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Abstract

We study the number of factorizations of a positive integer, where the parts of
the factorization are of l different colors (or kinds). Recursive or explicit formulas are
derived for the case of unordered and ordered, distinct and non-distinct factorizations
with at most and exactly l colors.

1 Introduction

For l ≥ 1 and n ≥ 2 we denote the following factorizitation counting functions, where the
parts of the factorization are always ≥ 2:

• Al(n) denotes the number of unordered factorizations into parts of at most l different
colors (or into parts of at most l different kinds),

• Bl(n) denotes the number of unordered factorizations into distinct parts of at most l
colors (more precisely, parts are considered to be distinct, if they have the same color
but a different value or if they have a different color),

• Ãl(n) denotes the number of ordered factorizations into parts of at most l colors.

• B̃l(n) denotes the number of ordered factorizations into distinct parts of at most l
colors.

We will denote the corresponding factorization counting functions into parts with exactly
l colors by lowercases. For example al(n) denotes the number of unordered factorizations
into parts of exactly l colors, and analogously for bl(n), ãl(n) and b̃l(n).

We will sometimes also briefly refer to Al(n) as the number of l-colored factorizations
and analogously for the other factorization counting functions.
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We give an example. Let n = 12 = (22)(3) and l = 2. We list all factorizations and the
values of the factorization counting functions below.

A2(12) = 16 = #{(12), (1̄2), (6, 2), (6, 2̄), (6̄, 2), (6̄, 2̄), (4, 3), (4, 3̄), (4̄, 3), (4̄, 3̄),

(3, 2, 2), (3̄, 2̄, 2̄), (3, 2, 2̄), (3̄, 2, 2̄), (3, 2̄, 2̄), (3̄, 2, 2)},

B2(12) = 12 = #{(12), (1̄2), (6, 2), (6, 2̄), (6̄, 2), (6̄, 2̄), (4, 3), (4, 3̄), (4̄, 3), (4̄, 3̄),

(3, 2, 2̄), (3̄, 2, 2̄)},

a2(12) = 8 = #{(6, 2̄), (6̄, 2), (4, 3̄), (4̄, 3), (3, 2, 2̄), (3̄, 2, 2̄), (3, 2̄, 2̄), (3̄, 2, 2)},

b2(12) = 6 = #{(6, 2̄), (6̄, 2), (4, 3̄), (4̄, 3), (3, 2, 2̄), (3̄, 2, 2̄)},

ã2(12) = 26 = #{(6, 2̄), (2̄, 6), (6̄, 2), (2, 6̄), (4, 3̄), (3̄, 4), (4̄, 3), (3, 4̄),

(3, 2, 2̄), (2, 3, 2̄), (2, 2̄, 3), (3, 2̄, 2), (2̄, 3, 2), (2̄, 2, 3),

(3̄, 2, 2̄), (2, 3̄, 2̄), (2, 2̄, 3̄), (3̄, 2̄, 2), (2̄, 3̄, 2), (2̄, 2, 3̄),

(3̄, 2, 2), (2, 3̄, 2), (2, 2, 3̄), (3̄, 2̄, 2), (3̄, 2, 2̄), (2, 3̄, 3̄)},

b̃2(12) = 20 = #{(6, 2̄), (2̄, 6), (6̄, 2), (2, 6̄), (4, 3̄), (3̄, 4), (4̄, 3), (3, 4̄),

(3, 2, 2̄), (2, 3, 2̄), (2, 2̄, 3), (3, 2̄, 2), (2̄, 3, 2), (2̄, 2, 3),

(3̄, 2, 2̄), (2, 3̄, 2̄), (2, 2̄, 3̄), (3̄, 2̄, 2), (2̄, 3̄, 2), (2̄, 2, 3̄)}.

Here # denotes the number of elements of a set and (d, d̄) denote the two colors of an integer
d. For completeness, we also note that Ã2(12) = 42 and B̃2(12) = 30. For small values of
l, some of these sequences can be found in the On-Line Encyclopedia of Integer Sequences
(OEIS) [7], for example A301830 ((A2(n))n≥1) and A328706 ((B2(n))n≥1).

For l = 1, we get the standard (uncolored) factorization counting functions, which we
will denote by f(n) := A1(n), g(n) := B1(n), f̃(n) := Ã1(n) and g̃(n) := B̃1(n).

It is easy to see that all the above functions are prime independent, meaning that their
value is completely determined by the prime signature of n. For example, we have A2(12) =
A2(75) = 16, since 12 = (22)(3) and 75 = (3)(52) share the same prime signature (2, 1).

We will denote primes by π and πi (i = 1, 2, . . . ). Evaluated at prime powers πn, we
get the corresponding partition or composition functions. For example Al(π

n) is the number
of partitions of n into parts of at most l kinds, Bl(π

n) the number of compositions of n
into parts of at most l kinds. For small values of l, these sequences can be found in the
OEIS, for example A000712 ((A2(π

n))n≥1), A022567 ((B2(π
n))n≥1), A025192 ((Ã2(π

n))n≥1)
and A032005 ((B̃2(π

n))n≥1).
The number of l-colored factorizations doesn’t seem to have attracted much attention

in the literature yet. The only reference we found is the paper of Subbarao [9], where the
Dirichlet generating function (dgf) of Al(n) is given. The aim of this paper is to study the
recursive structure and the interdependence of these functions. We will give recursive or
explicit formulas and the dgf’s for all variants mentioned. Further, we derive an average
order for the number of l-colored ordered factorizations (Corollary 10).
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2 Unordered colored factorizations

In the case of l-colored unordered factorizations, the recursive structure of the factorization
counting functions can be deduced with standard methods from their dgf’s. Subbarao [9,
Equation 2.4] noted that the dgf of Al(n) is given by the l-th power of the dgf of f(n). We
will motivate and generalize this result in the next lemma.

For an arithmetic function φ(n), we denote by φ∗l(n) the l-fold Dirichlet convolution of φ
with itself, i.e. φ∗l = φ∗(l−1) ∗φ, for l ≥ 2 and φ∗1 = φ, where ∗ denotes Dirichlet convolution.
We will also say that φ∗l is the l-th Dirichlet power of φ.

Further, we denote by fk,l(n) (gk,l(n)) the number of (distinct) unordered l-colored fac-
torizations with exactly k parts. These auxiliary functions are needed to deduce formulae for
B̃l(n) (Theorem 11 below) and b̃l(n). For l = 1, fk(n) := fk,1(n) (gk(n) := gk,1(n)) denotes
the number of unordered (distinct) factorizations of n with exactly k parts. The dgfs of
these sequences are given by

1 +
∞
∑

n=2

∞
∑

k=1

fk(n)n
−szk =

∞
∏

n=2

(1− zn−s)−1 (2.1)

1 +
∞
∑

n=2

∞
∑

k=1

gk(n)n
−szk =

∞
∏

n=2

(1 + zn−s), (2.2)

see Hensley [3, Equation 1.4] and Subbarao [9, Equation 2.4]. We denote complex numbers
by s and z.

Lemma 1. For an integer l ≥ 1 and Re(s) > 1, we have Al = f ∗l and Bl = g∗l and therefore

Al(s) := 1 +

∞
∑

n=2

Al(n)n
−s =

∞
∏

n=2

(1− n−s)−l (2.3)

Bl(s) := 1 +

∞
∑

n=2

Bl(n)n
−s =

∞
∏

n=2

(1 + n−s)l. (2.4)

Further, for k, l ≥ 1 and Re(s),Re(z) > 1 we have

Fl(s) := 1 +
∞
∑

n=2

∞
∑

k=1

fk,l(n)n
−szk =

∞
∏

n=2

(1− zn−s)−l (2.5)

Gl(s) := 1 +
∞
∑

n=2

∞
∑

k=1

gk,l(n)n
−szk =

∞
∏

n=2

(1 + zn−s)l. (2.6)

Proof. Let n ≥ 2 be given. Any unordered l-colored factorization of n can be constructed of
all pairs if integers n1 and n2 with n1n2 = n, by considering factorizations of the first (l− 1)
colors of n1 and factorizations of the l-th color of n2; hence Al(n) =

∑

n1n2=nAl−1(n1)f(n2) =
(Al−1 ∗ f)(n). This shows (2.3) by induction on l; the proof of (2.4) is similar.

3



Analogously, all factorizations with exactly k parts of at most l colors can be constructed
of all pairs of integers n1n2 = n and k1 + k2 = k, where n1 is made of k1 parts of the first
l − 1 colors and n2 is made of k2 parts of the last l-th color. Therefore

∞
∑

n=2

∞
∑

k=1

fk,l(n)n
−szk =

∞
∑

n=2

∞
∑

k=1

(

∑

n1n2=n

∑

k1+k2=k

fk1,l−1(n1)fk2,1(n2)

)

n−szk

=

∞
∑

n1,n2=2

∞
∑

k1,k2=1

fk1,l−1(n1)fk2,1(n2)n1
−szk1n2

−szk2

=

(

∞
∑

n=2

∞
∑

k=1

fk,l−1(n)n
−szk

)(

∞
∑

n=1

∞
∑

k=1

fk,1(n)n
−szk

)

.

It follows by induction on l that Fk,l(s) is the l-th power of the the dgf of fk(n). Together
with (2.1), this shows (2.5). The proof of (2.6) is similar, using (2.2).

Remark 2. We can change the set admissible parts S = {2, 3, 4, 5, . . .} in Lemma 1 to any
other nonempty subset of S by changing the range of the products of the dgfs accordingly.
For example, if we put S = {2, 3, 5, 7 . . .}, the set of all primes, we get the dgfs of the number
of l-colored prime factorizations of n. By the Euler product of the Riemann zeta function,
we then get that this dgf equals ζ(s)l. But ζ(s)l is also the dgf of the number of ordered
factorizations into l parts ≥ 1 (the l-th divisor function, denoted by dl(n)). Therefore, we
can conclude that, for every n ≥ 2, the number of l-colored unordered prime-factorizations
equals the number of ordered factorizations with l parts ≥ 1, since both sequences share
the same dgf ζ(s)l. A similar argument shows that the number of ordered factorizations
into l parts ≥ 2 (denoted by fl(n)) equals the number of exactly l-colored unordered prime
factorizations, since both sequences share the same dgf (ζ(s)− 1)l (see Remark 13 below).
For example, for n = 12 and l = 2, we have

d2(12) = 6 = #{(12, 1), (1, 12), (6, 2), (2, 6), (4, 3), (3, 4)}

= #{(3, 2, 2), (3̄, 2, 2), (3, 2̄, 2), (3̄, 2̄, 2), (3, 2̄, 2̄), (3̄, 2̄, 2̄)},

f2(12) = 4 = #{(6, 2), (2, 6), (4, 3), (3, 4)}

= #{(3̄, 2, 2), (3, 2̄, 2), (3̄, 2̄, 2), (3, 2̄, 2̄)}.

Remark 3. An effective algorithm to produce a list of all unordered factorizations for a given
n ≥ 2 can be found in Knopfmacher and Mays [6]. As explained in the proof of Lemma 1,
Equation (2.3), all l-colored factorizations of an integer n can be constructed from (l − 1)-
colored factorizations of the divisors d of n and the factorizations of n/d. This can be used
to produce recursively a list of all unordered l-colored factorizations based on a list of all
unordered factorizations. This algorithm can be extended to produce lists of factorizations
for the other factorization counting functions analyzed in this paper.

We can now derive a recursive equations for Al(n), Bl(n), fk,l(n) and gk,l(n), by making
use of the dgf’s.
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Theorem 4. For n ≥ 2, k ≥ 1 and an integer l 6= 0, we have

Al(n) logn = l
∑

di|n
d≥2

Al(n/d
i) log d (2.7)

Bl(n) logn = l
∑

di|n
d≥2

(−1)i+1Bl(n/d
i) log d (2.8)

fk,l(n) logn = l
∑

di|n
d≥2,k≥i

fk−i,l(n/d
i) log d (2.9)

gk,l(n) logn = l
∑

di|n
d≥2,k≥i

(−1)i+1gk−i,l(n/d
i) log d, (2.10)

with boundary conditions Al(1) = Bl(1) = 1 and

fk,l(1) = gk,l(1) =

{

1, if k = 0;

0, if k ≥ 1.

Proof. Fix an integer l 6= 0. We proof (2.8) by using logarithmic differentiation of the dgf
and the identity log(1 + x) =

∑∞
i=1

1
i
(−1)i+1xi (for |x| < 1). For positive integers i and n,

we denote by λi(n) the indicator function of the i-th power, i.e.

λi(n) :=

{

1, if n = di, for some integer d;

0, else.

We have

∂
∂s

logBl(s) =
∂
∂s

(

l
∞
∑

n=2

log(1 + n−s)

)

= ∂
∂s

(

l

∞
∑

n=2

∞
∑

i=1

1
i
(−1)i+1n−is

)

= −l
∞
∑

n=2

∞
∑

i=1

(−1)i+1n−is logn

= −l

∞
∑

n=2

∞
∑

i=1

(−1)i+1λi(n)n
−s log(n1/i).

By the definition of Bl(s), we also have

∂
∂s

logBl(s) =
∂
∂s
Bl(s)

Bl(s)

=
−1

Bl(s)

∞
∑

n=2

Bl(n)n
−s log n.
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Equating both equations for the logarithmic derivative, we get

∞
∑

n=2

Bl(n)n
−s logn = l

(

∞
∑

n=2

Bl(n)n
−s

)(

∞
∑

n=2

∞
∑

i=1

(−1)i+1λi(n)n
−s log(n1/i)

)

= l

∞
∑

n=2

n−s
∑

d|n
d≥2

(−1)i+1Bl(n/d)λi(d) log(d
1/i)

= l
∞
∑

n=2

n−s
∑

di|n
d≥2

(−1)i+1Bl(n/d
i) log d.

Extracting coefficients on both sides of this equation, we get (2.8). Analogously, by using
the identity log(1− x) = −

∑∞
i=1

1
i
xi (for |x| < 1), we get (2.7).

Next, we prove (2.10). As in the proof of (2.8), we get

∂
∂s

log Gl(s) =
∂
∂s

(

l

∞
∑

n=2

log(1 + zn−s)

)

= −l
∞
∑

n=2

∞
∑

i=1

(−1)i+1ziλi(n)n
−s log(n1/i)

and

∂
∂s

log Gl(s) =
−1

Gl(s)

∞
∑

k=1

zk
∞
∑

n=2

gk,l(n)n
−s log n.

Equating these two expressions, we get (by absolute convergence)

∞
∑

n=2

∞
∑

k=1

gk,l(n)n
−szk logn =

(

∞
∑

n=2

∞
∑

k=1

gk,l(n)n
−szk

)(

l
∞
∑

n=2

∞
∑

i=1

(−1)i+1ziλi(n)n
−s log(n1/i)

)

= l

∞
∑

k=1

∞
∑

i=1

zkzi









∞
∑

n=2

n−s
∑

d|n
d≥2

(−1)i+1gk,l(n/d)λi(d) log(d
1/i)









= l

∞
∑

k=1

∞
∑

n=2

n−szk
∑

d|n
d≥2

k
∑

i=1

(−1)i+1gk−i,l(n/d)λi(d) log(d
1/i).

This shows (2.10) by extracting coefficients. The proof of (2.9) is similar.
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Remark 5. The parameter l in Theorem 4 is not restricted to positive integers. For l = −1,
we get recursive equations for the generalized Möbius functions µf(n) and µg(n) defined by

B−1(s) = 1 +

∞
∑

n=2

µf(n)n
−s =

∞
∏

n=2

(1 + n−s)−1 (2.11)

A−1(s) = 1 +

∞
∑

n=2

µg(n)n
−s =

∞
∏

n=2

(1− n−s). (2.12)

The function µf(n) (µg(n)) counts the surplus of unordered (distinct) factorizations with
an even number of parts over the unordered (distinct) factorizations with an odd number
of parts, see Chamberland et al. [1, Chapter 5] and Subbarao [9, Section 6.3]. The term
generalized Möbius functions is motivated by the observation that the Möbius function

µ(n) =

{

(−1)ω(n), if n is squarefree;

0, otherwise,

counts the surplus of the number of ordered factorizations with an even number of parts
over the number of ordered factorizations with an odd number of parts, see Friedlander and
Iwaniec [2, Equation 17.2]. We denote by ω(n) the number of distinct prime factors of n.

If n is square free, we can derive an explicit formula for the number of l-colored unordered
(distinct) factorizations of n. We denote by

{

n
k

}

the Stirling numbers of the second kind.

Theorem 6. Let n =
∏m

i=1 πi be a product of distinct primes and l ≥ 1. Then

Al(n) = Bl(n) =

m
∑

k=1

lk
{

m

k

}

.

Proof. Let an integer m ≥ 1 be given. For an integer 1 ≤ k ≤ m, the number of unordered
(distinct) factorizations of n with exactly k parts is given by

{

m
k

}

. Denote the parts of such
a factorization by d1, . . . , dk. By the structure of n, we can assume that d1 > · · · > dk. Every
l-colored factorization of n with parts d1, . . . , dk can be constructed by assigning αi of the
parts to the i-th color (i = 1, . . . , l), with α1 + · · ·+ αl = k and αi ≥ 0. This shows that for
every such partition α1, . . . , αl there are

(

m
α1···αl

)

l-colored factorizations. By the multinomial
theorem, we have

∑

α1+···+αl=k

(

m

α1 · · ·αl

)

= lk.

This shows that the number of l-colored unordered (distinct) factorizations with k parts is
given by lk

{

m
k

}

. The claim now follows by summing up over k.

Let Qm denote the m-th primorial. For small values of l, the sequences (Al(Qm))m≥1 can
be found in the OEIS, e.g. A001861 (l = 2) and A027710 (l = 3).
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3 Ordered colored factorizations

For l-colored ordered factorizations, a simple combinatorial argument shows that the value
of Ãl(n) can be derived from the number of factorizations with exactly k different parts,
denoted by f̃k(n). Recall that for n =

∏ω
j=1 π

ej
j and k ≥ 1, we have

F̃k(s) :=
∞
∑

n=1

f̃k(n)n
−s = (ζ(s)− 1)k (3.1)

and

f̃k(n) =

k−1
∑

i=0

(−1)i
(

k

i

) ω
∏

j=1

(

ej + k − i− 1

ej

)

, (3.2)

see Knopfmacher and Mays [5, Chapter 2.1]. We will denote by Ω = Ω(n) the number of
prime factors of n, counted with multiplicity.

Theorem 7. For n ≥ 2 and l ≥ 1, we have

Ãl(s) :=
∞
∑

n=1

Ãl(n)n
−s =

1

(l + 1)− lζ(s)
(3.3)

and

Ãl(n) =

Ω
∑

k=1

lkf̃k(n). (3.4)

Proof. Fix n ≥ 2 and l ≥ 1. Let d1 · · · dk be an ordered factorization of n. Every ordered
factorization of n with k parts of l kinds has a representation as d1,i1 · · · dk,ik (ij ∈ {1, 2, . . . , l}
for j = 1, . . . , k), where the second subscript indicates the kind of the part. This shows (3.4),
by summing up over k.

From (3.1), (3.4) and the formula for the geometric series we get

Ãl(s) =

∞
∑

k=1

lk(ζ(s)− 1)k =
1

1− l(ζ(s)− 1)
.

This shows (3.3).

Remark 8. It follows from (3.3) that the sequence (Ãl(n))n≥1 is the Dirichlet inverse of the
sequence (cl(n))n≥1 with

cl(n) :=

{

1, if n = 1;

−l, for n ≥ 2.

8



Remark 9. Let Qm denote the m-th primorial (m ≥ 1). Then, we have f̃k(Qm) = k!
{

m
k

}

and
therefore

Ãl(Qm) = B̃l(Qm) =

m
∑

k=1

lkk!

{

m

k

}

.

The same holds for any other square free number composed of m distinct primes. For small
values of l, the sequences (Ãl(Qm))m≥1 can be found in the OEIS, e.g. A004123 (l = 2) and
A032033 (l = 3).

We can now derive an average order of Ãl(n) from its dgf (3.3) as a generalization of the
formula for the average order of f̃(n) of Kalmár [4]. For real x > 1, we denote by ζ−1(x) the
unique real solution of the equation ζ(s) = x.

Corollary 10. For an integer l ≥ 1 we have

1
x

∑

n≤x

Ãl(n) ∼ αlx
βl−1 (x → ∞) with βl = ζ−1( l+1

l
) and αl = −

1

lβlζ ′(βl)
.

Proof. For Re(s) > 1 and l ≥ 1, we get

Fl(s) := (l + 1)− lζ(s)

= (l + 1)− l

∞
∑

i=0

1
i!
ζ (i)(βl)(s− βl)

i

= −l
∞
∑

i=1

1
i!
ζ (i)(βl)(s− βl)

i

= −l(s− βl)

∞
∑

i=1

1
i!
ζ (i)(βl)(s− βl)

i−1.

This shows that Fl(s) has a simple zero at s = βl. Therefore, by (3.3), the dgf Ãl(s) =
1/Fl(s) of Ãl(n) has a simple pole at βl with

Res
s=βl

Ãl(s) =
1

F ′
l(βl)

= −
1

lζ ′(βl)
.

The claim now follows from the Wiener-Ikehara Theorem [10].

In the next theorem, we derive a formula for the number of l-colored ordered distinct
factorizations.

Theorem 11. For integers n ≥ 2 and l ≥ 1, we have

B̃l(n) =
Ω
∑

k=1

k!gk,l(n), (3.5)

where gk,l(n) is defined recursively by (2.10).
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Proof. For 1 ≤ k ≤ Ω, let d1,i1 · · ·dk,ik be an l-colored unordered distinct factorization of n,
where ij ∈ {1, . . . , l} (j = 1, . . . , k), are indicating the l-colors. Since the order of the parts
is irrelevant, we can assume that d1,i1 > · · · > dk,ik . By changing the order of the parts, we
can assign k! ordered l-colored factorizations to each such factorization. Summing up over
k gives (3.5).

4 The number of exactly l-colored factorizations

In the next theorem, we show that the number of factorizations of exactly l colors can easily
be derived from the number of factorizations of at most l colors.

We say that the sequence (Φl)l≥0 is the binomial transform of the sequence (φl)l≥0, if

Φl =
∑l

i=0

(

l
i

)

φl (l ≥ 0) holds. It then follows that φl =
∑l

i=0(−1)l−i
(

l
i

)

Φl (l ≥ 0), see Sloane

and Plouffe [8, Chapter 2.7]. We set A0(n) = a0(n) = B0(n) = b0(n) = Ã0(n) = ã0(n) =
B̃0(n) = b̃0(n) = 0 for n ≥ 1.

Theorem 12. Al(n) is the binomial transform of al(n), Bl(n) is the binomial transform of
bl(n), Ãl(n) is the binomial transform of ãl(n) and B̃l(n) is the binomial transform of b̃l(n).

Proof. We proof the assertion for (Al, al). Let n ≥ 2 and l ≥ 1 be given. Among the
Al(n) unordered factorizations of at most l colors, there are exactly

(

l
i

)

ai(n) unordered
factorizations of exactly i of the l colors, for i = 1, . . . , l − 1. Therefore, there are al(n) =
Al(n)−

∑l−1
i=1

(

l
i

)

ai(n) unordered factorizations of exactly l colors, so that

Al(n) =

l
∑

i=0

(

l

i

)

ai(n).

The same argument applies for unordered distinct factorizations, ordered factorizations and
ordered distinct factorizations of parts with l colors.

Remark 13. By Theorem 12, (2.3) and the binomial theorem, we have

∞
∑

n=1

al(n)n
−s =

∞
∑

n=1

n−s
l
∑

i=0

(−1)l−i

(

l

i

)

Ai(n)

=
l
∑

i=0

(−1)l−i

(

l

i

) ∞
∏

n=2

(1− n−s)−i

=

(

∞
∏

n=2

(1− n−s)−1 − 1

)l

.

This last expression is the l-th power of the dgf of the series (f̄(n))n≥1, where f̄(1) = 0
and f̄(n) = f(n) for n ≥ 2. Therefore, we find that al is the l-th Dirichlet power of f̄ , i.e.
al = f̄ ∗l. An analogous argument gives that bl = ḡ∗l, where ḡ(1) = 0 and ḡ(n) = g(n) for
n ≥ 2.
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