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ON HARDY’S APOLOGY NUMBERS

HENK KOPPELAAR AND PEYMAN NASEHPOUR

Abstract. Twelve well known ‘Recreational’ numbers are generalized and
classified in three generalized types Hardy, Dudeney, and Wells. A novel proof
method to limit the search for the numbers is exemplified for each of the types.
Combinatorial operators are defined to ease programming the search.

0. Introduction

“Recreational Mathematics” is a broad term that covers many different areas
including games, puzzles, magic, art, and more [31]. Some may have the impres-
sion that topics discussed in recreational mathematics in general and recreational
number theory, in particular, are only for entertainment and may not have an ap-
plication in mathematics, engineering, or science. As for the mathematics, even the
simplest operation in this paper, i.e. the sum of digits function, has application
outside number theory in the domain of combinatorics [13, 26, 27, 28, 34] and in
a seemingly unrelated mathematical knowledge domain: topology [21, 23, 15]. Pa-
pers about generalizations of the sum of digits function are discussed by Stolarsky
[38]. It also is a surprise to see that another topic of this paper, i.e. Armstrong
numbers, has applications in “data security” [16].

In number theory, functions are usually non-continuous. This inhibits solving
equations, for instance, by application of the contraction mapping principle because
the latter is normally for continuous functions. Based on this argument, questions
about solving number-theoretic equations ramify to the following:

(1) Are there any solutions to an equation?
(2) If there are any solutions to an equation, then are finitely many solutions?
(3) Can all solutions be found in theory?
(4) Can one in practice compute a full list of solutions?

The main purpose of this paper is to investigate these constructive (or algorith-
mic) problems by the fixed points of some special functions of the form f : N → N.
We confine computations to the digits of a natural number n in base b (more inter-
estingly in base b = 10). Answers to the questions above are exemplified by proofs
of theorems on some questions and equations in recreational number theory. The
term recreation is kept here because of our bias to consider digits in the domain of
f .

The main trait of recreational questions in number theory is the puzzle aspect:
if only a few rare solutions to an algorithmically easy question exist, then it often is
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recreational. Number theory, however, poses problems that cover universal proper-
ties, for instance, about sums and products in finite fields in general [12], or Blomer
[11] asks if there exists a subset of A of N such that every n 6≡ 0, 4, 7 (mod 8) can be
represented as the sum of three squares in A? This has been done by Zöllner [48] for
four squares, we have not found a reference to a full solution of this three squares
question. Another illustrative example of this difference compared to problems in
this paper is to find solutions of n = (p1y1)

2 + (p2y2)
2 +(p3y3)

2 with p1, p2, p3 odd
and different primes, as large as possible such that the main term for the number
of representations still dominates the error term [11]. This professional reasoning
about error terms is not done in recreational texts.

We narrow the gap between number theory and recreational number theory in
this paper by adding a tool to find the number of solutions to posed problems for
the recreationists. In view of the above mentioned facts, we give a brief sketch
of the contents of this paper: In Section 1, based on some entertaining examples
in Hardy’s book [22] and other resources [35, 41], we introduce base b F -Hardy’s
apology numbers as follows: Let F : N0 → N be a function, b ∈ N− {1} and ai be
a non-negative integer number such that ai ≤ b − 1 for all 0 ≤ i ≤ m− 1. We say
that a natural number n = am−1 · · · a1a0 is a base b F -Hardy’s apology number if
the following equality is satisfied:

H1 : n =

m−1∑

i=0

aib
i =

m−1∑

i=0

F (ai). (F -Hardy’s apology equation)

Then we show that for a specific F , the cardinality of all F -Hardy’s apology
numbers obtained from the H1 equation mentioned above is finite (see Definition
1.1 and Theorem 1.3).

Let us recall that an n−digit number in base b is called a base-b Armstrong
number of nth order if it is equal to the sum of the nth power of its digits in
base b (see Definition 2.1). In Section 2, we discuss Armstrong numbers and their
generalization. It happens that Armstrong numbers have applications in “data
security” [9, 8, 16].

If we denote the number of digits of n in base b by Db(n), then in Section 3,
we call a number to be a base b F -Wells number, if n = Db(F (n))(= m), i.e., n is
the fixed point element of the function Db ◦ F , where F : N → N is a function and

F (n) =
∑m−1

i=0
aib

i the representation of F (n) in base b ≥ 2 (see Definition 3.1). In
Corollary 3.3, we show that if F : N → N is a function, there are finitely many base
b F -Wells numbers, if one of the following statements holds:

(1) There is a natural number N such that n ≥ N implies that F (n) ≥ bn.
(2) There is a natural number N such that n ≥ N implies that F (n) < bn−1.

Let us recall that if a non-negative integer n has a representation n =
∑m−1

i=0
aib

i

in base b ≥ 2, then the sum of the digits of n is denoted by Sb(n) =
∑m−1

i=0 ai [3,
Theorem 6.5.1]. Section 4 is devoted to a generalization of Dudeney numbers. Let

F : N → N be a function and F (n) =
∑m−1

i=0
aib

i be the representation of F (n)
in base b ≥ 2. In Definition 4.1, we call a number n to be a base b F -Dudeney

number, if n = Sb(F (n)), where Sb(F (n)) =
∑m−1

i=0
ai. In Corollary 4.3, we prove

that if F : N → N is a function such that lim
n→+∞

F (n)

b
n−b+1

b−1

= 0, then there are finitely

many base b F -Dudeney numbers.
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In Section 5, we show that the number of natural numbers which are equal to
the sum of their digits raised to a specific power is finite. In fact, in Theorem
5.1, we prove that if n is a natural number, Sb(n) is the sum of the digits of
the number n in base b, p ≥ 2 is a natural number, and φp : N → N is defined
with φp(n) = (Sb(n))

p, then the number of natural numbers satisfying the equality

φp(n) = n is finite. Moreover, we show that if φp(n) = n then n ≤ bp
2

.
This paper is in the continuation of our interest in Algorithms and Computation

[1],[2],[24],[33].

1. A Generalization of Hardy’s Apology Numbers

English mathematician, Godfrey Harold Hardy (1877–1947), in his historical
book on mathematics, with the title “A Mathematician’s Apology”, said that “there
are just four numbers [after 1] which are the sums of the cubes of their digits”.
Moreover, he said that “8712 and 9801 are the only four-figure numbers which are
integral multiples of their reversals”, and he also explained that these were not
serious theorems, as they were not capable of any serious generalization [22]. He
did not imagine that the same numbers have become used in encryption [9, 8, 16].
Clifford A. Pickover, in his book [35] on page 169, defines a number to be factorion,
if it is equal to the sum of the factorial values for each of its digits. Daan van
Berkel on page 2 of his paper [41], defines a number to be Münchhausen in base b if

n = am−1 · · · a1a0 =
∑m−1

i=0
aib

i, then n =
∑m−1

i=0
aai

i . An interesting Münchhausen
number in base 10 is 3435 = 33 + 44 + 33 + 55, the number that appears in the
title of his paper. On the other hand, we can consider those numbers which are the
sums of the cubes of their 2-grouped digits like the number 165033 which is equal
to 163 + 503 + 333 or 221859 which is equal to 223 + 183 + 593. The title given to
his book reflects Hardy’s modesty to colleagues and the world, as with the Persian
“Tarof” (a Persian traditional modesty to refuse a gift, or benefit even if it is highly
wanted). The tarof in mathematics is explained by Azarang [7]. We believe that
Hardy is the first mathematician to express it and we honor him for it in the title
of this paper.

All these entertaining observations and amusing examples may inspire a curious
mind to search for other numbers with similar properties. To this end, we give the
following definition:

Definition 1.1. Let F : N0 → N be a function, b ∈ N − {1} and ai be a non-
negative 1913integer number such that ai ≤ b − 1 for all 0 ≤ i ≤ m − 1. We say
that a natural number n = am−1 · · · a1a0 is a base b F -Hardy’s apology number if
the following equality is satisfied:

H1 : n =

m−1∑

i=0

aib
i =

m−1∑

i=0

F (ai). (F -Hardy’s apology equation)

Moreover, if k ∈ N, we define a natural number n = akm−1 · · · a1a0 to be a base
b k-grouped F -Hardy’s apology number if the following equality holds:

Hk : n =

km−1∑

i=0

aib
i =

m−1∑

i=0

F (aki+k−1 · · ·aki+1aki).

(k-grouped F -Hardy’s apology equation)
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The main result of this section is to show that for a given function F : N0 → N,
the cardinality of the set of all base b k-grouped F -Hardy’s apology numbers is
finite. For the ease of our argument, first, we give the following lemma:

Lemma 1.2. For each natural number m, the following statements hold:

(1) If m ≥ 7, then 2m−1 − m2 > 0 and 7 is the best lower bound for m such
that this inequality holds.

(2) If m ≥ 4, then 3m−1 − m2 > 0 and 4 is the best lower bound for m such
that this inequality holds.

(3) If m ≥ 3, then 4m−1 − m2 > 0 and 3 is the best lower bound for m such
that this inequality holds.

(4) If m ≥ 2 and b ≥ 5, then bm−1 −m2 > 0 and 2 is the best lower bound for
m such that this inequality holds.

Proof. (1): The proof is by induction on m ≥ 7. Set am = 2m−1 − m2. Clearly,
a7 = 26 − 72 = 15 > 0. Now imagine am > 0 and we prove that am+1 > 0. Since
k ≥ 7, we have that

am+1− am = 2m− (m+1)2− 2k−1+m2 = 2m−1− 2m− 1 > 2m−1−m2 = am > 0.

This already means that am+1 > 0 and the proof by induction is complete. Note
that a6 = 25 − 62 = 32− 36 = −4.

(2): Set bm = 3m−1 −m2. It is clear that bm > am. So for m ≥ 7, we have that
bm > 0. On the other hand, b6 = 35−62 = 207, b5 = 34−52 = 56, b4 = 33−42 = 11,
while b3 = 32 − 32 = 0 and this is what we wanted to show.

(3): Define cm = 4m−1 − m2. Clearly, cm > bm. So by (2), cm > 0 holds for
each m ≥ 4. But c3 = 42 − 32 = 7, while c2 = 4− 22 = 0.

(4): Set dm = 5m−1−m2. Obviously by (3), dm > 0 holds for each m ≥ 3. Also,
note that d2 = 5−22 = 1, while d1 = 0. Now, define fm = bm−1−m2, where b ≥ 6.
Clearly, fm > dm for any m ≥ 2 and finally, f1 = 0 and the proof is complete. �

Theorem 1.3. Let F : N0 → N be a function, b ∈ N−{1} and ai be a non-negative
integer such that ai ≤ b − 1, for all 0 ≤ i ≤ km − 1, where k is a fixed positive
integer and m is an arbitrary positive integer. Set

sk = max{F (0), F (1), F (2), . . . , F ((b− 1) · · · (b− 1)(b− 1)
︸ ︷︷ ︸

k−times

)}.

Then the following statements hold:

(H) If akm−1 6= 0, then the following equation has finitely many solutions:

km−1∑

i=0

aib
i =

m−1∑

i=0

F (aki+k−1 · · ·aki+1aki).

Moreover, if an algorithm is designed to find all the solutions of the equation
mentioned in the statement (H), then the solutions are needed to be checked for all

n =
∑km−1

i=0
aib

i ≤ bkm−1, where m is as follows:

(1) If k = 1 and b = 2, then m = max{7, s1}.
(2) If k = 1 and b = 3, then m = max{4, s1}.
(3) If k = 1 and b = 4, then m = max{3, s1}.
(4) If k is arbitrary and b ≥ 5, then m = max{2, sk}.
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Proof. Let sk = max{F (0), F (1), F (2), . . . , F ((b− 1) · · · (b− 1)(b− 1)
︸ ︷︷ ︸

k−times

)}. First, we

prove that the statement (H) holds. It is clear that

m−1∑

i=0

F (aki+k−1 · · · aki+1aki) ≤ msk,

while
∑km−1

i=0 aib
i ≥ bkm−1, since akm−1 6= 0. Note that lim bkm−1/ms = +∞,

whenm −→ +∞. Consequently, there is a natural numberM such that form ≥ M ,
we have that bkm−1 > msk. This means that for such an M , if m ≥ M , then we
have

km−1∑

i=0

aib
i >

m−1∑

i=0

F (aki+k−1 · · ·aki+1aki).

Therefore, the equation mentioned in the statement (H) has finitely many solutions.
Now we go further to prove the other statements of the theorem.

(1): Let m ≥ max{7, s}. By Lemma 1.2, 2m−1 −m2 > 0. Also it is clear that
2m−1 −ms ≥ 2m−1 −m2. So for this case, according to the proof of the statement
(H), if n is a solution for Hardy’s Apology Functional, then n ≤ 2m−1.

(2) & (3): By considering Lemma 1.2, the proof of the statements (2) and (3) is
similar to the proof of the statement (1), and therefore it is omitted.

(4): Let m ≥ max{2, s} and b ≥ 5. Then by Lemma 1.2, bm−1 −m2 > 0. But
bkm−1 −ms ≥ bm−1 −m2. Therefore, for this general case, if n is a solution for a
k-Hardy’s Apology Functional, then n ≤ bkm−1. �

Example 1.4. Our definition for a base b k-grouped F -Hardy’s apology number
is inspired by the following historical examples.

(1) A number is called Münchhausen in base b, if n = am−1 · · · a1a0 =
∑m−1

i=0
aib

i,

then n =
∑m−1

i=0
aai

i . Perhaps the most famous Münchhausen number in
base 10 is 3435 = 33 + 44 + 33 + 55. For more on Münchhausen numbers,
one can refer to the paper [41] by Daan van Berkel.

(2) A number is called factorial in base b, if n = am−1 · · · a1a0 =
∑m−1

i=0
aib

i,

then n =
∑m−1

i=0
ai!. For example, one can easily check that 40585 =

4! + 0! + 5! + 8! + 5!. Poole [36] proved in an ‘exhaustive’ way that the
only factorial numbers in base 10 are 1, 2, 145, 40585. He asked for a better
proof method, which is provided in this paper.

(3) A number is said to be subfactorial in base b, if n = am−1 · · ·a1a0 =
∑m−1

i=0
aib

i, then n =
∑m−1

i=0
!ai. Note that the subfactorial of a natural

number n, denoted by !n, is defined as follows:

!n = n!

n∑

i=0

(−1)i/i!.

An important example for subfactorial numbers is the following:

148349 =!1+!4+!8+!3+!4+!9.

(4) A number is d-perfect 1-digit invariant in base b, if n = am−1 · · ·a1a0 =
∑m−1

i=0
aib

i, then n =
∑m−1

i=0
adi . For example, Hardy on page 25 of his

famous historical book on mathematics mentions that “there are just four
numbers (after 1) which are the sums of the cubes of their digits [22]”. He
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only mentions cubic perfect (3-perfect) 1-digit invariants 153, 370, 371, 407.
Quadric perfect 1-digit invariants also exist. For example, for d = 4, we
have 1634 = 14 + 64,+34 + 44 other numbers belonging to this class are
8208 and 9474. For d = 5, we have 4150, 4151, 54748, 92727, 93084, and
194979. If d = 6, the only result below n < 106 is 548834. These numbers
are also coined as narcissistic, or Armstrong numbers [29, 43].

(5) A number is a dual of a d-perfect 1-digit summative number in base b,

if n = am−1 · · · a1a0 =
∑m−1

i=0
aib

i, then n =
∑m−1

i=0
dai . For example, all

such numbers n < 106 are for d = 3, 12 = 31 + 32. For d = 4, 4624 =
44 +46 +42 + 44, 595968 = 45 +49 +45 +49 +46 +48. For d > 4 there are
no dual d-perfect 1-digit numbers. Note the difference among use of the
variable ‘d’: in previous and next examples the d is for exponents, while in
the current example it is used as the base number.

(6) A (k, d)-digit summative number in base b, is n = am−1 · · ·a1a0 =
∑m−1

i=0
aib

i,

with n =
∑km−1

i=0
aki+k−1 · · ·aki+1aki

d. Examples for b = 10 with k = 2
and d = 3 are 165033 = 163+503+333, 221859 = 223+183+593, 341067 =
343 + 103 + 673, 444664 = 443 + 463 + 643, and 487215 = 483 + 723 + 153.

Remark 1.5. Theorem 1.3 is strong because it does not put any condition on F ,
but it is quite important to note that it needs k to be a fixed positive integer. The
reason for this is that if we suppose k to be an arbitrary positive integer, then
for a specific F , all k-grouped F -Hardy’s apology numbers obtained from the Hk

equation in Theorem 1.3 may have infinitely many solutions. We show this in the
next section.

2. Armstrong Numbers and their Generalization

Armstrong numbers have a pretty interesting history. As Lionel Deimel says in
[17], it wasn’t clear who exactly this mysterious Armstrong behind Armstrong num-
bers is. Apparently, someone sent an email to Deimel claiming he is the Armstrong.
In the email, he says

“In the mid 1960s – probably around 1966 – I was teaching an ele-
mentary course in Fortran and computing in general at The Univer-
sity of Rochester, and invented Armstrong Numbers as an exercise
for my students. I still have the original coffee-stained paper that
was the master copy for the homework assignment...”

and also sent a copy of his paper [6] to Deimel. In it Armstrong defines four types
of Armstrong numbers, from which the generalization of the last one currently is
known as Armstrong numbers :

Definition 2.1. Suppose that we have an n−digit number in base b. This number
is called a base-b Armstrong number of nth order if it is equal to the sum of the nth

power of its digits in base b.

We can imply from 1.3 that there are finitely many Armstrong numbers in any
base b. This can be verified for small values of b: in [32], Miller and Whalen show
that 12, 22, and 122 are the only Armstrong numbers in base 3 and 130, 131, 203,
223, 313, 332, 1103, and 3303 are the only Armstrong numbers in base 4.
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Example 2.2. There are three base-10 Armstrong numbers of 4th order [43]:

1634 = 14 + 64 + 34 + 44

8208 = 84 + 24 + 04 + 84

9474 = 94 + 44 + 74 + 44.

Weisstein [43] states that D. H. Winter computed [46] the existing 88 Armstrong
numbers in base b = 2, . . . , 16 and they are all of order n ≤ 60. See also [4], or the
OEIS database. The 11− 16 numbers are in sequences A161948 - A161953.

The following proposition is taken from [47] and may serve as an example for
encryption [8] application of Armstrong numbers, e.g. with two keys x and y if
brought together computation should match according to formula (2.1), as executed
in a chip of a security lock.

Proposition 2.3. There are infinitely many positive integers x = xk−1 . . . x1x0

and y = yk−1 . . . y1y0 (in base 10) such that:

xy = x2 + y2,(2.1)

where xy is the concatenation of x and y. Note the invariance of (2.1) in base
b = 10 for x → 10k − x, where k is the block length sampled in the numbers.

Proof. A solution to the equation (2.1) is

a = 4, b = 104u, x =
a

17
· (ab− 1), y =

a

17
· (a+ b),(2.2)

where u = 4t+3, for t ≥ 0. This shows that we have found infinitely many solutions
to the equation (2.1). �

Example 2.4. (Some examples for (2.1) in Proposition 2.3) Easy examples for the
equation (2.1) are:

122 + 332 = 12 33

882 + 332 = 88 33.

Larger examples for (2.1) are:

94122 + 23522 = 9412 2352

9411764705882+ 2352941176482 = 941176470588 235294117648,(2.3)

and finally,

x = 9411764705882352941176470588 and y = 2352941176470588235294117648.
(2.4)

In fact, equations (2.3) and (2.4) are generated by plugging m = 0 and m = 7
in (2.2).

Remark 2.5. The Fermat prime 17 appears in (2.2), and that happens to be a
connection between the solutions to (2.1) and Fermat primes. In [40], Tito Piezas
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III conjectured that a similar solution to (2.2) can be found for other Fermat primes
such as 257 and 65537. In other words, he conjectured that

a = 16, b = 1064u, x = a
257

(ab− 1), y = a
257

(a+ b)(2.5)

a = 256, b = 1016384u, x = a
65537

(ab− 1), y = a
65537

(a+ b)(2.6)

are solutions to (2.1) for all u = 4t + 3, t ≥ 0. V. Ponomarenko [40] proved this
conjecture. In the Computational Appendix below is shown that Piezo’s iteration
implicitly uses two consecutive Fermat numbers and can be used to find unwieldy
large Narcissistic numbers. For instance, for the Fermat prime 65537 the numbers
x and y each have 100,000 digits and produce a correct result.

Example 2.6. In the previous example, using the notation of Theorem (1.3), we
saw that if m = 2 is fixed and k is arbitrary, then there are infinitely many solutions
to

km−1∑

i=0

aib
i =

m−1∑

i=0

F (aki+k−1 · · ·aki+1aki),

where F (x) = x2. The same is true for m = 3 and F (x) = x3. In fact, we can
construct infinitely many solutions for

xyz = x3 + y3 + z3,(2.7)

given one initial solution. For instance, in [42], we see that starting from the initial
solution

153 = 13 + 53 + 33,

we can construct the general solution

1 66 · · ·6
︸ ︷︷ ︸

l times

3
+ 5 00 · · ·0

︸ ︷︷ ︸

l times

3
+ 3 33 · · ·3

︸ ︷︷ ︸

l times

3
= 166 · · ·6500 · · ·0333 · · ·3.

There are many more examples of this kind in [42].

3. A Generalization of Wells Numbers

David Wells, in his book [44] on page 98, explains that (after n = 1) for n = 22,
23 and 24 only, the number of digits in n! is equal to n. This example motivates us
to give the following general definition. Let, in this paper, the number of digits of n
in base b be denoted by Db(n). It is clear that if n = am−1 · · ·a1a0 =

∑m−1

i=0
aib

i is
the representation of the natural number n in base b, then Db(n) = m, by definition.
It is easy to see that Db(n) = ⌊1 + logb(n)⌋.

Definition 3.1. Let F : N → N be a function and F (n) =
∑m−1

i=0
aib

i be the
representation of F (n) in base b ≥ 2. We call a number to be a base b F -Wells
number, if n = Db(F (n))(= m), i.e., n is the fixed point element of the function
Db ◦ F .

Proposition 3.2. Let F : N → N be a function. A natural number n is a base b
F -Wells number if and only if bn−1 ≤ F (n) < bn.

Proof. A number n is a base b F -Wells number if and only if n = ⌊1+ logb(F (n))⌋,
which is equivalent to say that n ≤ 1 + logb(F (n)) < n + 1 and the proof is
complete. �
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Corollary 3.3. Let F : N → N be a function. There are finitely many bases b
F -Wells numbers if one of the following statements holds:

(1) There is a natural number N such that n ≥ N implies that F (n) ≥ bn.
(2) There is a natural number N such that n ≥ N implies that F (n) < bn−1.

Proof. If one of the above conditions holds, then we have at most N − 1 base b
F -Wells numbers. �

Example 3.4. (1) If F ∈ Q(X) is a positive integer-valued rational function,
i.e. F (n) ∈ N for all n ∈ N, then it is clear that the number of F -Wells
numbers is finite. For example, if F (n) = n4, then it is clear that 10n−1 ≤
n4 < 10n if and only if n = 1, 2.

(2) Let F (n) = n!. Then there are finitely many decimal F -Wells numbers
and the proof is as follows: Since n! ≥ e(n/e)n [5, Exercise 10.14 p. 399]
and 28/e > 10, it is clear that if n ≥ 28, then n! ≥ 10n. Therefore, if n
is a decimal n!-Wells number, then n < 28. In fact, a simple computation
shows the only n!-Wells numbers are 1, 22, 23, and 24.

(3) The only decimal nn-Wells numbers are 1, 8, and 9. Because if n ≥ 10,
then nn ≥ 10n. So, if n is a decimal nn-Wells number, then n < 10, to be
checked as follows:

11 = 1, 22 = 4, 33 = 27, 44 = 256, 55 = 3125, 66 = 46656, 77 = 523543,
88 = 16777216, and 99 = 387420489.

(4) The only decimal !n-Wells numbers in base 10 are n = 24, 25. Note that
D10(!23) = 22, while D10(!26) = 27.

4. A Generalization of Dudeney Numbers

Henry Ernest Dudeney (1857–1930) in his book [18] on page 36, introduces some
special numbers with the property that the cube root of these numbers is equal to
the sum of their digits, which is equivalent to say that these numbers are equal to the
sum of the digits of their cube. Today these numbers are called Dudeney numbers.
Example of Dudeney numbers include 512 and 19683, since 3

√
512 = 5 + 1 + 2 = 8

and 3
√
19683 = 1 + 9 + 6 + 8 + 3 = 27. For a better notation, we recall that if a

non-negative integer n has a representation n =
∑m−1

i=0
aib

i in base b ≥ 2, then the

sum of the digits of n is denoted by Sb(n) =
∑m−1

i=0 ai [3, Theorem 6.5.1].

Definition 4.1. Let F : N → N be a function and F (n) =
∑m−1

i=0
aib

i be the
representation of F (n) in base b ≥ 2. We call a number n to be a base b F -Dudeney

number, if n = Sb(F (n)), where Sb(F (n)) =
∑m−1

i=0
ai.

Theorem 4.2. Let F : N → N be a function and n a base b F -Dudeney number.
Then the following statements hold:

(1) F (n) ≥ b
n−b+1

b−1

(2) If there is an N ∈ N such that n ≥ N implies that F (n) < b
n−b+1

b−1 , then
there are finitely many base b F -Dudeney numbers.

Proof. (1): Since ai ≤ b − 1 and Sb(F (n)) =
∑m−1

i=0
ai, we have that Sb(F (n)) ≤

(b − 1)m. But m is the number of the digits of F (n). So m = ⌊1 + logb(F (n))⌋.
Since n is a base b F -Dudeney number, n ≤ (b − 1)⌊1 + logb(F (n))⌋. So, we have

n ≤ b− 1 + (b − 1) logb(F (n)) and finally, F (n) ≥ b
n−b+1

b−1 .
(2) is just a result of (1). �
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Corollary 4.3. Let F : N → N be a function such that lim
n→+∞

F (n)

b
n−b+1

b−1

= 0. Then

there are finitely many base b F -Dudeney numbers. In particular, if F ∈ Q[X ] is a
polynomial function such that F (n) ∈ N for all n ∈ N, then there are finitely many
base b F -Dudeney numbers.

Example 4.4. (1) A Dudeney number is a positive integer such that the sum
of its decimal digits is equal to the cube root of the number. There are
exactly seven such integers (sequence A061209 in the OEIS): 0, 1, 512,
4913, 5832, 17576, and finally, 19683.

(2) Let F : N → N be the Fibonacci sequence, the sequence that is defined
as follows: Fn+2 = Fn+1 + Fn for all n ∈ N and F1 = 1, F2 = 1 and
F3 = 2,F4 = 3,F5 = 5,F6 = 8,F7 = 13,F8 = 21,F9 = 34,F10 = 55. The
specific Fibonacci-Dudeney numbers are: F1, F5, and F10.

Let k(n) be the function that gives the sum of the F of each digit of a positive
integer n. Also let m be the number of digits in integer n. Then 10m−1 ≤ n < 10m.
Since 9 is the largest possible digit, we conclude that k(n) ≤ m · s. Therefore, we
have that

10m−1 ≤ n ≤ ms.

In other words, m needs to satisfy this inequality:

10 ≤ (ms)
1

m−1

5. The Powers of the Sum of the Digits of a Number

In this short section, we show that the number of natural numbers which are
equal to the sum of their digits raised to a specific power is finite.

Theorem 5.1. Let n be a natural number and set Sb(n) to be the sum of the digits
of the number n in base b. Let p ≥ 2 be a natural number and define φp : N → N

with φp(n) = (Sb(n))
p. Then the number of natural numbers satisfying the equality

φp(n) = n is finite. Moreover, if φp(n) = n then n ≤ bp
2

.

Proof. Let n =
∑m−1

i=0
aib

i be the representation of the number n is base b. It is
clear that Sb(n) ≤ (b − 1)m, where m = ⌊1 + logb(n)⌋. So if a number n satisfies
the equality φp(n) = n, then it needs to satisfy the inequality n ≤ (b − 1)p(⌊1 +
logb(n)⌋)p.

Now define a real function f(x) = x − (b − 1)p(1 + logb(x))
p. It is clear that

f ′(x) = 1 − p(b− 1)p

x ln a
(1 + logb(x))

p−1, which shows that for large enough real

numbers x, the function f is increasing. �

6. Computational Appendix

To check results as obtained in this paper, we show a few algorithms to do the
work. The programming language used is the Maple programming language. In
the first paper on finding narcissistic numbers, the BASIC language was used [19].
A conversion C of a decimal integer to a list of its single digits is:

C := (b, n) → convert(n, base, b)

and its inverse is Maple’s concatenation of digits:

J := n → Joinsequence(n)
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The sum of a list a of numbers is:

S := a → add(i, i ǫ a)

The operator Db for the digit length of a number n is:

Db := n → length(n)

By following Curry and Feys’ [14] notation of operators and operator sequences,
we deviate from the common use of Category Theory [10] to express algorithms.
This considerably simplifies notation, as follows:

H: Hardy’s Apology numbers satisfy the fixed points: n = S(F (C(n))).
D: Dudeney numbers are the fixed points: n = F (S(C(n))).
W: Wells numbers satisfy: n = Db(F (n)).

Permutation of the order of operators might be beneficial for the discovery of
new numbers. For instance, in the reverse order of operators of the Wells numbers
n = F (Db(n)) with fǫF, f := x → x4, all fixed points are n = 0, 1, 32, 243, 1024.

The algorithm to find the fixed points in Hardy’s Apology Theorem is n =
S(F (C(n))) needs precautions for data handling from one operator to the next,
and with the fixed point criterion at the end as a haltings criterion, as follows:

HApolTh := proc(b, k, n, F) local a, x;

a := C(b^k, n); x := [ seq( F(a[i]), i = 1 ... length(a)) ];

if n = S(x) then n end if

end proc

For example, fǫF, f := x → x5, seq(HApolTh(10, 1, n, f), n = 1 ... 105) exhausts
all the fixed points n = 1, 4150, 4151, 54748, 92727, 93084, as seen from our upper
bounds limit in the Apology Theorem.

The search can be limited as was urgently needed with historical computers [25]
by use of our Hardy’s Apology Theorem 1.3. Take fǫF, f := x → x2, in base b = 10
is 9 the maximum digit. So, the inequality m(92) < 10m, where m is the length of
the number, is false if m = 1, 2. Hence, single and two digits numbers cannot be
narcissistic, but with m = 3, we have 243 < 1000. Concluding, the 3-digit numbers
in base 10 cannot have squared 1-digit sums larger than 243, which is the limit for
search. Continuing this we even could design automated upper bounds for search
with digit blocks k = 2, 3, ..., etc.

Piezas’ computation of narcissistic numbers as formulated by [40] is speeded-up
by his inclusion of Fermat steps, with the Ith Fermat number of n and its prede-
cessor:

Piezas := proc(k, n) local a, b, fe, l, m, x, y;

fe := IthFermat(n); l := (fe-1)/4; m := 4*k+3;

a := IthFermat(n-1)-1; b := 10^(l*m);

x := a*(a*b-1)/fe; y := a*(a+b)/fe;

print(k, m, n, a, l, fe, x, y, x^2+y^2)

end proc
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The algorithm is appropriate for fast computing of extremely long narcissistic
numbers with hundreds of thousands of digits (on a PC).

As quoted in our introduction Hardy’s remark “8712 and 9801 are the only four-
figure numbers which are integral multiples of their reversals”, he introduced the
eigenvalue λ for the consecutive application of operations C, permutation P and
join J as follows:

2178 = J(P (C(8712) → 8712 = λJ(P (C(8712) → λ = 4

Using eigenvalues is studied to its full extent by Lara Pudwell [37] and Sutcliffe
[39]. Lara Pudwell in her paper [37] relates the story about Hardy’s short-sighted
second remark above. Sutcliffe [39] generalized the problem to reversals in any
base.
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