A p-adic analogue of Chan and Verrill's formula for $1 / \pi$

Ji-Cai Liu
Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China
jcliu2016@gmail.com

Abstract

We prove three supercongruences for sums of Almkvist-Zudilin numbers, which confirm some conjectures of Zudilin and Z.-H. Sun. A typical example is the Ramanujan-type supercongruence:

$$
\sum_{k=0}^{p-1} \frac{4 k+1}{81^{k}} \gamma_{k} \equiv\left(\frac{-3}{p}\right) p \quad\left(\bmod p^{3}\right),
$$

which is corresponding to Chan and Verrill's formula for $1 / \pi$:

$$
\sum_{k=0}^{\infty} \frac{4 k+1}{81^{k}} \gamma_{k}=\frac{3 \sqrt{3}}{2 \pi} .
$$

Here γ_{n} are the Almkvist-Zudilin numbers.
Keywords: Supercongruences; Almkvist-Zudilin numbers; Harmonic numbers
MR Subject Classifications: 11A07, 11B65, 11Y55, 05A19

1 Introduction

For $n \geq 0$, the following sequence:

$$
\gamma_{n}=\sum_{j=0}^{n}(-1)^{n-j} \frac{3^{n-3 j}(3 j)!}{(j!)^{3}}\binom{n}{3 j}\binom{n+j}{j}
$$

are known as Almkvist-Zudilin numbers (see [1] and A125143 in [20]). This sequence appears to be first recorded by Zagier [29] as integral solutions to Apéry-like recurrence equations.

These numbers also appear as coefficients of modular forms. Let $q=e^{2 \pi i \tau}$ and

$$
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

be the Dedekind eta function. Chan and Verrill [6] showed that if

$$
t_{3}(\tau)=\left(\frac{\eta(3 \tau) \eta(6 \tau)}{\eta(\tau) \eta(2 \tau)}\right)^{4} \quad \text { and } \quad F_{3}(\tau)=\frac{(\eta(\tau) \eta(2 \tau))^{3}}{\eta(3 \tau) \eta(6 \tau)}
$$

and $\left|t_{3}(\tau)\right|$ is sufficiently small, then

$$
F_{3}(\tau)=\sum_{n=0}^{\infty} \gamma_{n} t_{3}^{n}(\tau)
$$

They also constructed some new series for $1 / \pi$ in terms of the numbers γ_{n}, one of the typical examples is the following formula [6, Theorem 3.14]:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{4 k+1}{81^{k}} \gamma_{k}=\frac{3 \sqrt{3}}{2 \pi} \tag{1.1}
\end{equation*}
$$

The above interesting example motivates us to prove the following supercongruence, which was originally conjectured by Zudilin [30, (33)].

Theorem 1.1 For any prime $p \geq 5$, we have

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{4 k+1}{81^{k}} \gamma_{k} \equiv\left(\frac{-3}{p}\right) p \quad\left(\bmod p^{3}\right) \tag{1.2}
\end{equation*}
$$

where $(\dot{\bar{p}})$ denotes the Legendre symbol.
The supercongruence (1.2) may be regarded as a p-adic analogue of (1.1). In the past two decades, Ramanujan-type series for $1 / \pi$ as well as related supercongruences and q-supercongruences have attracted many experts' attention (see, for instance, [3, 5, 6, 6, 811, 14-16, 24, 26, 28, 30]).

The second result of this paper consists of the following two related supercongruences involving the numbers γ_{n}, which were originally conjectured by Z.-H. Sun [21, Conjecture 6.8].

Theorem 1.2 For any prime $p \geq 5$, we have

$$
\begin{equation*}
\sum_{k=0}^{p-1}(4 k+3) \gamma_{k} \equiv 3\left(\frac{-3}{p}\right) p \quad\left(\bmod p^{3}\right) \tag{1.3}
\end{equation*}
$$

Theorem 1.3 For any prime $p \geq 5$, we have

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{2 k+1}{(-9)^{k}} \gamma_{k} \equiv\left(\frac{-3}{p}\right) p \quad\left(\bmod p^{3}\right) \tag{1.4}
\end{equation*}
$$

We remark that congruence properties for the Almkvist-Zudilin numbers have been widely investigated by Amdeberhan and Tauraso [2], Chan, Cooper and Sica [4, and Z.-H. Sun [21-23].

The rest of the paper is organized as follows. In Section 2, we recall some necessary combinatorial identities involving harmonic numbers and prove a preliminary congruence. The proofs of Theorems 1.1 1.3 are presented in Sections 3-5, respectively.

2 Preliminary results

Let

$$
H_{n}=\sum_{j=1}^{n} \frac{1}{j}
$$

denote the nth harmonic number. The Fermat quotient of an integer a with respect to an odd prime p is given by $q_{p}(a)=\left(a^{p-1}-1\right) / p$.

In order to prove Theorems 1.1 and 1.2, we need the following two lemmas.
Lemma 2.1 For any non-negative integer n, we have

$$
\begin{align*}
& \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{n+i}{i}=(-1)^{n} \tag{2.1}\\
& \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{n+i}{i} H_{i}=2(-1)^{n} H_{n} \tag{2.2}\\
& \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{n+i}{i} H_{n+i}=2(-1)^{n} H_{n} \tag{2.3}
\end{align*}
$$

In fact, such identities can be discovered and proved by the symbolic summation package Sigma developed by Schneider [19]. One can also refer to [14] for the same approach to finding and proving identities of this type. For human proofs of (2.1)-(2.3), one refers to [18].

Lemma 2.2 For any prime $p \geq 5$, we have

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{(3 k)!}{3^{3 k} k!^{3}}\left(H_{3 k}-H_{k}\right) \equiv\left(\frac{-3}{p}\right) q_{p}(3) \quad(\bmod p) \tag{2.4}
\end{equation*}
$$

Proof. Note that

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{(3 k)!}{3^{3 k} k!^{3}}\left(3 H_{3 k}-H_{k}\right)=\sum_{k=0}^{p-1} \frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}} \sum_{j=0}^{k-1}\left(\frac{1}{1 / 3+j}+\frac{1}{2 / 3+j}\right) \tag{2.5}
\end{equation*}
$$

Recall the following identity due to Tauraso [27, Theorem 1]:

$$
\begin{equation*}
\frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}} \sum_{j=0}^{k-1}\left(\frac{1}{1 / 3+j}+\frac{1}{2 / 3+j}\right)=\sum_{j=0}^{k-1} \frac{(1 / 3)_{j}(2 / 3)_{j}}{(1)_{j}^{2}} \cdot \frac{1}{k-j} \tag{2.6}
\end{equation*}
$$

Substituting (2.6) into (2.5) and exchanging the summation order gives

$$
\begin{align*}
\sum_{k=0}^{p-1} \frac{(3 k)!}{3^{3 k} k!^{3}}\left(3 H_{3 k}-H_{k}\right) & =\sum_{k=0}^{p-1} \sum_{j=0}^{k-1} \frac{(1 / 3)_{j}(2 / 3)_{j}}{(1)_{j}^{2}} \cdot \frac{1}{k-j} \\
& =\sum_{j=0}^{p-2} \frac{(1 / 3)_{j}(2 / 3)_{j}}{(1)_{j}^{2}} H_{p-1-j} \\
& \equiv \sum_{j=0}^{p-2} \frac{(3 j)!}{3^{3 j} j^{3}} H_{j} \quad(\bmod p) \tag{2.7}
\end{align*}
$$

where we have utilized the fact that $H_{p-1-j} \equiv H_{j}(\bmod p)$. By (2.7), we obtain

$$
\begin{align*}
\sum_{k=0}^{p-1} \frac{(3 k)!}{3^{3 k} k!^{3}}\left(H_{3 k}-H_{k}\right) & \equiv \frac{1}{3}\left(\sum_{k=0}^{p-2} \frac{(3 k)!}{3^{3 k} k!^{3}} H_{k}-2 \sum_{k=0}^{p-1} \frac{(3 k)!}{3^{3 k} k!^{3}} H_{k}\right) \\
& \equiv-\frac{1}{3} \sum_{k=0}^{\lfloor p / 3\rfloor} \frac{(3 k)!}{3^{3 k} k!^{3}} H_{k} \quad(\bmod p), \tag{2.8}
\end{align*}
$$

because $(3 k)!\equiv 0(\bmod p)$ for $k>\lfloor p / 3\rfloor$.
Let $m=\lfloor p / 3\rfloor$. From [2, Lemma 2.3], we see that for $0 \leq k \leq m$,

$$
\begin{equation*}
\frac{(3 k)!}{3^{3 k} k!^{3}} \equiv(-1)^{k}\binom{m}{k}\binom{m+k}{k} \quad(\bmod p) \tag{2.9}
\end{equation*}
$$

It follows from (2.2), (2.8) and (2.9) that

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{(3 k)!}{3^{3 k} k!^{3}}\left(H_{3 k}-H_{k}\right) & \equiv-\frac{1}{3} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\binom{m+k}{k} H_{k} \quad(\bmod p) \\
& =-\frac{2(-1)^{m}}{3} H_{m}
\end{aligned}
$$

Finally, noting

$$
\begin{equation*}
(-1)^{\lfloor p / 3\rfloor}=\left(\frac{-3}{p}\right) \tag{2.10}
\end{equation*}
$$

and the following congruence [13, page 359]:

$$
\begin{equation*}
H_{\lfloor p / 3\rfloor} \equiv-\frac{3}{2} q_{p}(3) \quad\left(\bmod p^{2}\right) \tag{2.11}
\end{equation*}
$$

we complete the proof of (2.4).

3 Proof of Theorem 1.1

We begin with the transformation formula due to Chan and Zudilin [7, Corollary 4.3]:

$$
\begin{equation*}
\gamma_{n}=\sum_{i=0}^{n}\binom{2 i}{i}^{2}\binom{4 i}{2 i}\binom{n+3 i}{4 i}(-3)^{3(n-i)} . \tag{3.1}
\end{equation*}
$$

Using (3.1) and exchanging the summation order, we obtain

$$
\begin{align*}
\sum_{k=0}^{p-1} \frac{4 k+1}{81^{k}} \gamma_{k} & =\sum_{k=0}^{p-1} \frac{4 k+1}{81^{k}} \sum_{i=0}^{k}\binom{2 i}{i}^{2}\binom{4 i}{2 i}\binom{k+3 i}{4 i}(-3)^{3(k-i)} \\
& =\sum_{i=0}^{p-1} \frac{1}{(-3)^{3 i}}\binom{2 i}{i}^{2}\binom{4 i}{2 i} \sum_{k=i}^{p-1} \frac{4 k+1}{(-3)^{k}}\binom{k+3 i}{4 i} . \tag{3.2}
\end{align*}
$$

Note that

$$
\begin{equation*}
\sum_{k=i}^{n-1} \frac{4 k+1}{(-3)^{k}}\binom{k+3 i}{4 i}=(n-i)\binom{n+3 i}{4 i}(-3)^{1-n} \tag{3.3}
\end{equation*}
$$

which can be easily proved by induction on n. Combining (3.2) and (3.3) gives

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{4 k+1}{81^{k}} \gamma_{k}=3^{1-p} \sum_{i=0}^{p-1} \frac{p-i}{(-3)^{3 i}}\binom{2 i}{i}^{2}\binom{4 i}{2 i}\binom{p+3 i}{4 i} . \tag{3.4}
\end{equation*}
$$

Furthermore, we have

$$
\begin{aligned}
& (-1)^{i}(p-i)\binom{2 i}{i}^{2}\binom{4 i}{2 i}\binom{p+3 i}{4 i} \\
& =\frac{(-1)^{i} p(p+3 i) \cdots(p+1)(p-1) \cdots(p-i)}{i!^{4}} \\
& \equiv \frac{p(3 i)!}{i!^{3}}\left(1+p\left(H_{3 i}-H_{i}\right)\right) \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

Thus,

$$
\sum_{k=0}^{p-1} \frac{4 k+1}{81^{k}} \gamma_{k} \equiv 3^{1-p} p \sum_{i=0}^{p-1} \frac{(3 i)!}{3^{3 i} i^{3}}\left(1+p\left(H_{3 i}-H_{i}\right)\right) \quad\left(\bmod p^{3}\right) .
$$

Finally, noting (2.4) and Mortenson's supercongruence [17, (1.2)]:

$$
\sum_{i=0}^{p-1} \frac{(3 i)!}{3^{3 i} i!^{3}} \equiv\left(\frac{-3}{p}\right) \quad\left(\bmod p^{2}\right)
$$

we arrive at

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{4 k+1}{81^{k}} \gamma_{k} & \equiv p\left(\frac{-3}{p}\right)\left(3^{1-p}+3^{1-p} p q_{p}(3)\right) \quad\left(\bmod p^{3}\right) \\
& =p\left(\frac{-3}{p}\right)
\end{aligned}
$$

as desired.

4 Proof of Theorem 1.2

Recall the following transformation formula [21, (5.1)]:

$$
\begin{equation*}
\gamma_{n}=\sum_{i=0}^{\lfloor n / 3\rfloor}\binom{2 i}{i}^{2}\binom{4 i}{2 i}\binom{n+i}{4 i}(-3)^{n-3 i} . \tag{4.1}
\end{equation*}
$$

By (4.1), we have

$$
\begin{align*}
\sum_{k=0}^{p-1}(4 k+3) \gamma_{k} & =\sum_{k=0}^{p-1}(4 k+3) \sum_{i=0}^{\lfloor k / 3\rfloor}\binom{2 i}{i}^{2}\binom{4 i}{2 i}\binom{k+i}{4 i}(-3)^{k-3 i} \\
& =\sum_{i=0}^{p-1} \frac{1}{(-3)^{3 i}}\binom{2 i}{i}^{2}\binom{4 i}{2 i} \sum_{k=i}^{p-1}(-3)^{k}(4 k+3)\binom{k+i}{4 i} . \tag{4.2}
\end{align*}
$$

It can be easily proved by induction on n that

$$
\begin{equation*}
\sum_{k=i}^{n-1}(-3)^{k}(4 k+3)\binom{k+i}{4 i}=3(n-3 i)\binom{n+i}{4 i}(-3)^{n-1} \tag{4.3}
\end{equation*}
$$

It follows from (4.2) and (4.3) that

$$
\sum_{k=0}^{p-1}(4 k+3) \gamma_{k}=3^{p} \sum_{i=0}^{\lfloor p / 3\rfloor} \frac{p-3 i}{(-3)^{3 i}}\binom{2 i}{i}^{2}\binom{4 i}{2 i}\binom{p+i}{4 i} .
$$

Note that

$$
\begin{aligned}
& (-1)^{i}(p-3 i)\binom{2 i}{i}^{2}\binom{4 i}{2 i}\binom{p+i}{4 i} \\
& =\frac{(-1)^{i} p(p+i) \cdots(p+1)(p-1) \cdots(p-3 i)}{i!^{4}} \\
& \equiv \frac{p(3 i)!}{i!^{3}}\left(1-p\left(H_{3 i}-H_{i}\right)\right) \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{k=0}^{p-1}(4 k+3) \gamma_{k} \equiv 3^{p} p \sum_{i=0}^{\lfloor p / 3\rfloor} \frac{(3 i)!}{3^{3 i} i!^{3}}\left(1-p\left(H_{3 i}-H_{i}\right)\right) \quad\left(\bmod p^{3}\right) . \tag{4.4}
\end{equation*}
$$

Let $m=\lfloor p / 3\rfloor$. Since

$$
\frac{(3 i)!}{3^{3 i}!^{3}}=(-1)^{i}\binom{-1 / 3}{i}\binom{-1 / 3+i}{i}=(-1)^{i}\binom{-2 / 3}{i}\binom{-2 / 3+i}{i}
$$

we have

$$
\begin{align*}
\frac{(3 i)!}{3^{3 i} i!^{3}} & =(-1)^{i}\binom{m-p / 3}{i}\binom{m-p / 3+i}{i} \\
& =\frac{(-1)^{i}(m+i-p / 3) \cdots(m-i+1-p / 3)}{i!^{2}} \\
& \equiv(-1)^{i}\binom{m}{i}\binom{m+i}{i}\left(1-\frac{p}{3}\left(H_{m+i}-H_{m-i}\right)\right) \quad\left(\bmod p^{2}\right) \tag{4.5}
\end{align*}
$$

Substituting (4.5) into the right-hand side of (4.4) gives

$$
\begin{align*}
& \sum_{k=0}^{p-1}(4 k+3) \gamma_{k} \\
& \equiv 3^{p} p \sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\binom{m+i}{i} \\
& \times\left(1-\frac{p}{3}\left(H_{m+i}-H_{m-i}+3 H_{3 i}-3 H_{i}\right)\right) \quad\left(\bmod p^{3}\right) \tag{4.6}
\end{align*}
$$

Furthermore, we have

$$
\begin{align*}
H_{3 i} & =\frac{1}{3}\left(H_{i}+\sum_{j=1}^{i} \frac{1}{j-1 / 3}+\sum_{j=1}^{i} \frac{1}{j-2 / 3}\right) \\
& \equiv \frac{1}{3}\left(H_{i}+\sum_{j=1}^{i} \frac{1}{m+j}-\sum_{j=1}^{i} \frac{1}{m+1-j}\right) \quad(\bmod p) \\
& =\frac{1}{3}\left(H_{i}+H_{m+i}+H_{m-i}-2 H_{m}\right) \tag{4.7}
\end{align*}
$$

It follows from (2.1) $-(2.3)$, (4.6) and (4.7) that

$$
\begin{aligned}
& \sum_{k=0}^{p-1}(4 k+3) \gamma_{k} \\
& \equiv 3^{p} p \sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\binom{m+i}{i}\left(1-\frac{2 p}{3}\left(H_{m+i}-H_{m}-H_{i}\right)\right) \quad\left(\bmod p^{3}\right) \\
& =3^{p} p(-1)^{m}\left(1+\frac{2 p}{3} H_{m}\right)
\end{aligned}
$$

Finally, using (2.10) and (2.11), we obtain

$$
\begin{aligned}
\sum_{k=0}^{p-1}(4 k+3) \gamma_{k} & \equiv 3 p\left(\frac{-3}{p}\right) 3^{p-1}\left(2-3^{p-1}\right) \\
& =3 p\left(\frac{-3}{p}\right)\left(1-\left(3^{p-1}-1\right)^{2}\right) \\
& \equiv 3 p\left(\frac{-3}{p}\right) \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

where we have used the Fermat's little theorem in the last step.

5 Proof of Theorem 1.3

Recall the following transformation formula [21, Lemma 4.1]:

$$
\begin{equation*}
\gamma_{n}=\sum_{i=0}^{n}(-9)^{n-i}\binom{2 i}{i}\binom{n+i}{2 i} \sum_{j=0}^{i}\binom{i}{j}^{2}\binom{2 j}{j} \tag{5.1}
\end{equation*}
$$

Let

$$
g_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{k} .
$$

By (5.1), we have

$$
\begin{align*}
\sum_{k=0}^{p-1} \frac{2 k+1}{(-9)^{k}} \gamma_{k} & =\sum_{k=0}^{p-1} \frac{2 k+1}{(-9)^{k}} \sum_{i=0}^{k}(-9)^{k-i}\binom{2 i}{i}\binom{k+i}{2 i} g_{i} \\
& =\sum_{i=0}^{p-1} \frac{g_{i}}{(-9)^{i}} \sum_{k=i}^{p-1}(2 k+1)\binom{k+i}{2 i}\binom{2 i}{i} . \tag{5.2}
\end{align*}
$$

Note that

$$
\begin{equation*}
\sum_{k=i}^{n-1}(2 k+1)\binom{k+i}{2 i}\binom{2 i}{i}=\frac{n^{2}}{i+1}\binom{n-1}{i}\binom{n+i}{i} \tag{5.3}
\end{equation*}
$$

which can be proved by induction on n. It follows from (5.2) and (5.3) that

$$
\sum_{k=0}^{p-1} \frac{2 k+1}{(-9)^{k}} \gamma_{k}=p^{2} \sum_{i=0}^{p-1} \frac{g_{i}}{(-9)^{i}(i+1)}\binom{p-1}{i}\binom{p+i}{i}
$$

Since

$$
\binom{p-1}{i}\binom{p+i}{i} \equiv(-1)^{i} \quad\left(\bmod p^{2}\right)
$$

we have

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{2 k+1}{(-9)^{k}} \gamma_{k} \equiv p^{2} \sum_{i=0}^{p-1} \frac{g_{i}}{9^{i}(i+1)} \quad\left(\bmod p^{3}\right) \tag{5.4}
\end{equation*}
$$

From [12, Lemma 2.7], we see that for $0 \leq i \leq p-1$,

$$
\frac{g_{i}}{9^{i}} \equiv\left(\frac{-3}{p}\right) g_{p-1-i} \quad(\bmod p)
$$

and so

$$
\begin{aligned}
\sum_{i=0}^{p-2} \frac{g_{i}}{9^{i}(i+1)} & \equiv\left(\frac{-3}{p}\right) \sum_{i=0}^{p-2} \frac{g_{p-1-i}}{i+1} \\
& =\left(\frac{-3}{p}\right) \sum_{i=1}^{p-1} \frac{g_{i}}{p-i} \\
& \equiv-\left(\frac{-3}{p}\right) \sum_{i=1}^{p-1} \frac{g_{i}}{i}(\bmod p) .
\end{aligned}
$$

Using the congruence [25, (1.8)]:

$$
\sum_{i=1}^{p-1} \frac{g_{i}}{i} \equiv 0 \quad(\bmod p)
$$

we obtain

$$
\begin{equation*}
\sum_{i=0}^{p-2} \frac{g_{i}}{9^{i}(i+1)} \equiv 0 \quad(\bmod p) \tag{5.5}
\end{equation*}
$$

Furthermore, combining (5.4) and (5.5) gives

$$
\sum_{k=0}^{p-1} \frac{2 k+1}{(-9)^{k}} \gamma_{k} \equiv \frac{p g_{p-1}}{9^{p-1}} \quad\left(\bmod p^{3}\right)
$$

By [25, Lemma 3.2], we have

$$
g_{p-1} \equiv\left(\frac{-3}{p}\right)\left(2 \cdot 3^{p-1}-1\right) \quad\left(\bmod p^{2}\right)
$$

and so

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{2 k+1}{(-9)^{k}} \gamma_{k} & \equiv p\left(\frac{-3}{p}\right)\left(1-\frac{\left(3^{p-1}-1\right)^{2}}{9^{p-1}}\right) \\
& \equiv p\left(\frac{-3}{p}\right) \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

where we have utilized the Fermat's little theorem.
Remark. Z.-H. Sun [21, Conjecture 6.8] also conjectured a companion supercongruence of (1.4):

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{2 k+1}{9^{k}} \gamma_{k} \equiv\left(\frac{-3}{p}\right) p \quad\left(\bmod p^{3}\right) . \tag{5.6}
\end{equation*}
$$

In a similar way, by using (5.1) and the following identity:

$$
\sum_{k=i}^{n-1}(-1)^{k}(2 k+1)\binom{k+i}{2 i}\binom{2 i}{i}=(-1)^{n-1} n\binom{n-1}{i}\binom{n+i}{i}
$$

we can show that

$$
\sum_{k=0}^{p-1} \frac{2 k+1}{9^{k}} \gamma_{k} \equiv p \sum_{i=0}^{p-1} \frac{g_{i}}{9^{i}} \quad\left(\bmod p^{3}\right) .
$$

Thus, the conjectural supercongruence (5.6) is equivalent to

$$
\sum_{i=0}^{p-1} \frac{g_{i}}{9^{i}} \equiv\left(\frac{-3}{p}\right) \quad\left(\bmod p^{2}\right)
$$

which was originally conjectured by Z.-W. Sun [25, Remark 1.1].
Acknowledgments. This work was supported by the National Natural Science Foundation of China (grant 11801417).

References

[1] G. Almkvist and W. Zudilin, Differential equations, mirror maps and zeta values, in Mirror symmetry, Vol. V, AMS/IP Studies in Advanced Mathematics, vol. 38 (American Mathematical Society, Providence, RI, 2006), 481-515.
[2] T. Amdeberhan and R. Tauraso, Supercongruences for the Almkvist-Zudilin numbers, Acta Arith. 173 (2016), 255-268.
[3] H.H. Chan, S.H. Chan and Z. Liu, Domb's numbers and Ramanujan-Sato type series for $1 / \pi$, Adv. Math. 186 (2004), 396-410.
[4] H.H. Chan, S. Cooper and F. Sica, Congruences satisfied by Apéry-like numbers, Int. J. Number Theory 6 (2010), 89C-97.
[5] H.H. Chan, J. Wan and W. Zudilin, Legendre polynomials and Ramanujan-type series for $1 / \pi$, Israel J. Math. 194 (2013), 183-207.
[6] H.H. Chan and H. Verrill, The Apéry numbers, the Almkvist-Zudilin numbers and new series for $1 / \pi$, Math. Res. Lett. 16 (2009), 405-420.
[7] H.H. Chan and W. Zudilin, New representations for Apéry-like sequences, Mathematika 56 (2010), 107-117.
[8] V.J.W. Guo, Proof of a generalization of the (B.2) supercongruence of Van Hamme through a q-microscope, Adv. in Appl. Math. 116 (2020), Art. 102016.
[9] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[10] V.J.W. Guo and J.-C. Liu, Some congruences related to a congruence of Van Hamme, Integral Transforms Spec. Funct. 31 (2020), 221-231.
[11] V.J.W. Guo and M.J. Schlosser, Some new q-congruences for truncated basic hypergeometric series: even powers, Results Math. 75 (2020), Art. 1.
[12] F. Jarvis and H. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J. 22 (2010), 171-186.
[13] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350-360.
[14] J.-C. Liu, Semi-automated proof of supercongruences on partial sums of hypergeometric series, J. Symbolic Comput. 93 (2019), 221-229.
[15] J.-C. Liu, Some supercongruences arising from symbolic summation, J. Math. Anal. Appl. 488 (2020), Art. 124062.
[16] J.-C. Liu and F. Petrov, Congruences on sums of q-binomial coefficients, Adv. in Appl. Math. 116 (2020), Art. 102003.
[17] E. Mortenson, Supercongruences between truncated ${ }_{2} F_{1}$ hypergeometric functions and their Gaussian analogs, Trans. Amer. Math. Soc. 355 (2003), 987-1007.
[18] H. Prodinger, Human proofs of identities by Osburn and Schneider, Integers 8 (2008), A10.
[19] C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar. Combin. 56 (2007), B56b.
[20] N.J.A. Sloane, The on-line encyclopedia of integer sequences, https://oeis.org.
[21] Z.-H. Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integral Transforms Spec. Funct. 26 (2015), 642-659.
[22] Z.-H. Sun, Super congruences concerning binomial coefficients and Apéry-like numbers, preprint (2020), arXiv:2002.12072.
[23] Z.-H. Sun, New congruences involving Apéry-like numbers, preprint (2020), arXiv:2004.07172.
[24] Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), 2509-2535.
[25] Z.-W. Sun, Congruences involving $g_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{2 k}{k} x^{k}$, Ramanujan J. 40 (2016), 511-533.
[26] Z.-W. Sun, New series for powers of π and related congruences, Electron. Res. Arch. 28 (2020), 1273-1342.
[27] R. Tauraso, Supercongruences for a truncated hypergeometric series, Integers 12 (2012), A45.
[28] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, p-adic functional analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math., vol. 192, Dekker, New York, 1997, 223-236.
[29] D. Zagier, Integral solutions of Apéry-like recurrence equations, in Groups and Symmetries, CRM Proceedings and Lecture Notes, Vol. 47 (American Mathematical Society, Providence, RI, 2009), 349-366.
[30] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009), 1848-1857.

