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Abstract

We enumerate arrangements of n couples, i.e. pairs of people, placed in a single-
file queue, and consider four statistics from the vantage point of a distinguished given
couple. In how many arrangements are exactly p of the n−1 other couples i) interlaced
with the given couple, ii) contained within them, iii) containing the given couple, and
iv) lying outside the given couple? We provide generating functions which enumerate
these arrangements and obtain the associated continuous asymptotic distributions in
the n→∞ limit. The asymptotic distributions corresponding to cases i), iii), and iv)
evince critical phenomena around the value pc = (n − 1)/2, such that the probability
that 1) the couple is interlaced with more than half of the other couples, and 2) the
couple is contained by more than half of the other couples, are both zero in the strict
n → ∞ limit. We further show that the cumulative probability that less than half of
the other couples lie outside the given couple is π/4 in the limit, and that the associated
distribution is uniform for p < pc .

1 Introduction and main results

The purpose of this paper is to study linear arrangements of n distinguishable pairs of
objects, treating the two members of a pair as indistinguishable. The connection to linear
chord diagrams is immediate, as we can represent the pairs as chords joining two of 2n
vertices laid out in a line, see Figure 1. The main difference is that we treat the n chords,
ab initio, as distinguishable.

The study of (indistinguishable) chord diagrams has a rich history1. Touchard [9] and
Riordan [6] enumerated configurations by the total number of crossings, and the limiting
Normal distribution was obtained by Flajolet and Noy [2]. More recently Pilaud and Rué
[5] have extended the study of crossings in several directions. Kreweras and Poupard [4]
enumerated configurations by the number of so-called short pairs, where adjacent vertices

1The interested reader is directed to Pilaud and Rué [5] for a more complete list of references.
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Figure 1: The 6 configurations for the case n = 2. The given pair is indicated as a bold arc.
There are 4 configurations where the given pair is not crossed, hence K2,0 = 4, whilst there
are 2 where it is crossed once, hence K2,1 = 2. Similarly C2,0 = G2,0 = 5, C2,1 = G2,1 = 1,
and X2,0 = 4, X2,1 = 2.

are joined by a chord, finding that they are asymptotically Poisson in distribution; c.f.
Cameron and Killpatrick [1] and Krasko and Omelchenko [3] for more modern treatments.

We will enumerate configurations from the vantage point of a distinguished given pair
(which might appear in any position) according to the relative position of the remaining n−1
pairs. Each of these remaining pairs can be in one of four relative positions: i) interlaced
with the given pair, ii) entirely contained within the endpoints of the given pair, iii) arching
over the given pair and hence entirely containing it, or iv) positioned entirely outside, either
to the left, or to the right, of the given pair. It is clear that the total number of arrangements
of the n distinguishable pairs is n! (2n − 1)!!, as there are (2n − 1)!! different linear chord
diagrams. Due to the fact that we are essentially interested in a single marked pair, i.e.
the given pair, we can safely paint the remaining n− 1 pairs with the same brush and treat
them as indistinguishable – this yields n (2n−1)!! configurations, and is the number of linear
chord diagrams with one marked chord.

Definition 1. A pair is said to be crossed by another pair if the other pair has one endpoint
contained within the first pair, and the other outside of it, i.e. the two pairs are interlaced.

Definition 2. A pair is said to be contained by another pair if its endpoints are both located
within the endpoints of the other pair.

Definition 3. A pair is said to be containing another pair if the other pair is contained by
it.

Definition 4. A pair is said to be excluded by another pair if its endpoints are both to the
left, or both to the right of the other pair.

Amongst the n (2n − 1)!! arrangements, let there be Kn,p where exactly p ∈ [0, n − 1]
of the remaining n − 1 pairs are crossed by the given pair. Similarly we define Cn,p, Gn,p,
and Xn,p to be the number of configurations where exactly p of the remaining pairs are,
respectively, contained by, containing, and finally excluded by the given pair; see Figure 1.
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Figure 2: The quartet of distributions. On the top row: on the left the distribution of pairs
crossing the given pair, on the right pairs contained within the given pair. On the bottom
row: on the left pairs which contain the given pair, on the right pairs situated outside the
given pair. In each case the solid blue line is the asymptotic distribution, while the red “x”
is the discrete value from the exact distribution for n = 100.

Generating functions We define exponential generating functions as follows

K(y, z) =
∑

n≥1

n−1∑

p=0

Kn,p y
p z

n

n!
,

and similarly for the Cn,p → C(y, z), Gn,p → G(y, z), and Xn,p → X(y, z). In Theorems 8,
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13, 18, and 24 we prove that

K(y, z) =
z√

1− 2z (1− z(1 + y))
, C(y, z) =

√
1− 2yz −

√
1− 2z

(1− 2z)(1− y)
,

G(y, z) =
1

(1− y)
√

1− 2z
ln

(
1− z(1 + y)

1− 2z

)
,

X(y, z) =
1

(1− y)
√

1− 2z
tan−1

(1− y)z√
(1− 2z)(1− 2yz)

.

The form of K(y, z) implies the recursion relation Kn,p = nKn−1,p + nKn−1,p−1, Kn,0 =
[zn]K(0, z).

Asymptotic distributions We will also be interested in the associated discrete proba-
bility distributions

P (exactly p pairs cross the given pair) = Kn(p) =
1

n (2n− 1)!!
Kn,p,

and so for Cn(p), Gn(p), and Xn(p), where we treat all n (2n − 1)!! arrangements as equally
likely. In the limit as n → ∞ we define a continuous real variable x = limn→∞ p/(n − 1) ∈
[0, 1], and an associated continuous probability distribution

K(x) = lim
n→∞

(n− 1)Kn ((n− 1)x) ,

and so for C(x), G(x), and X (x). In Theorems 11, 15, 21, and 26 we prove that

K(x) =

{
1/
√

1− 2x 0 ≤ x < 1/2

0 1/2 ≤ x ≤ 1
, C(x) =

1√
x
− 1, 0 < x ≤ 1,

G(x) =

{
2 tanh−1

√
1− 2x 0 < x ≤ 1/2

0 1/2 < x ≤ 1
,

X (x) =

{
π/2 0 ≤ x < 1/2

π/2− 2 tan−1
√

2x− 1 1/2 ≤ x ≤ 1
.

In Figure 2 the four distributions are shown. It is remarkable that K(x), G(x), and X (x)
all show critical phenomena2 at x = 1/2, corresponding to half of the n − 1 pairs. This is
most striking in the discontinuity observed in K(x), where the asymptotic probability that
the given pair is crossed by more than half of the remaining pairs is zero, while the mode
of the distribution is also half of the remaining pairs. In G(x) we see that the asymptotic

2For an introduction to critical phenomena, see [7]. The term is usually reserved for the observation of a
sharp transition in a system when a control variable is adjusted beyond a critical value; we are using it in a
slightly more general manner here.
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probability that the given pair is contained within more than half of the remaining pairs is
also zero. The distribution X (x) shows that the asymptotic (cumulative) probability that
less than half of the remaining pairs are outside the given pair is given by π/4, while the
distribution itself is uniform in this region.

In Lemmas 10, 14, 19, and 25, we obtain expressions for the mth factorial moments of
the exact distributions. In particular,

n−1∑

p=0

p!

(p−m)!
Kn(p) =

(n− 1)!

(n−m− 1)!

m!

(2m+ 1)!!
,

n−1∑

p=0

p!

(p−m)!
Cn(p) =

(n− 1)!

(n−m− 1)!

1

(m+ 1)(2m+ 1)
,

n−1∑

p=0

p!

(p−m)!
Gn(p) =

(n− 1)!

(n−m− 1)!

m!

(m+ 1)(2m+ 1)!!
,

n−1∑

p=0

p!

(p−m)!
Xn(p) =

(n− 1)!

(n−m− 1)!

1

m+ 1

∫ 1

1/2

dx
xm√

2x− 1
.

The mean values for the four distributions tell us that, on average, a third of the remaining
pairs cross the given pair, a sixth are contained by it, another sixth contain the given pair,
and the remaining third are excluded by it.

2 Enumeration by crossings

Definition 5. We define the size of a pair to be the number of vertices contained between
its endpoints; the minimum size is zero, while the maximum size achievable is 2n− 2.

Distribution of sizes There are clearly (2n−d−1) positions a given pair of size d can occupy.
Once placed, there are (2n − 3)!! ways of placing the remaining (n − 1) indistinguishable
pairs. The probability Sn(d) that the given pair has size d is therefore

Sn(d) = (2n− d− 1)
(2n− 3)!!

n (2n− 1)!!
=

1

n

(
1− d

2n− 1

)
,

which is a trapezoidal distribution. Straightforward computations yield a mean of 2(n−1)/3,
or a third of the maximal distance, and a variance of (2n+ 1)(n− 1)/9.

Counting by crossings The minimum number of times a given pair can be crossed is zero
– this is when all its contained vertices are matched amongst one another, and so with all
its excluded vertices. The maximum number of times a given pair can be crossed is n− 1 as
there are 2n− 2 vertices other than those occupied by the endpoints of the given pair, and
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n \p 0 1 2 3 4 5
1 1
2 4 2
3 21 18 6
4 144 156 96 24
5 1245 1500 1260 600 120
6 13140 16470 16560 11160 4320 720

Table 1: The numbers Kn,p, A336598 in the OEIS, to appear. The first column is A233481.
The leading diagonal are the factorials n!.

to achieve the maximal crossing we require half of them to be contained (i.e. the given pair
has a size of n− 1) and then each matched with one of the n− 1 excluded vertices. Let p be
the number of times a given pair of size d is crossed. It is clear that p ≡ d (mod 2).

Proposition 6. The number Kn,p,d of configurations in which the given pair has size d, and
is crossed by p other pairs, is given by

Kn,p,d =
2p−n+1 d! (2n− d− 1)!

p!
(
n− 1− d−p

2

)
!
(
d−p
2

)
!
,

where dmod 2 ≤ p ≤ min(d, 2n− d− 2), and 0 ≤ d ≤ 2n− 2.

Proof. In order to enumerate configurations where a given pair of size d is crossed p times,
we consider the d contained vertices, and choose p of these to be matched with another
selection of p excluded vertices. The remaining contained vertices are then matched amongst
themselves, and so for the remaining excluded vertices.

• There are p!
(
d
p

)(
2n−d−2

p

)
ways of choosing the p contained and p excluded vertices and

then matching them up.

• There are (d− p− 1)!! (2n− d− p− 3)!! ways of matching the remaining vertices.

• There are (2n− d− 1) positions for the given pair to occupy.

We therefore have that

Kn,d,p =

(
d

p

)(
2n− d− 2

p

)
p! (d− p− 1)!! (2n− d− p− 3)!! (2n− d− 1).

Using the identity (2n− 1)!! = (2n)!/(n!2n), and simplifying this expression, we obtain the
desired result.

6
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Lemma 7. The number Kn,p of configurations in which the given pair is crossed by p other
pairs, is given by

Kn,p = n (2n− 1)!!

∫ 1

0

dα 2(1− α)

(
n− 1

p

)
(2α(1− α))p (1− 2α(1− α))n−p−1 .

Proof. We sum the result of Proposition 6 over sizes d to produce Kn,p. For fixed p, we must
sum d over the range p ≤ d ≤ 2n − 2 − p, where d is incremented by 2 in each successive
term. To make this summation more convenient we write d = 2k + p and sum k over
0 ≤ k ≤ n− p− 1:

Kn,p =
2p−n+1

p!

n−p−1∑

k=0

(2k + p)! (2n− 2k − p− 1)!

(n− p− k − 1)! k!
.

We now exploit the following integral representation of the Euler Beta function:

(2k + p)! (2n− 2k − p− 1)!

(2n)!
=

∫ 1

0

dαα2k+p (1− α)2n−2k−p−1,

to obtain

Kn,p =
2p−n+1 (2n)!

p!

∫ 1

0

dα

n−p−1∑

k=0

α2k+p (1− α)2n−2k−p−1

(n− k − p− 1)! k!

=
2p−n+1 (2n)!

p!

∫ 1

0

dα

n−p−1∑

k=0

αp (1− α)2n−p−1

(n− k − p− 1)! k!

(
α2

(1− α)2

)k

=
2p−n+1 (2n)!

p!

∫ 1

0

dα
αp (1− α)2n−p−1

(n− p− 1)!

(
1 +

α2

(1− α)2

)n−p−1

= n (2n− 1)!!

(
n− 1

p

)∫ 1

0

dα 2(1− α) (2α(1− α))p
(
(1− α)2 + α2

)n−p−1

= n (2n− 1)!!

∫ 1

0

dα 2(1− α)

(
n− 1

p

)
(2α(1− α))p (1− 2α(1− α))n−p−1 .

Theorem 8. The exponential generating function K(y, z) is given by

K(y, z) =
∑

n≥1

n−1∑

p=0

Kn,p y
p z

n

n!
=

z√
1− 2z (1− z(1 + y))

.

Proof. We sum the result of Lemma 7 against yp to obtain

n−1∑

p=0

Kn,p y
p = n (2n− 1)!!

∫ 1

0

dα 2(1− α)
(
1− (1− y)2α(1− α)

)n−1
.
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We then perform the sum over n against zn/n!

∑

n,p

Kn,p y
p z

n

n!
=
∑

n

n (2n− 1)!!

n!
zn
∫ 1

0

dα 2(1− α)
(
1− (1− y)2α(1− α)

)n−1

=

∫ 1

0

dα 2(1− α)
z

(1− 2z (1− (1− y)2α(1− α)))3/2
=

z√
1− 2z (1− z(1 + y))

.

Corollary 9. The Kn,p obey the following recursion relation

Kn,p = nKn−1,p + nKn−1,p−1, Kn,0 = [zn]
z√

1− 2z (1− z)
,

where we note that Kn,0 is A233481 in the OEIS – the number of singletons (strong fixed
points) in pair-partitions.

Proof. The recursion relation is implied by the factor 1− z(1 + y) in the denominator of the
generating function K(y, z).

Probability distribution and asymptotics

We define a discrete random variable K which corresponds to the number of pairs which
cross the given pair. The result of Lemma 7 implies that the probability that K takes the
value p is given by

Kn(p) =
Kn,p

n (2n− 1)!!
=

∫ 1

0

dα 2(1− α)

(
n− 1

p

)
(2α(1− α))p (1− 2α(1− α))n−p−1 ,

which is an integral over Binomial distributions. In order to compute the factorial moments
of this distribution, we define a generating function as follows

Pn(y) =
n−1∑

p=0

Kn(p) yp =

∫ 1

0

dα 2(1− α)
(
1− (1− y)2α(1− α)

)n−1
.

Lemma 10. The mth factorial moment of Kn(p) is given by

n−1∑

p=0

p!

(p−m)!
Kn(p) =

(n− 1)!

(n−m− 1)!

m!

(2m+ 1)!!
.

In particular this provides the mean E(K) = (n − 1)/3, and the variance Var(K) = (n −
1)(n+ 8)/45.
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Proof.

n−1∑

p=0

p!

(p−m)!
Kn(p) =

dm

dym

∣∣∣∣
y=1

Pn(y) =

∫ 1

0

dα 2(1− α)
(n− 1)!

(n−m− 1)!
(2α(1− α))m

= 2m+1 (n− 1)!

(n−m− 1)!

m! (m+ 1)!

(2m+ 2)!
=

(n− 1)!

(n−m− 1)!

m!

(2m+ 1)!!
.

In the limit as n→∞ we define a continuous real variable x = limn→∞ p/(n−1) ∈ [0, 1],
and an associated continuous probability distribution

K(x) = lim
n→∞

(n− 1)Kn ((n− 1)x) ,

Theorem 11. The asymptotic distribution K(x) is given by

K(x) =

{
1/
√

1− 2x 0 ≤ x < 1/2

0 1/2 ≤ x ≤ 1
.

Proof. The most satisfying proof of this fact is to show that the large-n limit of the factorial
moments is correctly reproduced. To wit,

∫ 1/2

0

dx
xm√

1− 2x
=

1

2m+1

∫ 1

0

du u−1/2(1− u)m =
m!

(2m+ 1)!!
,

where we have used the substitution u = 1 − 2x. Comparing to Lemma (10), we see that

in the large-n limit (n−1)!
(n−m−1)! → nm, and so we are indeed recovering the factorial moments

correctly.

Alternative proof Another perspective is to return to the following representation of the
exact distribution

∫ 1

0

dα 2(1− α)

(
n− 1

p

)
(2α(1− α))p (1− 2α(1− α))n−p−1 ,

and to use the Normal approximation of the Binomial distribution. When α is near 0 or 1,
this will not be a good approximation, but this seems to be a set of small enough measure
not to impact the overall approximation for n→∞. We begin by changing the integration
variable α = sin2 θ

2

∫ π

0

dθ sin θ
1 + cos θ

2

(
n− 1

p

)(
sin2 θ

2

)p(
1 + cos2 θ

2

)n−p−1
,

9



where we note that 1 + cos θ may be replaced by 1 as the rest of the integrand is even about
θ = π/2. We now take an integral over Normal distributions with mean 1

2
(n− 1) sin2 θ and

variance 1
4
(n− 1) sin2 θ (1 + cos2 θ) = 1

4
(n− 1) (1− cos4 θ)

N(x) =

√
n− 1√

2π

∫ π

0

dθ√
1 + cos2 θ

Exp

(
−2 (n− 1)

(
x− 1

2
sin2 θ

)2

1− cos4 θ

)
.

This distribution interpolates between the discrete values of the actual distribution remark-
ably well, and the integral over θ converges well enough to allow for efficient numerical
integration for all values of x. It has a tail for x < 0 which is suppressed for large n. It
is straightforward to show that all the moments match the actual distribution in the strict
n→∞ limit; N(x) also has the exact mean and variance, and the third moment is correct
at O(n−1). Taking the n→∞ limit, we may use the method of steepest descent to evaluate
the integral. For x ∈ [0, 1/2), there are two saddle points located at the following values of θ

θ0 = arcsin
√

2x, θ1 = π − arcsin
√

2x,

which yield the dominant contributions to the integral3. Representing N(x) as
∫
dθ f(θ) e(n−1)S(θ),

one finds that
d2S

dθ2

∣∣∣∣
θ=θ0

=
d2S

dθ2

∣∣∣∣
θ=θ1

= − 4 cos2 θ0
1 + cos2 θ0

,

and so the two saddle points contribute the same result, namely4

√
2π√
n− 1

f(θ0)

(
− d2S

dθ2

∣∣∣∣
θ=θ0

)−1/2
=

√
2π√
n− 1

f(θ1)

(
− d2S

dθ2

∣∣∣∣
θ=θ1

)−1/2

=
1

2| cos θ0|
=

1

2| cos θ1|
=

1

2

1√
1− 2x

,

and so the sum of the two contributions yields the desired result.

3 Enumeration by contained pairs

We now enumerate configurations according to the number p of pairs contained within the
given pair. We begin by summing the result of Proposition 6 over all possible crossings,
noting that if a contained vertex is not part of a crossing pair, it is necessarily part of a
contained pair. We let d = 2p + k, so that the number of crossings k is bounded between
0 ≤ k ≤ n− p− 1.

3θ = π/2 is also a saddle point, but the resulting contribution to the integral is exponentially suppressed
for x < 1/2.

4Note that S(θ0) = S(θ1) = 0.
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Lemma 12. The number Cn,p of configurations in which the given pair contains p other
pairs, is given by

Cn,p =

n−p−1∑

k=0

Kn,k,2p+k = n (2n− 1)!!

∫ 1

0

dα 2(1− α)

(
n− 1

p

)(
α2
)p (

1− α2
)n−1−p

.

Proof. We exploit the Euler Beta integral used in the proof of Lemma 7.

Cn,p =
2k−n+1 (2n)!

p!

∫ 1

0

dα

n−p−1∑

k=0

α2p+k (1− α)2n−2p−k−1

(n− k − p− 1)! k!

=
2−n+1 (2n)!

p!

∫ 1

0

dα

n−p−1∑

k=0

α2p (1− α)2n−2p−1

(n− k − p− 1)! k!

(
2α

1− α

)k

= n (2n− 1)!!

(
n− 1

p

)∫ 1

0

dα 2(1− α)α2p(1− α)n−p (1 + α)n−p−1

= n (2n− 1)!!

∫ 1

0

dα 2(1− α)

(
n− 1

p

)(
α2
)p (

1− α2
)n−1−p

.

Theorem 13. The exponential generating function C(y, z) is given by

C(y, z) =
∑

n≥1

n−1∑

p=0

Cn,p y
p z

n

n!
=

√
1− 2yz −

√
1− 2z

(1− 2z)(1− y)
.

Proof. We sum the result of Lemma 12 against yp to obtain

n−1∑

p=0

Cn,p y
p = n (2n− 1)!!

∫ 1

0

dα 2(1− α)
(
1− (1− y)α2

)n−1
.

We then perform the sum over n against zn/n!

∑

n,p

Cn,p y
p z

n

n!
=
∑

n

n (2n− 1)!!

n!
zn
∫ 1

0

dα 2(1− α)
(
1− (1− y)α2

)n−1

=

∫ 1

0

dα 2(1− α)
z

(1− 2z (1− (1− y)α2))3/2
=

√
1− 2yz −

√
1− 2z

(1− 2z)(1− y)
.
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n \p 0 1 2 3 4 5
1 1
2 5 1
3 33 9 3
4 279 87 39 15
5 2895 975 495 255 105
6 35685 12645 6885 4005 2205 945

Table 2: The numbers Cn,p, A336599 in the OEIS, to appear. The leading diagonal are the
double factorials (2n− 3)!!. The first column is A129890. The second column is A035101.

Probability distribution and asymptotics

We define a discrete random variable C which corresponds to the number of pairs which are
contained by the given pair. The result of Lemma 12 implies that the probability that C
takes the value p is given by

Cn(p) =
Cn,p

n (2n− 1)!!
=

∫ 1

0

dα 2(1− α)

(
n− 1

p

)(
α2
)p (

1− α2
)n−p−1

,

which is an integral over Binomial distributions. In order to compute the factorial moments
of this distribution, we define a generating function as follows

Pn(y) =
n−1∑

p=0

Cn(p) yp =

∫ 1

0

dα 2(1− α)
(
1− (1− y)α2

)n−1
.

Lemma 14. The mth factorial moment of Cn(p) is given by

n−1∑

p=0

p!

(p−m)!
Cn(p) =

(n− 1)!

(n−m− 1)!

1

(m+ 1)(2m+ 1)
.

In particular this provides the mean E(C) = (n − 1)/6, and the variance Var(C) = (n −
1)(7n+ 11)/180.

Proof.

n−1∑

p=0

p!

(p−m)!
Cn(p) =

dm

dym

∣∣∣∣
y=1

Pn(y) =

∫ 1

0

dα 2(1− α)
(n− 1)!

(n−m− 1)!
α2m

=
(n− 1)!

(n−m− 1)!

1

(m+ 1)(2m+ 1)
.
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In the limit as n→∞ we define a continuous real variable x = limn→∞ p/(n−1) ∈ [0, 1],
and an associated continuous probability distribution

C(x) = lim
n→∞

(n− 1) Cn ((n− 1)x) ,

Theorem 15. The asymptotic distribution C(x) is given by

C(x) =
1√
x
− 1.

Proof. The most satisfying proof of this fact is to show that the large-n limits of the factorial
moments are correctly reproduced. To wit,

∫ 1

0

dx xm
(

1√
x
− 1

)
=

1

(m+ 1)(2m+ 1)
.

Comparing to the result of Lemma 14, we see that in the large-n limit (n−1)!
(n−m−1)! → nm, and

so we are indeed recovering the factorial moments correctly.

Alternative proof We use the same method presented in the alternate proof of Theorem
11. Beginning with the exact distribution

∫ 1

0

dα 2(1− α)

(
n− 1

p

)(
α2
)p (

1− α2
)n−p−1

,

we approximate using an integral over Normal distributions with mean (n−1)α2 and variance
(n− 1)α2(1− α2)

N(x) =

√
n− 1

2π

∫ 1

0

dα
2(1− α)√
α2(1− α2)

Exp

(
−(n− 1) (x− α2)

2

2α2(1− α2)

)
.

There is a single saddle point at α = α0 =
√
x, and the method of steepest descent proceeds

as follows. Representing N(x) as
∫
dα f(α) e(n−1)S(α),

one finds that
d2S

dα2

∣∣∣∣
α=α0

= − 4α2
0

α2
0(1− α2

0)
.

The contribution to the integral is then

√
2π√
n− 1

f(α0)

(
− d2S

dα2

∣∣∣∣
α=α0

)−1/2
=

1− α0

α0

=
1√
x
− 1,

where we have used the fact that S(α0) = 0.
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4 Enumeration by containing pairs

We remind the reader that a containing pair as a pair whose left endpoint is left of the given
pair’s left endpoint, and whose right endpoint is right of the given pair’s right endpoint.

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
ℓ d 2n− 2− d− ℓ

· · · · · · · · ·

1

Figure 3: Parameters used in the proof of Proposition 16; the given pair is indicated by the
arc.

Proposition 16. The number Hn,q of configurations with at least q containing pairs is given
by

Hn,q =

2n−2−2q∑

d=0

2n−d−2−q∑

`=q

(
`

q

)(
2n− d− `− 2

q

)
q! (2n− 2q − 3)!!.

Proof. We begin by parameterising the size and position of the given pair as indicated in
Figure 3. We select q vertices from the set of ` vertices to the left of the given pair, and also
a further q vertices from the set of 2n− 2− d− ` vertices to the right of the given pair, then
match them in all possible ways. The remaining vertices are matched amongst themselves
in all possible ways. We note that

• There are
(
`
q

)
ways of selecting q vertices from the `.

• There are
(
2n−d−`−2

q

)
ways of selecting q vertices from the 2n− 2− d− `.

• There are q! ways of matching these two sets of q vertices.

• There are (2n− 2q − 3)!! ways to match the remaining 2n− 2q − 2 vertices.

These enumerations correspond to the factors of the summand; the sum is over all possible
values of position ` and size d of the given pair.

Lemma 17. The number Gn,p of configurations with exactly p containing pairs is given by

Gn,p = n (2n− 1)!! [yp]

∫ 1

0

dα
(1 + 2α(1− α)(y − 1))n − 1

2nα(1− α)(y − 1)
.

14



n \p 0 1 2 3 4 5
1 1
2 5 1
3 32 11 2
4 260 116 38 6
5 2589 1344 594 174 24
6 30669 17529 9294 3774 984 120

Table 3: The numbers Gn,p, A336600 in the OEIS, to appear. The leading diagonal are the
factorials (n− 1)!. The first sub-leading diagonal is A001344.

Proof. We begin with the result of Proposition 16, and shift the summation variable, defining
m = `− q, so that

Hn,q =

2n−2−2q∑

d=0

2n−2q−d−2∑

m=0

(m+ q)!

m! q!

(2n− d−m− q − 2)!

(2n− d−m− 2q − 2)!
(2n− 2q − 3)!!.

We exploit the Euler Beta integral used in the proof of Lemma 7 to obtain

Hn,q =

2n−2−2q∑

d=0

2n−2q−d−2∑

m=0

∫ 1

0

dα
αm+q

m! q!

(1− α)2n−d−m−q−2 (2n− d− 1)!

(2n− d−m− 2q − 2)!
(2n− 2q − 3)!!

=

2n−2−2q∑

d=0

∫ 1

0

dα
αq(1− α)2n−d−q−2

(2n− d− 2q − 2)!

(2n− d− 1)!

q!
(2n− 2q − 3)!!

×
2n−2q−d−2∑

m=0

(
2n− d− 2q − 2

m

)(
α

1− α

)m
,

where we have rearranged the summand to make the binomial nature of the sum over m
manifest; performing this sum we obtain

Hn,q =

2n−2−2q∑

d=0

∫ 1

0

dα
αq(1− α)2n−d−q−2

(2n− d− 2q − 2)!

(2n− d− 1)!

q!
(2n− 2q − 3)!!

(
1 +

α

1− α

)2n−d−2q−2

=
(2n− 2q − 3)!!

q!

∫ 1

0

dααq(1− α)q
2n−2−2q∑

d=0

(2n− d− 1)!

(2n− d− 2q − 2)!

=
(2n− 2q − 3)!!

q!

∫ 1

0

dααq(1− α)q
n(2n− 1)!

(q + 1)(2n− 2q − 2)!

= n (2n− 1)!!

∫ 1

0

dα
1

q + 1

(
n− 1

q

)
(2α(1− α))q .

15

http://oeis.org/A336600
http://oeis.org/A001344


We now form a generating function by summing over q against yq

Hn(y) =
n−1∑

q=0

Hn,q y
q = n (2n− 1)!!

∫ 1

0

dα
(1 + 2α(1− α)y)n − 1

2nα(1− α)y
.

Finally we note that by inclusion-exclusion (c.f. [10]), Gn,p = [yp]Hn(y−1), which yields the
desired result.

Theorem 18. The exponential generating function for the numbers Gn,p is given by

∑

n,p

Gn,p
zn

n!
yp =

1

(1− y)
√

1− 2z
ln

(
1− z(1 + y)

1− 2z

)
.

Proof. We sum the result of Lemma 17 against zn/n!, and then perform the integral over α

∑

n,p

Gn,p
zn

n!
yp =

∫ 1

0

dα
∑

n

(2n− 1)!!

n!

(1 + 2α(1− α)(y − 1))n − 1

2α(1− α)(y − 1)

=

∫ 1

0

dα
1

2α(1− α)(y − 1)

(
1√

1− 2z (1 + 2α(1− α)(y − 1))
− 1√

1− 2z

)
.

We use a Feynman parameter (c.f. [8]) β to combine the denominator outside the parenthesis
with those inside

1

2(y − 1)

∫ 1

0

dβ
1√

1− β

∫ 1

0

dα

(
1

(2α(1− α)β + (1− β) (1− 2z (1 + 2α(1− α)(y − 1))))3/2

− 1

(2α(1− α)β + (1− β)(1− 2z))3/2

)
.

The integral over α is straightforward and yields

1

(y − 1)
√

1− 2z

∫ 1

0

dβ

(
1

(1− β) (2− β − 2(1− β)(1 + y)z)
− 1

(1− β) (2− β − 4(1− β)z)

)
,

where the apparent singularity at β = 1 cancels between the two terms. The integration
over β is trivial and yields the desired result.

Probability distribution and asymptotics

We define a discrete random variable G which corresponds to the number of pairs which are
contained by the given pair. The result of Lemma 17 implies that the probability that G
takes the value p is given by

Gn,p = [yp]

∫ 1

0

dα
(1 + 2α(1− α)(y − 1))n − 1

2nα(1− α)(y − 1)
.
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In order to compute the factorial moments of this distribution, we define a generating func-
tion as follows

Pn(y) =
n−1∑

p=0

Gn(p) yp =

∫ 1

0

dα
(1 + 2α(1− α)(y − 1))n − 1

2nα(1− α)(y − 1)

=

∫ 1

0

dα

n−1∑

m=0

(2α(1− α)(y − 1))m
(
n− 1

m

)
1

m+ 1

=
n−1∑

m=0

2m(m!)2

(2m+ 1)!
(y − 1)m

(
n− 1

m

)
1

m+ 1

=
n−1∑

m=0

(n− 1)!

(n−m− 1)!

2mm!

(m+ 1)(2m+ 1)!
(y − 1)m.

Lemma 19. The mth factorial moment of Gn(p) is given by

n−1∑

p=0

p!

(p−m)!
Gn(p) =

(n− 1)!

(n−m− 1)!

m!

(m+ 1)(2m+ 1)!!
.

In particular this provides the mean E(G) = (n − 1)/6, and the variance Var(G) = (n −
1)(3n+ 19)/180.

Proof. Using the form of Pn(y) given above, we find

n−1∑

p=0

p!

(p−m)!
Gn(p) =

dm

dym

∣∣∣∣
y=1

Pn(y) =
(n− 1)!

(n−m− 1)!

2m(m!)2

(m+ 1)(2m+ 1)!
,

which yields the desired result upon simplification.

In the limit as n→∞ we define a continuous real variable x = limn→∞ p/(n−1) ∈ [0, 1],
and an associated continuous probability distribution

G(x) = lim
n→∞

(n− 1)Gn ((n− 1)x) .

We note the similarity in the factorial moments between Gn(p) and Kn(p) (see Lemma 10);
indeed those of Gn(p) are equal to 1/(m + 1) times those of Kn(p). The following lemma
allows us to exploit this fact to determine the functional form of G(x).

Lemma 20. Let P(x) be a distribution with support on x ∈ [a, b]. Then

1

m+ 1

∫ b

a

dx xmP(x) =

∫ b

0

dx xmcb −
∫ a

0

dx xmca −
∫ b

a

dx xm
∫ x

dy
P(y)

y
,

holds true, assuming the integrals are convergent. The constants ca and cb are given by

ca =

∫ a

dy
P(y)

y
, cb =

∫ b

dy
P(y)

y
.
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Proof. We begin with the last term on the right hand side and apply integration by parts,
integrating xm and differentiating

∫
dy y−1P(y)

∫ b

a

dx xm
∫ x

dy
P(y)

y
=

bm+1

m+ 1

∫ b

dy
P(y)

y
− am+1

m+ 1

∫ a

dy
P(y)

y
− 1

m+ 1

∫ b

a

dx xmP(x).

We then re-express the boundary terms as integrals over x, and obtain the desired result.

Theorem 21. The asymptotic distribution G(x) is given by

G(x) =

{
2 tanh−1

√
1− 2x 0 ≤ x < 1/2

0 1/2 ≤ x ≤ 1

Proof. We use Lemma 20, letting P(x) = K(x) from Theorem 11, in order to deduce the
distribution which produces moments which are those of K(x) dressed by (m + 1)−1. We
note that ∫ x

dy
K(y)

y
=

∫ x dy

y
√

1− 2y
= −2 tanh−1

√
1− 2x.

The boundary terms are zero as cb = 0 since b = 1/2 whilst a = 0.

5 Enumeration by excluded pairs

We remind the reader that an excluded pair as a pair whose left and right endpoints are both
either to the left of the given pair’s left endpoint, or to the right of the given pair’s right
endpoint.

Proposition 22. The number Yn,q,r of configurations with at least q excluded pairs to the
left of the given pair, and at least r excluded pairs to the right of the given pair, is given by

Yn,q,r =

2n−2−2q−2r∑

d=0

2n−d−2−2r∑

`=2q

(
`

2q

)
(2q − 1)!!

(
2n− d− `− 2

2r

)
(2r − 1)!! (2n− 2q − 2r − 3)!!.

Proof. We begin by parameterising the size and position of the given pair as indicated in
Figure 3. We select 2q vertices from the set of ` vertices to the left of the given pair, and
match them amongst themselves in all possible ways. Similarly, we select 2r vertices from
the set of 2n − 2 − d − ` vertices to the right of the given pair, and match them amongst
themselves in all possible ways. The remaining vertices are matched amongst themselves in
all possible ways. We note that

• There are
(
`
2q

)
ways of selecting 2q vertices from the `.

• There are (2q − 1)!! ways of matching these vertices amongst themselves.

18



n \p 0 1 2 3 4 5
1 1
2 4 2
3 22 16 7
4 160 136 88 36
5 1464 1344 1044 624 249
6 16224 15504 13344 9624 5484 2190

Table 4: The numbers Xn,p, A336601 in the OEIS, to appear. The first column is A087547,
the leading diagonal is A034430.

• There are
(
2n−d−`−2

2r

)
ways of selecting 2r vertices from the 2n− 2− d− `.

• There are (2r − 1)!! ways of matching these vertices amongst themselves.

• There are (2n− 2q − 2r− 3)!! ways to match the remaining 2n− 2q − 2r− 2 vertices.

These enumerations correspond to the factors of the summand; the sum is over all possible
values of position ` and size d of the given pair.

Lemma 23. The number Xn,p of configurations with exactly p excluded pairs is given by

Xn,p = n (2n− 1)!! [yp]

∫ 1

0

dα
(1 + (1− 2α(1− α))(y − 1))n − 1

n(1− 2α(1− α))(y − 1)
.

Proof. We begin with the result of Proposition 22, and shift the summation variable, defining
m = `− 2q, so that

Yn,q,r =

2n−2−2q−2r∑

d=0

2n−d−2−2r−2q∑

m=0

(
m+ 2q

2q

)
(2q − 1)!!

×
(

2n− d−m− 2q − 2

2r

)
(2r − 1)!! (2n− 2q − 2r − 3)!!

=
(2n− 2q − 2r − 3)!!

2q+r q! r!

2n−2−2q−2r∑

d=0

2n−d−2−2r−2q∑

m=0

(m+ 2q)! (2n− 2− d−m− 2q)!

m! (2n− 2− 2q − 2r − d−m)!
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We exploit the Euler Beta integral used in the proof of Lemma 7 to obtain

Yn,q,r =
(2n− 2q − 2r − 3)!!

2q+r q! r!

2n−2−2q−2r∑

d=0

(2n− d− 1)!

×
2n−d−2−2r−2q∑

m=0

∫ 1

0

dα
αm+2q(1− α)2n−d−m−2q−2

m! (2n− d−m− 2q − 2r − 2)!

=
(2n− 2q − 2r − 3)!!

2q+r q! r!

2n−2−2q−2r∑

d=0

(2n− d− 1)!

(2n− d− 2q − 2r − 2)!

∫ 1

0

dαα2q(1− α)2n−d−2q−2

×
2n−d−2−2r−2q∑

m=0

(
2n− d− 2q − 2r − 2

m

)(
α

1− α

)m
,

where we have rearranged the summand to make the binomial nature of the sum over m
manifest; performing this sum we obtain

Yn,q,r =
(2n− 2q − 2r − 3)!!

2q+r q! r!

2n−2−2(q+r)∑

d=0

(2n− d− 1)!

(2n− d− 2q − 2r − 2)!

×
∫ 1

0

dαα2q(1− α)2n−d−2q−2
(

1 +
α

1− α

)2n−d−2q−2r−2

=
(2n− 2q − 2r − 3)!!

2q+r q! r!

∫ 1

0

dαα2q(1− α)2r
2n−2−2q∑

d=0

(2n− d− 1)!

(2n− d− 2q − 2r − 2)!

=
(2n− 2q − 2r − 3)!!

2q+r q! r!

∫ 1

0

dαα2q(1− α)2r
n(2n− 1)!

(q + r + 1)(2n− 2q − 2r − 2)!

=
n (2n− 1)!!

q + r + 1

(
n− 1

q, r

)∫ 1

0

dαα2q(1− α)2r.

We now form a generating function by summing both q and r against yq+r

Yn(y) =
n−1∑

q,r=0

Yn,q,r y
q+r = n (2n− 1)!!

∫ 1

0

dα
(1 + (1− 2α(1− α))y)n − 1

n(1− 2α(1− α))y
.

Finally we note that by inclusion-exclusion (c.f. [10]), Xn,p = [yp]Yn(y− 1), which yields the
desired result.

Theorem 24. The exponential generating function for the numbers Xn,p is given by

X(y, z) =
∑

n,p

Xn,p
zn

n!
yp =

1

(1− y)
√

1− 2z
tan−1

(1− y)z√
(1− 2z)(1− 2yz)

.
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Proof. We sum the result of Lemma 23 against zn/n!, and then perform the integral over α

∑

n,p

Xn,p
zn

n!
yp =

∫ 1

0

dα
∑

n

(2n− 1)!!

n!

(1 + (1− 2α(1− α))(y − 1))n − 1

(1− 2α(1− α))(y − 1)

=

∫ 1

0

dα
1

(1− 2α(1− α))(y − 1)

(
1√

1− 2z (1 + (1− 2α(1− α))(y − 1))
− 1√

1− 2z

)
.

We change the integration variable to x, where x2 = 1− 4α(1− α), yielding

X(y, z) =
1

(1− y)3/2
√
z

∫ 1

−1
dx

1

1 + x2

(
1√
A− 1

− 1√
A+ x2

)
,

=
1

(1− y)3/2
√
z

(
π

2
√
A− 1

−
∫ 1

−1
dx

1

1 + x2
1√

A+ x2

)
.

where A = (1 − (1 + y)z)/(z(1 − y)). A final change of variable to u, where tanu =
x
√
A− 1/

√
A+ x2 renders the remaining integral trivial

∫ 1

−1
dx

1

1 + x2
1√

A+ x2
=

1√
A− 1

∫ tan−1
√

(A−1)/(A+1)

− tan−1
√

(A−1)/(A+1)

du =
2√
A− 1

tan−1
√
A− 1

A+ 1

=
1√
A− 1

tan−1
√
A2 − 1,

where in the last equality we have exploited the double angle formula for tan. We thus
obtain

X(y, z) =
1

(1− y)3/2
√
z

(
π

2
√
A− 1

− 1√
A− 1

tan−1
√
A2 − 1

)

=
1

(1− y)3/2
√
z

1√
A− 1

tan−1
1√

A2 − 1
,

which yields the desired result.

Probability distribution and asymptotics

We define a discrete random variable X which corresponds to the number of pairs which are
excluded by the given pair. The result of Lemma 23 implies that the probability that X
takes the value p is given by

Xn,p = [yp]

∫ 1

0

dα
(1 + (1− 2α(1− α))(y − 1))n − 1

n(1− 2α(1− α))(y − 1)
.
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In order to compute the factorial moments of this distribution, we define a generating func-
tion as follows

Pn(y) =
n−1∑

p=0

Xn(p) yp =

∫ 1

0

dα
(1 + (1− 2α(1− α))(y − 1))n − 1

n(1− 2α(1− α))(y − 1)

=

∫ 1

0

dα

n−1∑

m=0

(1− 2α(1− α)(y − 1))m
(
n− 1

m

)
1

m+ 1

=
n−1∑

m=0

(n− 1)!

(n−m− 1)!

1

m+ 1

(y − 1)m

m!

∫ 1

0

dα (1 + (1− 2α(1− α)))m .

Lemma 25. The mth factorial moment of Xn(p) is given by

n−1∑

p=0

p!

(p−m)!
Xn(p) =

(n− 1)!

(n−m− 1)!

1

m+ 1

∫ 1

1/2

dx
xm√

2x− 1
.

In particular this provides the mean E(X) = (n − 1)/3, and the variance Var(X) = 2(n −
1)(n+ 3)/45.

Proof. We use the form of Pn(y) given above to obtain

n−1∑

p=0

p!

(p−m)!
Xn(p) =

dm

dym

∣∣∣∣
y=1

Pn(y) =
(n− 1)!

(n−m− 1)!

1

m+ 1

∫ 1

0

dα (1 + (1− 2α(1− α)))m .

We change the integration variable to x = 1− 2α(1− α), and obtain the desired result.

In the limit as n→∞ we define a continuous real variable x = limn→∞ p/(n−1) ∈ [0, 1],
and an associated continuous probability distribution

X (x) = lim
n→∞

(n− 1)Xn ((n− 1)x) .

Theorem 26. The asymptotic distribution X (x) is given by

X (x) =

{
π/2 0 ≤ x < 1/2

π/2− 2 tan−1
√

2x− 1 1/2 ≤ x ≤ 1

Proof. We use Lemma 20, letting P(x) = (2x− 1)−1/2 from the integrand of Lemma 25, in
order to deduce the distribution which produces moments which are those of (2x − 1)−1/2

dressed by (m+ 1)−1. We note that
∫ x

dy
1

y
√

2y − 1
= 2 tan−1

√
2x− 1.

We further note that a = 1/2 and b = 1, yielding ca = 0 and cb = π/2. Thus the distribution
receives a constant contribution of π/2 across the entire interval x ∈ [0, 1]. By Lemma 20
we obtain the desired result.
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