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Abstract

Frierson used a powerful parameterization of the pattern of
the order 3 associative magic square to construct a family of six
related order 32 = 9 compound (or composite) magic squares,
several of them ancient. Stimulated by Bellew’s 1997 extension to
order 27 = 33, we extend these ideas to all orders 3l, l = 1, 2, 3, ..,
and in addition find simple formulae for the matrix spectra and
entropic measures for all those orders. This construction is fractal
and we give numerical results to order 243 = 36 which show an
information entropy measure converging to a constant value of
about 1.168.. for the lowest entropy members.

We also briefly consider compounding of an order 4 magic
square with the lowest entropy, for which we find a similar trend
to constant entropy.

1 Introduction

Magic squares (MSs) have the same line sum for all Rows, Columns, and
their two main Diagonals (RCDs), with most interest in the full cover
of sequential integers 1, 2, 3, ..n2 with RCD sums of S(n) = n(n2 +1)/2.
From many sources, e.g. the cover of Swetz[49], and with its vertical
invert M3, to which we include the order 3 addition table, AT3, of the
same elements in which successive rows are augmented by 3, all in matrix
notation:

Luoshu =





4 9 2
3 5 7
8 1 6



 ,M3 =





8 1 6
3 5 7
4 9 2



 , AT3 =





1 2 3
4 5 6
7 8 9



 , E3 =





1 1 1
1 1 1
1 1 1



 . (1)

The first and smallest Luoshu magic square is the sole 3-by-3 magic
square (see Andrews[1][MSC1,2], Swetz[48],[49]) and dates before the
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Warring States period in China 403-221 BCE, and possibly even two
millenia earlier. We also added E3, a constant order 3 matrix of all 1’s
that will soon prove useful.

Both Luoshu (sometimes called Lo Shu) and M3 have RCDs of 15,
but AT3 does not for its outer rows and columns, and so is not magic, but
nevertheless affords an example of a pandiagonal[56] square in which all
the continued broken diagonals have the same sum as the main diagonals.
The pandiagonal property is easily seen by placing a copy of AT3 to its
right:

12 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

(2)

and noting that the parallels of the diagonals of AT3, i.e. 2+ 6+ 7 ,
3+4 +8, 1+6+8, and 2 +4 +9 of this rectangle all have the same sum
of 15, the RCD of M3, which is not pandiagonal. In the Appendix we
discuss an order 4 magic square which is pandiagonal and exhibits some
of the same trends under compounding that we are able to demonstrate
with our main theme.

M3 (and Luoshu) are unique aside from their 8 variants under rota-
tions and reflections. These are not counted as distinct in most literature
on magic squares and are consistent with most modern literature in run-
ning 1, 2, .., 32 = 9.

1.1 Movement in M3 (and Luoshu)

Here one notes the Knight’s move sequence from 1 to 2, followed by
another from 2 to 3, then a jump to 4 before sliding along the diagonal
4, 5, 6 followed by another jump to 7, followed by two more Knight’s
moves, 7 to 8 and finally 8 to 9. The RCDs are all 15. Swetz[49] has
described the movement from the first cell to the last as steps in the
‘Yubu’ dance.

1.2 Associative (or Regular) Magic Squares (AMSs)

Luoshu and M3 are called associative[55] (or regular) magic squares
(AMS) as their antipodal pairs all sum to a common value, so that here
10 = 1 + 9 = 2 + 8 = 3 + 7 = 4 + 6.

2 Frierson’s Associative Compound Magic Squares
[CMSs] begin at order 32 = 9

The smallest and most famous CMS is taken from Frierson’s chapter
5[15] in Andrews MSC1[1], which is also used as Andrews’ Figure 96
on page 44 from his introductory chapter[1]. We label it T9A, where T
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stands for tessellated and our terminology reflects the Aggregation of
successive groups of nine integers in a tiled fashion using the pattern of
M3, augmented by successive increments of nine times E3 in the same
pattern, so it is clear that it can be compacted to a 3-by-3 ”compact
matrix” using multiples of 9E3 as:

T9A =

M3 + 63E3 M3 M3 + 45E3

M3 + 18E3 M3 + 36E3 M3 + 54E3

M3 + 27E3 M3 + 72E3 M3 + 9E3

, (3)

which is one of six related CMS’s in three pairs found by Frierson,
which pairs exhibit a different information entropy - see later
discussion under ”Spectral Measures”.

It is also an associative magic square, with RCDs of 369, since all
RCDs sum the linesums of: 3M3 + 108E3 = 369. This associative prop-
erty is preserved in all the larger Frierson Compound Magic Squares
(CMSs) studied here that follow for orders of the powers of 3, i.e.
9, 27, 81, ... of which Frierson found 6 at order 3 ∗ 3 = 9, and we find 90
at order 3 ∗ 9 = 27, then 2520 at order 81, ...

2.1 T9A in its explicit 9-by-9 form is quite ancient

T9A =

71 64 69
66 68 70
67 72 65

8 1 6
3 5 7
4 9 2

53 46 51
48 50 52
49 54 47

26 19 24
21 23 25
22 27 20

44 37 42
39 41 43
40 45 38

62 55 60
57 59 61
58 63 56

35 28 33
30 32 34
31 36 29

80 73 78
75 77 79
76 81 74

17 10 15
12 14 16
13 18 11

. (4)

CMSs of multiplicative order mn, whose tiled subsquares of orders
m and n are also magic squares within each subsquare, are found back
to at least the 10th century CE in Persia for the smallest order 9 case
m = n = 3, see Swetz[49], and a top-bottom reflection of T9A was
recorded in Arabia by Abul-Wafa al-Buzani (940-997/8 CE), and is found
in Descombes[12] (p.253/4) and Sesiano [43]. See also Lam[23] and Li
Yen[24].

A partner CMS to T9A appears in Frierson’s 1907 paper, T9D, for
which it helps to consider the order 9 addition table of the first 81
integers, AT9, an obvious generalization of AT3 with a first row of 1, 2, ..9,
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since in 1960 Cammann[9] suggested that this first CMS may also have
been constructed from the rows of such a table.

Judging from the lack of citations to prior work, the first type has
been rediscovered, apparently independently, by many authors, partic-
ularly over the past two centuries, with the partner CMS rarely men-
tioned. The original method of construction may have been done by
incrementing the upper middle subsquare by 9’s and placing them in
the same pattern as M3. In 2002 Chan and Loly [CL] [10] realized that
this construction of T9A is likely why it has been rediscovered many
times. The row and column line sums are clearly magic, as also are the
diagonal line sums. CL also suggested that this amounted to a fractal
construction.

Frierson further established a partner square, T9D, as well as two
other pairs that we will discuss shortly for a sextet T9A,D,B,E,C,F , while
for this order 9 several estimates indicate an astronomically large number
of 7.8448(38)×1079 magic squares at this order for which we note Walter
Trump’s website[53].

We note that in 1908 Andrews[1] stated: ”The writer believes that
these highly ingenious combinations were first devised by Prof. Her-
mann Schubert[41]”, whose publication dates to 1898, a sentence which
was deleted in the 1917 edition[1], but we now know that they were at
least some 900 years earlier! We also found that W.H.Thompson[51] con-
structed the vertical invert of T9A in 1869. Also Pickover[36] gave this
CMS in 2002, the same year as CL’s[10] first CMS report - see Pickover’s
Chapter 2 (page 81=9*9!) but without attribution to Frierson, who is
only mentioned later on his pages 222,3 for an order 8 MS! Pickover also
used the section title ”Composite (or Compound) Squares”, and on the
same page says ”This reminds me of a fractal, ...”.

Cammann[9] pointed out that the sums of the subsquares in T9A,
themselves magic squares, also form a magic square, and staring us in
the face are in fact many other CMSs due to rotation and reflection of
each 3−by−3 subsquare.

2.2 Frierson’s Sextet

Frierson[15] arranged his six CMSs in vertical pairs on a single diagram
(his page 134):

T9A T9B T9C

T9D T9E T9F

.

Table 1 - Schematic of Frierson’s display of the sextet of F9’s.

This style will be useful later for order 27 CMSs. It is easy to see how
the top centre M3 subsquare of (4) incremented by 9’s and a Knight’s
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move to the lower right subsquare, etc. in the same pattern as M3

itself, followed by another increment of 9 in another Knight’s move to
the middle of the LHS. Then down to the bottom LHS with another
increment of 9, before incremented diagonal moves up to the to RHS,
followed by drop to the middle RHS, followed by two more Knight’s
moves to the upper RHS and finally the bottom centre.

For order 9, T9A above is the most obvious of CMSs given the unique-
ness of a single order 3, versus the existence of 880 distinct order 4 magic
squares, and thus many more CMSs.

2.3 Our extensions to larger CMSs

We discuss here an infinite family of orders n of the powers of three,
n = 3l, l = 1, 2, .., as an extension of the 1907/8 study by Frierson, and
a 1997 sequel by Bellew [2], who cited Andrews[1], but not Frierson
explicitly!

We are able to give unprecedented insight into a remarkable family
of MS’s that began a full millenium ago by extending the spectral prop-
erties of magic squares treated as matrices in LAA[25], and extended by
our later studies [6] [CRL] using the more powerful singular value decom-
position (SVD) [6], which demonstrates clearly the SV clan structure of
this family by extending the algebraic formulation begun by Frierson[15].

3 Frierson’s parameterization of the order 3 in An-
drews Magic Squares and Cubes

Our starting point is a paper in The Monist journal (editor Paul Carus)
in 1907 by Lorraine Screven Frierson[15] of Shreveport[42], Louisiana,
which extends a parameterization of the smallest magic square of or-
der 3 in order to generate a sextet of related magic squares of order
3 ∗ 3 = 9, called Compound (or Composite) Magic Squares [CMS].
This article was reprinted in the classic Magic Squares and Cubes by
W.S.Andrews[1][MSC1] 1908, with chapters and sections byW.S.Andrews,
L.S.Frierson and others, which are essentially edited versions of papers
originally published in The Monist from 1905 for most of a decade.
MSC1 is a critical reference despite shortcomings in referencing even to
The Monist, whose included papers share the same lack of references to
earlier sources. A second edition in 1917 will be denoted MSC2, and was
reprinted more recently.

For l = 1, n = 3 we use Frierson’s notation [15] but omit a common
constant c in all cells by starting with 0 at the top centre, followed by a
Knight step to the bottom right corner, placing y, and a second Knight
step y increment to the middle of the left column for 2y. Different
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increments, v and 2v are made on the opposite sides by another pair of
Knight moves from top centre. Then the centre cell is made the average
of those to its left and right, i.e. v+y, so that the linesum of this middle
row and column is then 3(v + y). The remaining cells are completed
so that all the RCDs have this same linesum. This is shown in matrix
notation to facilitate later spectral function operations:

M(v, y) =





2v + y 0 v + 2y
2y v + y 2v
v 2v + 2y y



 , (5)

where we will call the pair v, y a ”couple”. It is clear that swapping
v, y exchanges the first and third columns, i.e. flips the square from left
to right. As already noted, these are not regarded as distinct.

Frierson’s parameterization of 3rd order can now be written as:

F3(k, v, y) = kE3 +M(v, y), (6)

and since we use v, y > 0, k gives the smallest entry, which is usually
chosen as either 1 here (or 0 by some authors).

[We note that Bellew[2] in 1997 used capital V, Y variables instead
of our lowercase v, y.]

We have used the constant term k in place of Frierson’s x
since x has a standard use in matrix calculus which is needed
later, and c was used in an alternate parameterization by Lucas[28],
described in the Appendix.

Then F3(1, 3, 1) is M3, while F3(1, 1, 3) is the Luoshu. Note that
swapping v and y swaps the left and right columns of F3.

Then F3 has the following properties:

• it is associative - and this property is maintained in the iterative
compounding of this paper,

• rotating or flipping F3 about the centre still describes all 8 possible
variants of third order magic squares under rotation and reflection,

• the RCDs all sum to 3k + 3v + 3y = 3(k + v + y).

The present study extends the powerful parameterized construction
of these by Frierson[15] for order 32 = 9, to higher orders that are powers
of 3, and first reported by us [LC] at a 2009 conference[26] with an
emphasis on counting the number of such magic squares for orders n =
3l, l = 1, 2, 3, ..., where l will now be called ”level”.
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3.1 Frierson’s order 9 parameterization for the small-
est (level l = 2) CMSs

CMS’s of order n = 3l, l = 2, 3.. are constructed in an iterative manner
from the fundamental parameterized order 3 pattern, as done in Frier-
son’s [15] algebraic study of the smallest CMS’s of order l = 2, n = 32 =
9, which consist of six distinct CMS’s.

Now we are able to give a complete account of those of the powers of
3 opened up by Frierson[15] and Bellew[2], now including their spectra.

Frierson [15] repeated the same associative pattern with two more
parameters, s, t, by replacing v, y in (6) for the couple of level l = 2:

M(s, t) =





2s+ t 0 s+ 2t
2t s+ t 2s
s 2s+ 2t t



 (7)

to help in describing n = 9 associative compound magic squares (CMS9’s)
whose elements are then used to provide s, t increments to copies of
F3(k, v, y) placed in the nine order m = 3 submatrices tiled to fill
a larger n = 9 matrix, producing a general ninth order associative
compound magic square, F9(c, v, y, s, t) which has a magic linesum of
9(k + v + y + s+ t). We denote this process by:

F9(k, v, y, s, t) = kE9 +M(s, t)
⊗

M(v, y) (8)

in which
⊗

is suggested by the Kronecker product formulation for CMS’s
described by Rogers and us [39][RCL].

N.B. Bellew[2] used capital V, Y, S, T in place of Frierson’s lower-
case variables. Another useful reference for a broader context of larger
component magic squares is given by Derksen, Eggermont and van den
Essen[11].

Then a 9-by-9 matrix is constructed from the elements that are the
sum of the components stacked vertically in each cell of Frierson’s Figure
228, which includes a common term, here k, for his x, added to each.

3.2 Frierson’s Order 9 Sextet

Frierson generated 6 distinct numerical F9 CMSs by adding a second
couple, s = 27, t = 9, to his first couple, v = 3, y = 1, to guarantee
full cover (without gaps or overlap). The explicit algebraic form of F9 is
identical with that of Frierson, aside from a common x in all his elements
which we have replaced when needed by the constant k given earlier.

For n = 9 at level l = 2 Frierson simply stated that: ‘Only six forms
may be made, because, excluding our k [his x] whose value is fixed,
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only six different couples may be made from the four remaining symbols
v, y, s, t. ’.

These 6 couples are: three for v with y, s, t; then two for y with s, t;
and finally s with t. Note that this is still at the algebraic level before
specific parameters are used to produce natural CMSs.

Later we show that the entropy H which decreases from the right
column to the left, is the same for vertical pairs.

• They are associative by construction, as are the individual tiled
subsquares, i.e. all antipodal pair cells sum to 2(v + y + s + t),
which is twice the centre cell.

• The T9’s are T9A = F9(1, 3, 1, 27, 9), where the first 1 is the constant
k, then T9D = F9(1, 9, 27, 1, 3), then T9B,T9E and T9C ,T9F - see our
later Table 3.

• Since F9 is associative by construction, the sextet are also, as are
all the tiled 3-by-3 subsquares.

• Moreover Table 1 contains all the basic ninth order compound
magic squares, aside from variants due to rotations and reflections
of subsquares.

• The centre cell of F9 is the sum of the 4 variables, k+ v+y+ s+ t,
and is the average of antipodal pairs, while the bottom centre cell
is always twice that expression, less a k.

• The RCD linesum of 9(k + v + y + s + t) summing the values
1, 3, 9, 27 and adding k = 1 is 9× 40 + 9 = 369.

3.3 Coding using Mathematica[31]

First the vy pair, then the st pair, and finally their Kronecker product:
vy[v , y ] := {{2v + y, 0, v + 2y}, {2y, v + y, 2v}, {v, 2v+ 2y, y}};
st[s , t ] := {{2s+ t, 0, s+ 2t}, {2t, s+ t, 2s}, {s, 2s+ 2t, t}};
f9algebra = KroneckerProduct[st[s, t], vy[v, y]]
to which one adds the constant matrix kE9, where E9 is the order 9

matrix of all 1’s.

3.4 Counting the six order 9 CMS’s

Citing only Andrews’ book, but not Frierson’s article, Bellew [2] never-
theless uses Frierson’s algebra before giving an argument expressed in
integer values of the parameters that since k is fixed (usually at 0 or
1), distinct values of the 2 pairs (couples) of parameters v, y and s, t in
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which both v and y, as well as s and t, are interchangeable mean that
there are only:

[(4× 3)/2] [(2× 1)/2] = 6 (9)

unique ways to assign the variables, shown later in Table 3.

4 Beyond Frierson’s n = 9 sextet to order 27 (level
l = 3)

Compounding in a similar fashion to Frierson to order 27 was suggested
briefly by Bellew[2] in 1997, even though such a large square is rather
unwieldy. In fact we chose p, q variables above after Bellew, but later
noted that he used those for Frierson’s s, t, so we have followed Frierson
here at order 9, and then we use p, q for order 27. Clearly more parameter
pairs can be used for orders 81, 243, 729, ..which have much larger CMSs.

Bellew[2] actually considered the counting the magic squares for two
themes, the first reviewing Frierson’s parameterization for order 9 CMSs
and briefly suggesting its extension to order 27, which is developed fully
here, but also a second theme for pandiagonal or Nasiq MSs for orders
≥ 5 which included an order 9.

With this background, and including spectra not included in most
earlier compounding, we can now proceed to our main theme - to give a
complete account of the generalization of Frierson’s scheme to the next
order of n = 27, and later we extend (generalize) this logic for all levels
l, before using this powerful formulation to give an algebraic account of
the main spectral function, specifically the singular values for entropic
measures.

4.1 Order 27

The extension to n = 27 follows similarly with the addition of another
pair of parameters in M(p, q) which has a magic linesum of 3(p + q).
When this is compounded with F9 it produces F27, which is again asso-
ciative, and aside from an overall constant term, describes all possible
compound magic squares with tiled subsquares of orders 3 and 9.

N.B. Our use of p, q here for order 27 CMS’s is not the same as
Bellew’s[2] use of P,Q for his discussion of ninth order.

Now extend (16) to the next compound order of n = 27:

F27(k, v, y, s, t, p, q) = kE27 +M(p, q)
⊗

[M(s, t)
⊗

M(v, y)] (10)

Since F27 is rather large to display explicitly here we continue with
our compact representation for order 27.
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4.2 The lowest entropy case for order 27

For order 27 the obvious generalization of the lowest entropy order 9
pair adds a pair p, q with p = 243, q = 81, which has TA = F9A in the
top middle order 9 subsquare with versions incremented by multiples 81
of an order 9 with all its elements unity, E9, placed in the corresponding
cells in the pattern of M3 for a compact representation of an order 27
matrix (which otherwise are a challenge to exhibit explicitly):

F27A =

T9A + 7× 81E9 T9A T9A + 5× 81E9

T9A + 2× 81E9 T9A + 4× 81E9 T9A + 6× 81E9

T9A + 3× 81E9 T9A + 8× 81E9 T9A + 81E9

(11)

where now the multiples of 9E3 in T9A are now multiples of 81E9.
Clearly F27’s are both 3- and 9-partitioned.

4.3 Counting the 90 order 27 CMS’s at level l = 3

From the 6 parameters v, y, s, t, p, q there are 6! = 720 ways of doing
this, of which some are to be counted as ’basic’, while others not. We
interpret the logic of Frierson [15] and Bellew [2] as an extension of (9)
to give 90 F27’s:

[(6× 5)/2] ([(4× 3)/2] [(2× 1)/2] = 6) = 90. (12)

Here there are six first couples, then four second couples, and finally two
third couples. There are now 15 distinct ‘first’ couples now multiplied
by 6 ‘second’ couples, the number found in F9. These are counted as
follows: 5 for y = 1, 4 for y = 3, 3 for y = 9, 2 for y = 27, 1 for y = 81,
for a total of 15, all multiplied by 6 from the second couples.

Having extended Frierson style parameterization for the construction
of order 27 CMSs, we now turn to spectral measures that give deeper
insight into their properties. To proceed further we need the SVs, σi, for
orders 9 and 27 which we obtained from Mathematica[31] and Maple[30]
symbolic calculations next.

5 Matrix Properties - Singular Values (SVs, σi)
versus Eigenvalues (EVs, λi) for Magic Squares

Our first foray into the spectra of Frierson’s CMSs was presented at a
2009 conference only used EVs, but all our subsequent MS,CMS studies
now use the always positive and declining SVs, whose number of non-
zero SVs gives the rank of the matrix. Few of the sources that we find
in the literature examine matrix spectra, except notably Kirkland and
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Neumann[21] in 1995, drawn to our attention by Adam Rogers c.2005
in connection with MATLAB[32], which has a magic[n] function that
delivers a single magic square of odd, even and doubly-even orders. Since
then we have progressively shown how SVs lead to powerful measures for
comparing magic squares, first in 2007 by Loly, Cameron, Schindel and
Trump [LCTS][25], then a big leap was made by us in extending Shannon
information entropy measures that Newton and DeSalvo[33] used for
Sudoku matrices[33] to magic square issues in 2012-13 [6] [CRL], and
most recently detailed by Rogers, Cameron and Loly[39] [RCL] in 2017.
See a standard text such as Horn and Johnson[19] for SV background.

5.1 Eigenvalues - EVs, λi

First we set the determinant of M3 less x times the column vector of
three ones equal to zero:

Det





8 1 6
3 5 7
4 9 2



− x





1
1
1



 = 0, (13)

for the characteristic polynomial:

x3 − 15x2 − 24x+ 360 = (x− 15)
(

x2 − 24
)

= 0, (14)

for eigenvalues λi = 15,±2
√
6, noting that the effect of rotation and

reflection on M3 is to change the imaginary eigenvalues to real ones in
an alternating fashion[25].

Since some larger magic squares have just one non-zero eigenvalue,
λ1, the RCD linesum, in 2017 Loly, Cameron and Rogers[27][LCR] con-
cluded that the Singular Values, SVs, σi, presented as positive values
declining from the linesum, provided a more useful tool for assessing
magic squares than the eigenvalues, as introduced next.

An invitation to give the lead keynote talk at IWMS2007 allowed Loly
and Cameron to show that matrix eigenvalue analysis of highly singular
magic squares needed to be replaced by the more powerful Singular
Value [SV] analysis. Here the squares of the SVs are the EVs of the
product of a matrix and its transpose, for which we refer to Horn and
Johnson[19], to understand 1EV MSs of order 4 and 5, as reported in
2009 by Loly, Cameron, Trump and Schindel in LAA[25], and fully by
Rogers, Cameron and Loly[39][RCL] in 2017.

5.2 Singular Values - SVs, σi

Now the critical Singular Values (SVs, σi) which are always positive
or zero, never complex nor imaginary, and will be the same for both

11



F3 (1, 3, 1) and F3 (1, 1, 3). We began to use the SVs in LCTS[25] 2007/9
when encountering magic squares of orders greater than three with some
vanishing EVs, for which the number of non-zero SVs gives the matrix
rank, r.

As an example take the matrix product of M3 with its transpose:





8 1 6
3 5 7
4 9 2









8 3 4
1 5 9
6 7 2



 =





101 71 53
71 83 71
53 71 71



 , (15)

and using X = σ2 for the characteristic polynomial, X3 − 255X2 +
8556X − 29 340, which is a cubic equation with the factorization:

(X − 152)(X − 48)(X − 12) = 0, (16)

so that the squares of the SVs, σ2
i = 152, 48 = 3 × 42, 12 = 3 × 22,

where their positive square roots are the SVs, σi always presented in
declining positive values:

σi = 15, 4
√
3, 2

√
3,with numerical values 15, 6.9282.., 3.464 ... (17)

See LCTS[25] and CRL[6] for more on SVs, the latter having decreas-
ing positive values from the leading SV, σ1 = 15, which is the same as
the RCD linesum EV. Also the reverse product is different, but has the
same spectra - a useful feature of SVDs! The SVs are also invariant
to rotations and reflections of these (square) matrices.

With the SVs established, we note that our 2013 study[6] showed
that the 880 of order 4 have 63 different singular value ”clans” in 2013
(CRL) [6]. After Loly gave a talk at McGill later in Summer 2009 noting
that we had not found any magic squares with rank less than 3, Sam
Drury[13] proved that MSs have a minimum rank of 3.

5.3 The couple v, y for level l = 1

In preparation for level l = 2 for n = 9 it will be useful to examine this
simplest case as follows. Here the linesum SV: σ1 = 3(k + v + y), and
the pair:

σ2
2,3 = 3(v ± y)2 (18)

These are included in our later Table 4.
So for M3 and Luoshu when v, y are 3, 1, or vice versa, the (positive)

SVs are σ1 = 15, and σ2,3 = 4
√
3, 2

√
3, as already noted above, for full

rank 3.
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By contrast, AT3 has singular values: [16. 848.., 1. 0684.., 0], and rank
2 - see Table 2 later.

The present authors and colleagues have extended earlier studies of
singular values spectra of magic squares to the complete set of the 880,
as well as to selected higher order magic squares at a 2007 conference
[LAA[25] 2009], and in greater detail at with a virtual presentation at
another in 2012 [DMPS2013].

5.4 Factorization of the SV characteristic polyno-

mial for T9A

Using X = σ2 in the characteristic polynomial which factors as:

(X−3692)(X−3×1082)(X−3×542)(X−3×122)(X−3×62) = 0, (19)

for five non-zero SVs shown later as part of Table 6.

5.5 Numerical calculations for the SVs

We have used Mathematica[31] and Maple[30], including a subset of
the latter in the ScientificWorkplace[50] [SWP]TeX system used for the
preparation of this manuscript. The Python[37] libraries Numpy and
Sympy were also used, and we note that other online tools for calculating
SVs include Keisan[20] and ”bluebit”[5].

Now we are able to provide other measures related to Shannon infor-
mation entropy, which measures the degree of order in a system, and can
now show an asymptotic behaviour for increasingly large order CMSs in
the present study of Frierson’s partner CMSs.

5.6 Spectral Measures - Entropy H and Compres-

sion C

With the SVs, σi, we can proceed further we introduce some measures
introduced for us in 2010 by Newton and DeSalvo[33] [NDS] who consid-
ered Sudoku matrices, which are special order 9 Latin squares of elements
1..9 in every row and column arranged so that each occurs in every tiled
3-by-3 subsquare. In 2013 we extended NDS to magic squares of orders
3, 4, ..9 as well as Latin squares from orders 2, 3, 4, 5, 8, 9 in CRL[6].

These powerful measures for assessing different magical squares, no-
tably the Shannon information entropy H and a very useful percentage
Compression C, which we found in 2010 in NDS for completed Sudoku
puzzles which may be regarded as compounded order three Latin squares
(Sudoku appeared in newspapers c.2004). Useful measures of these ma-
trices are now shown in a tabular report, whose components will now be
defined.
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First the SVs, σi, are normalized by their sum:

σ̂i =
σi

Σn
i σi

, (20)

then the Shannon information entropy, H , is calculated:

H = −Σn
i σ̂i ln(σ̂i), (21)

named after Boltzmann’s H-theorem, and finally a very useful per-
centage compression measure:

C = (1− H

ln(n)
)× 100%, (22)

which being bounded between 0% and 100% is very useful for com-
parisons between different magic squares.

See the Appendix for a sample numerical calculation for M3.

5.7 Additional measures R,L

In CRL[6] we introduced some integer measures for integer square ma-
trices based on the sums of the even powers of the SVs, ,

L = Σn
i σ

4
i , (23)

and especially its shorter version:

R = Σn
i=2σ

4
i = L− σ4

1, (24)

which is also integer for MSs. These are included in Table 2 below.
CRL[6] called the distinct sets of SVs ”clans”[6], which usually have a
distinct value of R, except so far only for one pair at order 4.

5.8 Matrix rank of CMSs

Drury[13] showed that magic squares have a minimum rank of 3, and
therefore if less than their order n, are singular with one or more zero
eigenvalues. In 2017 a theorem was given by Adam Rogers and the
present authors [39] [RCL], for understanding the matrix rank of CMSs
of combinations of all orders which gives their rank as the sum of their
component ranks, here for n = 9 each 3 less 1 for rank r = 3+3−1 = 5.

Our 2009 conference report on Frierson’s compound squares[26] oc-
cured before we encountered the Shannon entropy measures later in 2010,
so did not include these powerful measures for the entropy and compres-
sion, which we later encountered later from 2010 paper by Newton and
DeSalvo[33]. These were then used in a conference in 2012 with Adam
Rogers in 2013 [RCL][6], which included a table for order 9 magic squares
including both T9A and T9D, but without further elaboration.
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6 Matrix Properties for n = 3

Our first tabular presentation of the matrix spectra:

matrix 5E3 M3, Luoshu AT3

λi 15, 0, 0 15,±2i
√
6 3

2
(5±

√
33)

σ2
i 225, 0, 0 225, 48, 12 3

2
(95±

√
8881)

σ1 15 15 16.8481..

σ2 0 4
√
3 = 6.928.. 1.06837..

σ3 0 2
√
3 = 3.464.. 0

H 0.0 0.937098.. 0.22595..
C 100% 14.7017..% 79.4332..%
rank, r 1 3 2
R 0 2448 1. 302 82..
L 50, 625 53, 073 80, 577
Table 2 - Matrix properties for 5E3, M3 and AT3.
N.B. For AT3, since σ1 is not integer then nor is R.

For M3 the pair σ2,σ3 differ by a factor of 2, a feature found in
later pairs in Table 6. The 14.7017..% compression for M3, Luoshu is
one of the smallest that CRL[6] found in a wide ranging study of magic
squares and Latin squares, while we will see that the larger CMSs here
trend to much higher C%’s than we found for the smallest CMSs of order
9 of 48.57..% that we showed earlier[6]. Extended in the present work
to orders 27, 81, 243, ..., we find systematically larger values that tend
towards the uniformity of 100%. Since any uniform square matrix of
all 1’s has full compression of 100%, a low compression reflects a more
”lumpy” matrix! Most other (larger) magic squares have a much higher
compression, especially the compound magic squares studied here.

N.B. After this table we drop further discusson of the EVs (λi) since
the SVs (σi) give us all the information needed for the entropy and
compression.

Also all versions of En have just the linesum EV (λ1) and SV (σ1),
both n.

It is worth noting that in DMPS we did find lower compressions than
for M3’s 14.7017..% for some order 5 and 9 MSs, and that AT3’s high
compression shows the high ordering of its elements, only surpassed by
the completely ordered matrices of identical elements, e.g. the 100% of
E3.

6.1 Zero-based MSs

If the elements of a MS are chosen to run 0, 1, 2, 3, ..(n2 − 1) instead of
the 1, 2, 3, ..n2 used here, then the σ̂i will be smaller since the RCD’s are
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smaller, so that the entropy will be larger and the compression smaller,
e.g. for M ′

3 these change to: H
′

= 0.985975, C
′

= 10.2527%.

7 Frierson’s partner CMSs

Now fill a new D3 in place of M3 with the elements of AT9’s first col-
umn, 1, 10, 19, 28, 37, 46, 55, 64, 72, in the M3 pattern for D3, enhanced
by simple multiples of E3 to obtain T9D, a spectral partner MS to T9A:

D3 =





64 1 46
19 37 55
28 73 10



 , T9D =
D3 + 7E3 D3 D3 + 5E3

D3 + 2E3 D3 + 4E3 D3 + 6E3

D3 + 3E3 D3 + 8E3 D3 + E3

, (25)

and is magic, having the same SVs as T9A - see Table 3 below.
Here we used D to indicate that the elements of the subsquares of

TA have been Dispersed to other subsquares in a systematic way.
T9D also has an early date before 1000 CE - Cammann[9] noted that

this magic square was found in China by the 13th CE by Yang Hui 1275
CE, and suggested that T9A and T9D were originally derived from the
order 9 addition table, AT9. See also Table 3 below for its spectra.

7.1 Frierson’s second pair T9B = F9(1, 27, 9, 3) and T9E

T9B uses the first rows of the left hand subsquares of AT9, 1, 2, 3 with
28, 29, 30 and 55, 56, 57, to fill a B3 with the M3 pattern:

B3 =





56 1 30
3 29 55
28 57 2



 , T9B =
B3 + 21E3 B3 B3 + 15E3

B3 + 6E3 B3 + 12E3 B3 + 18E3

B3 + 9E3 B3 + 24E3 B3 + 3E3

. (26)

with SVs: 369, 145. 49.., 135. 10.., 62. 354.., 31. 177.., and four zeros,
as does its partner T9E , not shown.

7.2 Frierson’s third pair T9C = F9(1, 9, 27, 3) and T9F

T9C then uses 1, 2, 3 with 10, 11, 12 and 19, 20, 21 from the top left order
3 subsquare of AT9 arranged in the M3 pattern:

C3 =





20 1 12
3 11 19
10 21 2



 , T9C =

C3 + 57E3 C3 C3 + 33E3

C3 + 6E3 C3 + 30E3 C3 + 54E3

C3 + 27E3 C3 + 60E3 C3 + 3E3

. (27)

Now T9C = F9(1, 9, 1, 27, 3), with a ”partner” T9F .. see also Table
3, with singular values: 369.0, 155. 88, 124. 71, 51. 962, 41. 5969, and four
zeros, as does its partner T9F , not shown.
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7.3 Matrix Properties for Frierson’s 6 natural 9th
order ’basic’ F9’s l = 2, n = 9

The next table gives the properties for Frierson’s six squares (ordered
v > y from M(v, y) where v, y in the second row, and s > t from M(s, t)
where s is written to the left of t), showing pairs of isentropic variants:

F9 T9A T9D T9B T9E T9C T9F

v, y 3, 1 27, 9 27, 1 9, 3 9, 1 27, 3
s, t 27, 9 3, 1 9, 3 27, 1 27, 3 9, 1
C 48.572..% <- 40.0241..% <- 39.8296..% <-
H 1.12999.. <- 1.31781.. <- 1.32208.. <-
R 1, 301, 165, 856 <- 797, 281, 056 <- 842, 630, 688 <-

Table 3 - Matrix Properties for Frierson’s F9 sextet with RCDs,
λ1, σ1 = 369.

These R values for T9A,D agree with our 2017 RCL [39], but since R
becomes much larger for n = 27,81,... it will be dropped henceforth, with
an emphasis on the % Compression which is always bounded between
0% and 100%.

Here there are 3 sets of SVs, each with different entropies and com-
pressions. We interpret the reduced compression and higher entropy
values to show that the order decreases from T9A,D, through T9B,E,, to
T9C,F are not quite as ordered as T9A,D, but are closer to each other.
Clearly the spectral properties are not changed by swapping the param-
eters values of the pairs y, v and s, y.

This gives a deeper insight into Frierson’s construction than possible
without the spectra.

Our spectral measures for T9A,B,C,D,E,F differ from M3, with C% of
14.7%, having a much greater Compression, almost halfway to the 100%
of a uniform matrix, e.g. E9, a trend that increases as we explore order
27, 81, 243, .. compounding later by continuation of the fractal pattern
underlying this particular system, and apparently becomes asymptotic
at about 1.1677038.. in our later Table 6.

Next we extend Frierson’s ideas to the next level, l = 3 for n = 27.

8 Comparing Spectral Algebras for l = 1, 2, 3 (or
n = 3, 9, 27)

We followed Frierson in the use of v, y and then his s, t, for
order 9, whereas Bellew[2] used p, q instead of Frierson’s s, t, so
we now use p, q for the step to order 27.
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It is clear that this process could be continued for orders 81, 243, ...
but already a clear pattern has emerged which renders that unnecessary
as the next Table will show!

On the basis of Maple and Mathematica calculations we can now
state the formulae for the singular values

(

n = 3l
)

of all orders of Frierson
compound squares which consists of the linesum eigenvalue, and l signed
pairs and rank:

l 1 2 3
n = 3l 3 9 27
r = 2l + 1 3 5 7
S(n) 15 369 9855
σ1 − nk 3(v + y) 9(v + y + s+ t) 27(v + y + s+ t + p+ q)
σ2
2,3 3(v ± y)2 27(v ± y)2 243(v ± y)2

σ2
4,5 27(s± t)2 243(s± t)2

σ2
6,7 243(p± q)2

Table 4 -Singular Values for n = 3, 9, 27.

In this table the σi for i > 1 increase by a factor of 3, so that their
squares increase by factors of 9. It is clear how this table can be extended
by adding extra pairs, e.g. a, b; c, d, etc. for l = 4, 5, .. Considering
orders 3, 9, 27 in Table 6 above where it does not matter for the SVs if
v is greater or less than y (because of the squares in the formulae for
σ2
2,3 = 3(v ± y)2), nor similarly their positive numerical magnitudes.
N.B. While numerical data for the SVs are usually listed in descend-

ing magnitude the magnitudes of p, q, s, t, v, y vary in the next table the
magnitudes of λ6,7, σ6,7, λ4,5, , σ4,5, λ2,3, σ2,3 will rarely be sequential!

8.1 Numerical F27 spectra

Calculations were done with SV formulae in Table 4 above. All have
rank 7 = (3 + 3− 1 = 5) + 3− 1 in agreement with RCL[39].

Case A has the lowest entropy and its counterparts for different orders
will be our main focus. Note that this case has two sets of parameters,
v, s, p and y, t, q, increasing monotonically.

The integer index R devised by Loly in CRL[6] as the sum of the 4th
powers of the SVs (less the one for the linesum) is rather long and we
note just the two extremes:

R(A)= 691, 492, 899, 739, 824 with ln[R(A)]=34.169874...,
and R(O)=420, 327, 995, 019, 696 with ln[R(O)]=33.672056...,
from which we conclude that H and especially C% are more useful

in comparing large MSs than the huge integer R’s!
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The 90 order 27’s would need a 6-by-15 table of 6 rows for the isen-
tropic squares and 15 columns of the different entropies which are now
listed:

v y s t p q H C%
A 1 3 9 27 81 243 1.16247 64.7291
B 1 27 3 9 81 243 1.20646 63.3944
C 1 9 3 27 81 243 1.20697 63.3788
D 1 3 81 27 243 9 1.34763 59.1110
E 1 3 243 27 81 9 1.35191 58.9813
F 1 243 9 3 81 27 1.38498 57.9778
G 1 9 243 3 81 27 1.38566 57.9573
H 1 81 3 9 27 243 1.38973 57.8338
I 1 9 81 3 243 27 1.39035 57.8149
J 1 243 81 3 9 27 1.46991 55.4010
K 1 81 27 9 243 3 1.46996 55.3995
L 1 243 3 27 9 81 1.47129 55.3593
M 1 27 81 9 243 3 1.47148 55.3533
N 1 81 3 27 9 243 1.47178 55.3443
O 1 27 81 3 243 9 1.47193 55.3398

Table 5 - F27 Matrix spectral measures for 15 clans with the lowest
entropy at top and highest at bottom.

In an Appendix Browne’s[4] order 27 is shown to have v = 27, y =
1; s = 3, t = 81; p = 9, q = 243, so it is a variant of case ”O” with the
highest entropy, one of 90/6 = 15 variants - see the next section.

8.2 Collecting the lowest entropy sets for higher

values of l, n

Late in 2019 we realized that the SVs of higher order versions of the
lowest entropy members, e.g. T9A, T27A, .., could be used directly to
obtain the Compression and entropy values so now the SVs for each pair
differ by the same factor of 2 found in Table 2 for l = 1, and these SVs
increase by a factor of 27 as l increases, while the SV’s of each higher
pair increase by a factor of 9 for every increase in l. Here we see these
lowest entropies slowly increasing with order n from 0.937.. to 1.168.. and
clearly becoming asymptotic - a feature that we now see was probably
present in our earlier CRL study[6] for magic squares obtained form the
MATLAB’smagic[n] function[32], where its ”Figure 1” showed a slowing
increase of the entropies of odd order to n = 99 from H = 0.937.. to ˜3.5
(which only included the sole order M3 in the present study since those
for n = 9, 27, .. lie well above our lowest entropy members: for n = 9 c.
1.8.., for n = 27 c. 2.7.. and for n = 81.c. 3.22..).
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l 1 2 3 4 5
M3 F9A F27A F81A F243A

n = 3l 3 9 27 81 243
RCD σ1 15 369 9855 265, 761 7174575

σ2/
√
3 4 108 2916 78732 2125764

σ3/
√
3 2 54 1458 39366 1062882

σ4/
√
3 12 324 8748 236196

σ5/
√
3 6 162 4374 118098

σ6/
√
3 36 972 26244

σ7/
√
3 18 486 13122

σ8/
√
3 108 2916

σ9/
√
3 54 1458

σ10/
√
3 324

σ11/
√
3 162

σtotal 26.3923.. 680.76.. 18366.3.. 4.9847..104 1.3387..107

C% 14.7017.. 48.572.. 64.7291.. 73.4364.. 78.7368..
H 0.93709.. 1.1299.. 1.16247.. 1.16732.. 1.1677038..
r = 2l + 1 3 5 7 9 11

Table 6 - The lowest entropy members of Frierson-type CMSs.

Our main goal in going beyond Frierson’s order 9 CMSs to a full
account of order 27 is now complete, but we can now make a further
extension for the lowest entropy (highest order) cases.

Since this now completes n = 27, we will now extrapolate to higher
orders - see later for Sloane’s A000680[45] and counting the isentropic
variants illustrated here for n = 9, 27..

8.3 Asymptotic behaviour

For F729A with l = 6, n = 729 we find C% = 82.2829.., H = 1.167856...
The entropy H is clearly flattening out to about 1.168.., while the Com-
pression C% continues to increase more slowly towards 100%.

Other CMSs using TB,C,E,F , which begin with higher values of en-
tropy, compounded with or without TA,D, are expected to generate larger
entropies than found above and are not pursued here.

9 Counting for n = 3l

The number of Fn’s at level l is the product of the number of first couples
at level l, column 3 in the table below, the number of Fn’s at the previous
level (l − 1), for l (2l − 1) first couples, as shown in column 4, and the
number of distinct SV sets in column 5:
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n l 1st couples number of Fn’s no. of SV sets

l (2l − 1) (2l)!/2l (2l − 1)!!
3 1 1 1 1
9 2 6 6 3
27 3 15 15× 6 = 90 5× 3 = 15
81 4 28 28× 90 = 2520 7× 15 = 105
243 5 45 45× 2520 = 113400 9× 105 = 945

Table 7 - Counting couples, Fn’s and SV sets.
Note that 15 in columns 3 and 5 is a coincidence.

Also only the n = 3, 9, 27 results in columns 4,5 have been verified,
and those prompted the formulae above and ”OEIS” described next.

9.1 Integer Sequences - we use order n = 3l in this
paper

‘The On-Line Encyclopedia of Integer Sequences’, ”OEIS”, gives the
following information on the three integer sequences used here:

9.1.1 Counting 1st couples

Sloane’s [44] A000384: Hexagonal numbers : n(2n− 1):
0, 1, 6, 15, 28, 45, ..,
in our notation: l(2l − 1), and ignoring the zero!

9.1.2 Counting the number of Fn’s

Sloane’s [45] A000680: (2n)!/2n:
1, 1, 6, 90, 2520, 113400, 7484400, 681080400, 81729648000, ..,
in our notation: (2l)!/2l, again ignoring the first ’1’.

9.1.3 Number of SV sets

Sloane’s[46] A001147: Double factorial of odd numbers :
a(n) = (2n− 1)!! = 1× 3× 5× ...× (2 ∗ n− 1):
1, 1, 3, 15, 105, 945, 10395, 135135, ..,
and again ignoring the first ’1’.

9.2 Factors of 8 for F9’s, F27’s ...

Bellew’s factors of 8 drew our attention[26] to the significance of this
aspect of compounding.

Now we note the effect of rotations and reflections of each subsquare,
m = 3 for F9’s for 89 variations in F9’s, and both m = 3, 9 subsquares
for F27’s which now give a factor of 881+9 = 890 variants of each basic
F27 due to a factor of 8 for each of the 9 m = 9 subsquares multiplying
the factor from 81 m = 3 subsquares.
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Here for n = 27 we have resolved disparate counts of 818 of Trigg
[52] (1980) and Bellew of 881 to a new result of 881+9 = 890 by taking
account of all orders of tiled subsquares, before generalizing this for all
l.

Then for F81’s we predict an additional factor of 8729 for a total
8729+81 = 8819. We observe that the exponents 9, 81, 819, .. may be found
in Sloane’s[47]

9.2.1 Number of variants due to subsquare rotations and re-
flections

A0523386: Number of integers from 1 to 10n − 1 that lack 0 as a digit:
0, 9, 90, 819, 7380, 66429, 597870, .. (ignoring the initial zero).

We also expect that these rotations and reflections of the magic sub-
squares in F9 will increase the rank of the resultant CMS variants.

10 CMSs and Fractal patterns c.2000

Earlier Chan and Loly[10] [CL] revived the compounding idea by using a
pandiagonal order 4 and Euler’s 1779 pandiagonal order 7 to produce an
aggregated CMS of order 12, 544 = 44 ∗ 72, suggesting that this process
is fractal[29], i.e. self-similar on all scales, in order to break records for
large magic squares. CL also gave an argument for the preservation of
pandiagonality on compounding that parallels our present observation
of the preservation of associativity on compounding, and while referenc-
ing the important 1997 work of Bellew[2], focussed on his treatment of
pandiagonal magic squares (PMSs), defined later, rather than Frierson’s
associative squares of concern here. They referenced a then recent paper
1997 paper by Bellew[2] as well as Andrews[1], neither of which explicitly
referenced Frierson’s parametric compounding of the order 3 to order 9.

THIS COMPLETES OUR EXTENSIONSOF FRIERSON’S
and BELLEW’s IDEAS.

11 CONCLUSION

Frierson’s parameterization set the stage for our generalization here. Ex-
tending his algebraic formulation from order 9 to highet powers of 3 has
enabled us to project asymptotic behaviour for the lowest entropy mem-
bers of this infinite family of CMSs of orders 3l, giving the first full
account of order 27..

Our present achievement may be considered somewhat parallel to
Ollerenshaw and Brée’s[34] comprehensive study of Most-Perfect Pan-
diagonal [MPPD] MSs of orders all multiples of 4, but enhanced here
with an account of the spectral properties. A preliminary study of com-
pounding of one of those at order 4 in our Appendix indicates similar
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asymptotic behaviour, which suggests a new look at their parameteriza-
tion would be valuable, so the present work will be followed by a study
of parameterizing order 4 MSs by Ian Cameron[8] using the 1910 scheme
of Bergholt[3].
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A An earlier parameterization by Édouard Lucas

in 1894

Another parameterization for order 3 by Lucas[28] should be noted and
was drawn to our attention in detail by Sallows[40], who used a param-
eter c which plays the role of our k and Frierson’s x:

Lucas(a, b, c) =

c+ a c− a− b c+ b
c− a + b c c+ a− b
c− b c+ a+ b c− a

. (28)

On his page 3 Sallows uses a = 3, b = 1, c = 5 to obtain the Luoshu
in (1). However Sallows referenced neither Frierson, nor Andrews. See
also Lachal[22].

We tested Lucas(3, 1, 5) finding numerical SVs 15, 6. 928 2.., 3. 464 1..
which agree with those of M3, as expected.
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B Other Magic Squares

B.1 Order 4

At order 4 there are 880 distinct magic squares of 1, 2, .., 16 which have
been classified by the patterns of complementary number pairs within the
square into 12 Groups by Dudeney[14]. Counted in 1693 by Frénicle de
Bessy, amongst them 48 associative and another 48 of the pandiagonal
variety defined soon. Since our 2013 study[6] the 880 are now known to
have 63 different singular values (SV) clans, some of which have just one
non-zero EV[27].

B.1.1 Pandiagonal Magic Squares (PMSs)

Of the 880, the 48 in Dudeney[14] Group I are pandiagonal. These
are characterised by having all parallel broken diagonals to the main
ones with the same RCD linesum as noted earlier for AT3, but we note
that this is not the case for the present study of Frierson’s associative
compound squares which we are not pandiagonal[55]. There are also 16
ultramagic squares with both the associative and pandiagonal features.

However this does not rule out other magic squares of orders 9, 27,
81,... from being pandiagonal, some are known and one noted below,
and others we could construct by compounding.

B.1.2 Ultramagic Squares

These have both the associative and pandiagonal properties and begin
at order 5[25].

C A low entropy order 4 Most-Perfect Pandiagonal

[MPPD] Magic Square

These MPPDs are found at order 4 and multiples of order 4. Here we
consider one of this variety from the classic study of Dame Kathleen
Ollerenshaw and David Brée[35][34], from their cover but here using the
classic elements 1, 2, ..n2 instead of zero-based:

MPPD4α =









1 15 4 14
8 10 5 11
13 3 16 2
12 6 9 7









,

This has the lowest entropy of the MSs in the 3 pandiagonal clans
Dudeney[14] Groups 1, 2, 3, the Alpha clan[6], with λi = 34, ±8, 0, and
σ1 = 34.0, 17. 889.., 4. 472 1.., 0, rank 3.

Ollerenshaw & Brée did not study any spectra, nor did Bellew, but
the former did reference Bellew.
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C.1 Compounding the lowest entropy MPPD4α for
comparison with our n = 3l CMSs

l 1 2 3 4
n = 4l 4 16 64 256
σ1 = λ1 34 2056 131, 104 8, 388, 736

σ2/
√
5 23 29 215 221

σ3/
√
5 2 27 213 219

σ4/
√
5 25 211 217

σ5/
√
5 23 29 215

σ6/
√
5 27 213

σ7/
√
5 25 211

σ8/
√
5 29

σ9/
√
5 27

C% 37.2284.. 64.3023.. 75.9175.. 81.9199..
H 0.8702.. 0.98975.. 1.00156.. 1.00257..
r 3 5 7 9

Table 8 - A lowest entropy order 4 magic square compounded.

In Table 8 the σ2,3,4,5,.. increase by factors of 64 across columns from
left to right as l increases, and the σ3,4,5,.. decrease by factors of 1/4 from
their σ2’s. The trend to an asymptotic entropy mirrors that found in
the main text for the lowest entropy members of the Frierson CMSs.

C.2 Higher orders n = 5, 6, ...

The populations of larger MSs continue to grow - see our colleague Wal-
ter Trump’s table [53] which is regularly updated - so that the number
of distinct order 9 MSs is astronomical, meaning that our Frierson-type
CMS are rare, but possibly close to the lowest entropy member?

D Numerical Compounding of Doubly Affine Ma-

trices

From c. 2004 Rogers and Cameron explored the use of Kronecker prod-
ucts of MSs to generate larger ones of compound order - this was finally
published in 2017 with Loly[39][RCL]. RCL gave a general study of CMSs
which included these ancient pairs for arbitrary m,n > 2 in terms of
Kronecker products, including a full account of their spectral properties
which showed that all CMSs are singular, a feature realized by them
from earlier matrix eigenvalue studies c. 2004. This was first reported
at IWMS-2007, but not included in the conference proceedings[25] in
2009. RCL used the entropy and compression measures from their 2013
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CRL[6] for magic and Latin squares, including Frierson’s first order 9
pair. Mixing orders 3 and 4 yields order 12 compound squares with
either order 4 or 3 subsquares, and is extendable to high orders.

RCL contains much useful background to compounding that need
not be repeated here as our focus is Frierson’s different parameterized
method, however one result useful in the present context is that the rank
of a CMS is the sum of the ranks of its two components less 1, e.g. the
rank of a Frierson order 9 CMS is 3 + 3 − 1 = 5, and for an order 27 is
then 5 + 3− 1 = 7, in agreement with Table 5.

Note that our terminology for CMSs of TA,D used here was changed
in RCL[39] to CA,D which are vertical reflections using the sequence
0, 1, 2, ..(n2 − 1).

E Other tools for spectral calculations

The authors have used Mathematica[31] and Maple[30] software for both
numerical and algebraic calculations as well as Numpy and Sympy from
Python[37]. In previous studies with Adam Rogers[39], also MATLAB,
which has a magic square generator for one of each odd, even and doubly-
even orders. Earlier in ”Online tools for calculating SVs” we noted
Keisan and Bluebit. We add that Wolfram Alpha[58] enables access to
some of Mathematica online, and well as via apps for iPhones and iPads.

Also this article has been edited with a version of LaTeX in Scientific
Workplace[50], which also has a ”Compute” section using Maple which
has been used recently to check some of the matrices herein.

E.1 From the SVs to C% - a sample entropy and
Compression calculation for M3

The (default) numerical precision in SWP’s[50] ”Evaluate Numerically”
is used here, first the total sigmas:

15 + 6. 928 2 + 3. 464 1 = 25. 392
then the contributions to the Shannon entropy, H , are calculated:
−15/25. 392× ln[15/25. 392] = 0.310 95
−6. 928 2/25. 392× ln[6. 928 2/25. 392] = 0.354 39
−3. 464 1/25. 392× ln[3. 464 1/25. 392] = 0.271 76
For a total: H = 0.310 95+ 0.354 39+ 0.271 76 = 0.937 1, and finally

the % Compression follows:
C = (1 − 0.937 1/ ln[3]) × 100 = 14. 701, which both agree with our

CRL[6] calculations.
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E.2 A Cautionary note

Since some computer software, e.g MATLAB[32] and ”R”[38], offer just
a single magic square for each order one must be careful to not draw
strong conclusions from their single MSs as to the properties of others of
the same order in view of the great diversity already apparent at order
4. Clearly our Frierson-type associative CMSs are going to be just a
(small) fraction of the enormous number of order 9 magic squares, but
perhaps of low entropy.

F Browne’s CMS27

An order 27 CMS by Browne[4], B27, with a commentary by Paul Carus,
was shown in chapter VI of MSC1[1], Fig. 273 (Fig.256 of MSC2[1]), but
is not easy to read, in part because alternate cells are shaded.

B27 may be a variant of our #15, ”O” in Table 7 [v = 27, y = 1; s =
81, t = 3; p = 243, q = 9].

For compactness and accuracy we divide F27 into 9-by-9 order 9 sub-
squares and those similarly to order 3 subsquares beginning with:

B3 =





28 57 2
3 29 55
56 1 30



, for which v = 27, y = 1,

and which has Knight path’s 1 → 2 and 2 → 3, then a move up by
25 to begin a down diagonal 28 → 29 → 30, and two more Knight path’s
55 → 56 and 56 → 57.

Then using to construct the bottom middle order 9 subsquare:

B9 =





B3 + 81E3 B3 + 168E3 B3 + 3E3
B3 + 6E3 B3 + 84E3 B3 + 162E3
B3 + 165E3 B3 B3 + 87E3



,

and finally:

B27 =





B9 + 243E9 B9 + 504E9 B9 + 9E9
B9 + 18E9 B9 + 252E9 B9 + 486E9
B9 + 495E9 B9 B9 + 261E9



 ,

but not given explicitly as it takes a whole page - see the clarity
issue in Browne’s[4] example in MSC2[1], page 150, which is clearer in
Swetz[49], page 136, with a duplicate 606 in row 7, column 15 which
should be 506.
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