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Abstract

Using generating functions, we derive many identities involving balancing and

Lucas-balancing polynomials. By relating these polynomials to Chebyshev polyno-

mials of the first and second kind, and Fibonacci and Lucas numbers, we offer some

presumably new combinatorial identities involving these famous sequences.

1 Introduction and preliminaries

For any integer n ≥ 0, the balancing polynomials
(

Bn(x)
)

n≥0
and Lucas-balancing poly-

nomials
(

Cn(x)
)

n≥0
are defined by the same second-order homogeneous linear recurrence

un(x) = 6xun−1(x)− un−2(x), (1)

but with different initial terms B0(x) = 0, B1(x) = 1 and C0(x) = 1, C1(x) = 3x. These
polynomials have been introduced as a natural extension of the popular balancing and Lucas-
balancing numbers Bn and Cn, respectively, which were firstly studied in [1]. Obviously,
Bn = Bn(1) and Cn = Cn(1). Sequences

(

Bn

)

n≥0
and

(

Cn

)

n≥0
are indexed in the On-Line

Encyclopedia of Integer Sequences [16] (see entries A001109 and A001541, respectively).
The closed forms which are also called Binet’s formulas for balancing and Lucas-balancing

polynomials are given by

Bn(x) =
λn(x)− λ−n(x)

2
√
9x2 − 1

, Cn(x) =
λn(x) + λ−n(x)

2
, (2)

where λ(x) = 3x+
√
9x2 − 1.

1Statements and conclusions made in this article by R. Frontczak are entirely those of the author. They

do not necessarily reflect the views of LBBW.
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For n ≥ 1, the balancing and Lucas-balancing polynomials are given explicitly [13, 14]
by

Bn(x) =

⌊n−1

2 ⌋
∑

k=0

(−1)k
(

n− 1− k

k

)

(6x)n−1−2k, Cn(x) =
n

2

⌊n

2 ⌋
∑

k=0

(−1)k

n− k

(

n− k

k

)

(6x)n−2k.

The first polynomials are

B0(x) = 0, B1(x) = 1, B2(x) = 6x, B3(x) = 36x2 − 1,

B4(x) = 216x3 − 12x, B5(x) = 1296x4 − 108x2 + 1,

and

C0(x) = 1, C1(x) = 3x, C2(x) = 18x2 − 1, C3(x) = 108x3 − 9x,

C4(x) = 648x4 − 72x2 + 1, C5(x) = 3888x5 − 540x3 + 15x.

These polynomials have been studied extensively in different contexts and a variety of
interesting results about them have been uncovered [2, 3, 6, 8, 9, 11, 14]. For example, in
[2], the first author established direct connections of the polynomials Bn(x) and Cn(x) with
Fibonacci numbers, Lucas numbers and Chebyshev and Legendre polynomials. By using
combinatorial methods, Meng derived some symmetry identities of the structural properties
of balancing numbers and balancing polynomials [11]. In [8, 9], the authors study sums of
finite products of balancing and Lucas-balancing polynomials and represent them in terms of
nine orthogonal polynomials. In [14], Ray studied the sequences obtained by differentiating
the balancing polynomials and presented some relations between the balancing polynomials
and their derivatives.

In the present study, we derive new identities for polynomials Bn(x) and Cn(x). Evalu-
ating these identities at specific points, we can also establish some interesting combinatorial
identities as special cases, especially those with Fibonacci and Lucas numbers. Our approach
is in the spirit of [4, 7].

2 Balancing polynomial relations using ordinary

generating functions

To establish our main results, we will find the ordinary (non-exponential) generating func-
tions for the sequences in question. We will make use of the following result [12] to compute
the ordinary generating functions for balancing, Lucas-balancing polynomials and their odd
(even) indexed companions.

Lemma 1. The second-order polynomial recurrence un(x) = pun−1(x) + qun−2(x), n ≥ 2,
p2 + 4q 6= 0, with initial terms u0(x) and u1(x) has generating function

∑

n≥0

un(x)z
n =

u0(x) +
(

u1(x)− pu0(x)
)

z

1− pz − qz2
,

2



while for odd (even) indexed sequences

∑

n≥0

u2n+1(x)z
n =

u1(x) +
(

pqu0(x)− qu1(x)
)

z

1− (p2 + 2q)z + q2z2
,

∑

n≥0

u2n(x)z
n =

u0(x) +
(

u2(x)− (p2 + 2q)u0(x)
)

z

1− (p2 + 2q)z + q2z2
.

From the above lemma we obtain ordinary generating functions of the sequences Bn(x),
B2n+1(x), and B2n(x) as follows

b(x, z) =
∑

n≥0

Bn(x)z
n =

z

1− 6xz + z2
, (3)

b1(x, z) =
∑

n≥0

B2n+1(x)z
n =

1 + z

1− (36x2 − 2)z + z2
,

b2(x, z) =
∑

n≥0

B2n(x)z
n =

6xz

1− (36x2 − 2)z + z2
. (4)

In the similar manner, we conclude that ordinary generating functions of the sequences
Cn(x), C2n+1(x) and C2n(x) can be derived as

c(x, z) =
∑

n≥0

Cn(x)z
n =

1− 3xz

1− 6xz + z2
,

c1(x, z) =
∑

n≥0

C2n+1(x)z
n =

3x− 3xz

1− (36x2 − 2)z + z2
, (5)

c2(x, z) =
∑

n≥0

C2n(x)z
n =

1 + (1− 18x2)z

1− (36x2 − 2)z + z2
. (6)

We present our first findings in two theorems, which provide some relations between
balancing and Lucas-balancing polynomials using their respective ordinary generating func-
tions.

Theorem 2. For n ≥ 1, the following formulas hold

Bn(x)− 3xBn−1(x) = Cn−1(x),

3x
(

B2n+1(x)−B2n−1(x)
)

= C2n+1(x) + C2n−1(x),

B2n(x)− (18x2 − 1)B2(n−1)(x) = 6xC2(n−1)(x), (7)

B2n+1(x)− (18x2 − 1)B2n−1(x) = C2n(x) + C2(n−1)(x),

3x
(

B2n(x)−B2(n−1)(x)
)

= 6xC2n−1(x).

Proof. All stated identities can be proved directly using Binet’s formulas (2). We present
a proof based on generating functions. We will prove formula (7); the others may also be
shown in a similar manner.
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By (4) and (6), we obtain
(

1− (18x2 − 1)z
)

b2(x, z) = 6xzc2(x, z).

Expanding both sides of the last equation as a power series in z, we then have
∑

n≥0

B2n(x)z
n − (18x2 − 1)

∑

n≥0

B2n(x)z
n+1 = 6x

∑

n≥0

C2n(x)z
n+1

or, equivalently,
∑

n≥1

B2n(x)z
n − (18x2 − 1)

∑

n≥1

B2(n−1)(x)z
n = 6x

∑

n≥1

C2(n−1)(x)z
n.

Comparing the coefficients on both sides, we get (7).

For convention, throughout this paper the empty sums are evaluated to 0.

Theorem 3. For n ≥ 1, the following formulas hold:

3x
(

Bn(x)−Bn−1(x)
)

= C2n−1(x)− (36x2 − 6x− 2)

n−1
∑

k=1

Bk(x)C2(n−k)−1(x), (8)

Bn(x)− (18x2 − 1)Bn−1(x) = C2(n−1)(x)− (36x2 − 6x− 2)

n−1
∑

k=1

Bk(x)C2(n−k−1)(x),

B2n+1(x)− 3xB2n−1(x) = Cn(x) + Cn−1(x)− (36x2 − 6x− 2)

n−1
∑

k=0

B2k+1(x)Cn−k−1(x),

B2n(x)− 3xB2(n−1)(x) = 6xCn−1(x)− (36x2 − 6x− 2)

n−1
∑

k=1

B2k(x)Cn−k−1(x).

Proof. We prove only (8). Proceeding as in the proof of Theorem 2 above, using (3) and (5),
we deduce that

zc1(x, z)− 3x(1− z)b(x, z) = (36x2 − 6x− 2)zb(x, z)c1(x, z).

Expanding both sides of the last equation as a power series in z yields
∑

n≥0

C2n+1(x)z
n+1 − 3x

∑

n≥0

Bn(x)z
n + 3x

∑

n≥0

Bn(x)z
n+1

= (36x2 − 6x− 2)
∑

n≥0

n
∑

k=0

Bk(x)C2(n−k)+1z
n+1,

∑

n≥1

C2n−1(x)z
n − 3x

∑

n≥1

Bn(x)z
n + 3x

∑

n≥1

Bn−1(x)z
n

= (36x2 − 6x− 2)
∑

n≥1

n−1
∑

k=0

Bk(x)C2(n−k)−1z
n.

Comparing the coefficients on both sides implies the stated formula.
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3 Balancing relations using exponential generating

functions

In this section, we will use the structure of the exponential generating functions to prove our
results. In this case, we will use significantly the following lemma from [12].

Lemma 4. The recurrence of type un(x) = pun−1(x) + qun−2(x), n ≥ 2, where p2 + 4q 6= 0
and u0(x) and u1(x) are the initial terms, has the exponential generating function

∑

n≥0

un(x)
zn

n!
=

e
p

2
z

∆

(

(u1(x)− βu0(x))e
∆
2
z − (u1(x)− αu0(x))e

−∆
2
z
)

,

while for odd and even indexed sequences

∑

n≥0

u2n+1(x)
zn

n!
=

e
p
2+2q

2
z

p∆

(

(u3(x)− σu1(x))e
p∆

2
z − (u3(x)− ρu0(x))e

−
p∆

2
z
)

,

∑

n≥0

u2n(x)
zn

n!
=

e
p
2+2q

2
z

p∆

(

(u2(x)− σu0(x))e
p∆

2
z − (u2(x)− ρu0(x))e

−
p∆

2
z
)

,

where ∆ =
√

p2 + 4q, α = p+∆
2

, β = p−∆
2

, ρ = p2+2q+p∆
2

, and σ = p2+2q−p∆
2

.

From lemma above it can be shown fairly easily that the exponential generating functions
of the balancing polynomials and their odd (even) indexed companions are given by

b∗(x, z) =
∑

n≥0

Bn(x)
zn

n!
=

e3xz√
9x2 − 1

sinh
(
√
9x2 − 1 z

)

, (9)

b∗1(x, z) =
∑

n≥0

B2n+1(x)
zn

n!

=
e(18x

2−1)z

√
9x2 − 1

(

3x sinh
(

6x
√
9x2 − 1 z

)

+
√
9x2 − 1 cosh

(

6x
√
9x2 − 1 z

)

)

, (10)

b∗2(x, z) =
∑

n≥0

B2n(x)
zn

n!
=

e(18x
2−1)z

√
9x2 − 1

sinh
(

6x
√
9x2 − 1 z

)

. (11)

In the similar manner, we obtain the exponential generating functions of the Lucas-
balancing polynomial sequences:

c∗(x, z) =
∑

n≥0

Cn(x)
zn

n!
= e3xz cosh

(
√
9x2 − 1 z

)

, (12)

c∗1(x, z) =
∑

n≥0

C2n+1(x)
zn

n!

= e(18x
2−1)z

(

3x cosh
(

6x
√
9x2 − 1 z

)

+
√
9x2 − 1 sinh

(

6x
√
9x2 − 1 z

)

)

, (13)
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c∗2(x, z) =
∑

n≥0

C2n(x)
zn

n!
= e(18x

2−1)z cosh
(

6x
√
9x2 − 1 z

)

. (14)

Next, we present some new relations between balancing and Lucas-balancing polynomials
involving binomial coefficients.

Theorem 5. For n ≥ 1, we have

n
∑

k=1

(

n

k

)

1 + (−1)n−k

(√
9x2 − 1

)k−1
Bk(x) =

n
∑

k=0

(

n

k

)

1− (−1)n−k

(√
9x2 − 1

)k
Ck(x), (15)

n
∑

k=0

(

n

k

)

λ(x) + (−1)n−kλ−1(x)
(

6x
√
9x2 − 1

)k−1
B2k+1(x) = 6x

n
∑

k=0

(

n

k

)

λ(x)− (−1)n−kλ−1(x)
(

6x
√
9x2 − 1

)k
C2k+1(x), (16)

n
∑

k=1

(

n

k

)

1 + (−1)n−k

(

6x
√
9x2 − 1

)k−1
B2k(x) = 6x

n
∑

k=1

(

n

k

)

1− (−1)n−k

(

6x
√
9x2 − 1

)k
C2k(x), (17)

n
∑

k=0

(

n

k

)

1 + (−1)n−k

(

6x
√
9x2 − 1

)k−1
B2k+1(x) = 6x

n
∑

k=0

(

n

k

)

λ(x)− (−1)n−kλ−1(x)
(

6x
√
9x2 − 1

)k
C2k(x),

n
∑

k=1

(

n

k

)

λ(x) + (−1)n−kλ−1(x)
(

6x
√
9x2 − 1

)k−1
B2k(x) = 6x

n
∑

k=0

(

n

k

)

1− (−1)n−k

(

6x
√
9x2 − 1

)k
C2k+1(x),

where λ(x) = 3x+
√
9x2 − 1.

Proof. We will prove (15). In view of (9) and (12), we have
√
9x2 − 1 cosh

(
√
9x2 − 1z

)

b∗(x, z) = sinh
(
√
9x2 − 1z

)

c∗(x, z)

or, equivalently,

√
9x2 − 1

∑

n≥0

Bn(x)
zn

n!

∑

n≥0

(
√
9x2 − 1

)n(

1 + (−1)n
)zn

n!

=
∑

n≥0

Cn(x)
zn

n!

∑

n≥0

(
√
9x2 − 1

)n(

1− (−1)n
)zn

n!
,

√
9x2 − 1

∑

n≥0

n
∑

k=0

(

n

k

)

Bk(x)
(
√
9x2 − 1

)n−k(

1 + (−1)n−k
)zn

n!

=
∑

n≥0

n
∑

k=0

(

n

k

)

Ck(x)
(
√
9x2 − 1

)n−k(

1− (−1)n−k
)zn

n!
.

Comparing the coefficients on both sides yields (15).
The formulas (16) and (17) follow from the relations

√
9x2 − 1

(

3x cosh
(

6x
√
9x2 − 1

)

+
√
9x2 − 1 sinh

(

6x
√
9x2 − 1

)

)

b∗1(x, z)

=
(

3x cosh
(

6x
√
9x2 − 1

)

−
√
9x2 − 1 sinh

(

6x
√
9x2 − 1

)

)

c∗1(x, z)
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and

√
9x2 − 1 cosh

(

6x
√
9x2 − 1

)

b∗2(x, z) = sinh
(

6x
√
9x2 − 1

)

c∗2(x, z),

that one can obtain from (10), (13) and (11), (14), respectively. The proof of the other
formulas is similar.

In the next theorem we list a range of more advanced further relations for balancing and
Lucas-balancing polynomials that can be derived in a similar manner.

Theorem 6. For n ≥ 1, we have

n
∑

k=1

(

n

k

)

(

λ(x) + (−1)n−kλ−1(x)
)

(

18x2 − 1

18x2
√
9x2 − 1

)k−1

Bk(x)

=

(

18x2 − 1

18x2

)n−1 n
∑

k=0

(

n

k

)

(

1− (−1)n−k
)

(

3x

(18x2 − 1)
√
9x2 − 1

)k

C2k+1(x), (18)

n
∑

k=1

(

n

k

)

(

1 + (−1)n−k
)

(

18x2 − 1

18x2
√
9x2 − 1

)k−1

Bk(x)

=

(

18x2 − 1

18x2

)n−1 n
∑

k=0

(

n

k

)

(

1− (−1)n−k
)

(

3x

(18x2 − 1)
√
9x2 − 1

)k

C2k(x),

n
∑

k=0

(

n

k

)

(

1 + (−1)n−k
)

(

3x

(18x2 − 1)
√
9x2 − 1

)k−1

B2k+1(x)

=

(

18x2

18x2 − 1

)n−1

6x
n
∑

k=0

(

n

k

)

(

λ(x)− (−1)n−kλ−1(x)
)

(

18x2 − 1

18x2
√
9x2 − 1

)k

Ck(x),

n
∑

k=1

(

n

k

)

(

1 + (−1)n−k
)

(

3x

(18x2 − 1)
√
9x2 − 1

)k−1

B2k(x)

=

(

18x2

18x2 − 1

)n−1

6x

n
∑

k=0

(

n

k

)

(

1− (−1)n−k
)

(

18x2 − 1

18x2
√
9x2 − 1

)k

Ck(x),

where λ(x) = 3x+
√
9x2 − 1.

Proof. Formula (18) follows from the functional relation

(

3x cosh
(

6x
√
9x2 − 1z

)

+
√
9x2 − 1 sinh

(

6x
√
9x2 − 1z

)

)

b∗
(

x,
18x2 − 1

3x
z

)

= sinh

(

(18x2 − 1)(
√
9x2 − 1)

3x
z

)

c∗1(x, z),

writing in terms of power series, and collecting terms.
The proof of the other formulas is similar. We omit the corresponding details.
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4 Chebyshev polynomial relations via balancing and

Lucas-balancing polynomials

As usual, Chebyshev polynomials
(

Tn(x)
)

n≥0
of the first kind and the Chebyshev polynomials

(

Un(x)
)

n≥0
of the second kind can be defined by the recurrence [10]

Wn(x) = 2xWn−1(x)−Wn−2(x), n ≥ 2, (19)

but with different initial terms T0(x) = 1, T1(x) = x and U0(x) = 1, U1(x) = 2x.
Many properties of Chebyshev polynomials can be obtained immediately from the fol-

lowing relations initially observed by the first author in [2].

Lemma 7. For n ≥ 1, the following relations hold:

Bn

(x

3

)

= Un−1(x), Cn

(x

3

)

= Tn(x). (20)

Applying (20) to Theorems 2 and 3 yields the following Chebyshev polynomial relations.

Corollary 8. For n ≥ 1,

T2n−1(x)− 2(2x2 − x− 1)

n−1
∑

k=1

Uk−1(x)T2n−2k−1(x) = x(Un−1(x)− Un−2(x)),

T2n−2(x)− 2(2x2 − x− 1)

n−1
∑

k=1

Uk−1(x)T2(n−k−1)(x) = Un−1(x)− (2x2 − 1)Un−2(x),

Tn(x) + Tn−1(x) + 2(2x2 − x− 1)

n−1
∑

k=1

U2k(x)Tn−k−1(x) = U2n(x)− xU2(n−1)(x),

2xTn−1(x) + 2(2x2 − x− 1)

n−1
∑

k=1

U2k−1(x)Tn−k−1(x) = U2n−1(x)− xU2n−3(x).

By virtue of (20), from Theorems 5 and 6 we have the following summation formulas
involving Chebyshev polynomials and binomial coefficients.

Corollary 9. Let ω(x) = x+
√
x2 − 1. Then for n ≥ 1 the following relations hold:

n
∑

k=1

(

n

k

)

Uk−1(x)
(√

x2 − 1
)k−1

(

1 + (−1)n−k
)

=

n
∑

k=0

(

n

k

)

Tk(x)
(√

x2 − 1
)k

(

1− (−1)n−k
)

,

n
∑

k=1

(

n

k

)

U2k(x)
(

2x
√
x2 − 1

)k−1

(

ω(x) + (−1)n−kω−1(x)
)

= 2x
n
∑

k=0

(

n

k

)

T2k+1(x)
(

2x
√
x2 − 1

)k

(

ω(x)− (−1)n−kω−1(x)
)

,

√
x2 − 1

n
∑

k=1

(

n

k

)

U2k−1(x)
(

2x
√
x2 − 1

)k

(

1 + (−1)n−k) =

n
∑

k=0

(

n

k

)

T2k(x)
(

2x
√
x2 − 1

)k

(

1− (−1)n−k
)

,

8



n
∑

k=1

(

n

k

)

Uk−1(x)

(

2x2 − 1

2x2
√
x2 − 1

)k−1
(

ω(x) + (−1)n−kω−1(x)
)

=

(

2x2 − 1

2x2

)n−1 n
∑

k=0

(

n

k

)

T2k+1(x)

(

x

(2x2 − 1)
√
x2 − 1

)k
(

1− (−1)n−k
)

,

n
∑

k=1

(

n

k

)

Uk−1(x)

(

2x2 − 1

2x2
√
x2 − 1

)k−1
(

1 + (−1)n−k
)

=

(

2x2 − 1

2x2

)n−1 n
∑

k=0

(

n

k

)

T2k(x)

(

x

(2x2 − 1)
√
x2 − 1

)k
(

1− (−1)n−k
)

,

√
x2 − 1

n
∑

k=0

(

n

k

)

U2k(x)

(

x

(2x2 − 1)
√
x2 − 1

)k
(

1 + (−1)n−k
)

=

(

2x2

2x2 − 1

)n n
∑

k=0

(

n

k

)

Tk(x)

(

2x2 − 1

2x2
√
x2 − 1

)k
(

ω(x)− (−1)n−kω−1(x)
)

,

√
x2 − 1

n
∑

k=0

(

n

k

)

U2k(x)
(

2x
√
x2 − 1

)k

(

1 + (−1)n−k
)

=
n
∑

k=0

(

n

k

)

T2k(x)
(

2x
√
x2 − 1

)k

(

ω(x)− (−1)n−kω−1(x)
)

,

(x2 − 1)
n
∑

k=1

(

n

k

)

U2k−1(x)

(

x

(2x2 − 1)
√
x2 − 1

)k
(

1 + (−1)n−k
)

=

(

2x2

2x2 − 1

)n n
∑

k=0

(

n

k

)

Tk(x)

(

2x2 − 1

2x2
√
x2 − 1

)k
(

1− (−1)n−k
)

,

n
∑

k=1

(

n

k

)

U2k−1(x)
(

2x
√
x2 − 1

)k−1

(

ω(x) + (−1)n−kω−1(x)
)

= 2x

n
∑

k=0

(

n

k

)

Tk(x)
(

2x
√
x2 − 1

)k

(

1− (−1)n−k
)

.

Remark 10. There also exist relations between balancing (Lucas-balancing) polynomials
and Chebyshev polynomials of the third and fourth kinds, Vn(x) andWn(x), respectively [10].
These polynomials satisfy the recurrence (19) with initial terms V0(x) = 1, V1(x) = 2x− 1,

and W0(x) = 1, W1(x) = 2x + 1. Well-known relations Vn(x) =
√

2
1+x

T2n+1

(√

1+x
2

)

and

Wn(x) = U2n

(√

1+x
2

)

give

√

1 + x

2
Vn(x) = C2n+1

(

√

1 + x

18

)

, Wn(x) = B2n+1

(

√

1 + x

18

)

.
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5 Fibonacci-Lucas identities via balancing polynomial

relations

The balancing and Lucas-balancing polynomials are closely related to the Fibonacci and
Lucas numbers. Using this connection, in this section we obtain many Fibonacci-Lucas
identities.

Let Fn denote the n-th Fibonacci number and Ln the n-th Lucas number, both satisfying
the recurrence un = un−1 + un−2, n ≥ 2, but with the respective initial terms F0 = 0, F1 = 1
and L0 = 2, L1 = 1.

Lemma 11. For n ≥ 0, the following relations hold:

Bn

(

1

2

)

= F2n, Cn

(

1

2

)

=
L2n

2
. (21)

Proof. The first formula follows from (1) and the fact that sequence (F2n)n≥0 satisfies the
recurrence un = 3un−1 − un−2, n ≥ 2. The proof of the second formula is omitted.

Using (21), from Theorems 2 and 3 we immediately can obtain the following summation
Fibonacci-Lucas identities.

Corollary 12. For n ≥ 1, we have

3F2n−1 = L4n−2 − 4
n−1
∑

k=1

F2kL4n−4k−2,

2F2n−1 − 5F2n−2 = L4n−4 − 4
n−1
∑

k=1

F2kL4n−4k−4,

2F4n+2 − 3F4n−2 = L2n + L2n−2 + 4
n−1
∑

k=0

F4k+2L2n−2k−2,

2F4n − 3F4n−4 = 3L2n−2 + 2
n−1
∑

k=1

F4kL2n−2k−2.

Next, by (21), from Theorem 5 and 6 we obtain Fibonacci-Lucas identities involving
binomial coefficients.

Corollary 13. Let α be the golden ratio, α = (1 +
√
5)/2, and β = (1 −

√
5)/2 = −1/α.

For n ≥ 1, we have

√
5

n
∑

k=1

(

n

k

)(

2√
5

)k
(

1 + (−1)n−k
)

F2k =

n
∑

k=0

(

n

k

)(

2√
5

)k
(

1− (−1)n−k
)

L2k,

√
5

n
∑

k=1

(

n

k

)(

2

3
√
5

)k
(

α2 + (−1)n−kβ2
)

F4k+2 =

n
∑

k=0

(

n

k

)(

2

3
√
5

)k
(

α2 − (−1)n−kβ2
)

L4k+2,

√
5

n
∑

k=1

(

n

k

)(

2

3
√
5

)k
(

1 + (−1)n−k
)

F4k =

n
∑

k=0

(

n

k

)(

2

3
√
5

)k
(

1− (−1)n−k
)

L4k,

10



√
5

n
∑

k=1

(

n

k

)(

14

9
√
5

)k
(

α2 + (−1)n−kβ2
)

F2k =

(

7

9

)n n
∑

k=0

(

n

k

)(

6

7
√
5

)k
(

1− (−1)n−k
)

L4k+2,

√
5

n
∑

k=1

(

n

k

)(

14

9
√
5

)k
(

1 + (−1)n−k
)

F2k =

(

7

9

)n n
∑

k=0

(

n

k

)(

6

7
√
5

)k
(

1− (−1)n−k
)

L4k,

√
5

n
∑

k=1

(

n

k

)(

6

7
√
5

)k
(

1 + (−1)n−k
)

F4k+2 =

(

9

7

)n n
∑

k=0

(

n

k

)(

14

9
√
5

)k
(

α2 − (−1)n−kβ2
)

L2k,

√
5

n
∑

k=1

(

n

k

)(

2

3
√
5

)k
(

1 + (−1)n−k
)

F4k+2 =
n
∑

k=0

(

n

k

)(

2

3
√
5

)k
(

α2 − (−1)n−kβ2
)

L4k,

√
5

n
∑

k=1

(

n

k

)(

6

7
√
5

)k
(

1 + (−1)n−k
)

F4k =

(

9

7

)n n
∑

k=0

(

n

k

)(

14

9
√
5

)k
(

1− (−1)n−k
)

L2k,

√
5

n
∑

k=1

(

n

k

)(

2

3
√
5

)k
(

α2 + (−1)n−kβ2
)

F4k =
n
∑

k=0

(

n

k

)(

2

3
√
5

)k
(

1− (−1)n−k
)

L4k+2.

The next result relates balancing and Lucas-balancing polynomials to Fibonacci and
Lucas numbers [2].

Lemma 14. For n ≥ 0 and s ≥ 1, the following hold:

Bn

(εn
6
Ls

)

= εn−1
n

Fsn

Fs

, Cn

(εn
6
Ls

)

= εnn
Lsn

2
, (22)

where εn =

{

1, if n is even;

i, otherwise.

The following corollary is an immediate consequence of Theorems 2, 3 and (22).

Corollary 15. For n,m ≥ 0, we have

2Fsn = FsLs(n−1) + LsFs(n−1),

Ls

(

Fs(2n+1) − (−1)sFs(2n−1)

)

= F2s

(

Ls(2n+1) + (−1)sLs(2n−1)

)

,

2F2sn −
(

L2
s − (−1)s2

)

F2s(n−1) = FsLsL2s(n−1),

Ls

(

Fsn − (−1)sεsFs(n−1)

)

= (−1)sεn+1
s FsLs(2n−1) − (−1)s

(

ε2sL
2
2m − εsL2m − 2

)

n−1
∑

k=1

εn−k
s FskLs(2n−2k−1),

2Fsn − εs(L
2
2m − (−1)s2)Fs(n−1)

= (−1)sεn+1
s FsL2s(n−1) +

(

ε2sL
2
s + εsLs + 2

)

n−1
∑

k=1

εn−k
s FskL2s(n−k−1),

11



εns
(

2εsFs(2n+1) − LsFs(2n−1)

)

= Fs

(

εsLsn + Ls(n−1)

)

−
(

ε2sL
2
s + εsLs + 2

)

n−1
∑

k=0

εksFs(2k+1)Ls(n−k−1),

2Fs(2n+1) − (L2
s − (−1)s2)Fs(2n−1) = Fs(L2sn + (−1)sL2s(n−1)),

εns (2F2sn − (−1)sεsLsF2s(n−1))

= εsFsLsLs(n−1) − (ε2sL
2
s + εsLs + 2)

n−1
∑

k=1

εk+1
s F2skLs(n−k−1),

F2sn − (−1)sF2s(n−1) = FsLs(2n−1).

Our last statement follows from Theorems 5, 6 and (22).

Corollary 16. For n, s ≥ 0, we have

√
5

n
∑

k=1

(

n

k

)

(√
5Fs

2

)n−k
(

1 + (−1)n−k
)

Fks =

n
∑

k=0

(

n

k

)

(√
5Fs

2

)n−k
(

1− (−1)n−k
)

Lks,

√
5

n
∑

k=1

(

n

k

)

(√
5F2s

2

)n−k
(

αs + (−1)n−kβs
)

F(2k+1)s

=
n
∑

k=0

(

n

k

)

(√
5F2s

2

)n−k
(

αs − (−1)n−kβs
)

L(2k+1)s,

√
5

n
∑

k=1

(

n

k

)

(√
5F2s

2

)n−k
(

1 + (−1)n−k
)

F2ks =
n
∑

k=0

(

n

k

)

(√
5F2s

2

)n−k
(

1− (−1)n−k
)

L2ks,

√
5Ln

2s

n
∑

k=1

(

n

k

)

(√
5F2sLs

2L2s

)n−k
(

αs + (−1)n−kβs)Fks

= Ln
s

n
∑

k=1

(

n

k

)

(√
5L2sFs

2Ls

)n−k
(

1− (−1)n−k)L(2k+1)s,

√
5Ln

2s

n
∑

k=1

(

n

k

)

(√
5F2sLs

2L2s

)n−k
(

1 + (−1)n−k)Fks

= Ln
s

n
∑

k=1

(

n

k

)

(√
5L2sFs

2Ls

)n−k
(

1− (−1)n−k)L2ks,

√
5(2Ls)

n

n
∑

k=0

(

n

k

)

(√
5L2sFs

2Ls

)n−k
(

1 + (−1)n−k)F(2k+1)s

= (L2s)
n

n
∑

k=0

(

n

k

)

(√
5F2sLs

L2s

)n−k
(

αs − (−1)n−kβs)Lks,
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√
5

n
∑

k=0

(

n

k

)

(√
5F2s

2

)n−k
(

1 + (−1)n−k)F(2k+1)s

=
n
∑

k=0

(

n

k

)

(√
5F2s

2

)n−k
(

αs − (−1)n−kβs)Lks,

√
5Ln

s

n
∑

k=1

(

n

k

)

(√
5L2sFs

2Ls

)n−k
(

1 + (−1)n−k)F2ks

= Ln
2s

n
∑

k=0

(

n

k

)

(√
5F2sLs

2L2s

)n−k
(

1− (−1)n−k)Lks,

√
5

n
∑

k=1

(

n

k

)

(√
5F2s

2

)n−k
(

αs + (−1)n−kβs)F2ks

=

n
∑

k=0

(

n

k

)

(√
5F2s

2

)n−k
(

1− (−1)n−k)L(2k+1)s,

where α = (1 +
√
5)/2 and β = (1−

√
5)/2.
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