corollary 1 modulo some lemmas. Step 1. Fix 𝑚, 𝜀, 𝛿 > 0, denote 𝑛 := 1 + 𝑚2𝜀2,
𝑉 := 1/

√
𝑛 − 𝛿, and fix −𝑉 ≤ 𝑣 ≤ 𝑉 . Let us prove that if 𝑡 is sufficiently large in terms of

𝛿,𝑚, 𝜀, then ∑︁
−𝑉 𝑡<𝑥≤𝑣𝑡

𝑥∈𝜀Z

𝑃 (𝑥, 𝑡,𝑚, 𝜀) = 𝐹 (𝑣) − 𝐹 (−𝑉 ) +𝑂𝛿,𝑚,𝜀

(︂√︂
𝜀

𝑡

)︂
. (72)

This follows from the sequence of asymptotic formulae:

∑︁
−𝑉 (𝑡+𝜀)<𝑥≤𝑣(𝑡+𝜀)

𝑥∈𝜀Z

𝑎21(𝑥, 𝑡+𝜀,𝑚, 𝜀)
(*)
=

∑︁
−𝑉 (𝑡+𝜀)<𝑥≤𝑣(𝑡+𝜀)

(𝑥+𝑡)/𝜀 odd

(︃
2𝑚𝜀2

𝜋𝑡

(︂
1 − 𝑛𝑥2

𝑡2

)︂−1/2

sin2 𝜃(𝑥, 𝑡,𝑚, 𝜀) +𝑂𝛿

(︂
𝜀2

𝑡2

)︂)︃

(**)
=

∑︁
−𝑉 𝑡<𝑥<𝑣𝑡
(𝑥+𝑡)/𝜀 odd

𝑚𝜀2

𝜋𝑡

(︂
1 − 𝑛𝑥2

𝑡2

)︂−1/2

−
∑︁

−𝑉 𝑡<𝑥<𝑣𝑡
(𝑥+𝑡)/𝜀 odd

𝑚𝜀2

𝜋𝑡

(︂
1 − 𝑛𝑥2

𝑡2

)︂−1/2

cos 2𝜃(𝑥, 𝑡,𝑚, 𝜀) +𝑂𝛿

(︁𝜀
𝑡

)︁

(***)
=

∑︁
−𝑉 𝑡<𝑥<𝑣𝑡
(𝑥+𝑡)/𝜀 odd

𝑚𝜀 · 2𝜀/𝑡

2𝜋
√︀

1 − 𝑛𝑥2/𝑡2
+𝑂𝛿,𝑚,𝜀

(︂√︂
𝜀

𝑡

)︂
(****)

=

𝑣∫︁
−𝑉

𝑚𝜀𝑑𝑣

2𝜋
√

1 − 𝑛𝑣2
+𝑂𝛿,𝑚,𝜀

(︂√︂
𝜀

𝑡

)︂

= 𝑚𝜀
arcsin(

√
𝑛𝑣) − arcsin(−

√
𝑛𝑉 )

2𝜋
√
𝑛

+𝑂𝛿,𝑚,𝜀

(︂√︂
𝜀

𝑡

)︂
(73)

and an analogous asymptotic formula

∑︁
−𝑉 (𝑡+𝜀)<𝑥≤𝑣(𝑡+𝜀)

𝑥∈𝜀Z

𝑎22(𝑥, 𝑡+ 𝜀,𝑚, 𝜀) =

∫︁ 𝑣

−𝑉

𝑚𝜀(1 + 𝑣) 𝑑𝑣

2𝜋(1 − 𝑣)
√

1 − 𝑛𝑣2
+𝑂𝛿,𝑚,𝜀

(︂√︂
𝜀

𝑡

)︂

= 𝐹 (𝑣) − 𝐹 (−𝑉 ) −𝑚𝜀
arcsin(

√
𝑛𝑣) − arcsin(−

√
𝑛𝑉 )

2𝜋
√
𝑛

+𝑂𝛿,𝑚,𝜀

(︂√︂
𝜀

𝑡

)︂
.

Here (*) follows from Theorem 3 because |𝑥|/𝑡 ≤ |𝑣|(𝑡 + 𝜀)/𝑡 < 𝑉 + 𝛿/2 = 1/
√
𝑛 − 𝛿/2 for

large enough 𝑡; the product of the main term and the error term in (12) is estimated by 𝜀2/𝑡2.
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Asymptotic formula (**) holds because the number of summands is less than 𝑡/𝜀 and the
(possibly) dropped first and last summands are less than 𝑚𝜀2/𝑡

√
𝛿.

Step 2. Let us prove formula (***). We use the following simplified version of the stationary
phase method.

Lemma 25. [25, Corollary from Theorem 4 in p. 17] Under the assumptions of Lemma 9
(except the ones on 𝑓 ′(𝑝), 𝑔(3)(𝑝), and 𝑁 ≥ 𝑀/

√
𝑇 ), if 𝑀 = 𝑁 and 𝑀/𝐶 ≤ 𝑇 ≤ 𝐶𝑀2 for

some 𝐶 > 0, then

∑︁
𝛼<𝑝<𝛽

𝑔(𝑝)𝑒(𝑓(𝑝)) = 𝑂𝐶,𝐶0,...,𝐶4

(︃
(𝛽 − 𝛼)𝑈

√
𝑇

𝑀
+
𝑈𝑀√
𝑇

)︃
.

For notational convenience, assume that 𝑡/𝜀 is odd; otherwise the proof is analogous. Then
the summation index 𝑥 = 2𝑝𝜀 for some integer 𝑝. We apply Lemma 25 for the functions

𝑓±(𝑝) = ± 1

𝜋
𝜃(2𝑝𝜀, 𝑡,𝑚, 𝜀) and 𝑔(𝑝) =

𝑚𝜀2

𝜋𝑡

(︂
1 − 4𝑛𝜀2𝑝2

𝑡2

)︂−1/2

(74)

and the parameter values

𝑀 = 𝑁 = 𝑇 = 𝑡/𝜀, 𝑈 = 𝜀/𝑡, 𝛼 = −𝑉 𝑡/2𝜀, 𝛽 = 𝑣𝑡/2𝜀. (75)

Lemma 26. For 𝜀 ≤ 1/𝑚 there exist 𝐶,𝐶0, . . . , 𝐶4 depending on 𝛿,𝑚, 𝜀 but not 𝑣, 𝑝 such that
parameters (75) and functions (74) satisfy all the assumptions of Lemma 25.

Since parameters (75) satisfy (𝛽−𝛼)𝑈
√
𝑇

𝑀
+ 𝑈𝑀√

𝑇
= 𝑂

(︀√︀
𝜀
𝑡

)︀
, formula (* * *) follows.

Step 3. Let us prove formula (****). We use yet another known result.

Lemma 27 (Euler summation formula). [25, Remark to Theorem 1 in p. 3] If 𝑔(𝑝) is contin-
uously differentiable on [𝛼, 𝛽] and 𝜌(𝑝) := 1/2 − {𝑝}, then

∑︁
𝛼<𝑝<𝛽

𝑔(𝑝) =

∫︁ 𝛽

𝛼

𝑔(𝑝) 𝑑𝑝+ 𝜌(𝛽)𝑔(𝛽) − 𝜌(𝛼)𝑔(𝛼) +

∫︁ 𝛽

𝛼

𝜌(𝑝)𝑔′(𝑝) 𝑑𝑝.

Again assume without loss of generality that 𝑡/𝜀 is odd. Apply Lemma 27 to the same
𝛼, 𝛽, 𝑔(𝑝) (given by (74)–(75)) as in Step 2. By Lemma 26 we have 𝑔(𝑝) = 𝑂𝛿,𝑚,𝜀(𝜀/𝑡) and
𝑔′(𝑝) = 𝑂𝛿,𝑚,𝜀(𝜀

2/𝑡2). Hence by Lemma 27 the difference between the sum and the integral
in (****) is 𝑂𝛿,𝑚,𝜀(𝜀/𝑡), and (72) follows.

Step 4. Let us prove the corollary for arbitrary 𝑣 ∈ (−1/
√
𝑛; 1/

√
𝑛). By (72), for each

𝛿,𝑚, 𝜀 there are 𝐶1(𝛿,𝑚, 𝜀) and 𝐶2(𝛿,𝑚, 𝜀) such that for each 𝑣 ∈ [−1/
√
𝑛 + 𝛿, 1/

√
𝑛− 𝛿] and

each 𝑡 ≥ 𝐶1(𝛿,𝑚, 𝜀) we have⃒⃒⃒⃒
⃒⃒ ∑︁
(−1/

√
𝑛+𝛿)𝑡<𝑥≤𝑣𝑡

𝑃 (𝑥, 𝑡,𝑚, 𝜀) − 𝐹 (𝑣)

⃒⃒⃒⃒
⃒⃒ ≤ 𝐹

(︂
− 1√

𝑛
+ 𝛿

)︂
+ 𝐶2(𝛿,𝑚, 𝜀)

√︂
𝜀

𝑡
.

Clearly, we may assume that 𝐶1(𝛿,𝑚, 𝜀) and 𝐶2(𝛿,𝑚, 𝜀) are decreasing functions in 𝛿: the
larger is the interval [− 1√

𝑛
+ 𝛿, 1√

𝑛
− 𝛿], the weaker is our error estimate in (*)–(****). Take

𝛿(𝑡) tending to 0 slowly enough so that 𝐶1(𝛿(𝑡),𝑚, 𝜀) ≤ 𝑡 for 𝑡 sufficiently large in terms of 𝑚, 𝜀
and 𝐶2(𝛿(𝑡),𝑚, 𝜀)

√︀
𝜀
𝑡
→ 0 as 𝑡 → ∞. Denote 𝑉 (𝑡) := 1√

𝑛
− 𝛿(𝑡). Then since 𝐹

(︁
− 1√

𝑛
+ 𝛿
)︁
→

𝐹
(︁
− 1√

𝑛

)︁
= 0 as 𝛿 → 0 by the definition of 𝐹 (𝑣), it follows that∑︁

−𝑉 (𝑡)𝑡<𝑥≤𝑣𝑡

𝑃 (𝑥, 𝑡,𝑚, 𝜀) ⇒ 𝐹 (𝑣) as 𝑡→ ∞ (76)
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uniformly in 𝑣 ∈ (− 1√
𝑛
; 1√

𝑛
). Similarly, since 𝐹

(︁
1√
𝑛
− 𝛿
)︁
→ 𝐹

(︁
1√
𝑛

)︁
= 1 as 𝛿 → 0, we get∑︁

−𝑉 (𝑡)𝑡<𝑥≤𝑉 (𝑡)𝑡

𝑃 (𝑥, 𝑡,𝑚, 𝜀) → 1 as 𝑡→ ∞.

Then by Proposition 6 we get∑︁
𝑥≤−𝑉 (𝑡)𝑡

𝑃 (𝑥, 𝑡,𝑚, 𝜀) = 1 −
∑︁

𝑥>−𝑉 (𝑡)𝑡

𝑃 (𝑥, 𝑡,𝑚, 𝜀) ≤ 1 −
∑︁

−𝑉 (𝑡)𝑡<𝑥≤𝑉 (𝑡)𝑡

𝑃 (𝑥, 𝑡,𝑚, 𝜀) → 0.

With (76), this implies the corollary for 𝑣 ∈ (−1/
√
𝑛; 1/

√
𝑛). For 𝑣 ≤ −1/

√
𝑛 and similarly for

𝑣 ≥ 1/
√
𝑛, the corollary follows from

∑︀
𝑥≤𝑣𝑡 𝑃 (𝑥, 𝑡,𝑚, 𝜀) ≤

∑︀
𝑥≤−𝑉 (𝑡)𝑡 𝑃 (𝑥, 𝑡,𝑚, 𝜀) → 0.

Now we prove the lemma and the remaining corollary.

Proof of Lemma 26. The inequalities 𝑀/𝐶 ≤ 𝑇 ≤ 𝐶𝑀2 and 𝑀 ≥ 𝛽 − 𝛼 are automatic
for 𝐶 = 1 because 𝑡/𝜀 is a positive integer and |𝑉 |, |𝑣| ≤ 1. We estimate the derivatives
(computed in [40, §9]) as follows, using the assumption 𝜀 ≤ 1/𝑚, 𝛼 ≤ 𝑝 ≤ 𝛽, and setting
𝐶2 := max{1/𝑚𝜀, 2/𝛿3/2}:

|𝑔(𝑝)| =
𝑚𝜀2

𝜋𝑡

(︂
1 − 4𝑛𝜀2𝑝2

𝑡2

)︂−1/2

≤ 𝑚𝜀2

𝜋𝑡
√

1 − 𝑛𝑉 2
≤ 𝑚𝜀2

𝑡
√
𝛿
≤ 𝜀

𝑡
√
𝛿

= 𝑂𝛿 (𝑈) ,

|𝑔(1)(𝑝)| =
4𝑚𝜀4𝑛|𝑝|
𝜋𝑡3

(︂
1 − 4𝑛𝜀2𝑝2

𝑡2

)︂−3/2

≤ 2𝑚𝜀3𝑛𝑉 𝑡

𝜋𝑡3(1 − 𝑛𝑉 2)3/2
≤ 𝑚𝜀3𝑛

𝑡2𝛿3/2
≤ 2𝜀2

𝑡2𝛿3/2
= 𝑂𝛿

(︂
𝑈

𝑁

)︂
,

|𝑔(2)(𝑝)| =
4𝑚𝜀4𝑛(8𝜀2𝑛𝑝2 + 𝑡2)

𝜋𝑡5

(︂
1 − 4𝑛𝜀2𝑝2

𝑡2

)︂−5/2

≤ 4𝑚𝜀4𝑛(2𝑛𝑉 2 + 1)𝑡2

𝜋𝑡5(1 − 𝑛𝑉 2)5/2
= 𝑂𝛿

(︂
𝜀3

𝑡3

)︂
= 𝑂𝛿

(︂
𝑈

𝑁2

)︂
,

|𝑓 (2)(𝑝)| =
4𝑚𝜀2

𝜋𝑡

(︂
1 − 4𝜀2𝑝2

𝑡2

)︂−1(︂
1 − 4𝑛𝜀2𝑝2

𝑡2

)︂−1/2

≥ 𝑚𝜀2

𝑡
≥ 𝑇

𝐶2𝑀2
,

|𝑓 (2)(𝑝)| =
4𝑚𝜀2

𝜋𝑡

(︂
1 − 4𝜀2𝑝2

𝑡2

)︂−1(︂
1 − 4𝑛𝜀2𝑝2

𝑡2

)︂−1/2

≤ 4𝑚𝜀2

𝜋𝑡 (1 − 𝑉 2)
√

1 − 𝑛𝑉 2
≤ 2𝑚𝜀2

𝑡𝛿3/2
≤ 𝐶2𝑇

𝑀2
,

|𝑓 (3)(𝑝)| =
16𝑚𝜀4 |(𝑛+ 2)𝑝𝑡2 − 12𝑛𝜀2𝑝3|

𝜋𝑡5

(︂
1 − 4𝜀2𝑝2

𝑡2

)︂−2(︂
1 − 4𝑛𝜀2𝑝2

𝑡2

)︂−3/2

= 𝑂𝛿

(︂
𝑇

𝑀3

)︂
,

|𝑓 (4)(𝑝)| =
16𝑚𝜀4 |768𝑛2𝜀6𝑝6 − 48𝑛(2𝑛+ 5)𝜀4𝑝4𝑡2 + 8(𝑛2 − 𝑛+ 3)𝜀2𝑝2𝑡4 + (𝑛+ 2)𝑡6|

𝜋𝑡9 (1 − 4𝜀2𝑝2/𝑡2)3 (1 − 4𝑛𝜀2𝑝2/𝑡2)5/2
= 𝑂𝛿

(︂
𝑇

𝑀4

)︂
.

Proof of Corollary 2. We have 𝑛+(ℎ × 𝑤) − 𝑛−(ℎ × 𝑤) = −2(𝑤+ℎ−1)/2𝑎1(𝑤 − ℎ,𝑤 + ℎ) by the
obvious bijection between the Young diagrams with exactly ℎ rows and 𝑤 columns, and checker
paths from (0, 0) to (𝑤 − ℎ,𝑤 + ℎ) passing through (1, 1) and (𝑤 − ℎ + 1, 𝑤 + ℎ − 1). Set
ℎ := ⌈𝑟𝑤⌉. Apply Theorem 2 for

𝛿 = 1
2

⃒⃒⃒
1√
2
− 𝑟−1

𝑟+1

⃒⃒⃒
, 𝑚 = 𝜀 = 1, 𝑥 = 𝑤 − ℎ, 𝑡 = 𝑤 + ℎ− 1.

It remains to show that for 𝑟 < 3 + 2
√

2 the value (14) is not bounded from 𝜋
2

+𝜋Z as 𝑤 → ∞.
Denote 𝑣 := ℎ−𝑤

𝑤+ℎ−1
and 𝑣0 := 𝑟−1

𝑟+1
. Write

𝜃(𝑣𝑡, 𝑡, 1, 1) = 𝑡

(︂
arcsin

1√
2 − 2𝑣2

− 𝑣 arcsin
𝑣√

1 − 𝑣2

)︂
+
𝜋

4
=: 𝑡𝜃(𝑣) +

𝜋

4
.

Since 𝜃(𝑣) ∈ 𝐶2[0; 1/
√

2 − 𝛿], by the Taylor expansion it follows that

𝜃(𝑣𝑡, 𝑡, 1, 1) =
𝜋

4
+ 𝑡𝜃(𝑣0) + 𝑡(𝑣 − 𝑣0)𝜃

′(𝑣0) +𝑂𝛿

(︀
𝑡(𝑣 − 𝑣0)

2
)︀
.
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Substituting

𝑣 − 𝑣0 =
ℎ− 𝑤

𝑤 + ℎ− 1
− 𝑟 − 1

𝑟 + 1
=

2ℎ− 2𝑟𝑤 + 𝑟 − 1

(𝑟 + 1)(𝑤 + ℎ− 1)
=

2{−𝑟𝑤} + 𝑟 − 1

(𝑟 + 1)𝑡
,

where ℎ = ⌈𝑟𝑤⌉ = 𝑟𝑤 + {−𝑟𝑤}, we get

𝜃(𝑣𝑡, 𝑡, 1, 1) =
𝜋

4
+ (𝑤 + 𝑟𝑤 + {−𝑟𝑤} − 1)𝜃(𝑣0) +

2{−𝑟𝑤} + 𝑟 − 1

(𝑟 + 1)
𝜃′(𝑣0) +𝑂𝛿

(︂
1

𝑤

)︂
=
𝜋

4
− 𝜃(𝑣0) + 𝑣0𝜃

′(𝑣0) + 𝑤(𝑟 + 1)𝜃(𝑣0) + {−𝑟𝑤}
(︁
𝜃(𝑣0) + 2

(𝑟+1)
𝜃′(𝑣0)

)︁
+𝑂𝛿

(︀
1
𝑤

)︀
=: 𝜋(𝛼(𝑟)𝑤 + 𝛽(𝑟){−𝑟𝑤} + 𝛾(𝑟)) +𝑂𝛿

(︀
1
𝑤

)︀
.

For almost every 𝑟, the numbers 1, 𝑟, 𝛼(𝑟) are linearly independent over the rational numbers
because the graph of the function 𝛼(𝑟) = (𝑟+ 1)𝜃

(︀
𝑟−1
𝑟+1

)︀
has a countable number of intersection

points with rational lines. Hence by the Kronecker theorem for each ∆ > 0 there are infinitely
many 𝑤 such that

{−𝑟𝑤} < ∆ and
⃒⃒
{𝛼(𝑟)𝑤} + 𝛾(𝑟) − 1

2

⃒⃒
< ∆.

By (12), the corollary follows because those 𝑤 satisfy

|sin 𝜃(𝑣𝑡, 𝑡, 1, 1)| = 1+𝑂 ((1 + 𝛽(𝑟))∆)+𝑂𝛿

(︀
1
𝑤

)︀
and 2(𝑟+1)𝑤/2 ≤ 2(𝑤+ℎ)/2 ≤ 2(𝑟+1)𝑤/2+Δ.

12.6 The Feynman problem: Taylor expansions (Corollaries 3–4)

Here we deduce the solution of the Feynman problem from Theorem 3 by Taylor expansions.

Proof of Corollary 3. First derive an asymptotic formula for the function 𝜃(𝑥, 𝑡,𝑚, 𝜀) given
by (14). Denote 𝑛 := 1 + 𝑚2𝜀2. Since 1/

√
1 + 𝑧2 = 1 + 𝑂(𝑧2), arcsin 𝑧 = 𝑧 + 𝑂 (𝑧3) for

𝑧 ∈ [−1; 1], and 𝑡/
√
𝑡2 − 𝑥2 < 1/

√︀
1 −

√
𝑛𝑥/𝑡 < 1/

√
𝛿, we get

arcsin
𝑚𝜀𝑡√︀

𝑛 (𝑡2 − 𝑥2)
=

𝑚𝜀𝑡√
1 +𝑚2𝜀2

√︀
(𝑡2 − 𝑥2)

+𝑂

(︃
𝑚3𝜀3

𝑛3/2

(︂
𝑡√

𝑡2 − 𝑥2

)︂3
)︃

=
𝑚𝜀𝑡√
𝑡2 − 𝑥2

+𝑂𝛿

(︀
𝑚3𝜀3

)︀
.

Combining with a similar asymptotic formula for arcsin 𝑚𝜀𝑥√
𝑡2−𝑥2 , we get

𝜃(𝑥, 𝑡,𝑚, 𝜀) =
𝑚𝑡2√
𝑡2 − 𝑥2

− 𝑚𝑥2√
𝑡2 − 𝑥2

+
𝜋

4
+

(︂
𝑡+ |𝑥|
𝜀

)︂
𝑂𝛿

(︀
𝑚3𝜀3

)︀
= 𝑚

√
𝑡2 − 𝑥2+

𝜋

4
+𝑂𝛿

(︀
𝑚3𝜀2𝑡

)︀
.

Since ⃒⃒⃒⃒
𝜕
√
𝑡2 − 𝑥2

𝜕𝑡

⃒⃒⃒⃒
=

𝑡√
𝑡2 − 𝑥2

<
1√
𝛿

and
⃒⃒⃒⃒
𝜕
√
𝑡2 − 𝑥2

𝜕𝑥

⃒⃒⃒⃒
=

|𝑥|√
𝑡2 − 𝑥2

<
1√
𝛿
,

by the Lagrange theorem it follows that

𝜃(𝑥, 𝑡− 𝜀,𝑚, 𝜀) = 𝑚
√
𝑡2 − 𝑥2 +

𝜋

4
+𝑂𝛿

(︀
𝑚𝜀+𝑚3𝜀2𝑡

)︀
,

𝜃(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀) = 𝑚
√
𝑡2 − 𝑥2 +

𝜋

4
+𝑂𝛿

(︀
𝑚𝜀+𝑚3𝜀2𝑡

)︀
.

Consider the remaining factors in (12)–(13). By the Lagrange theorem, for some 𝜂 ∈ [0, 𝑛𝑥2/𝑡2]
we get(︂

1 − 𝑛𝑥2

𝑡2

)︂−1/4

− 1 =
𝑛𝑥2

𝑡2
(1 − 𝜂)−5/4

4
≤ 𝑛𝑥2

𝑡2

(︂
1 − 𝑛𝑥2

𝑡2

)︂−5/4

≤ 𝑥2

𝑡2

(︂
1√
𝑛
− 𝑥

𝑡

)︂−5/4(︂
1√
𝑛

+
𝑥

𝑡

)︂−5/4

≤ 𝑥2

𝑡2
𝛿−5/2 = 𝑂𝛿

(︂
|𝑥|
𝑡

)︂
.
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Hence for 𝑡 ≥ 2𝜀 we get(︂
1 − 𝑛𝑥2

(𝑡− 𝜀)2

)︂−1/4

= 1 +𝑂𝛿

(︂
|𝑥|
𝑡

)︂
and

(︂
1 − 𝑛(𝑥− 𝜀)2

(𝑡− 𝜀)2

)︂−1/4

= 1 +𝑂𝛿

(︂
|𝑥| + 𝜀

𝑡

)︂
.

We also have√︂
𝑡− 𝜀+ 𝑥− 𝜀

𝑡− 𝑥
=

√︂
1 + 2

𝑥− 𝜀

𝑡− 𝑥
= 1 +𝑂

(︂
𝑥− 𝜀

𝑡− 𝑥

)︂
= 1 +𝑂𝛿

(︂
|𝑥| + 𝜀

𝑡

)︂
.

Substituting all the resulting asymptotic formulae into (12)–(13), we get

Re 𝑎 (𝑥, 𝑡,𝑚, 𝜀) = 𝜀

√︂
2𝑚

𝜋𝑡

(︂
sin
(︁
𝑚
√
𝑡2 − 𝑥2 +

𝜋

4

)︁
+𝑂𝛿

(︂
1

𝑚𝑡
+

|𝑥| + 𝜀

𝑡
+𝑚𝜀+𝑚3𝜀2𝑡

)︂)︂
,

Im 𝑎 (𝑥, 𝑡,𝑚, 𝜀) = 𝜀

√︂
2𝑚

𝜋𝑡

(︂
cos
(︁
𝑚
√
𝑡2 − 𝑥2 +

𝜋

4

)︁
+𝑂𝛿

(︂
1

𝑚𝑡
+

|𝑥| + 𝜀

𝑡
+𝑚𝜀+𝑚3𝜀2𝑡

)︂)︂
.

Since 𝑚𝜀 ≤ 1
𝑚𝑡

+𝑚3𝜀2𝑡 and 𝜀
𝑡
≤ 1

𝑚𝑡
by the assumption 𝜀 ≤ 1/𝑚, the corollary follows.

Proof of Corollary 4. This follows directly from Corollary 3 by plugging in the Taylor expansion

√
𝑡2 − 𝑥2 = 𝑡

(︂
1 − 𝑥2

2𝑡2
+𝑂𝛿

(︂
𝑥4

𝑡4

)︂)︂
for

|𝑥|
𝑡
< 1 − 𝛿.

12.7 Continuum limit: the tail-exchange method (Theorem 4 and
Corollaries 5–6)

Proof of Theorem 4. The proof is based on the tail-exchange method and consists of 5 steps:

Step 1: dropping the normalization factor in (9)–(10), which is of order 1.

Step 2: dropping the summands in (9)–(10) starting from a number 𝑇 (we take 𝑇 = ⌈log 𝛿
𝜀
⌉).

Step 3: replacing the binomial coefficients by powers in each of the remaining summands.

Step 4: replacing the resulting sum by infinite power series.

Step 5: combining the error bounds in the previous steps to get the total approximation error.

Let us derive the asymptotic formula for 𝑎1 (𝑥, 𝑡,𝑚, 𝜀); the argument for 𝑎2 (𝑥, 𝑡,𝑚, 𝜀) is
analogous.

Step 1. Consider the 1st factor in (9). We have 0 ≥ (1− 𝑡/𝜀)/2 ≥ −𝑡/𝜀 because 𝑡 ≥ 𝛿 ≥ 𝜀.
Exponentiating, we get

1 ≥
(︀
1 +𝑚2𝜀2

)︀(1−𝑡/𝜀)/2 ≥
(︀
1 +𝑚2𝜀2

)︀−𝑡/𝜀 ≥ 𝑒−𝑚2𝜀2𝑡/𝜀 ≥ 1 −𝑚2𝑡𝜀,

where in the latter two inequalities we used that 𝑒𝑎 ≥ 1 + 𝑎 for each 𝑎 ∈ R. Thus(︀
1 +𝑚2𝜀2

)︀(1−𝑡/𝜀)/2
= 1 +𝑂(𝑚2𝑡𝜀).

Step 2. Consider the 𝑇 -th partial sum in (9) with 𝑇 = ⌈log 𝛿
𝜀
⌉ summands. The total

number of summands is indeed at least 𝑇 because (𝑡 − |𝑥|)/2𝜀 ≥ 𝛿/2𝜀 ≥ log(𝛿/𝜀) by the
inequalities 𝑡− |𝑥| ≥ 𝛿 > 𝜀 and 𝑒𝑎 ≥ 1 + 𝑎+ 𝑎2/2 ≥ 2𝑎 for each 𝑎 ≥ 0.

For 𝑟 ≥ 𝑇 the ratio of consecutive summands in (9) equals

(𝑚𝜀)2
((𝑡+ 𝑥)/2𝜀− 1 − 𝑟)((𝑡− 𝑥)/2𝜀− 1 − 𝑟)

(𝑟 + 1)2
< (𝑚𝜀)2 · (𝑡+ 𝑥)

2𝜀𝑇
· (𝑡− 𝑥)

2𝜀𝑇
=
𝑚2𝑠2

4𝑇 2
<

1

2
,
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where the latter inequality follows from 𝑇 = ⌈log 𝛿
𝜀
⌉ > ⌈log 𝑒3𝑚𝑠⌉ ≥ 3𝑚𝑠. Therefore, the error

term (i.e., the sum over 𝑟 ≥ 𝑇 ) is less then the sum of geometric series with ratio 1
2
. Thus by

Proposition 11 we get

𝑎1 (𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀
(︀
1 +𝑂

(︀
𝑚2𝑡𝜀

)︀)︀
·

[︃
𝑇−1∑︁
𝑟=0

(−1)𝑟
(︂

(𝑡+ 𝑥)/2𝜀− 1

𝑟

)︂(︂
(𝑡− 𝑥)/2𝜀− 1

𝑟

)︂
(𝑚𝜀)2𝑟 +

+ 𝑂

(︂(︂
(𝑡+ 𝑥)/2𝜀− 1

𝑇

)︂(︂
(𝑡− 𝑥)/2𝜀− 1

𝑇

)︂
(𝑚𝜀)2𝑇

)︂]︂
.

Step 3. To approximate the sum, take integers 𝐿 := (𝑡 ± 𝑥)/2𝜀, 𝑟 < 𝑇 , and transform
binomial coefficients as follows:(︂

𝐿− 1

𝑟

)︂
=

(𝐿− 1) · · · (𝐿− 𝑟)

𝑟!
=
𝐿𝑟

𝑟!

(︂
1 − 1

𝐿

)︂
· · ·
(︁

1 − 𝑟

𝐿

)︁
.

Here
𝑟

𝐿
=

2𝑟𝜀

𝑡± 𝑥
<

2𝑇𝜀

𝛿
=

2𝜀

𝛿

⌈︂
log

𝛿

𝜀

⌉︂
≤ 2𝜀

𝛿

(︂
log

𝛿

𝜀
+ 1

)︂
<

1

2
,

because 𝛿/𝜀 ≥ 16, and 2(log 𝑎 + 1)/𝑎 decreases for 𝑎 ≥ 16 and is less than 1/2 for 𝑎 = 16.
Applying the inequality 1 − 𝑎 ≥ 𝑒−2𝑎 for 0 ≤ 𝑎 ≤ 1/2, then the inequalities 1 − 𝑎 ≤ 𝑒−𝑎 and
𝐿 ≥ 𝛿/2𝜀, we get(︂

1 − 1

𝐿

)︂
· · ·
(︁

1 − 𝑟

𝐿

)︁
≥ 𝑒−2/𝐿𝑒−4/𝐿 · · · 𝑒−2𝑟/𝐿 = 𝑒−𝑟(𝑟+1)/𝐿 ≥ 𝑒−𝑇 2/𝐿 ≥ 1 − 𝑇 2

𝐿
≥ 1 − 2𝑇 2𝜀

𝛿
.

Therefore,

(𝑡± 𝑥)𝑟

𝑟!(2𝜀)𝑟
≥
(︂

(𝑡± 𝑥)/2𝜀− 1

𝑟

)︂
≥ (𝑡± 𝑥)𝑟

𝑟!(2𝜀)𝑟

(︂
1 − 2𝑇 2𝜀

𝛿

)︂
.

Inserting the result into the expression for 𝑎1(𝑥, 𝑡,𝑚, 𝜀) from Step 2, we get

𝑎1 (𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀
(︀
1 +𝑂

(︀
𝑚2𝑡𝜀

)︀)︀
·

·

[︃
𝑇−1∑︁
𝑟=0

(−1)𝑟
(︁𝑚

2

)︁2𝑟 (𝑡2 − 𝑥2)𝑟

(𝑟!)2

(︂
1 +𝑂

(︂
𝑇 2𝜀

𝛿

)︂)︂
+𝑂

(︂(︁𝑚
2

)︁2𝑇 (𝑡2 − 𝑥2)𝑇

(𝑇 !)2

(︂
1 +

𝑇 2𝜀

𝛿

)︂)︂]︃
.

The latter error term in the formula is estimated as follows. Since 𝑇 ! ≥ (𝑇/3)𝑇 and

𝑇 ≥ log
𝛿

𝜀
≥ 3𝑚

√
𝑡2 − 𝑥2 ≥ 3𝑚

2

√
𝑡2 − 𝑥2

√
𝑒,

it follows that
(𝑡2 − 𝑥2)𝑇

(𝑇 !)2
·
(︁𝑚

2

)︁2𝑇
≤ (𝑡2 − 𝑥2)𝑇

(𝑇 )2𝑇
·
(︂

3𝑚

2

)︂2𝑇

≤ 𝑒−𝑇 ≤ 𝜀

𝛿
.

We have (𝜀/𝛿) (1 + 𝑇 2𝜀/𝛿) = 𝑂 (𝑇 2𝜀/𝛿) because 𝑇 ≥ 1 and 𝜀 < 𝛿. Thus the error term in
question can be absorbed into the 0-th summand 𝑂 (𝑇 2𝜀/𝛿). We get

𝑎1 (𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀
(︀
1 +𝑂

(︀
𝑚2𝑡𝜀

)︀)︀
·
𝑇−1∑︁
𝑟=0

(−1)𝑟
(︁𝑚

2

)︁2𝑟 (𝑡2 − 𝑥2)𝑟

(𝑟!)2

(︂
1 +𝑂

(︂
𝑇 2𝜀

𝛿

)︂)︂
.

Notice that by our notational convention the constant understood in 𝑂 (𝑇 2𝜀/𝛿) does not depend
on 𝑟.

Step 4. Now we can replace the sum with 𝑇 summands by an infinite sum because the
“tail” of alternating series with decreasing absolute value of the summands can be estimated by
the first summand (which has just been estimated):⃒⃒⃒⃒

⃒
∞∑︁

𝑟=𝑇

(−1)𝑟
(︁𝑚

2

)︁2𝑟 (𝑡2 − 𝑥2)𝑟

(𝑟!)2

⃒⃒⃒⃒
⃒ ≤ (𝑡2 − 𝑥2)𝑇

(𝑇 !)2
·
(︁𝑚

2

)︁2𝑇
≤ 𝜀

𝛿
= 𝑂

(︂
𝑇 2𝜀

𝛿

)︂
.
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Since the constant understood in each summand 𝑂
(︁

𝑇 2𝜀
𝛿

)︁
is the same (see Step 3), we get

𝑎1 (𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀
(︀
1 +𝑂

(︀
𝑚2𝑡𝜀

)︀)︀
·

∞∑︁
𝑟=0

(−1)𝑟
(︁𝑚

2

)︁2𝑟 (𝑡2 − 𝑥2)𝑟

(𝑟!)2

[︂
1 +𝑂

(︂
𝑇 2𝜀

𝛿

)︂]︂
= 𝑚𝜀

(︀
1 +𝑂

(︀
𝑚2𝑡𝜀

)︀)︀
·
(︂
𝐽0(𝑚𝑠) +𝑂

(︂
𝑇 2𝜀

𝛿
𝐼0(𝑚𝑠)

)︂)︂
,

where we use the modified Bessel functions of the first kind :

𝐼0(𝑧) :=
∞∑︁
𝑘=0

(𝑧/2)2𝑘

(𝑘!)2
, 𝐼1(𝑧) :=

∞∑︁
𝑘=0

(𝑧/2)2𝑘+1

𝑘!(𝑘 + 1)!
.

Step 5. We have 𝑚2𝑡𝛿 ≤ 𝑚2(𝑡+ |𝑥|)(𝑡− |𝑥|) = 𝑚2𝑠2 ≤ 9𝑚2𝑠2 ≤ 𝑇 2. Thus 𝑚2𝑡𝜀 𝐽0(𝑚𝑠) ≤
𝑇 2𝜀 𝐼0(𝑚𝑠)/𝛿 and 𝑚2𝑡𝜀 ≤ 𝑇 2𝜀/𝛿 < (log(𝛿/𝜀) + 1)2𝜀/𝛿 < 2 because (𝑎 + 1)2/2 < 𝑒𝑎 for 𝑎 ≥ 0.
We arrive at the formula

𝑎1 (𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀

(︂
𝐽0(𝑚𝑠) +𝑂

(︂
𝜀

𝛿
log2 𝛿

𝜀
𝐼0(𝑚𝑠)

)︂)︂
.

Analogously,

𝑎2 (𝑥, 𝑡,𝑚, 𝜀) = 𝑚𝜀
(︀
1 +𝑂

(︀
𝑚2𝑡𝜀

)︀)︀
· 𝑡+ 𝑥√

𝑡2 − 𝑥2
·
𝑇−1∑︁
𝑟=1

(−1)𝑟
(︁𝑚

2

)︁2𝑟−1 (𝑡2 − 𝑥2)
2𝑟−1

2

(𝑟 − 1)!𝑟!

[︂
1 +𝑂

(︂
𝑇 2𝜀

𝛿

)︂]︂
= −𝑚𝜀 · 𝑡+ 𝑥

𝑠

(︂
𝐽1(𝑚𝑠) +𝑂

(︂
𝜀

𝛿
log2 𝛿

𝜀
𝐼1(𝑚𝑠)

)︂)︂
.

This gives the required asymptotic formula for 𝑎 (𝑥, 𝑡,𝑚, 𝜀) because

𝐼0(𝑚𝑠) ≤
∞∑︁
𝑘=0

(𝑚𝑠/2)2𝑘

𝑘!
= 𝑒𝑚

2𝑠2/4 ≤ 𝑒𝑚
2𝑡2 ,

𝑡+ 𝑥

𝑠
𝐼1(𝑚𝑠) ≤

𝑡+ 𝑥

𝑠
· 𝑚𝑠

2

∞∑︁
𝑘=0

(𝑚𝑠/2)2𝑘

𝑘!
= 𝑚

𝑡+ 𝑥

2
𝑒𝑚

2𝑠2/4 ≤ 𝑚𝑡 𝑒𝑚
2𝑡2/4 ≤ 𝑒𝑚

2𝑡2/2𝑒𝑚
2𝑡2/4 ≤ 𝑒𝑚

2𝑡2 .

Proof of Corollary 5. This follows from Theorem 4 because the right-hand side of (18) is uni-
formly continuous on each compact subset of the angle |𝑥| < 𝑡.

Proof of Corollary 6. Since the right-hand side of (18) is continuous on [−𝑡 + 𝛿; 𝑡 − 𝛿], it is
bounded there. Since a sequence uniformly converging to a bounded function is uniformly
bounded, by Corollary 5 the absolute value of the left-hand side of (18) is less than some
constant 𝐶𝑡,𝑚,𝛿 depending on 𝑡,𝑚, 𝛿 but not on 𝑥, 𝜀. Then by Proposition 6 for 𝑡/2𝜀 ∈ Z we get

1 −
∑︁

𝑥∈𝜀Z:|𝑥|≥𝑡−𝛿

𝑃 (𝑥, 𝑡,𝑚, 𝜀) =
∑︁

𝑥∈𝜀Z:|𝑥|<𝑡−𝛿

𝑃 (𝑥, 𝑡,𝑚, 𝜀) =
∑︁

𝑥∈𝜀Z:|𝑥|<𝑡−𝛿

4𝜀2
⃒⃒⃒⃒

1

2𝜀
𝑎(𝑥, 𝑡,𝑚, 𝜀)

⃒⃒⃒⃒2
< 4𝜀2𝐶2

𝑡,𝑚,𝛿

𝑡− 𝛿

𝜀
→ 0 as 𝜀→ 0.

12.8 Probability of chirality flip: combinatorial identities (Theorem 5)

Although Theorem 5 can be deduced from (73), we give a direct proof relying on §12.1 only.

Proof of Theorem 5. Denote 𝑆1(𝑡) =
∑︀

𝑥 𝑎
2
1(𝑥, 𝑡); 𝑆2(𝑡) =

∑︀
𝑥 𝑎

2
2(𝑥, 𝑡); 𝑆12(𝑡) =

∑︀
𝑥 𝑎1(𝑥, 𝑡)𝑎2(𝑥, 𝑡).

By Propositions 1, 8, and 9 we have

𝑎1(0, 2𝑡) =
1√
2

∑︁
𝑥

𝑎1(𝑥, 𝑡)(𝑎2(𝑥, 𝑡)−𝑎1(𝑥, 𝑡))+𝑎2(𝑥, 𝑡)(𝑎2(𝑥, 𝑡)+𝑎1(𝑥, 𝑡)) =
1√
2

(𝑆2(𝑡)+2𝑆12(𝑡)−𝑆1(𝑡)).
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By definition and Proposition 1 we have

𝑆1(𝑡+ 1) − 𝑆2(𝑡+ 1) = 2𝑆12(𝑡).

Hence,
𝑆1(𝑡+ 1) − 𝑆2(𝑡+ 1) = 𝑆1(𝑡) − 𝑆2(𝑡) + 𝑎1(0, 2𝑡)

√
2.

Since 𝑆1(𝑡) + 𝑆2(𝑡) = 1 by Proposition 2, we have the recurrence relation 𝑆1(𝑡 + 1) = 𝑆1(𝑡) +
1√
2
𝑎1(0, 2𝑡); cf. [22, (33)]. Then Proposition 4 implies by induction that

𝑆1(𝑡) =
1

2

⌊𝑡/2⌋−1∑︁
𝑘=0

1

(−4)𝑘

(︂
2𝑘

𝑘

)︂
.

By the Newton binomial theorem we get
∑︀∞

𝑘=0

(︀
2𝑘
𝑘

)︀
𝑥𝑘 = 1√

1−4𝑥
for each 𝑥 ∈

[︀
−1

4
, 1
4

)︀
. Setting

𝑥 = −1
4

we obtain lim𝑡→∞
1
2

∑︀∞
𝑘=0

(︀
2𝑘
𝑘

)︀ (︀
−1

4

)︀𝑘
= 1

2
√
2
. Using the Stirling formula we estimate the

convergence rate:⃒⃒⃒⃒
⃒∑︁
𝑥∈Z

𝑎1(𝑥, 𝑡)
2 − 1

2
√

2

⃒⃒⃒⃒
⃒ < 1

2 · 4⌊𝑡/2⌋

(︂
2⌊𝑡/2⌋
⌊𝑡/2⌋

)︂
<

𝑒

2𝜋
√︀

2⌊𝑡/2⌋
<

1

2
√
𝑡
.

Underwater rocks

Finally, let us warn a mathematically-oriented reader. The outstanding papers [2, 28, 29]
are well-written, insomuch that the physical theorems and proofs there could be carelessly taken
for mathematical ones, although some of them are wrong as written. The main source of those
issues is actually application of a wrong theorem from a mathematical paper [9, Theorem 3.3].

A simple counterexample to [9, Theorem 3.3] is 𝑎 = 𝑏 = 𝛼 = 𝛽 = 𝑥 = 0 and 𝑛 odd.
Those values automatically satisfy the assumptions of the theorem, that is, condition (ii) of [9,
Lemma 3.1]. Then by Remark 3 and Proposition 4, the left-hand side of [9, (2.16)] vanishes.
Thus it cannot be equivalent to the nonvanishing sequence in the right-hand side. Here we
interpret the “≈” sign in [9, (2.16)] as the equivalence of sequences, following [28]. An attempt
to interpret the sign so that the difference between the left- and the right-hand sides of [9, (2.16)]
tends to zero would void the result because each of the sides clearly tends to zero separately.
A similar counterexample (𝑛 = −1, 𝑡 even) shows that [2, Theorem 2] is wrong as stated.

Although [2, 28, 29] report minor errors in [9], the issue is more serious. The known
asymptotic formulae for Jacobi polynomials are never stated as an equivalence but rather
contain an additive error term. Estimating the error term is hard even in particular cases
studied in [30], and the case from Remark 3 is reported as more difficult [30, bottom p. 198].
Thus [9, Theorem 3.3] should be viewed as an interesting physical but not mathematical result.
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A A. Kudryavtsev. Alternative “explicit” formulae

Set
(︀
𝑛
𝑘

)︀
:= 0 for integers 𝑘 < 0 < 𝑛 or 𝑘 > 𝑛 > 0. Denote 𝜃(𝑥) :=

{︃
1, if 𝑥 ≥ 0,

0, if 𝑥 < 0.

Proposition 18 (“Explicit” formula). For each integers |𝑥| < 𝑡 such that 𝑥+ 𝑡 is even we have:

(A) 𝑎1(𝑥, 𝑡) = 2(1−𝑡)/2

(𝑡−|𝑥|)/2∑︁
𝑟=0

(−2)𝑟
(︂

(𝑥+ 𝑡− 2)/2

𝑟

)︂(︂
𝑡− 𝑟 − 2

(𝑥+ 𝑡− 2)/2

)︂
,

𝑎2(𝑥, 𝑡) = 2(1−𝑡)/2

(𝑡−|𝑥|)/2∑︁
𝑟=0

(−2)𝑟
(︂

(𝑥+ 𝑡− 2)/2

𝑟

)︂(︂
𝑡− 𝑟 − 2

(𝑥+ 𝑡− 4)/2

)︂
;

(B) 𝑎1(𝑥, 𝑡) = 2(1−𝑡)/2

(𝑡−|𝑥|)/2∑︁
𝑟=0

(−1)𝑟
(︂

(𝑡− |𝑥| − 2)/2

𝑟

)︂(︂
|𝑥|

(𝑡+ |𝑥| − 4𝑟 − 2)/2

)︂
,

𝑎2(𝑥, 𝑡) = 2(1−𝑡)/2

(𝑡−|𝑥|)/2∑︁
𝑟=0

(−1)𝑟
(︂

(𝑡− |𝑥| − 2)/2

𝑟 − 𝜃(𝑥)

)︂(︂
|𝑥|

(𝑡+ |𝑥| − 4𝑟)/2

)︂
.

Proof of Proposition 18(A). Introduce the generating functions

�̂�1(𝑝, 𝑞) := 2𝑛/2
∑︁

𝑛>𝑘≥0

𝑎1(2𝑘−𝑛+1, 𝑛+1)𝑝𝑘𝑞𝑛 and �̂�2(𝑝, 𝑞) := 2𝑛/2
∑︁

𝑛>𝑘≥0

𝑎2(2𝑘−𝑛+1, 𝑛+1)𝑝𝑘𝑞𝑛.

By Proposition 1 we get{︃
�̂�1(𝑝, 𝑞) − �̂�1(𝑝, 0) = 𝑞 · (�̂�2(𝑝, 𝑞) + �̂�1(𝑝, 𝑞));

�̂�2(𝑝, 𝑞) − �̂�2(𝑝, 0) = 𝑝𝑞 · (�̂�2(𝑝, 𝑞) − �̂�1(𝑝, 𝑞)).

Since �̂�1(𝑝, 0) = 0 and �̂�2(𝑝, 0) = 1, the solution of this system is

�̂�2(𝑝, 𝑞) =
1 − 𝑞

1 − 𝑞 − 𝑝𝑞 + 2𝑝𝑞2
, �̂�1(𝑝, 𝑞) =

𝑞

1 − 𝑞 − 𝑝𝑞 + 2𝑝𝑞2
= 𝑞+𝑞2(1+𝑝−2𝑝𝑞)+𝑞3(1+𝑝−2𝑝𝑞)2+. . .

The coefficient before 𝑝𝑘𝑞𝑛 in �̂�1(𝑝, 𝑞) equals

𝑛∑︁
𝑗=max(𝑘,𝑛−𝑘)

(−2)𝑛−𝑗−1 ·
(︂

𝑗

𝑛− 𝑗 − 1 𝑘 − 𝑛+ 𝑗 + 1 𝑗 − 𝑘

)︂
,

because we must take exactly one combination of factors from every summand of the form
𝑞𝑗+1(1 + 𝑝− 2𝑝𝑞)𝑗:

∙ for the power of 𝑞 to be equal to 𝑛, the number of factors −2𝑝𝑞 must be 𝑛− 𝑗 − 1;

∙ for the power of 𝑝 to be equal to 𝑘, the number of factors 𝑝 must be 𝑘 − (𝑛− 𝑗 − 1);

∙ the number of remaining factors 1 must be 𝑗 − (𝑘 − (𝑛− 𝑗 − 1)) − (𝑛− 𝑗 − 1) = 𝑗 − 𝑘.

Changing the summation variable to 𝑟 = 𝑛−𝑗−1, we arrive at the required formula for 𝑎1(𝑥, 𝑡).
The formula for 𝑎2(𝑥, 𝑡) follows from the one for 𝑎1(𝑥, 𝑡), Proposition 1, and the Pascal rule:

𝑎2(𝑥, 𝑡) =
√

2 𝑎1(𝑥− 1, 𝑡+ 1) − 𝑎1(𝑥, 𝑡)

= 2(1−𝑡)/2

(𝑡−|𝑥|)/2∑︁
𝑟=0

(−2)𝑟
(︂

(𝑥+ 𝑡− 2)/2

𝑟

)︂(︂(︂
𝑡− 𝑟 − 1

(𝑥+ 𝑡− 2)/2

)︂
−
(︂

𝑡− 𝑟 − 2

(𝑥+ 𝑡− 2)/2

)︂)︂

= 2(1−𝑡)/2

(𝑡−|𝑥|)/2∑︁
𝑟=0

(−2)𝑟
(︂

(𝑥+ 𝑡− 2)/2

𝑟

)︂(︂
𝑡− 𝑟 − 2

(𝑥+ 𝑡− 4)/2

)︂
.
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Proof of Proposition 18(B). (by A. Voropaev) By Proposition 4, for each |𝑥| < 𝑡 the numbers
𝑎1(𝑥, 𝑡) and 𝑎2(𝑥, 𝑡) are the coefficients before 𝑧(𝑡−𝑥−2)/2 and 𝑧(𝑡−𝑥)/2 respectively in the expansion
of the polynomial

2(1−𝑡)/2(1 + 𝑧)(𝑡−𝑥−2)/2(1 − 𝑧)(𝑡+𝑥−2)/2 =

{︃
2(1−𝑡)/2(1 − 𝑧2)

𝑡−𝑥−2
2 (1 − 𝑧)𝑥, for 𝑥 ≥ 0;

2(1−𝑡)/2(1 − 𝑧2)
𝑡+𝑥−2

2 (1 + 𝑧)−𝑥, for 𝑥 < 0.

For 𝑥 < 0, this implies the required proposition immediately. For 𝑥 ≥ 0, we first change the
summation variable to 𝑟′ = (𝑡 − 𝑥 − 2)/2 − 𝑟 or 𝑟′ = (𝑡 − 𝑥)/2 − 𝑟 for 𝑎1(𝑥, 𝑡) and 𝑎2(𝑥, 𝑡)
respectively.

B A. Lvov. Pointwise continuum limit
Theorem 7 (Pointwise continuum limit). For each real 𝑚 ≥ 0 and |𝑥| < 𝑡 we have

lim
𝑛→∞

𝑛 𝑎1

(︂
2

𝑛

⌊︁𝑛𝑥
2

⌋︁
,

2

𝑛

⌊︂
𝑛𝑡

2

⌋︂
,𝑚,

1

𝑛

)︂
= 𝑚𝐽0(𝑚

√
𝑡2 − 𝑥2);

lim
𝑛→∞

𝑛 𝑎2

(︂
2

𝑛

⌊︁𝑛𝑥
2

⌋︁
,

2

𝑛

⌊︂
𝑛𝑡

2

⌋︂
,𝑚,

1

𝑛

)︂
= −𝑚 𝑥+ 𝑡√

𝑡2 − 𝑥2
𝐽1(𝑚

√
𝑡2 − 𝑥2).

Proof of Theorem 7. Denote 𝐴 := ⌊𝑛𝑥
2
⌋+⌊𝑛𝑡

2
⌋ and 𝐵 := ⌊𝑛𝑡

2
⌋−⌊𝑛𝑥

2
⌋. The first limit is computed

as follows:

𝑛 𝑎1

(︂
2

𝑛

⌊︁𝑛𝑥
2

⌋︁
,

2

𝑛

⌊︂
𝑛𝑡

2

⌋︂
,𝑚,

1

𝑛

)︂
= 𝑛

(︂
1 +

𝑚2

𝑛2

)︂⌊𝑛𝑡
2
⌋− 1

2

·
∞∑︁
𝑟=0

(−1)𝑟
(︂
𝐴− 1

𝑟

)︂(︂
𝐵 − 1

𝑟

)︂(︁𝑚
𝑛

)︁2𝑟+1

∼
∞∑︁
𝑟=0

(−1)𝑟
(︂
𝐴− 1

𝑟

)︂(︂
𝐵 − 1

𝑟

)︂
𝑚2𝑟+1

𝑛2𝑟
=

∞∑︁
𝑟=0;2|𝑟

(︂
𝐴− 1

𝑟

)︂(︂
𝐵 − 1

𝑟

)︂
𝑚2𝑟+1

𝑛2𝑟
−

∞∑︁
𝑟=0;2-𝑟

(︂
𝐴− 1

𝑟

)︂(︂
𝐵 − 1

𝑟

)︂
𝑚2𝑟+1

𝑛2𝑟

→
∞∑︁

𝑟=0;2|𝑟

(𝑥+ 𝑡)𝑟(𝑡− 𝑥)𝑟𝑚2𝑟+1

22𝑟(𝑟!)2
−

∞∑︁
𝑟=0;2-𝑟

(𝑥+ 𝑡)𝑟(𝑡− 𝑥)𝑟𝑚2𝑟+1

22𝑟(𝑟!)2
= 𝑚𝐽0(𝑚

√
𝑡2 − 𝑥2) as 𝑛→ ∞.

Here the equality in the 1st line is Proposition 11. The equivalence in the 2nd line follows from

1 ≤
(︂

1 +
𝑚2

𝑛2

)︂⌊𝑛𝑡
2
⌋− 1

2

≤
(︂

1 +
𝑚2

𝑛2

)︂𝑛𝑡

=
𝑛

√︃(︂
1 +

𝑚2

𝑛2

)︂𝑛2𝑡

∼ 𝑛
√
𝑒𝑚2𝑡 → 1 as 𝑛→ ∞,

by the squeeze theorem. The equality in the 2nd line holds because
(︀
𝐴−1
𝑟

)︀(︀
𝐵−1
𝑟

)︀
𝑚2𝑟+1

𝑛2𝑟 = 0
for 𝑟 > max{𝐴,𝐵}, hence as all the three sums involved are finite. The convergence in the
3rd line is established in Lemmas 28–30 below. The second limit in the theorem is computed
analogously.

Lemma 28. For each positive integer 𝑟 we have lim
𝑛→∞

(︀
𝐴−1
𝑟

)︀(︀
𝐵−1
𝑟

)︀
𝑚2𝑟+1

𝑛2𝑟 = (𝑥+𝑡)𝑟(𝑡−𝑥)𝑟𝑚2𝑟+1

22𝑟(𝑟!)2
.

Proof. We have(︂
𝐴− 1

𝑟

)︂(︂
𝐵 − 1

𝑟

)︂
𝑚2𝑟+1

𝑛2𝑟
=

(𝐴− 1) . . . (𝐴− 𝑟) · (𝐵 − 1) . . . (𝐵 − 𝑟)

(𝑟!)2
·𝑚

2𝑟+1

𝑛2𝑟
→
(︂
𝑥+ 𝑡

2

)︂𝑟 (︂
𝑡− 𝑥

2

)︂𝑟
𝑚2𝑟+1

(𝑟!)2

as 𝑛→ ∞ because for each 1 ≤ 𝑖 ≤ 𝑟

lim
𝑛→∞

𝐴− 𝑖

𝑛
= lim

𝑛→∞

𝐴

𝑛
= lim

𝑛→∞

⌊𝑛𝑥
2
⌋ + ⌊𝑛𝑡

2
⌋

𝑛
= lim

𝑛→∞

𝑛𝑥
2

+ 𝑛𝑡
2

+ 𝑜(𝑛)

𝑛
=
𝑥+ 𝑡

2

and analogously, lim
𝑛→∞

𝐵−𝑖
𝑛

= 𝑡−𝑥
2

.
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Lemma 29. For each positive integer 𝑟 we have
(︀
𝐴−1
𝑟

)︀(︀
𝐵−1
𝑟

)︀
𝑚2𝑟+1

𝑛2𝑟 ≤ (𝑥+𝑡)𝑟(𝑡−𝑥)𝑟𝑚2𝑟+1

22𝑟(𝑟!)2
.

Proof. This follows analogously because for each 1 ≤ 𝑖 ≤ 𝑟 < min{𝐴,𝐵} we have

(𝐴− 𝑖)(𝐵 − 𝑖) ≤
(︂⌊︁𝑛𝑥

2

⌋︁
+

⌊︂
𝑛𝑡

2

⌋︂
− 1

)︂(︂⌊︂
𝑛𝑡

2

⌋︂
−
⌊︁𝑛𝑥

2

⌋︁
− 1

)︂
≤
(︂
𝑛𝑥

2
+
𝑛𝑡

2

)︂(︂
𝑛𝑡

2
− 𝑛𝑥

2

)︂
.

Lemma 30. Suppose ({𝑎0(𝑛)}, {𝑎1(𝑛)} . . . ) is a sequence of nonnegative sequences such that

lim
𝑛→∞

𝑎𝑘(𝑛) = 𝑏𝑘 for each 𝑘; 𝑎𝑘(𝑛) ≤ 𝑏𝑘 for each 𝑘, 𝑛; and
∞∑︀
𝑘=0

𝑏𝑘 is finite. Then lim
𝑛→∞

∞∑︀
𝑘=0

𝑎𝑘(𝑛) =

∞∑︀
𝑘=0

𝑏𝑘.

Proof. Denote 𝑏 :=
∞∑︀
𝑘=0

𝑏𝑘. Then for each 𝑛 we have
∞∑︀
𝑘=0

𝑎𝑘(𝑛) ≤ 𝑏. Take any 𝜀 > 0. Take

such 𝑁 that
𝑁∑︀
𝑘=0

𝑏𝑘 > 𝑏 − 𝜀. For each 0 ≤ 𝑘 ≤ 𝑁 take 𝑀𝑘 such that for each 𝑛 ≥ 𝑀𝑘 we

have 𝑎𝑘(𝑛) > 𝑏𝑘 − 𝜀
2𝑘+1 . Then for each 𝑛 > max{𝑀0,𝑀1, . . . ,𝑀𝑁} we have

∞∑︀
𝑘=0

𝑎𝑘(𝑛) > 𝑏− 2𝜀.

Therefore, lim
𝑛→∞

∞∑︀
𝑘=0

𝑎𝑘(𝑛) = 𝑏.
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