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EQUIDISTRIBUTIONS OF MESH PATTERNS OF LENGTH TWO AND

KITAEV AND ZHANG’S CONJECTURES

BIN HAN AND JIANG ZENG

Abstract. A systematic study of avoidance of mesh patterns of length 2 was conducted
by Hilmarsson et al. in 2015. In a recent paper Kitaev and Zhang examined the distri-
bution of the aforementioned patterns. The aim of this paper is to prove more equidistri-
butions of mesh pattern and confirm Kitaev and Zhang’s four conjectures by constructing
two involutions on permutations.

1. Introduction

Patterns in permutations and words have implicitly appeared in the mathematics lit-
erature for over a century, but interest in them has blown up in the past four decades
(see [3, 6, 8, 12, 15] and references therein), and the research of this area continues to in-
crease gradually.

Let Sn be the set of all permutations of length n. A (classical permutation) pattern is a
permutation τ ∈ Sn. We could draw the pattern 231 ∈ S3 as follows, where the horizontal
lines represent the values and the vertical lines denote the positions in the pattern.

To study the explicit expansions for certain permutation statistics as, possibly infinite,
linear combinations of (classical) permutation patterns, Brändén and Claesson [3] first
introduced the notion of a mesh pattern, which generalize several classes of patterns.

A pair (τ, R), where τ is a permutation of length k and R is a subset of J0, kK × J0, kK,
where J0, kK denotes the interval of the integers from 0 to k, is a mesh pattern of length k.
Let (i, j) denote the box whose corners have coordinates (i, j), (i, j + 1), (i+ 1, j + 1), and
(i+ 1, j). Mesh patterns can be depicted by shading the boxes in R. A mesh pattern with
τ = 231 and R = {(1, 2), (2, 1)} is drawn as follows.
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For example, the permutation 346512 depicted in the following picture contains the mesh
pattern (231, {(1, 2), (2, 1)}) since the subsequence 462 forms the classical pattern 231 and
there are no points in the shaded areas.

346512 =

The mesh patterns and their generalizations were studied in many papers; e.g. see [1,2,6,
7,9–12,16,17]. In the first systemically study of the mesh patterns avoidance, Hilmarsson et
al. [6] solved 25 out of 65 non-equivalent avoidance cases of patterns of length 2. In a recent
paper [12], Kitaev and Zhang further studied the distributions of mesh patterns considered
in [6] by giving 27 distribution results see [12, Table 1]. Moreover, for the unsolved case,
they gave an equidistribution result and conjectured 6 more equidistributions (see Table 1).
In this paper, we prove 3 conjectured equidistributions and 2 more equidistribuions (see
Table 2) by constructing two involutions.

Nr. Repr. p Ref. Nr. Repr. p Ref.

proved 48
[12, Theorem 5.1]

equidistributions 49

23
Theorem 1.9

53
Theorem 1.6

conjectured
24 54

equidistributions
48

57
N/A

49 Theorem 1.6 and
58

50 [12, Theorem 5.1]
61

N/A

62

Table 1. Equidistributions for which enumeration is unknown. Pattern’s
numbers are adopted from [6, 12]
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Nr. Repr. p Ref. Nr. Repr. p Ref.

proved 1∗
Theorem 1.9

3∗
Theorem 1.9

equidistributions 2∗ 4∗

Table 2. More proved equidistributions. Pattern’s numbers are not consid-
ered in [6, 12]

For a pattern p and a permutation π, we let p(π) denote the number of occurrences of
p in π. Kitaev and Zhang [12, Conjecture 6.1] conjectured a Stieltjes continued fraction

formula for the distribution of pattern Nr. 3 = (see [13, A200545]), which is equivalent

to the following identity.

Conjecture 1.1. [12, Conjecture 6.1] We have

∑

n≥0

tn
∑

π∈Sn

y
(π) =

1

1−
α1t

1−
α2t

1− · · ·

(1.1a)

with coefficients

α2k−1 = k, α2k = y + k − 1. (1.1b)

Presenting their conjecture in this way, we notice that the S-continued fraction (1.1a)
appears in a recent paper of Sokal and Zeng [14]. Let us reformulate the relevant permu-
tation statistics in [14] in terms of mesh patterns. Given a permutation π ∈ Sn, an index
i ∈ [n] (or a value π(i) ∈ [n]) is called

• an excedance if π(i) > i;
• an inversion if π(j) > π(i) for 1 ≤ j < i; in other words, an inversion of π is one

occurrence of pattern of π;
• a record (rec) (or left-to-right maximum) if π(j) < π(i) for all j < i [note in

particular that the index 1 is always a record and that the value n is always a
record]; in other words, a record of π is one occurrence of pattern of π;

• an antirecord (arec) (or right-to-left minimum) if π(j) > π(i) for all j > i [note in
particular that the index n is always an antirecord and that the value 1 is always
an antirecord]; in other words, an antirecord of π is one occurrence of pattern
of π;

• an exclusive record (erec) if it is a record and not also an antirecord; in other words,
an exclusive record of π is one occurrence of pattern of π, see (1.12);

• an exclusive antirecord (earec) if it is an antirecord and not also a record; in other
words, an exclusive antirecord of π is one occurrence of pattern of π, see (1.11);



4 B. HAN AND J. ZENG

• a record-antirecord (rar) (or pivot) if it is both a record and an antirecord; in other

words, a record-antirecord of π is one occurrence of pattern of π.

We denote the number of excedances, records, antirecords, exclusive records, exclusive
antirecords and record-antirecords in π by exc(π), rec(π), arec(π), erec(π), earec(π) and
rar(π), respectively.

Dumont and Kreweras [5] gave the joint distribution of ( , ), Zeng [18] gave the

joint distribution of ( , , ). Recently Sokal and Zeng [14] proved much more
general results. For example, define the generating function of the generalized Eulerian
polynomials

F (x, y, z, v, q; t) =
∞
∑

n=0

tn
∑

σ∈Sn

xarec(σ)yerec(σ)zrar(σ)vexc(σ)qinv(σ). (1.2)

From [14, Theorems 2.7 and 2.8] we derive the following result.

Theorem 1.2. We have

F (x, y, z, v, q; t) =
F (x, y, 1, v, q; t)

1 + x(1− z)tF (x, y, 1, v, q; t)
, (1.3a)

where

F (x, y, 1, v, q; t) =
1

1−
α1t

1−
α2t

1− · · ·

(1.3b)

with coefficients

α2k−1 = qk−1(x+ q + q2 + · · ·+ qk−1) (1.3c)

α2k = qkv(y + q + q2 + · · ·+ qk−1). (1.3d)

Proof. This follows from [14, Theorems 2.7 and 2.8] by specializing the parameters. We
just indicate the appropriate specialisation and refer the reader to [14] for further details.
In the specialization (2.57) of [14, Theorem 2.7], if we choose w0 = xz (instead of w0 = x

in [14]) and

y = qv, u = 1, v1 = v2 = qv, p+ = p− = q, q+ = q− = q2,

then equation (2.52) of [14] reduces to

F (x, y, z, v, q; t) =
1

1− γ0t−
β1t

1− γ1t−
β2t

1− · · ·

(1.4)

with

γ0 = xz, γn = α2n + α2n+1, βn = α2n−1α2n. (1.5)
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Therefore, the J-fraction formula can be written as (by contracting the S-fraction starting
from the second line),

F (x, y, z, v, q; t) =
1

1 + x(1 − z)t−
α1t

1−
α2t

1− · · ·

, (1.6)

which is equivalent to (1.3a). �

Remark 1.3. • We can also prove (1.3a) by following the same steps in the special
case as in [12] and then derive (1.3b) directly from [14, Theorem 2.8].

• The case x = y = v = q = 1 of Theorem 1.2 is Theorem 1.1 in [12].
• Since (arec, inv)π = (rec, inv)π−1 we derive from [18] that

F (x, 1, 1, 1, q; t) =
∞
∑

n=0

x(x+ q) . . . (x+ q + · · · qn−1)tn. (1.7)

For π = π(1) . . . π(n) ∈ Sn we define the following three associated permutations:

π−1 := π−1(1)π−1(2) · · ·π−1(n) (1.8)

πr := π(n) · · ·π(2)π(1) (1.9)

πc := (n + 1− π(1))(n+ 1− π(2)) · · · (n+ 1− π(n)) (1.10)

Obviously we have
(π) = (πc) = (πr◦c) = (πr)

and

(π) = (πc) = (πr◦c) = (πr)

= (π−1) = (τ r) = (τ r◦c) = (τ c)

with τ = π−1.

Lemma 1.4. For π ∈ Sn, we have

earec(π) = (π) = (π) = (π) = (π), (1.11)

erec(π) = (π) = (π) = (π) = (π). (1.12)

Proof. We just prove (1.11) as the proof of (1.12) is similar. In the rook placement repre-
sentation of a permutation π ∈ Sn the rook y = (i, π(i)) is an exclusive antirecord iff there
is a another rook x = (j, π(j)) at left of y, i.e., j < i and higher than x, i.e., π(j) > π(i).
Hence there are four unique choices for such a rook x: the highest, lowest, farthest and
nearest. This corresponds to the four mesh patterns in (1.11), respectively. �

Remark 1.5. As earec(π) = erec(πr◦c) for π ∈ Sn, we can also derive (1.12) from (1.11).

Theorem 1.6. There exists an involution Φ on Sn such that for π ∈ Sn,

( , , )π = ( , , )Φ(π).
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Corollary 1.7. The triple pattern (Nr.3,Nr.48,Nr.53) is equidistributed with (erec,Nr.50,Nr.54)
on Sn.

Proof. For any π ∈ Sn we have












Nr.3

Nr.48

Nr.53













π =

























π =

























π−1 =

























(π−1)r (1.13)

and

(Nr.50,Nr.54)π = ( , )π = ( , )π−1 = ( , )(π−1)r. (1.14)

By Theorem 1.6 the result follows from (1.12), (1.13) and (1.14). �

Corollary 1.8. Conjecture 1.1 holds true.

Proof. By Corollary 1.7 this follows from (1.3b) with x = v = q = 1. �

As the equidistribution of Nr.48 and Nr.49 is known [12, Theorem 5.1], Corollary 1.7
confirms two conjectured equidistributions in Table 1.

Theorem 1.9. There exist an involution Ψ on Sn such that for π ∈ Sn,

( , , )(π) = ( , , )Ψ(π)).

For the patterns Nr.23 and Nr.24, we have

(Nr.23,Nr.24)π = ( , )π = ( , )πr.

By Theorem 1.9, we confirm another conjecture in Table 1, i.e., the patterns Nr.23 and
Nr.24 are equidistributed.

We shall prove Theorem 1.6 and Theorem 1.9 in Section 2 and Section 3, respectively,
and make a connection between pattern Nr. 14 and the statistic succession in permutations
in Section 4.

2. Proof of Theorem 1.6

For π ∈ Sn let AREC(π) = (i1, i2, . . . , il) be the sequence of antirecord positions of π
from left to right. So π(i1) = 1, i1 < · · · < il and il = n. For each antirecord position ik
define two mappings

ϕ
(ik)
1 : π 7→ π′ (2.1a)

ϕ
(ik)
2 : π 7→ π′′ (2.1b)

as follows:

• let w = w1 . . . wr be the subword of π consisting of letters greater than π(ik) on the
left of π(ik) (resp. π(ik−1));
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• let w′ = w′
1 . . . w

′
r be the word obtained by substituting the jth largest letter with

the jth smallest letter in w for j = 1, . . . , r;
• let π′ (resp. π′′) be the word obtained by replacing wj with w′

j for j = 1, . . . , r in π.

Remark 2.1. By convention, we define ϕ
(i1)
2 to be the identity mapping. Clearly the two

operations keep the sequence of antirecords for both values and positions, that is,

AREC(π) = AREC(π′) = AREC(π′′) (2.2a)

π′(ik) = π′′(ik) = π(ik) for k = 1, . . . l. (2.2b)

Let P = {p1 < · · · < pr} and Q = {q1 < · · · < qr} be two ordered sets and π = p1 . . . pr
and τ = q1 . . . qr are permutations of P and Q, respectively. We say that π and τ are order
isomorphic and write π ∼ τ if for any two indices r and s we have the equivalence pr < ps
if and only if qr < qs. In other words, τ is the permutation obtained from π by substituting
pi by qi for i = 1, . . . , r.

Let w = w1 . . . wn be a permutation of a1 < a2 < · · · < an. We define the complement of
w by wc1, which is the word obtained by substituting ai by an+1−i in w for i = 1, . . . , n. If
x is a subset of the letters in w, we write [w]x as the subword of w consisting of the letters
a ∈ x.

Lemma 2.2. (1) If w = w1w2 and wc = w′
1w

′
2, then (w′

1)
c ∼ w1.

2

(2) Let w = w1w2w3 and v = v1v2v3 with |w1| = |v1|. If w1w2 ∼ v1v2 with (w1w2)
c =

w′
1w

′
2 and (v1v2)

c = v′1v
′
2, then w1 ∼ v1, w2 ∼ v2, w

′
1 ∼ v′1 and w′

2 ∼ v′2. Moreover,
we have (w′

1)
c ∼ (v′1)

c and (w′
2)

c ∼ (v′2)
c.

(3) If w ∼ v and [w]x = [v]x for some set x of some common letters in w and v, then
• wc ∼ vc and [wc]x = [vc]x.
• [w]y ∼ [v]z, where y (resp. z) is the complementary of x in the alphabet of w

(resp. v).

Proof. The verification is easy and left to the reader. �

For example, if w = 3 5 9 1 4 7 2 8 6, then wc = 7 5 1 9 6 3 8 2 4. Let w = w1w2 with
w1 = 3 5 9 1 4 7 and w2 = 2 8 6, then w′

1 = 7 5 1 9 6 3 and (w′
1)

c = 3 6 9 1 5 7. Clearly
(w′

1)
c ∼ w1 and [(w′

1)
c]x = [w1]x with x = {1, 3, 9}. We see that wc

1 = 7 4 1 9 5 3 and
[w′

1]x = [wc
1]x = 1 9 3.

Lemma 2.3. For any antirecord position i of π ∈ Sn the mappings ϕ
(i)
1 and ϕ

(i)
2 are

involutions and commute, namely,

ϕ
(i)
1 ◦ ϕ

(i)
1 (π) = ϕ

(i)
2 ◦ ϕ

(i)
2 (π) = π (2.3)

and
ϕ
(i)
2 ◦ ϕ

(i)
1 (π) = ϕ

(i)
1 ◦ ϕ

(i)
2 (π). (2.4)

1When ai = i, wc reduces to πc, see (1.10).
2The word w′

1
is the complement of w1 in the alphabet of w, while (w′

1
)c is the complement of w′

1
in the

alphabet of w′

1
.
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ik

ik−1

ik−2

u2

u1

v2

v1 w

Figure 1. The decomposition of three consecutive anti-records of π

Proof. From the definitions of ϕ
(i)
1 and ϕ

(i)
2 in Eq. (2.1), it is easy to check Eq. (2.3) holds

and
ϕ
(i)
2 ◦ ϕ

(i)
1 (π) ∼ ϕ

(i)
1 ◦ ϕ

(i)
2 (π).

Since the set of letters greater than π(i) on the left of π(i) are invariant under the operation

ϕ
(i)
1 and ϕ

(i)
2 on π, we obtain Eq.(2.4) immediately. �

Let π ∈ Sn with sequence of antirecord positions AREC(π) = (i1, i2, . . . , il). We define
the operation Φ on π by

Φ(π) = ϕ(i1) ◦ ϕ(i2) ◦ · · · ◦ ϕ(il)(π) (2.5)

with ϕ(ik) = ϕ
(ik)
2 ◦ ϕ

(ik)
1 for k = 1, . . . , l.

Lemma 2.4. For π ∈ Sn with AREC(π) = {i1, . . . , il}. The mappings g := ϕ(ik−1) and
f := ϕ(ik) commute, i.e.,

g ◦ f(π) = f ◦ g(π).

Proof. We write the permutation π = π(1) . . . π(n) as π = uπ(ik−2)vπ(ik−1)wπ(ik)x for
3 ≤ k ≤ l, and

(i) u1 (resp. v1, w) as the subword consisting of letters greater than π(ik) in u (resp.
v, w);

(ii) u2 (resp. v2) as the subword consisting of letters between π(ik−1) and π(ik) in u

(resp. v);

see Figure 1. For convenience, we introduce the following notations:

f(π) : = u′π(ik−2)v
′π(ik−1)w

′π(ik)x (2.6a)

g ◦ f(π) : = ũπ(ik−2)ṽπ(ik−1)w
′π(ik)x, (2.6b)

g(π) : = u′′π(ik−2)v
′′π(ik−1)wπ(ik)x, (2.6c)

f ◦ g(π) : = ûπ(ik−2)v̂π(ik−1)w
′π(ik)x. (2.6d)

We will use the similar notations u′i, ûi, ũi, u
′′
i , v

′
i, v̂i, ṽi, v

′′
i as in (i) and (ii) for i = 1, 2.

By the definition of f and g and Lemma 2.2, we have the following facts,
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(1) Under the operation f (cf. (2.6a)), as u1v1 ∼ u′1v
′
1, u

′
2v

′
2 = u2v2, we have u′v′ ∼ uv;

(2) Applying g to f(π) and π (cf. (2.6b) and (2.6c)), respectively, we see that ũṽ ∼ u′′v′′

by (1) and Lemma 2.2, hence ũ2ṽ2 = u′′2v
′′
2 ;

(3) Applying f to g(π) (cf. (2.6c) and (2.6d)), we have u′′2v
′′
2 = û2v̂2, combining with

(2) yields û2v̂2 = ũ2ṽ2, that is û2 = ũ2 and v̂2 = ṽ2;
(4) Applying f to g(π) (cf. (2.6c) and (2.6d)), using Lemma 2.2 we have ûv̂ ∼ u′′v′′,

from u′′v′′ ∼ ũṽ (cf. (2)) we derive ûv̂ ∼ ũṽ. Combining with Lemma 2.2 and (3)
yields û1v̂1 ∼ ũ1ṽ1.

(5) Let {w} denote the set of letters in w.
• Applying f to π we have {u′1v

′
1w

′} = {u1v1w},
• applying g to f(π) we have {u′1v

′
1w

′} = {ũ1ṽ1w
′},

• applying g to π we have {u′′1v
′′
1w} = {u1v1w},

• applying f to g(π) we have {u′′1v
′′
1w} = {û1v̂1w

′}.
Thus {ũ1ṽ1} = {û1v̂1}. It follows from (4) that û1 = ũ1 (resp. v̂1 = ṽ1).

Summarizing the above facts we have proved f ◦ g = g ◦ f . �

Lemma 2.5. The mapping ϕ(ik) is an involution such that for π ∈ Sn and r 6= k,

( , , )k π = ( , , )k ϕ
(ik)(π), (2.7a)

( , , )r π = ( , , )r ϕ
(ik)(π), (2.7b)

( , , )r π = ( , , )r ϕ
(ik)(π), (2.7c)

where (pattern)k means the number of the patterns between π(ik−1) and π(ik).

Proof. If the pair (π(j), π(ik)) with j < ik contributes the pattern (resp. , ),
then j > ik−1 because π(ik−1) < π(ik) and π(i) > π(ik) for j ≤ i < ik. Also, for i < j, we
have the equivalence

π(i) < π(j) ⇐⇒ π(ik) < ϕ
(ik)
1 (π(i)) > ϕ

(ik)
1 (π(j)),

as ϕ
(ik)
2 will affect only the letters at the left of π(ik−1). Thus we have proved (2.7a).

Next, recall that the operation ϕ(ik) keeps the sequence of antirecords for both positions
and values. The two identities (2.7b) and (2.7c) are clear if r > k. Assume that r < k and

[π]r = π(1) . . . π(ik−1). By Lemma 2.2, after two operations ϕ
(ik)
1 and ϕ

(ik)
2 the permutation

ϕ(ik)([π]r) is isomorphic with [π]r. This proves (2.7b) and (2.7c).
�

Proof of Theorem 1.6. By (2.5) the reverse of the mapping Φ is given by

Φ−1(π) = ϕ(il) ◦ · · · ◦ ϕ(i2) ◦ ϕ(i1)(π). (2.8)

Theorem 1.6 follows from Lemma 2.3, Lemma 2.4 and Lemma 2.5. �

Example 2.6. We show the process of the involution Φ in Figure 2, For π = 2 5 7 1 8 9 4 6 3,
we have AREC(π) = (4, 9). We proceed from right to left.
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2 5 7 1 8 9 4 6 3

ϕ
(3)
1

2 8 6 1 5 4 9 7 3

ϕ
(3)
2

2 6 8 1 5 4 9 7 3

ϕ
(1)
1

8 6 2 1 5 4 9 7 3

Figure 2. The involution Φ on the permutation 257189463

(1) For position 9 with value 3, w have w = 5 7 8 9 4 6 and w′ = 8 6 5 4 9 7. Thus

ϕ
(9)
1 : π 7→ π′ = 2 8 6 1 5 4 9 7 3. Next, we have w = 8 6 and w′ = 6 8. Thus

ϕ
(9)
2 : π′ 7→ π′′ = 2 6 8 1 5 4 9 7 3.

(2) For position 4 with value 1 we have w = 2 6 8 and w′ = 8 6 2. Finally we obtain
Φ(π) = 8 6 2 1 5 4 9 7 3.

Now, we check the mesh patterns.

• First, ϕ
(9)
1 : π = 2 5 7 1 8 9 4 6 3 7→ π′ = 2 8 6 1 5 4 9 7 3, the pair (8, 3) of π contributes

the pattern without the patterns , ), the pair (5, 3) of π′ contributes the

pattern without the patterns , , the operations ϕ
(9)
2 , ϕ

(1)
1 do not change

the corresponding mesh pattens at position 9 of π′.

• Second, ϕ
(9)
2 ◦ ϕ

(9)
1 : π = 2 5 7 1 8 9 4 6 3 7→ π′′ = 2 6 8 1 5 4 9 7 3 it is easy to see

that 257 ∼ 268. The pair (5, 1) of π contributes the patterns , without the

pattern , the pair (6, 1) of π′′ also contributes the pattern , without the

pattern , ϕ
(1)
1 : π′′ = 2 6 8 1 5 4 9 7 3 7→ π′′′ = 8 6 2 1 5 4 9 7 3, the pair (6, 1) of π′′′

contributes the pattern , without the pattern .
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3. Proof of Theorem 1.9

First we introduce two mappings different from Section 2. For π ∈ Sn, recall that
AREC(π) = (i1, i2, . . . , il) be the sequence of antirecord positions of π from left to right.
For any antirecord position ik we define two mappings

ψ
(ik)
1 : π 7→ π′ (3.1a)

ψ
(ik)
2 : π 7→ π′′ (3.1b)

as follows:

• let w = w1 . . . wr is the subword of π consisting of letters greater than π(ik) on the
right side of π(ik−1) (resp. π(ik)) with π(i0) = 0;

• let w′ = w′
1 . . . w

′
r be the word obtained by substituting the jth largest letter with

the jth smallest letter in w for j = 1, . . . , r;
• let π′ (resp. π′′) is defined to be the word obtained by replacing wj with w′

j in π.

Note that π′(ik) = π(ik).

Lemma 3.1. For any antirecord positions ik−1 and ik of π ∈ Sn the mappings ψ
(ik)
1 and

ψ
(ik)
2 are involutions and commutate, namely,

ψ
(ik)
1 ◦ ψ

(ik)
1 (π) = ψ

(ik)
2 ◦ ψ

(ik)
2 (π) = π (3.2)

and
ψ

(ik)
2 ◦ ψ

(ik)
1 (π) = ψ

(ik)
1 ◦ ψ

(ik)
2 (π). (3.3)

Let ψ(ik) = ψ
(ik)
2 ◦ψ

(ik)
1 . Then ψ(ik)(π) and π have the same sequence of antirecord positions.

Proof. From the definitions of ψ
(ik)
1 and ψ

(ik)
2 in Eq. (3.1), it is easy to check Eq. (3.2) holds

and
ψ

(ik)
2 ◦ ψ

(ik)
1 (π) ∼ ψ

(ik)
1 ◦ ψ

(ik)
2 (π).

Since the set of letters greater than π(ik) on the right of π(ik−1) are invariant under the

operation ψ
(ik)
1 and ψ

(ik)
2 on π, we obtain Eq. (3.3) immediately. �

Lemma 3.2. For π ∈ Sn with AREC(π) = {i1, . . . , il}. For k = 2, . . . , l the mappings
ψ(ik−1) and ψ(ik) commute, i.e.,

ψ(ik) ◦ ψ(ik−1)(π) = ψ(ik−1) ◦ ψ(ik)(π).

Proof. For the permutation π = π(1) . . . π(n) we write π = uπ(ik−1)vπ(ik)w and

ψ(ik−1)(π) : = π′ = u′π(ik−1)v
′π′(ik)w

′ (3.4a)

ψ(ik) ◦ ψ(ik−1)(π) : = π̃ = u′π(ik−1)ṽπ
′(ik)w̃, (3.4b)

ψ(ik)(π) : = π′′ = uπ(ik−1)v
′′π(ik)w

′′, (3.4c)

ψ(ik−1) ◦ ψ(ik)(π) : = π̂ = u′π(ik−1)v̂π̂(ik)ŵ. (3.4d)

By the definition of ψ(ik), we have the following facts.
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(1) Applying ψ(ik−1) to π (cf. (3.4a)) we have v′π′(ik)w
′ ∼ vπ(ik)w;

(2) Applying ψ(ik) to ψ(ik−1)(π) and π (cf.(3.4b) and (3.4c)), respectively, we take com-
plement of v′ and v once, while twice for w′ and w. By Lemma 2.2 and (1) we get
ṽπ′(ik)w̃ ∼ v′′π(ik)w

′′;
(3) Applying ψ(ik−1) to ψ(ik)(π) (cf. (3.4c) and (3.4d)), by (1) we have v̂π̂(ik)ŵ ∼

v′′π(ik)w
′′, combining with by (2) yields v̂π̂(ik)ŵ ∼ ṽπ′(ik)w̃.

(4) Let {w} denote the set of letters in w.
• Applying ψ(ik) to ψ(ik−1)(π) we have {u′v′π′(ik)w

′} = {u′ṽπ′(ik)w̃},
• applying ψ(ik−1) to π we have {u′v′π′(ik)w

′} = {uvπ(ik)w},
• applying ψ(ik) to π we have {uv′′π(ik)w

′′} = {uvπ(ik)w},
• applying ψ(ik−1) to ψ(ik)(π) we have {u′v̂π̂(ik)ŵ} = {uv′′π(ik)w

′′},
• it follows that {u′v̂π̂(ik)ŵ} = {u′ṽπ′(ik)w̃} and {v̂π̂(ik)ŵ} = {ṽπ′(ik)w̃}.

(5) It follows from (3) and (4) that v̂π̂(ik)ŵ = ṽπ′(ik)w̃, that is, Thus v̂ = ṽ, π̂(ik) =
π′(ik) and ŵ = w̃.

�

Lemma 3.3. The mapping ψ(i) is an involution such that for π ∈ Sn and r 6= k

( , , )k π = ( , , )k ψ
(ik)(π), (3.5a)

( , , )r π = ( , , )r ψ
(ik)(π), (3.5b)

( , , )r π = ( , , )r ψ
(ik)(π). (3.5c)

where (pattern)k means the number of the patterns between π(ik−1) and π(ik).

Proof. If the pair (π(j), π(ik)) with j < ik contributes the pattern (resp. , ),
then j > ik−1 because π(ik−1) < π(ik) and π(i) > π(ik) for j ≤ i < ik. Also, for j < ik < i,
we have the equivalence

π(ik) < π(i) < π(j) ⇐⇒ π(ik) < ψ
(ik)
1 (π(j)) < ψ

(ik)
1 (π(i)),

as ψ
(ik)
2 will affect only the letters at the right of π(ik). Thus we have proved (3.5a).

Next, recall that the operation ψ(ik) keeps the sequence of antirecord positions. The
two identities (3.5b) and (3.5c) are clear if r < k. Assume that r > k and [π]>r =

π(ik + 1) . . . π(n). By Lemma 2.2 after two operations ψ
(ik)
1 and ψ

(ik)
2 the permutation

ψ(ik)([π]>r) is isomorphic with [π]>r. This proves (3.5b) and (3.5c).
�

Proof of Theorem 1.9. For π ∈ Sn and AREC(π) = (i1, i2, . . . , il), we define the operation
Ψ on π by

Ψ(π) = ψ(il) ◦ · · · ◦ ψ(i2) ◦ ψ(i1)(π). (3.6)

By (3.6) the mapping Ψ is reversible with reverse

Ψ−1(π) = ψ(i1) ◦ ψ(i2) ◦ . . . ◦ ψ(il)(π).

Theorem 1.9 follows from Lemma 3.1, Lemma 3.2 and Lemma 3.3. �
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9 3 1 5 8 2 6 7 4

ψ
(3)
1

2 8 1 6 3 9 5 4 7

ψ
(3)
2

2 8 1 5 9 3 6 7 4

ψ
(6)
1

2 8 1 7 4 3 6 5 9

ψ
(6)
2

2 8 1 7 4 3 6 9 5

ψ
(9)
1

2 8 1 7 4 3 9 6 5

Figure 3. The involution Ψ on the permutation 931582674

Example 3.4. Figure 3. For π = 9 3 1 5 8 2 6 7 4, we have AREC(π) = (3, 6, 9). We procced
from left to right.

(1) For position 3 with value 1, we have w = 9 3 5 8 2 6 7 4 and wc = 2 8 6 3 9 5 4 7 Thus

ψ
(3)
1 : π 7→ π′ = 2 8 1 6 3 9 5 4 7. Next, we have w = 6 3 9 5 4 7 and wc = 5 9 3 6 7 4

Thus ψ
(3)
2 : π′ 7→ π′′ = 2 8 1 5 9 3 6 7 4.

(2) For position 6 with value 3, we have w = 5 9 6 7 4 and wc = 7 4 6 5 9. So ψ
(6)
1 (π′′) =

2 8 1 7 4 3 6 5 9. Next, we have w = 6 5 9 and wc = 6 9 5. Thus we have ψ(6)(π′′) =
2 8 1 7 4 3 6 9 5.

(3) For position 9 with value 5 we have w = 6 9 and wc = 9 6. Finally we obtain
Ψ(π) = 2 8 1 7 4 3 9 6 5.
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Now, we check the mesh patterns.

• First, ψ
(3)
1 : π = 9 3 1 5 8 2 6 7 4 7→ π′ = 2 8 1 6 3 9 5 4 7, the pair (9, 1) contributes the

pattern without the patterns , , then the pair (2, 1) of π′ contributes the

pattern without the patterns , , the operations ψ
(i)
2 (i = 3, 6), ψ

(j)
1 (j =

6, 9) do not change the corresponding mesh pattens at (2, 1) of π′.

• Second, ψ
(3)
2 ◦ ψ

(3)
1 : π = 9 3 1 5 8 2 6 7 4 7→ π′′ = 2 8 1 5 9 3 6 7 4, it is easy to see

5 8 2 6 7 4 ∼ 5 9 3 6 7 4. The pair (8, 2) of π contributes the pattern (resp. ,

), then the pair (9, 3) of π′′ also contributes the pattern (resp. , ),

ψ
(6)
1 : π′′ = 2 8 1 5 9 3 6 7 4 7→ π′′′ = 2 8 1 7 4 3 6 5 9, the pair (4, 3) contributes the pat-

tern (resp. , ), the operations ψ
(6)
2 , ψ

(9)
1 do not change the corresponding

mesh pattens at (4, 3) of π′′′.

4. A remark on pattern Nr. 14

Recall that an index i (with 1 < i ≤ n) is a succession of σ ∈ Sn if σ(i) = σ(i− 1) + 1,
see [4, Section 5]. Thus an occurrence of the pattern Nr. 14 = corresponds to a
succession and we can translate the results on successions in [4, Section 5] to this pattern.
For example, letting

Sn(x) =
∑

π∈Sn

x (π)

and differtentiating the generating function [4, (5.6)]

∑

n≥0

Sn(x)
tn

n!
=
e(x−1)t

1− t
+ (1− x)

∫ t

0

e(x−1)z

1− z
dz (4.1)

yields

∑

n≥0

Sn+1(x)
tn

n!
=

e(x−1)t

(1− t)2
. (4.2)

This is the exponential generating function given in [13, A123513]. We note that the
ordinary generating function (cf. [4, (5.8)]) reads

∑

n≥0

Sn(x)t
n =

∑

n≥0

n!tn

[1− (x− 1)t]n
. (4.3)
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