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Stuttgart, Germany

robert.frontczak@lbbw.de

Taras Goy
Faculty of Mathematics and Computer Science

Vasyl Stefanyk Precarpathian National University
Ivano-Frankivsk, Ukraine
taras.goy@pnu.edu.ua

Abstract

We continue our study on relationships between Bernoulli polynomials and balanc-
ing (Lucas-balancing) polynomials. From these polynomial relations, we deduce new
combinatorial identities with Fibonacci (Lucas) and Bernoulli numbers. Moreover,
we prove a special identity involving Bernoulli polynomials and Fibonacci numbers in
arithmetic progression. Special cases and some corollaries will highlight interesting
aspects of our findings. Our results complement and generalize these of Frontczak
(2019).

1 Motivation and preliminaries

Let Bn(x), x ∈ C, be the n-th Bernoulli polynomial defined by

H(x, z) =
∞
∑

n=0

Bn(x)
zn

n!
=

zexz

ez − 1
(|z| < 2π)

and Bn = Bn(0) being the n-th Bernoulli number [1].
Let further B∗

n(x) be the n-th balancing polynomial [2], i.e., polynomials defined by the
recurrence

B∗
n(x) = 6xB∗

n−1(x)− B∗
n−2(x), n ≥ 2,

with the initial terms B∗
0(x) = 0 and B∗

1(x) = 1. Similarly, Lucas-balancing polynomials are
defined by

Cn(x) = 6xCn−1(x)− Cn−2(x), n ≥ 2,

1Statements and conclusions made in this article by R. Frontczak are entirely those of the author. They
do not necessarily reflect the views of LBBW.
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with the initial terms C0(x) = 1 and C1(x) = 3x. See [2, 4, 5, 8, 9, 10] for more information
about these polynomials. The numbers B∗

n(1) = B∗
n and Cn(1) = Cn are called balancing

and Lucas-balancing numbers, respectively (see entries A001109 and A001541 in the On-Line
Encyclopedia of Integer Sequences [11]).

Connections between Bernoulli polynomials Bn(x) and balancing polynomials B∗
n(x) are

interesting, as they also give relations involving Bernoulli numbers and Fibonacci numbers
(we refer to the papers [3, 6, 12]). The links are

B∗
n

(L2m

6

)

=
F2mn

F2m

, Cn

(L2m

6

)

=
L2mn

2
, (1)

B∗
n

( i

6
L2m+1

)

= in−1F(2m+1)n

F2m+1
, Cn

( i

6
L2m+1

)

= in
L(2m+1)n

2
, (2)

where m is a nonnegative integer, i =
√
−1, and Fn and Ln denote Fibonacci and Lucas

numbers, respectively. These sequences are defined by F0 = 0, F1 = 1, L0 = 2, L1 = 1 and
Xn = Xn−1 +Xn−2 for n ≥ 2 (entries A000045 and A000032 in [11]).

Recently, Frontczak [3] showed, among other things, that

n
∑

k=0
n≡k (mod 2)

(

n

k

)

B∗
k(x)(2

√
9x2 − 1)n−kBn−k = nCn−1(x). (3)

Goubi [7] instantly “improved” this relation to

n
∑

k=0

(

n

k

)

B∗
k(x)(2

√
9x2 − 1)n−kBn−k = n

(

Cn−1(x)−
√
9x2 − 1B∗

n−1(x)
)

. (4)

We point out, that since B2n+1 = 0 for n ≥ 1, the only non-zero contribution in Goubi’s sum
on the left comes from the index k = n− 1, which obviously equals

(

n

n− 1

)

B∗
n−1(x)(2

√
9x2 − 1)

(

− 1

2

)

= −n
√
9x2 − 1B∗

n−1(x).

So, the identities (3) and (4) are actually equivalent and the “improvement” is a trivial
reformulation. Nevertheless, to keep the notation simple, we will renounce the mod notation
and work with the second formulation.

In this paper, we prove more relations between Bernoulli polynomials and balancing
polynomials. The proofs are based on our recent findings concerning exponential generating
functions for these polynomials. From these polynomial relations, we deduce new combina-
torial identities with Fibonacci (Lucas) and Bernoulli numbers. Moreover, we prove a special
identity involving Bernoulli polynomials and Fibonacci numbers in arithmetic progression.
Some consequences are stated as corollaries.
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2 New Bernoulli-balancing relations

The next lemma [4] deals with exponential generating functions for balancing and Lucas-
balancing polynomials. It will play a key role in the first part of the paper.

Lemma 1. Let b1(x, z) and b2(x, z) be the exponential generating functions of odd and even

indexed balancing polynomials, respectively. Then

b1(x, z) =
∞
∑

n=0

B∗
2n+1(x)

zn

n!

=
e(18x

2−1)z

√
9x2 − 1

(

3x sinh(6x
√
9x2 − 1z) +

√
9x2 − 1 cosh(6x

√
9x2 − 1z)

)

and

b2(x, z) =
∞
∑

n=0

B∗
2n(x)

zn

n!
=

e(18x
2−1)z

√
9x2 − 1

sinh(6x
√
9x2 − 1z).

Similarly, we have for Lucas-balancing polynomials

c1(x, z) =

∞
∑

n=0

C2n+1(x)
zn

n!

= e(18x
2−1)z

(

3x cosh(6x
√
9x2 − 1z) +

√
9x2 − 1 sinh(6x

√
9x2 − 1z)

)

and

c2(x, z) =
∞
∑

n=0

C2n(x)
zn

n!
= e(18x

2−1)z cosh(6x
√
9x2 − 1z).

We start with the following results involving even indexed balancing polynomials.

Theorem 2. For each n ≥ 0 and x ∈ C, we have

n
∑

k=0

(

n

k

)

(12x
√
9x2 − 1)n−kBn−kB

∗
2k(x) = 6xn

(

C2n−2(x)−
√
9x2 − 1B∗

2n−2(x)
)

. (5)

Proof. From
2

e2x − 1
= cothx− 1

we get
H(0, 12x

√
9x2 − 1z) = 6xz

√
9x2 − 1

(

coth(6x
√
9x2 − 1z)− 1

)

.
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This yields

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

(

12x
√
9x2 − 1)n−kBn−kB

∗
2k(x)

)zn

n!

= b2(x, z)H(0, 12x
√
9x2 − 1z)

= 6xze(18x
2−1)z

(

cosh(6x
√
9x2 − 1z)− sinh(6x

√
9x2 − 1z)

)

= 6xzc2(x, z)− 6x
√
9x2 − 1z b2(x, z)

= 6x
∞
∑

n=0

n
(

C2n−2(x)−
√
9x2 − 1B∗

2n−2(x)
)zn

n!
.

The proof is complete.

Corollary 3. For each n ≥ 0, the following relation holds

n
∑

k=0

(

n

k

)

(24
√
2)n−kB∗

2kBn−k = 6n
(

C2n−2 − 2
√
2B∗

2n−2

)

.

Proof. Set x = 1 in (5).

Corollary 4. For each n ≥ 0 and j ≥ 1,

n
∑

k=0

(

n

k

)

(
√
5F2j)

n−kF2kjBn−k =
n

2
F2j

(

L2j(n−1) −
√
5F2j(n−1)

)

. (6)

Proof. Evaluate (5) at the points x = i/6L2m+1 and x = 1/6L2m, respectively, and use the
links from (1) and (2). To simplify the square root recall that L2

n = 5F 2
n + (−1)n4.

The special case

n
∑

k=0

(

n

k

)

(
√
5)n−kF2kBn−k =

n

2

(

L2n−2 −
√
5F2n−2

)

appears as equation (22) in [3]. We will derive an extension of this result in a sequel.

Remark 5. By reindexing, we can write (5) as follows

⌊n/2⌋
∑

k=0

(

n

2k

)

(

144x2(9x2 − 1)
)k
B2kB

∗
2(n−2k)(x) = 6nxC2(n−1)(x). (7)

Another interesting identity involving even indexed balancing polynomials is our next
theorem.

Theorem 6. For each n ≥ 0 and x ∈ C, we have the relation

n
∑

k=0

(

n

k

)

(12x
√
9x2 − 1)n−kB∗

2k(x)Bn−k(x) = 6nx
(

18x2 − 1 + 6x(2x− 1)
√
9x2 − 1

)n−1
. (8)

4



Proof. Since H(x, z) = z
2
e(x−1/2)z

sinh z
2

, it follows that

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

(12x
√
9x2 − 1)n−kB∗

2k(x)Bn−k(x)
)zn

n!

= b2(x, z)H(x, 12x
√
9x2 − 1z)

= 6xze(18x
2−1)z+6x(2x−1)

√
9x2−1z

= 6x
∞
∑

n=0

n
(

18x2 − 1 + 6x(2x− 1)
√
9x2 − 1

)n−1 zn

n!
.

The proof is complete.

Corollary 7. For each n ≥ 0,

n
∑

k=0

(

n

k

)

(3
√
5)n−k

(

21−(n−k) − 1
)

F4kBn−k = 3n
(7

2

)n−1

. (9)

Proof. Set x = 1/2 in (8) and use that B∗
2n(1/2) = F4n and Bn(1/2) = (21−n − 1)Bn

[1, Corollary 9.1.5].

The last identity could be compared with

n
∑

k=0

(

n

k

)

(
√
5)n−k

(

21−(n−k) − 1
)

F2kBn−k = n
(3

2

)n−1

, (10)

which is equation (30) in [3]. It is maybe worth remarking, that the value x = −1/2
in conjunction with B∗

n(−x) = (−1)n+1B∗
n(x) [2] and the difference equation for Bernoulli

polynomials Bn(x+ 1)− Bn(x) = nxn−1 [1, Proposition 9.1.3] gives

n
∑

k=0

(

n

k

)

(−3
√
5)n−kF4k

(

(21−(n−k) − 1)Bn−k + (n− k)(−1)n−k21−(n−k)
)

= 3n
(7 + 6

√
5

2

)n−1

.

So, by Corollary 7, we end with

n
∑

k=0

(

n

k

)

(n− k)(3
√
5)n−k21−(n−k)F4k = 3n

((7 + 6
√
5

2

)n−1

−
(7

2

)n−1)

or, equivalently,

n
∑

k=0

(

n

k

)

k
(3

√
5

2

)k

F4(n−k) =
3n

2n
(

(7 + 6
√
5)n−1 − 7n−1

)

.

Theorem 8. For each n ≥ 0 and x ∈ C, we have the relation

⌊n/2⌋
∑

k=0

(

n

2k

)

(4k − 1)
(

144x2(9x2 − 1)
)k
B2kC2(n−2k)(x) = 6nx(9x2 − 1)B∗

2(n−1)(x). (11)
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Proof. Combine c1(x, z) with c2(x, z).

Remark 9. Combining b2(x, z) with c1(x, z) yields

⌊n/2⌋
∑

k=0

(

n

2k

)

(

144x2(9x2 − 1)
)k
B2kB

∗
2(n−2k)(x) = 2n

(

C2n−1(x)− (9x2 − 1)B∗
2(n−1)(x)

)

. (12)

Since Cn(x) = 3xCn−1(x) + (9x2− 1)B∗
n−1(x) [2, Proposition 2.3], the right-hand side equals

2n
(

C2n−1(x)−(9x2−1)B∗
2(n−1)(x)

)

= 6nxC2(n−1)(x), so we again have (7). Similarly, relating

b1(x, z) to c2(x, z) gives

⌊n/2⌋
∑

k=0

(

n

2k

)

(4k − 1)
(

144x2(9x2 − 1)
)k
B2kC2(n−2k)(x)

= 2n(9x2 − 1)
(

B∗
2n−1(x)− C2(n−1)(x)

)

,

but, since Cn(x) = B∗
n+1(x) − 3xB∗

n(x) [2, Proposition 2.3], the right-hand side equals
2n(9x2 − 1)

(

B∗
2n−1(x)− C2(n−1)(x)

)

= 6nx(9x2 − 1)B∗
2(n−1)(x), and we again end with (11).

The next identity is the counterpart of Corollary 4.

Corollary 10. For each n ≥ 0 and j ≥ 1,

⌊n/2⌋
∑

k=0

(

n

2k

)

(20k − 5k)F 2k
2j B2kL2j(n−2k) =

5n

2
F2jF2j(n−1).

Proof. Insert x = i/6L2m+1 and x = 1/6L2m, respectively, in (11) to get

⌊n/2⌋
∑

k=1

(

n

2k

)

(4k − 1)B2k

(

L4
2m − 4L2

2m

)k
L4m(n−2k) =

n

2

L2m

F2m
(L2

2m − 4)F4m(n−1),

⌊n/2⌋
∑

k=1

(

n

2k

)

(4k − 1)B2k

(

L4
2m + 4L2

2m

)k
L2(2m+1)(n−2k) =

n

2

L2m+1

F2m+1
(L2

2m+1 + 4)F2(2m+1)(n−1).

Simplify using L2
n = 5F 2

n + (−1)n4 and LnFn = F2n.

When j = 1, then

⌊n/2⌋
∑

k=0

(

n

2k

)

(4k − 1)5kB2kL2(n−2k) =
5n

2
F2(n−1),

which is equation (23) in [3]. When j = 2, then

⌊n/2⌋
∑

k=0

(

n

2k

)

(4k − 1)45kB2kL4(n−2k) =
15n

2
F4(n−1).

We conclude the analysis with the following result.
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Theorem 11. For each n ≥ 0 and x ∈ C, we have the relations

(6x)n−1

⌊n/2⌋
∑

k=0

(

n

2k

)

(36x2 − 4)kB2kB
∗
n−2k(x)

= n

(

n−1
∑

k=0

(

n− 1

k

)

B∗
2k+1(x)−

(6x)n

2
B∗

n−1(x)

)

(13)

and

(6x)n−1

⌊n/2⌋
∑

k=0

(

n

2k

)

(4k − 1)(36x2 − 4)kB2kCn−2k(x)

= n

(

n−1
∑

k=0

(

n− 1

k

)

C2k+1(x)−
(6x)n

2
Cn−1(x)

)

. (14)

Proof. For the first identity, combine b1(x, z) with b(x, z), where b(x, z) is the exponential
generating function for B∗

n(x) [2],

b(x, z) =

∞
∑

n=0

B∗
n(x)

zn

n!
=

e3xz√
9x2 − 1

sinh(
√
9x2 − 1z).

The second identity follows from relating c1(x, z) to c(x, z) with

c(x, z) =
∞
∑

n=0

Cn(x)
zn

n!
= e3xz cosh(

√
9x2 − 1z).

Corollary 12. For each n ≥ 0 and j ≥ 1,

⌊n/2⌋
∑

k=0

(

n

2k

)

(5F 2
j )

kFj(n−2k)B2k

= (−1)nj
n

Ln−1
j

n−1
∑

k=0

(

n− 1

k

)

(−1)kjFj(2k+1) −
n

2
Fj(n−1)Lj ,

⌊n/2⌋
∑

k=0

(

n

2k

)

(4k − 1)(5F 2
j )

kLj(n−2k)B2k

= (−1)nj
n

Ln−1
j

n−1
∑

k=0

(

n− 1

k

)

(−1)kjLj(2k+1) −
n

2
Lj(n−1)Lj .

Proof. Set x = i/6L2m+1 and x = 1/6L2m in (13) and (14), respectively, and simplify as
before.
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3 A special polynomial identity

Equations (6), (9) and (10) give rise to the question, if there is a connection between them.
The answer to that question is positive, as will be shown in the next theorem. The theorem
generalizes Theorem 9 in [3], which has been generalized in a different way in [6]. The proof
of the extension presented here does not require the notion of balancing polynomials.

Theorem 13. Let α be the golden ratio, α = (1 +
√
5)/2, and β = (1 −

√
5)/2 = −1/α.

Then, for each n ≥ 0, j ≥ 1, and x ∈ C, we have the relations

n
∑

k=0

(

n

k

)

Fjk(
√
5Fj)

n−kBn−k(x) = nFj

(

(
√
5x+ β)Fj + Fj−1

)n−1
(15)

and
n
∑

k=0

(

n

k

)

Fjk(−
√
5Fj)

n−kBn−k(x) = nFj

(

(α−
√
5x)Fj + Fj−1

)n−1
. (16)

Proof. Let F (z) be the exponential generating function for (Fjn)n≥0, j ≥ 1. Evidently, the
Binet formula for Fjn gives

F (z) =

∞
∑

n=0

Fjn
zn

n!
=

1√
5

(

eα
jz − eβ

jz
)

.

Now we use the relations αj = αFj + Fj−1 and βj = βFj + Fj−1, to write

F (z) =
2√
5
e(1/2Fj+Fj−1)z sinh

(

√
5Fj

2
z
)

.

Hence, it follows that

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

Fjk(
√
5Fj)

n−kBn−k(x)
)zn

n!
= F (z)H(x,

√
5Fjz)

= Fjz e
((x−1/2)

√
5Fj+1/2Fj+Fj−1)z

= Fjz e
((
√
5x+β)Fj+Fj−1)z.

This proves the first equation. The second follows upon replacing x by 1 − x and using
Bn(1− x) = (−1)nBn(x) [1, Proposition 9.1.3] and α− β =

√
5.

When x = 0, then

n
∑

k=0

(

n

k

)

(
√
5Fj)

n−kFjkBn−k = nFjβ
j(n−1) =

n

2
Fj

(

Lj(n−1) −
√
5Fj(n−1)

)

,

which generalizes (6). Similarly,

n
∑

k=0

(

n

k

)

(−
√
5Fj)

n−kFjkBn−k = nFjα
j(n−1) =

n

2
Fj

(

Lj(n−1) +
√
5Fj(n−1)

)

.

8



A combination of both yields

n
∑

k=0

(

n

k

)

(
√
5Fj)

n−k
(

1 + (−1)n−k
)

FjkBn−k = nFjLj(n−1).

Corollary 14. For each n ≥ 0 and j ≥ 1,

n
∑

k=0

(

n

k

)

(
√
5Fj)

n−k
(

21−(n−k) − 1
)

FjkBn−k = n21−nFjL
n−1
j . (17)

Proof. Set x = 1/2 in (15) or (16) and use once more Bn(1/2) = (21−n − 1)Bn. When
simplifying, keep in mind the relation Fj + 2Fj−1 = Lj .

When j = 2 and j = 4, respectively, we get (9) and (10). For j = 3, the identity becomes

n
∑

k=0

(

n

k

)

(2
√
5)n−k

(

21−(n−k) − 1
)

F3kBn−k = n2n.

Corollary 15. Let n, j and q be integers with n, j ≥ 1 and q ≥ 2. Then it holds that

n
∑

k=0

(

n

k

)

(
√
5Fj)

n−k
(

q1−(n−k) − 1
)

FjkBn−k = nFjq
1−n

q−1
∑

r=1

(

rαj + (q − r)βj
)n−1

. (18)

Proof. The multiplication theorem [1, Proposition 9.1.3] 1
q

q−1
∑

r=0

Bn

(

x+ r
q

)

= Bn(qx)
qn

gives

(

q1−(n−k) − 1
)

Bn−k =

q−1
∑

r=1

Bn

(r

q

)

.

Therefore, we can write

n
∑

k=0

(

n

k

)

Fjk(
√
5Fj)

n−k
(

q1−(n−k) − 1
)

Bn−k = nFj

q−1
∑

r=1

((√
5
r

q
+ β

)

Fj + Fj−1

)n−1

= nFjq
1−n

q−1
∑

r=1

(
√
5rFj + q(βFj + Fj−1)

)n−1

= nFjq
1−n

q−1
∑

r=1

(

rαj + (q − r)βj
)n−1

.

When q = 2, then (18) gives (17). When q = 3, then we obtain

n
∑

k=0

(

n

k

)

Fjk(
√
5Fj)

n−k
(

31−(n−k) − 1
)

Bn−k = nFj3
1−n
(

(Lj + βj)n−1 + (Lj + αj)n−1
)

.

9



Corollary 16. Let n, j and m be integers with n, j ≥ 1 and 0 ≤ m ≤ n− 1. Then

n−m
∑

k=0

(

n

k

)

Fjk(
√
5Fj)

n−k(n− k)mBn−m−k(x)

= (n)m+1Fj(
√
5Fj)

m
(

(
√
5x+ β)Fj + Fj−1

)n−1−m

and

n−m
∑

k=0

(

n

k

)

Fjk(−
√
5Fj)

n−k(n− k)mBn−m−k(x)

= (n)m+1Fj

(

−
√
5Fj

)m(
(α−

√
5x)Fj + Fj−1

)n−1−m
,

where (y)n = y(y − 1) · · · (y − n + 1), (y)0 = 1, denotes the falling factorial.

Proof. Differentiate the identities in Theorem 13m times and use the fact B′
n(x) = nBn−1(x)

[1, Proposition 9.1.2 ]. When m ≥ n, then both sides of the identities become zero.

Corollary 17. For nonnegative integers n, N and j ≥ 1, we have the identities

N
∑

s=0

(

(

αj +
√
5Fjs

)n −
(

βj +
√
5Fjs

)n
)

=
(
√
5FjN + αj

)n − βjn

and
N
∑

s=0

(

(

βj −
√
5Fjs

)n −
(

αj −
√
5Fjs

)n
)

=
(

−
√
5FjN + βj

)n − αjn.

Proof. We only prove the first identity. Integrate both sides of (15) from 0 to N +1 and use
the formula

N
∑

s=0

sn =

∫ N+1

0

Bn(x)dx.

The last integral identity actually reads as

N
∑

s=0

sn =

∫ N+1

0

Bn(x)dx =
1

N + 1

(

Bn+1(N + 1)−Bn+1

)

(Faulhaber’s formula) and holds for all n ≥ 2, so a justification is needed. As we will work
with the integral part only, with the convention that 00 = 1, the cases n = 0 and n = 1 can
be checked explicitly. Hence, for the LHS of (15) we obtain

n
∑

k=0

(

n

k

)

Fjk

(
√
5Fj

)n−k
∫ N+1

0

Bn−k(x)dx =

N
∑

s=0

n
∑

k=0

(

n

k

)

Fjk

(
√
5Fjs

)n−k

=
1√
5

N
∑

s=0

(

(

αj +
√
5Fjs

)n −
(

βj +
√
5Fjs

)n
)

.
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The integral on the RHS of (15) is easily evaluated as

nFj

∫ N+1

0

(

(
√
5x+ β)Fj + Fj−1

)n−1
dx =

1√
5

(
√
5Fj(N + 1) + βj

)n − βjn.

The proof of the second formula is similar.

4 Conclusion

In this article, we have discovered new identities relating Bernoulli numbers (polynomials) to
balancing and Lucas-balancing polynomials. We have also derived a general identity involv-
ing Bernoulli polynomials and Fibonacci numbers in arithmetic progression. In our future
papers, we will discuss the analogue results for Euler polynomials and Lucas-balancing poly-
nomials as well as identities connecting Bernoulli polynomials with Fibonacci and Chebyshev
polynomials.
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