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Abstract

As complex autonomous robotic systems become more widespread, the goals of transpar-
ent and reusable Artificial Intelligence (AI) become more important. In this paper we anal-
yse how the principles behind Behavior Trees (BTs), an increasingly popular tree-structured
control architecture, are applicable to these goals. Using structured programming as a guide,
we analyse the BT principles of reactiveness and modularity in a formal framework of action
selection. Proceeding from these principles, we review a number of challenging use-cases
of BTs in the literature, and show that reasoning via these principles leads to compatible
solutions. Extending these arguments, we introduce a new class of control architectures we
call generalised BTs or k-BTs and show how they can extend the applicability of BTs to
some of the aforementioned challenging BT use-cases while preserving the BT principles.
We compare BTs to a number of other control architectures within this framework, and
show which forms of decision-making can and cannot be equivalently represented by BTs.
This allows us to construct a hierarchy of architectures and to show how BTs fit into such
a hierarchy.

1 Introduction

In the late 1960s and 1970s, software engineering underwent a transformation centred around
transparency and code reuse. This transformation, known as the structured programming move-
ment, has fundamentally changed the way people think about writing programs. As a result,
today’s programs can be orders of magnitude larger in size and complexity.

The benefits of these concepts have been noted for some time in Artificial Intelligence (AI)
for Robotics [1, 2], but in the main they remain fringe goals. Robotic control architectures have
historically been too simple to merit such abstractions. Finite State Machines (FSMs) have been
dominant, despite the fact they increase in fragility with size [3, 4]. Recently though, as large-
scale autonomous systems become widespread, many of the developments which were central to
the structured programming movement are becoming important in robotic AI. There is growing
recognition of the value of reusable and transparent behaviors which can be stored, extended
and recombined to build agent behavior of great complexity [5–8].

One tool which has been growing in popularity in robotics and AI is the Behavior Tree (BT).
These tree-structured control architectures have been presented as a replacement for FSMs, with
proponents citing Dijkstra’s pivotal letter “go to statement considered harmful” [9] and arguing
FSMs resemble unconstrained use of the goto statement [3,5,10]. Unlike FSMs, BTs are modular
in that every subtree is itself a BT with cohesive behavior, and reactive, in that they respond
immediately to changes in the environment. The modularity allows subtrees to be easily reused
in other trees and the reactiveness make their behavior transparent and predictable. These two
principles have been suggested [5,6,10,11] as the reason why BTs are reportedly easy to use [7,12].
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Nowadays, the principles of structured programming are ubiquitous (and form the basis
for more complex programming paradigms, such as object-oriented programming), and yet few
programming languages are ‘purely’ structured, in the sense of [13]. Most instead contain some
exceptions to the rules, usually in the form of early exit from loops and functions by break and
return statements respectively. In 1974, Knuth [14] essentially predicted this, stating “purists
will point the way to clean constructions, and others will find ways to purify their use of floating-
point arithmetic, pointer variables, assignments, etc., so that these classical tools can be used with
comparative safety”. In that same paper, Knuth points out that while reducing the use of goto
statements was in many cases desirable, certain constructions still required it—‘structuring’ them
led to more obscure and opaque code. The benefits of structured programming still remain—the
challenge is to identify precisely when those benefits can be exploited. If structured approaches
fail, one must determine the next-best solution.

In this paper, we aim to study Behavior Trees in robotic AI in a similar way as Knuth,
Dijkstra and others analysed structured programming. That is, we analyse the fundamental
principles of BTs, reactiveness and modularity, and we look at how these principles allow for
reusable and transparent behavior. Then, we provide a number of examples from the robotics
literature and analyse where and how BTs should be applied so as to maximise their benefits.
We show explicitly that not all FSM controllers can be equivalently reconstructed as BTs, and
provide examples of how the use of FSMs in such cases can be done most transparently.

We provide answers to a number of open questions in the Behavior Tree literature, such as
when a BT can be used in place of an FSM and at what level of abstraction BTs should operate.
In doing so, we provide arguments for how actions and return values in BTs should be modelled
and how BT extensions such as control flow nodes with memory influence their reactiveness and
expressiveness. We show how BTs can be generalised to what we call the k-BTs, which preserve
the reactiveness and readability of BTs while increasing their modularity. We provide a formal
framework which describes how BTs structure action selection, and use this to compare BTs
to other architectures. Finally, we enumerate the BTs up to ‘structural equivalence’, providing
a numerical measure of the behaviors are which they can construct. We see these results as a
toolkit for BT practitioners, to aid in determining when a BT could be an important part of a
robotic architecture.

This work is a starting point for thinking about how modularity and transparency can be
introduced to robotic AI using structures like BTs. Just as there are a number of proposed
constructs in structured programming, so to there are many architectures which aim to achieve
these same principles within robotics. Other architectures such as Decision Trees and Teleo-
reactive programs are also discussed here, and much of our discussion will also be applicable to
these, but our focus will be on BTs.

The rest of the paper is organised as follows. Section 2 introduces a number of control
architectures commonly used in AI and robotics. These include BTs, FSMs, Decision trees (DTs)
and Teleo-Reactive programs (TRs). Section 3 introduces a common framework for representing
these control architectures, and formalises our definitions and assumptions. In Section 4 we
discuss the two main principles of BT use: reactiveness and modularity. Section 5 then shows
how these principles can be applied in practice. We review a number of common use cases for
BTs and provide solutions motivated by the aforementioned principles. Section 6 introduces
k-BTs and their application towards some common problems encountered in BTs. We formally
study the expressiveness of BTs and other related architectures in Section 7.
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2 Finite State Machines, Decision Trees, Teleo-reactive

programs and Behavior Trees

These definitions are in general the same as those in [15].

2.1 Behavior Trees

BTs are control architectures which take the form of ordered directed trees. The execution
of a BT occurs through signals called ‘ticks’, which are generated by the root node and sent
to its children. A node is executed when it receives ticks. Internal nodes tick their children
when ticked, and are called control flow nodes and leaf nodes are called execution nodes. When
ticked, each node can return one of three possible return values; ‘Success’ if it has achieved its
goal, ‘Failure’ if it cannot operate properly and ‘Running’ otherwise, indicating its execution is
underway. Typically, there are four types of control flow nodes (Sequence, Fallback, Parallel,
and Decorator) and two types of execution node (Action and Condition) [5]. Note that Fallback
is sometimes called Selector. A Condition (drawn as an ellipse) checks some value, returning
Success if true and Failure otherwise. An Action node (drawn as a rectangle) represents an
action taken by the agent. Sequence nodes (drawn as a → symbol) tick their children from left
to right. If any children return Failure or Running that value is immediately returned by the
Sequence node, and it returns Success only if every child returns Success. Fallback (drawn as a
?) is analogous to Sequence, except that it returns Failure only if every child returns Failure, and
so on. The Parallel node (symbol ⇒) has a success threshold M , and ticks all of its N children
simultaneously, returning Success if M of its children return Success, Failure if N − M + 1
return Failure and Running otherwise. The Decorator node returns a value based on some user-
defined policy regarding the return values of its children. For a more detailed discussion, we
refer the reader to [5]. Following [16], we will often write BTs succintly in infix notation, such
as A→(B ?C)→D where A,B,C,D are interpreted as leaf nodes and the control flow nodes →
and ? are interpreted as associative operators over the leaf nodes.

2.2 Finite State Machines

A Finite State Machine (FSM) is a control architecture structured as a labelled directed graph,
where nodes represent states. The machine is in exactly one of these states at a given time.
Arcs, called transitions, link states from one to another. A transition from one state to another
is undertaken in response to input which triggers the transition. There is a single state called
the initial state. States are labelled by actions. FSMs execute by beginning in the initial state,
and whenever input is received, taking any transitions which are triggered by that input, until
reaching a state where no transitions are triggered. The FSM then executes the action labelling
the state until new input is received. Formally, an FSM is a six-tuple (Q, q0,Σ,A, δ, ℓ), where
Q is a finite set of states, q0 ∈ Q is the initial state, Σ is a finite set called the input alphabet,
A is a finite set of actions, δ : Σ ×Q → Q is the transition function dictating when transitions
are triggered and ℓ : Q → A is the output function assigning actions to states. This particular
formal interpretation of a Finite State Machine is called a Moore machine [17].
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2.3 Teleo-reactive programs

Teleo-reactive programs (TRs) [2] are lists of condition-action rules.

k1 → a1

k2 → a2

...

kn → an

They are executed by continuously scanning the list of conditions ki in order, and executing
the action ai associated with the first satisfied condition. As these conditions become true and
false, the selected action changes immediately to the action corresponding to the first satisfied
condition. The teleo indicates that such lists are goal-oriented while reactive is intended to
describe how they react constantly to changes in the environment. Reactiveness in this sense is
a central principle of this paper.

2.4 Decision Trees

Decision Trees (DTs) [5] are decision-making tools which resemble the structure of if-then state-
ments. Specifically, DTs are binary trees where leaves represent actions and internal nodes
represent predicates. The two arcs out of each predicate are labelled by ‘True’ and ‘False’. Exe-
cution of DTs occurs by beginning at the root and evaluating each predicate on the current input
state until a leaf is reached, at which point that action is evaluated. At a predicate node, if it is
true in the current input state the execution proceeds down the ‘True’ arc, and otherwise down
the ‘False’ arc. Like TRs, DTs are executed by continuously checking the predicates against the
current state of the world.

3 Assumptions and Definitions

3.1 Layers of architectures

In AI and software a common abstraction is to think of decision-making in layers, to help clearly
separate concerns. From an AI perspective, we assume that higher layers act upon the objects
in the layers beneath, but lower layers cannot affect higher layers. These ideas extends to BTs,
because in general BTs make up only a part of a complex robotic architecture, which we will call
the BT layer (see Fig 1). The layers below the BT correspond to controllers for the individual
actions from which the BT selects. These could be continuous controllers operating on actuators
or possibly themselves complex action selection mechanisms operating on yet lower layers—these
too could be implemented as BTs 1. Likewise, there may be layers above the BT, which select
this BT under various circumstances, and these again could also be BTs. BTs are also described
in this way in [18]. We can thus rephrase describe the goal of our paper as finding what aspects
of the decision-making are best structured within the BT layer 2.

1The BT layer need not be truly a single layer. If BT implementations of layers appear distinctly in a robotic
architecture then the same principles will apply to both and we will refer to either as ‘the’ BT layer. Note that
if a BT selects a BT in an immediately lower layer these BTs can be joined to a single larger BT, by modularity.

2Of course, there may be no BT layer in general, but we can always refer to ‘the BT layer’ allowing for the
fact that it may be empty.
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Implementation of actions

Behavior Tree layer

Optional higher layers

A B C

?

→

A

B C

Figure 1: A layered robotic control architecture

3.2 Action selection mechanisms

In this paper we will wish to discuss how BTs compare to other forms of discrete task-switching.
To formalise this comparison, we need a definition of action selection which is general enough
capture the operation of a number f architectures, including BTs and FSMs. For this purpose
we define an action selection mechanism.

Definition 3.1. Let A be a finite set of actions and Σ a finite set of inputs. An action selection
mechanism (ASM) is a map f : Σ∗ → A, where Σ∗ is the set of all finite sequences of elements
of Σ In other words, an ASM takes a finite sequence of inputs and produces an action.

By this definition, ASMs are deterministic. The input sequence to an ASM can be considered
as the history of the input to the system, with the last element of this sequence as the current
input. In control architectures, we tend to think of all only the current input being applied at
any time step, rather than the entire history of the system. However, this abstraction represents
the fact that ASMs may have access to memory, so that despite only one input being physically
provided at any time in concrete implementations, the information of the entire history is avail-
able for decision-making. The ‘actions’ in he set A represent units of computation on the next
layer, which could be of arbitrary complexity. In the BT case ‘actions’ in this sense will apply to
either Action or Condition nodes, where we view Condition nodes as a special case of an Action
where Success or Failure is always returned. Since our focus is on how structures switch between
actions, the actual content of actions will in general not matter, so we will not focus on A. We
assume the inputs Σ describe the state of the ‘world’, perhaps given by discrete sensors, and
again not concern ourselves with the actual content of Σ.

However, our intention is to use these to model control architectures repeatedly selecting an
action in response to periodic input. In other words, our ASMs should map sequences (possibly
infinite) of input to sequences of actions. We can easily interpret the above in this sense, in the
following obvious way:

Input: x1, x2, x3 · · · ∈ Σ Output: f(x1), f(x1, x2), f(x1, x2, x3), · · · ∈ A

This sequence represents the intuition of how concrete ASMs act. At each step i the additional
input xi is provided, but the ASM can make use of all x1, . . . , xi inputs potentially stored in
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memory. Observe that if two ASMs produce different output on the same input sequence then
they are distinct. We will use this to compare ASMs.

Before explaining how concrete control architectures are interpreted as ASMs, we must make
some assumptions. This model of action selection assumes there is some outward universe to
which the action selection mechanism provides constant feedback. That feedback is given by the
currently selected action. At a sequence of discrete time points, the universe updates its state,
and this generates inputs to the ASM carrying this universe state information, which the ASM
can use to update its selection. We assume the process of computing the selection takes negligible
time on the universe time-scale. As an example, this assumption means that the time between
when a tick is generated by the root of a BT and when that root returns a value is negligible
with respect to the outside world. This assumption is reasonable in control architectures where
computation is fast in comparison with real-world changes.

Example 3.2. Here we explain how FSMs, BTs and DTs are interpreted as ASMs. Firstly, we
assume that for any input x ∈ Σ, we can determine whether an action returns any given value in
x (such as Success or Failure) or if a transition in an FSM is triggered in x. Let x1, . . . , xn ∈ Σ∗

be a sequence of input.
FSM: Begin at the start node. For each xi, if a transition is triggered in the current state,

then update the current state follow each transition which is triggered in xi until we reach a
state q from which xi triggers no transitions. If there is no more input (i = n), return the action
α labelling q, otherwise process the next input xi+1, starting at q.

BT: Process the input xi from the root, traversing the tree on the basis of the return values
of the subtrees in xi. If xi is the last input, return the action labelling the leaf node that was
ticked last in the traversal, otherwise start again from the root with xi+1.

DT: Process the input xi from the root, traversing the tree on the basis of which conditions
are true in xi until a leaf is reached. If xi is the last input, return the action labelling that leaf,
otherwise start again from the root with xi+1.

TR: Process the input xi from the start of the list, and test in order whether any of the
preconditions are true in xi. If xi is the last input, return the action corresponding to the first
true precondition that leaf, otherwise start again with xi+1.

Given any of these architectures, the associated ASM M we will call its derived ASM.
Note that the action selected by both DTs and BTs depends only on the final input xn. This is

because both are reactive—indeed, we will use this as the definition of reactiveness, as we discuss
in Section 4.1. Note also that BTs return the last leaf ticked, regardless of whether that leaf
returned Success or Failure. To see why this definition makes sense, note that the root returns
Success/Failure/Running iff the last child ticked returns Success/Failure/Running 3. As a result,
the overall return value of the tree can be derived immediately from its selected action at any
step (see [15] for an extended explanation of this point) 4. Other authors [19] have interpreted
‘overall tree Success/Failure’ as additional trivial actions which can be selected by the tree, but
this does not integrate with tree composition—if the tree truly selects an action ‘Success’ instead
of returning the value Success, that tree will not behave correctly when embedded as a subtree
of another BT, violating the principle of modularity (Section 4.2).

3There is a further assumption inside this statement—that Negation decorators are not used. Again this
assumption is harmless; by Lemma 4.18 of [16] all Negation decorators can be propagated downwards and absorbed
into modified leaves.

4In addition, this works for any other return values being returned, instead of a specific Running value,
consistent with the conclusions of Section 5.2.4
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4 The principles of Behavior Tree use

In order to reason about when BTs should be used, we must know why they should be used at
all. In general when explaining why BTs are useful, the arguments which are recurrent in BT
literature are the following:

• Behavior Trees are reactive [5, 11, 15, 16, 20]

• Behavior Trees are modular [3, 5, 10, 11, 15, 16, 20]

Fundamentally, these properties make BTs easy to construct, analyse, read and reuse without
errors. Some authors have additionally described reusability [3,10,16,21] or readability [7,11,21]
as principles of BT use. While we agree with their fundamental importance, we shall view these
as the end to which reactiveness and modularity are a means. That is, readability and reusability
should be the goals of all ‘structured robotic AI’, and we consider modularity and reactiveness
to be the tools by which BTs specifically achieve those goals. Now we unpack both in some more
depth.

4.1 Reactiveness

Intuitively, reactiveness should mean that when the environment changes the system should
always respond appropriately—that is, it should be reactive to changes in the input. This isn’t
sufficiently specific however, because all ASMs respond to sequences of input with an action, and
not all are considered reactive. For instance, a FSM with state set Q and with inputs Σ can be
considered as a function Σ × Q → A by composing its transition and output functions. Thus
an FSM always ‘reacts’ to any input (s, q) ∈ Σ × Q, but FSMs are generally not considered to
be reactive. The reason for this is that the internal state q is not outwardly visible to the user.
In other words, reactiveness means that given some input it should be clear from the structure
which action is selected—no additional information should be necessary. Using this, we arrive
at the following definition of reactiveness, consistent with [2, 15, 18]:

Definition 4.1. An ASM f : Σ∗ → A is reactive if there exists a map r : Σ → A such that
∀x1 . . . xn ∈ Σ∗, f(x1 . . . xn) = r(xn).

In other words, in a reactive ASM the selection is influenced only by the current input. We
shall write the class of such ASMs as Reactive.

Reactiveness makes reasoning about BTs extremely intuitive; given some external world
state as input, it is always straightforward to determine which action will be selected in response.
Reactive ASMs can be thought of as a partition of the input space, where regions of the partitions
are labelled by the action selected in that region. Many authors have argued that reactiveness
is at the core of BT use [5, 15, 16, 20], and that a primary goal of BTs is to add a reactive layer
to a control architecture. From this, we state the following principle.

Principle 1. Behavior Trees should be reactive; whenever the current input is the same, they
should always select the same action regardless of input history.

Reactiveness can be thought of a memorylessness. When considered in this way, we can
think of reactive behaviors like instinctive or unconscious behaviors in a biological system. The
limited computational load required to process BTs forms a core part of their readability, and
their applicability to a variety of systems, including those with very limited computing power.
Of course, we achieve this simplicity and clarity by restricting the access of an ASM to memory,
so we would expect this to come at the cost of expressiveness. Indeed, as we show in Section 7,
this is the case.
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We propose the following test for the property of reactiveness. Consider a robot in an empty
room, and a human observer. An architecture is reactive if, when provided with the same
stimulus, the robot always reacts in the same way. This is fundamentally tied to its behavior
being predictable and transparent. The human observer should always be able to predict the
robot’s response to any given stimulus, given a representation of its architecture, without any
knowledge of what prior stimulus the robot had been exposed to. This test will be useful for
highlighting cases where reactiveness is violated.

4.2 Modularity

The modularity of BTs means that they can be composed, decomposed and reused because
subtrees and actions are themselves well-defined BTs. This modularity comes about both from
structure (being a recursively defined tree structure) and having a fixed interface given by three
return values. Modularity is widely regarded as key to the use of BTs [3, 5, 10, 11, 15, 16, 20], as
it allows libraries of BTs to be created which can be easily combined. Any constructed subtree
of a BT can be reused in any other tree. From this, we propose the following principle.

Principle 2. Behavior Trees should be modular; every subtree, including the whole tree, should
be able to be reused meaningfully in another tree.

5 Applying these principles in practice

So far, we have not justified why these principles are sufficient, or whether they can actively help
us to judge cases of BT use in practice. In this section we show that properly interpreting these
principles is enough to provide insights or solutions to a number of BT challenges. The examples
used in this section are inspired by examples used in the BT literature. Structurally, we split
this section by problems which primarily address reactiveness or modularity. This partition is
not strict, and many of the points made are relevant to both principles.

5.1 Reactiveness

5.1.1 Implicit memory

Consider the following BT, assumed to be controlling a robot.

(Battery < 10%→Recharge) ?Other task

When the robot’s battery is less than 10% it recharges, and otherwise it performs some task.
The issue is, implemented as shown, we can have chattering where the robot fluctuates rapidly
between Recharge and Other task as the battery level fluctuates around 10%. It is tempting to
change this to the following:

((Battery< 10% ∨Recharging)→Recharge) ?Other task

Here we have introduced an auxiliary variable Recharging which becomes true after we begin
recharging and becomes false once the battery reaches 100%. Now the robot remains doing
‘Recharge’ until its battery is full. However, in doing this, we have violated the principle of
reactiveness, and lost transparency. Consider some input where the battery level is > 10%. An
observer cannot predict how the robot will behave in this state without knowing whether it had
begun Recharging at some point in the past. This auxiliary variable has introduced what we
shall call implicit memory. As for the Finite State Machine example given in Section 4.1, the
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Behavior Tree layer

Other Taskstart Recharging

Battery < 10%

Battery = 100%

Other Task BT

Figure 2: A solution to the chattering problem

variable Recharging cannot be considered part of the input because it is not externally visible.
We cannot reason about this variable as we would about a property of the environment, and so
the operation of the tree is no longer transparent. This variable cannot take different values at
any point—it becomes true and false under prescribed conditions, but the information of these
conditions is not contained in the above BT. This breaks the cohesiveness of the architecture, and
from a practical perspective means that manipulation of this variable must also be implemented
outside the normal software framework for the BT. This can easily lead to errors.

Indeed implicit memory will appear repeatedly in our following discussions of BT use, because
it is commonly applied as a workaround for introducing memory to BTs. We argue implicit
memory should not be used as it will violate reactiveness and reduce readability.

How instead should we handle challenges such as this chattering problem? Here, the issue
stems from the fact that the robot should not be reactive while it is charging. To be truly
reactive, architectures must be able to interrupt their children in response to any new stimulus
from the environment. In other words, the BT layer can always interrupt all layers beneath it.
If we instead desire actions which will not be interrupted, we propose placing them at a layer
above the BT layer (or any reactive layer). We show this solution in Figure 2, where an FSM
controls switching in and out of a recharging state. When not recharging, the BT controlling
‘Other task’ is operated on the layer beneath. The overall architecture is still not reactive, but
this approach clearly separates the reactive and non-reactive layers and the transition conditions
for Recharging are now transparent, improving readability.

We used this example to introduce the challenges of implicit memory, but using implicit
memory is not the only proposed solution to this specific chattering problem in the BT literature.
For example, [11] uses a notion called transient tasks to address this problem.

This example and implicit memory solution were adapted from [10].

5.1.2 Modelling Success and Failure

When designing BTs or abstracting some implemented behavior into actions, one must decide
on the conditions under which actions should succeed or fail. We shall call these conditions the
return conditions. We show now that we cannot do this freely if we are to preserve reactiveness—
in a sense, these conditions must also be ‘reactive’.

To begin, consider an action ‘Send Message’. When should this return Success or Failure?
Requiring that it returns Success if ‘a message has been sent’ is problematic, because it introduces
implicit memory, violating reactiveness. To see this, note that in English this condition is stated
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in past tense—it refers to what has happened previously. We cannot evaluate its truth or falsity
without memory. Just as with previous example of implicit memory, the variable storing when
‘a message has been sent’ is not defined within the tree, and is controlled at some other layer,
breaking transparency. Consider a more extreme example, where an action returns Success if
a given sequence of variables has been true in the past. Using such actions would allow us to
construct arbitrary ASMs, so must violate reactiveness. These same ideas apply to conditions.
Consider an example of an agent who must pass through a door, with action ‘Walk Forward’ and
a condition ‘Agent Has Passed’ checking when the agent reaches the next room. The problem
with this condition is in its past-tense description—if the agent is simply in the next room, there
is no way of knowing if it did or did not pass through the door in the past.

This problem can occur easily, but can also often be solved by rewriting conditions in present
tense, or omitting them if no present-tense conditions are reasonable. Consider an action ‘Grasp
Object’. One intuitive way of modelling its return conditions is to say it returns Success if an
object has been grasped and failure if it cannot grasp an object. However, this requires implicit
memory to record whether we have already attempted to grasp the object. However, we can
express this reactively by having Grasp Object return Success if the robot is holding an object
and Failure if there is no object within reach. Thus, if there is an object within reach and not
grasped, the robot executes a grasp operation until either it is holding the object or the object is
no longer present. Both return conditions are both present-tense, and refer to observable states.
One way of thinking about the distinction between these models is that in a reactive architecture
we care about outcomes not processes—it matters only that we are now holding an object, not
whether we actually used the grasp action to achieve that outcome. Likewise, the Agent Has
Passed condition could be replaced with ‘Agent in Room X’, a present-tense condition checking
the current location.

In arguing that ‘a message was sent’ was implicit memory, we assumed that this variable is not
outwardly visible, and cannot be interpreted as sensor input to the BT. Another solution to this
problem is to rephrase this in a way that can be interpreted as an input from the outside world.
For instance, suppose Send Message returns Success if the robot observes a human operator
nodding, or another agent receiving the message provides an acknowledgement of its receipt.
This may also not be particularly outwardly visible—this itself presents a challenge, discussed in
Section 5.1.3. However, these options at least avoid the need for implicit memory.

One common source of these examples is discrete or non-durative actions. A simple case is
the action Step Forward for a BT operating in a discrete grid world. How should we assign a
Success condition to this action? We should avoid success conditions along the lines of ‘Success if
we have stepped forward’ or ‘Success if we are our position is one forward from our last position’,
because, again, they are past-tense. We postulate that there is no reactive way to assign a
Success conditions to such actions—a better solution is to never return Success. Instead the
agent should step forward repeatedly until the BT switches tasks or some present-tense Failure
condition becomes true, such as PathObstructed. This example is also explored in Section 5.2.2,
where we argue that very low-level discrete actions are hard to use in BTs.

The takeaway of this section is that for a BT to be reactive, the Success and Failure conditions
of each action must also be reactive. That is, the return value of all actions must be determined
only by current state.

The Sent Message example was adapted from [16], and the door example was adapted from [5].
A similar example using waypoints is discussed in [11].
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5.1.3 Knowledge versus memory

In the last section we concluded that actions should be able to return Success or Failure on the
basis of current input only. In other words, the return value should not be based on whether
‘something was done’ but rather whether ‘something is true’. There are, however, cases where
this thinking itself introduces additional challenges.

Consider an action Unlock Door. Some Success and Failure conditions for this action might
be the variables DoorUnlocked and NoKey respectively. However, from the robot’s world view,
whether a closed door is locked or unlocked may not be clear from input. It is too generous to
assume this information is provided when such doors appear identical. In order to determine the
value of DoorUnlocked, the robot must first try some action, say, attempting to unlock the door.
In other words, Unlock Door might return Running even though its Success condition is in fact
satisfied, depending on whether or not it is aware of this, which seems to violate reactiveness.

There are a few possible solutions to this problem. One is that we assume that all return
conditions are based only on unambiguously visible inputs, thus rejecting any ambiguous cases of
this form. However, this does impose significant limits on the operation of BTs. We recommend
a more practical compromise: we require the robot to be reactive in the context of its own world
view. In other words, from the BT perspective we allow DoorUnlocked to be either true, false
or unknown, so the decisions of the BT are still reactive on this basis.

We must therefore make an important but subtle distinction between the concept of knowl-
edge, which is the agent’s representation of the world, and memory, which is the agent’s represen-
tation of that world’s history. The former is essential for robotic applications, but reactiveness
argues that the latter is not. This internal world model abstracts sensor input into a cohesive
structure which can be queried by Behavior Trees. Doing so is consistent with reactiveness, so
long as only the current state of this model is used to determine the action selected. This world
view need not be static, and can update itself as new information is received, such as in the
door unlocking example used above. We do instead require that this internal model be merely a
representation of the external world, and not a blackboard for any information to be stored. If
that were the case, variables such as Recharging could be stored there, allowing us the freedom
to use implicit memory. Balancing these requirements can be difficult. We judge the overall ap-
proach using our test for reactiveness, but where we assume that the observer’s world view is the
same as that currently possessed by the robot. In this context, we require that robot’s behavior
still be transparent given that the observer knows the robot does not have full information. A
solution similar to this is suggested in [21].

Finally, we also note that while we should not use an internal world model as a store for
arbitrary memory, we do allow, and indeed expect, that agents use the physical world as a store
of memory. That is, if a robot opens a door and moves through it, then later returns to that
same doorway and finds the door still open, it will move through it without reopening. This
may seem obvious, but it is important. If the robot records every doorway it passes through
by marking them with chalk, it could, in theory, retrace its steps by following doorways marked
with chalk. Note that the robot has not remembered its path, but rather is reactively following
the doors marked with chalk. While we argue against an ‘internal blackboard’ because it is
not transparent, this ‘external blackboard’5 is transparent from the perspective of an outside
observer and only depends on the present-tense conditions. If another agent added or removed
these marks the robot would respond appropriately.

This example was adapted from [5].

5Rather literally.
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5.1.4 Black-box selections

The following gives another example of the subtleties of storing information. Consider a robot
which can be doing one of several ‘activities’, each of which has a corresponding BT.

((Activity = Chat) ?ChatBT )→((Activity = Clean) ?CleanBT )→ . . .

The choice of which activity to perform is governed by a variable Activity. This structure seems
natural, but may not be reactive, depending on the visibility of ‘Activity’. If the Activity variable
is entirely internal to the system, where its value does not change transparently with regard to
visible inputs, then this is a case of implicit memory, compromising reactiveness. Alternatively,
suppose the variable ‘Activity’ corresponds to an outwardly visible feature, such as the state
of a physical button or display listing the robot’s current activity. Then, to the observer in
our reactiveness test, it is reasonable to say the robot is reactive to this external input—if the
Activity button is changed, the activity being performed changes. Perhaps more clearly, consider
this example:

((RobotinRoom1) ?ChatBT )→((RobotinRoom2) ?CleanBT )→ . . .

It is natural to assume that ‘which room the robot is in’ is an observable part of the sensor input,
and an external observer would find the robot’s behavior to be reactive and intuitive .

This example was intended to illustrate that reactiveness is not always clear-cut. Sometimes
context is important.

This example was adapted from [5].

5.1.5 Nodes with memory

We have seen above a number of BT challenges where the problem is caused the lack of access
of a BT to memory. In fact, we defined ‘reactive ASMs’ as a subset of all ASMs satisfying
a particular condition, so it is immediate that there is a trade-off between expressiveness (in
terms of constructing large classes of ASMs) and reactiveness. Indeed, though we argue that
reactiveness is useful for constructing simple and trustable AI, we are unlikely to construct an
architecture where every layer is reactive. In Section 7 we focus on the specifics of which selections
cannot be constructed without memory. Given that memory is generally necessary, how should
we incorporate it, keeping in mind our principles and goals?

Firstly, given that we aim to construct transparent architectures, memory use should be
explicit and clear. From the perspective of the BT layer, the simplest way to achieve this is to
encapsulate memory within individual actions, or in a higher layer controlling access to the BT.
It can be more difficult for humans to understand memory use, but not impossible if it is kept
minimal and cohesive.

Unfortunately even this clean separation can be difficult to achieve, as sometimes the BT
layer must work closely with layers using memory. One way to do this transparently, suggested
in the BT literature, is control flow nodes with memory.

Nodes with memory [5] are an extension of the usual BT framework designed to prevent
unnecessary ticking in circumstances where reactiveness is not desired. Two variants on the
usual control flow nodes are introduced, called Sequence and Fallback with memory, and written
→∗ and ?∗. The Sequence node with memory ticks its children from left to right, but only until
they return Success, after which it remembers that value without ticking the child again. The
memory is cleared once the node with memory itself returns a value other than Running, and on
the subsequent tick it begins again with the leftmost node. This is not reactive, but it does at
least prevent uncontrolled access to memory. Its operation is quite readable and is still modular,

12



as it retains the tree structure and interface of BTs. The Fallback node with memory operates
similarly.

By the modularity of BTs, we can think of the node with memory and its subtree as being
a non-reactive layer beneath the BT layer. The node with memory enforces a specific structure
on that lower layer, which allows them to be presented as one layer in a readable fashion. Used
judiciously, such nodes are fairly innocuous (in section 7.4 we show that they do not greatly
increase expressiveness however).

Note that a Sequence with memory

Action1
∗

→Action2

can be emulated by a normal Sequence by adding extra variables [5].

(Action1Done ?Action1)→(Action2Done ?Action2)

This is equivalent so this version is still not reactive. However the additional variables constitute
implicit memory, so the non-reactiveness has essentially become less explicit. The operation of
the variables Action1Done and Action2Done is no longer defined in any specific part of the
structure, unlike when using an explicit node with memory.

5.1.6 Styles

Styles are another BT extension designed to operate between layers of the architecture, and can
be used to introduce memory.

Styles [21] are a BT extension designed to add more complex behavior to large BTs by
modifying them in runtime. Specifically, the BT may be in one of several styles, each of which
disables some subtrees of the tree. Otherwise, while in a given style, the BT operates as usual
but simply ignores the disabled subtrees. In different styles the BT may react slightly differently.
This was suggested as use for coding the behavior of groups of BTs in [21], where the individual
BTs are influenced by the current style of the group. The switching between styles may itself
be done by a BT, or another ASM like a FSM. If the switching between styles is itself governed
by a reactive ASM, then the BT layer will still always be reactive. However if the styles are
controlled by a non-reactive architecture, then the overall behavior can be non-reactive.

Styles are an interesting example because, though the BT is modified at runtime and so may
react differently to the same input (violating reactiveness), in any specific individual style none
of the BT principles are violated. Styles are an example of an extension which operates on the
layerabove the BT layer, so the use of styles is just one way of implementing a layer above BTs.
The advantage of using a style on this layer is that much of the information stored in the BT is
reused with styles, reflecting the fact that we often only need variations on behaviors not entirely
distinct behaviors. Styles thus, are useful where they are applicable, for improving transparency
of the relationships between layers.

5.1.7 Decorators

So far, we have omitted mention of the Decorator node commonly used for BTs. This is largely
because its extreme generality make it difficult to summarise, and must be analysed for particular
Decorator examples. Here we very briefly discuss a few of these and apply some of the principles
discussed above to their use.

Negation: Negation is a Decorator node which returns Running if its child returns Running,
Success if its child returns Failure and Failure if its child returns Success. This does not violate
any principles of BT use. If its child is reactive then it is reactive and it is modular as it preserves
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the BT interface. What’s more, it is extremely simple and interacts well with the other operators
(preserving the symmetry of Success and Failure and providing an analogue of De Morgan’s laws,
as shown in [16]) making it very readable.

Run until Success or eternal memory: This Decorator ticks its child and returns the child’s
return value until the child returns Success, after which the Decorator returns Success always.
It is easy to see that as its behavior is dependent on past return values, it violates reactivity.
However, its behavior is at least fairly simple and constrained as the reactiveness is only lost after
the child returns Success, minimising the impact of this loss of reactiveness. We will refer to this
Decorator by the name eternal memory (contrasted with control flow nodes with memory, whose
memory is periodically reset), and we shall discuss its relevance to increasing the expressiveness
of BTs in Section 7.4.

Run n times: This Decorator ticks its child n times, and after this point returns Success
always. As before, it is not reactive, and can be more opaque than the previous, because the
number of internal ticks does not necessarily correspond to any outwardly visible property.

5.2 Modularity

5.2.1 Optimal gameplay

Behavior Trees were introduced in game AI to control the behavior of Non-Player Characters. In
that context, one desires behavior which is realistic and complex, and which may be required to
compete against the player where necessary. How much of this computation should be contained
in the BT layer?

To begin, consider this BT for playing the game Pac-Man.

(GhostClose→AvoidGhost) ?EatP ills

Of course, this produces fairly trivial greedy behavior, but it is only a very simple tree. Can we
do better with a more complex tree? Can we construct optimal gameplay?

One approach is to check for more conditions, refining the partition of the state space induced
by this reactive ASM.

(GhostScared→Chase) ?(GhostV eryClose→Avoid) ?

(GhostClose→((PowerPelletV eryClose→GoToPellet) ?Avoid)) ?EatP ills

This BT produces a slightly cleverer behavior, being able to decide whether to flee or to attempt
to reach a Power Pellet on the basis of the distance to the nearest Ghost. However, it also does
not produce optimal play.

One might be inclined to think, given the discussion above, that the limitations here are a
result of the reactiveness of BTs, but in essence it is a limitation of their finite presentation.
In fact, at least in theory, reactiveness is not limiting for this kind of AI. Pac-Man is discrete,
and there are only a finite number of game states defined by the locations of all Ghosts, Pills
and Pac-man. Further, the optimal move in Pac-Man only ever depends on the current world
state—in other words, an optimal Pac-Man policy will be reactive.6 Suppose such an optimal
policy was given to us. By constructing a tree with all possible game states, and associating each
with its optimal Up,Down,Left, Right move from this policy, we can construct a BT as follows:

(GameState1→OptimalMoveState1) ? . . .

6In fact, a number of games which are difficult for AI to play have reactive optimal policies (possibly ignoring
some rules). Examples include chess (ignoring the en passant, castling and the threefold repetition rules, which
depend on past states) and Go (ignoring the ko rule).
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Such a BT is both completely reactive and completely optimal, but also completely unrealistic.
Firstly, the assumption of having an optimal policy given is very strong or, for most games,
impossible. Secondly, constructing such a tree is well beyond the realm of feasibility for even
games like Pac-Man, and worse for games of even slightly more complexity 7. Thirdly, and most
importantly for this paper, this approach violates the modularity of BTs. As the specificity
of the actions and conditions grow, their reusability reduces. The subtrees of the tree begin
to correspond less and less to identifiable behaviors. It is understandable that there would be
a trade-off between optimal behavior and transparency. Optimisation, being computationally
intensive, makes it infeasible for an outside observer to predicts the agent’s behavior any faster
than that agent can calculate its own behavior. Striking a balance between these competing
goals in robotics can be difficult. In general though, we suggest that where optimisation-based
policies are required they should be separated into individual actions and implemented at a layer
below the BT. In this way, the BT layer is still readable and modular, and adds reactiveness on
top of the optimal policies.

Another proposed solution to such cases is a BT extension called the Utility node. Utility
nodes operate like a Fallback node, except that an internal optimisation rearranges the order of
the children at runtime, in order of highest to lowest ‘utility’ in that circumstance. With this
tool, we could in principle restructure the above optimal Pac-Man BT as the following:

Up
U

?Down
U

? Left
U

? Right

where ?U represents the Utility node. However, this BT is no more useful than the previous.
Utility BTs need not necessarily be this opaque however, depending how they are used. Suppose
an observer could inspect the ‘utility scores’ being generated at runtime. This approach could
provide some readable insight into how the underlying optimisation takes place, while not neces-
sarily being reactive. So long as BTs and actions can calculate their own utility scores internally
(thus maintaining their conceptual cohesiveness), this approach can still be modular.

This Pac-Man example was adapted from [5].

5.2.2 BTs on atomic actions

Thus far, our discussion has been largely agnostic to how many layers of control exist above
or below the BT layer. However the previous section noted that to construct BTs that display
closer to ‘optimal’ behavior, the number of conditions required grows exponentially. The section
concluded by arguing that an optimisation computation was better placed at a lower layer than
the BT. In this section we dig further into this problem.

In principle, BTs expressiveness does not depend on the content of the actions that are given
to it. These could be extremely complex behaviors, or extremely low-level signals. In practice
though, it is often the case that the limitations of BT expressiveness, as discussed in Section 7
are far more apparent for low-level actions. A common example of such use is BTs for discrete
gameplay [22–24] or BTs evolved from a finite set of atomic actions and conditions [24–26]. For
example, consider a BT operating in a discrete grid world. Some obvious simple actions in this
world might be Step Forward, Turn Left, Turn Right, Pick Up Object, etc. Alternatively, more
‘complex’ actions such as Explore, Go to Region X, Avoid Enemy, etc could be used. How
should we decide which of these sets of actions is most appropriate for the BT to operate upon?

7As an extremely back-of-the-envelope calculation, a BT implementing the full game tree for Pac-Man would
have about 1085 nodes. Omitting some detail, in Pac-Man there are 240 pills, 290 ≈ 256 = 28 squares on the
standard game board, 4 ghosts and one Pac-Man. Each pill can be in two states, Pac-Man in 256 states, ghosts
in 256× 3 ≈ 2 states, which gives 2240 × (28+1)4 × 28 = 2284 ≈ 1085, and there are between 1078 and 1082 atoms
in the observable universe.
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Essentially, how many layers of the architecture should lie between the inputs from this discrete
world and the BT layer?

To answer this question, we must first observe that in general the layers of the control archi-
tecture provide layers of abstraction, and corresponding reductions in the size of the information
passed upwards. At the lowest layer, input data is largest in volume, and for real-world robots
often close to continuous. On the other hand, the data past to the highest level is a highly
abstract description of the input and lower layers. Each layer performs computation, which is
a form of abstraction—it does not make sense for a layer to receive input data, process it, then
output more data than it received.

This means that, even for a discrete world such as the example above, there is a state-
explosion problem for the lowest layers. Suppose for the sake of argument that the input is given
by the states of the world grid in the 5 × 5 square surrounding the agent, and that each square
can be in one of 5 states. This gives 525 possible inputs. A BT attempting to reason in such a
world then will suffer from one of two problems. The first option is that it responds differently
to large number of input states. This generally causes it to grow to exponential size, which is
not modular, not readable, and largely impractical, as discussed in Section 7. It is also likely
to violate our assumption that action selection took negligible time on the world time-scale, as
selecting from this number of inputs could be computationally intensive. In addition, recall that
when justifying why reactiveness was desirable, we pointed out that it made behavior intuitive
and easy to understand. If an ASM is reactive but has 525 possible inputs, it is essentially
impossible for an observer to discern this reactiveness.

The other alternative for a low-layer BT is that it significantly abstracts the input space,
by constructing a small number of conditions on this input. This allows BTs of reasonable size
and reactiveness to be built. However, this abstraction throws away a significant amount of
information, which can no longer be used by the BT or any layer built above it. This greatly
limits the reasoning that can be done. As a grid-world example, suppose we construct conditions
Wall Left/Right, indicating there is a wall somewhere in one of the closest two squares to the
left/right of the agent, but no other conditions exist for sensing Walls. If the condition Wall Left∧
Wall Right is true, we have lost the ability to compute on which side the wall is closer to the
agent.

What’s more, the restrictions on expressiveness that are induced by the criteria of reactiveness
(discussed fully in Section 7) become more stringent at this level of atomicity. In fact, some simple
higher-level behaviors are impossible to construct using only a reactive ASM (such as a BT) from
atomic actions such as Turn Left and Step Forward. Consider the problem of wall-following in a
discrete world. We want a behavior which, if placed next to a wall, can follow that wall until it
returns to its starting point. While such a behavior can be constructed from an FSM, we cannot
with a BT. Consider the following sequence of steps, where we assume the agent has a 5× 5 field
of vision with no other walls within this view. In this example, the agent is following the lower
wall, when it reaches a passage. It passes through the passage (Steps 1-5) but upon reaching
Step 5 the input is identical to the state of Step 1, from the agent’s perspective. Thus, the agent
returns and passes back through the passage, and so becomes caught in a loop. While this is not
a proof, it is possible to construct this or similar arguments formally. We omit such an argument
because the limitations on expressiveness of reactive architectures is covered in Section 7.

While FSMs can be used to construct a wall-following algorithm, many of the arguments
in this section also apply to FSMs, and indeed FSMs are rarely used at the lowest levels of
abstraction in practice. We would not use an FSM to perform robotic vision, to extrapolate
from sensor data or to calculate a shortest path. We should therefore not aim to construct BTs
for these purposes.
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Figure 3: A reactive agent becoming stuck while attempting to follow a wall. Step 5 is identical
to Step 1 from the agent’s perspective, so the agent turns back through the wall. The arrow
denotes the direction the agent is facing.

5.2.3 Encapsulation

The points thus far have argued that we should use BTs where we can preserve their modularity
and reactiveness. However, we know [2, 5, 15] that these properties are also critical for Teleo-
reactive programs and Decision Trees. How then should we decide between structuring a reactive
layer as a BT or another of these reactive architectures?

One argument is based on expressiveness, and we explore this more fully in Section 7. There
we show that though BTs, DTs and TRs all construct the same set of ASMs if conditions can be
constructed freely, but if actions are fixed then BTs are strictly more expressive that TRs and
DTs. This has been shown in [10, 27].

In practice however, the difference in expressiveness is not always sufficient in itself because
it is generally straightforward to construct additional conditions. If TRs and DTs are arguably
conceptually simpler than BTs, why would we use BTs? For instance, we can emulate a BT with
a Decision Tree by representing action return conditions as explicit predicates in the DT, which
are then linked up with appropriate branching. This produces an identical ASM, so how does
this approach differ from a standard BT?

We postulate that the BT representation has the advantage of encapsulating its own metadata,
in the form of return values. This aspect of BT’s modularity can be considered to take inspiration
from the object-oriented programming paradigm. DTs use predicates on the current input to
select the most ‘appropriate’ action. These predicates are often naturally related with specific
actions, in every DT in which that action is used. Reusing an example from Section 5.1.2,
consider the action Grasp Object. In choosing when to select this in a DT, the information of
whether the robot is already grasping an object, or if there is no object to grasp, will almost
always be relevant. It is for this reason that we associated these two conditions permanently
to this particular action, by assigning them as the Success and Failure conditions. Given this
information is naturally related to this action, it should be stored within that action so that
the action can be easily reused. In a DT, if we explicitly express these Success and Failure
conditions as predicates in the tree, they have been become disconnected from their respective
action. Because this information is not self-contained, when using the action Grasp Object in
another DT, we must either store this relevant information somewhere or have it be lost. For
BTs, this information is stored in the tree and accessed by the operators, allowing complex trees
with complex return conditions to be derived and stored for later reuse. Recalling Section 5.1.2
on modelling return conditions, we conclude that to maximise reuse we should store as return
values all the information that relates closely to that action.
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5.2.4 Reuse

The findings of the above section suggest that we should associate all clearly related values with
actions in order to maximise their ability to be reused—noting that doing so also maximises
the ability of trees derived from these actions to be reused, in accordance with the principle of
modularity.

However, consider a Teleo-reactive program, which itself is a modular [15] control architecture.
TRs, like BTs, encapsulate data associated with actions to some degree, by assigning each
action a precondition. When comparing BTs to TRs, as done in [5,27], this condition is usually
considered as either a Success or Failure condition. The important thing to note is that in general
it is perfectly reasonable to interpret it in either sense. In addition, recall that in Section 5.1.2
we argued that not all actions have a natural sense of Succeeding or Failing. The resultant point
is that we should not assign any particular meaning to Success and Failure. Instead, like the
precondition of an action in a TR, they are better thought of as two useful pieces of metadata
which can be accessed for the purposes of action selection. The BT framework is set up in general
to emphasise symmetry between these two values. This symmetry is useful and makes reasoning
about BTs intuitive, which we argue means that we should not assign any particular meaning or
criterion to one value but not the other.

By doing this, we are allowing for increased reuse of actions and behaviors across multiple
architectures. For instance, actions with preconditions used in TRs can be used without mod-
ifications in BTs, simply by interpreting the precondition in a fixed way as Success or Failure.
Likewise, an action which never returns either Success or Failure can be used in any of BTs,
TRs or DTs. This means in addition that TRs and DTs can be used as actions within BTs, for
instance by using the translation of [10] (nesting ASMs is discussed formally in [15]).

We can further improve modularity by removing all reliance on the ‘Running’ return value.
Instead, we assume as in [15], that there exists a return value function attached to each action,
which gives a value in any input. For an action in a BT, two of these values may be interpreted
as Success and Failure, but there could be any number of other values. We shall now interpret
‘Running’ for this action as any return value not handled by the structure 8. A priori, nothing
has changed with regard to the operation of this action in a BT, because the tree responds
appropriately to the values Success and Failure and any other values are interpreted as Running.
However, this definition allows any action to be used in any of these architectures—we no longer
need to make assumptions about the number of provided return values. For instance, in a
decision tree any value is interpreted as Running, as the tree does not handle any return values.
Similarly, we could use any action in a TR, by choosing a value to represent its precondition and
ignoring all other values returned. This now allows BTs to be used as subtrees in DTs, or as
individual actions within a TR, maximising the ability to reuse complex behavior. By assigning
return values in this way, we allow actions to be stored with their metadata independent of which
architecture(s) they will eventually become a part of.

This requires something of a mental shift from the usual BT interpretation, because the
somewhat loaded terms Success and Failure suggest that that action cannot be selected as it has
already ‘Succeeded’ or ‘Failed’. However, as we already saw in Section 5.1.2, we shouldn’t think of
these values in the past tense as following the ‘completion’ of an action. In a reactive architecture
then, these values may not correspond to intuition. As in the example action Grasp Object, it
is not unreasonable to attempt to grasp an object while already holding one, it is merely trivial ;
the resultant action has no effect. The condition that we are already holding an object, which we

8In some early forms of BTs there was no Running return value [28], and instead actions executed one by one
until they returned Success or Failure. That is not reactive, and very different from what we mean here. We
assume there is at least one other value that can be returned, and that a value is returned at every time step. We
are simply allowing information to be passed that would otherwise be hidden by a ‘Running’ value.
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assigned as the metadata associated with the value ‘Success’, is used to determine that in this
situation it may be desirable to select a different action. In defining BTs as ASMs in Section 3,
we already allowed for actions to be selected even if they returned a non-Running value because
this allowed ASMs to be composed. Here we have extended this idea.

To cap off this discussion, we should recall the result of the previous section, which is that
we should assign to an action precisely those return values that are naturally associated with it
in all contexts. These may or may not directly correspond to Success and Failure. The results
here have shown that we can still apply that action to all of these architectures. Further, all of
those architectures can be used as actions within each other without modification. If for instance
we construct a TR, but then later decide to embed this as a subtree in a BT, this can easily be
done, and vice versa.

6 Generalising Behavior Trees: the k-BTs

The previous two subsections allowed us to conclude that we should assign all appropriate return
values to actions, to maximise their modularity. However, BTs can only ever access two of these
values, and TRs and DTs can only access one or zero respectively. In this section we show
how a simple generalisation of BTs extends their benefits to a broader class of ASMs which can
interpret any number of return values. We call these the generalised Behavior Trees or k-BTs
and we show, as in the previous section, that BTs can be used without modification as subtrees
of k-BTs. Further, the normal BTs are exactly the 2-BTs and the TRs are the 1-BTs. Finally,
we show how k-BTs provide natural solutions to some of the examples given in Section 5.

To introduce these objects, first recall that BTs are trees with two control flow nodes, corre-
sponding to the specific values Success and Failure (note that we are omtting the Decorator and
Parallel nodes, for which analogous constructions could be made if necessary). The k-BTs will
be defined as trees with k control flow nodes. We will choose k return values, which we shall
write as the values {1, . . . , k}, and we shall associate a control flow node with each. Consistent
with the previous section, there is no explicit ‘Running’ value.

Formally, we define the k-BTs as follows. We will denote the k control flow nodes by ∗1, . . . , ∗k.
Fix an ordered rooted tree with ℓ leaves labelled by actions and internal nodes labelled by these
control flow nodes. When a control flow node ∗i is ticked, it ticks each of its children from left to
right, until some child returns a value other than i, at which point that control flow node returns
that same value. As an ASM, each operator ∗i is defined by the following rules. If ∗i has one
child α, select that child. Otherwise, for an input x ∈ Σ, if ∗i has children c1, . . . , cn,

• Begin at c1. Select cj if cj does not return i in x.

• Otherwise, repeat for cj+1.

• Select cn if no previous are selected

The definition of the overall ASM is built by recursively combining these, in exactly the same
way that BTs are built from the definitions of Sequence and Fallback.

Note now that if only two control flow nodes are used (which we assume for simplicity cor-
respond to values 1 and 2) we can interpret them as Sequence and Fallback and determine that
the 2-BTs are exactly the normal BTs. Similarly, if the value 1 (or any fixed value) corresponds
to the precondition of an action being false, then the 1-BTs are exactly the TRs. Hence we
have constructed a family of modular reactive control architectures which include BTs and TRs.
In fact, it is easy to see that the k-BTs inherit the reactiveness, modularity and readability of
BTs as they inherit BT’s intuitive presentation as a tree. Finally, note that the ‘k’ in k-BTs
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is a placeholder, which we can be replaced with the 2-BTs or 3-BTs as above, but when left
unspecified we assume k is any fixed finite value.

6.1 Use cases for k-BTs

Since the 2-BTs are the standard BTs, k-BTs are clearly applicable for any situation where BTs
are used. The previous sections have also established that the existence of k-BTs is at least a
consistent consequence of modularity, reactiveness and readability. Here we show that the k-BTs
are practically useful, in that they provide a natural way of extending BTs in certain cases where
they are otherwise unwieldy. As examples, we will we show here how k-BTs provide a possible
solution to the challenges of Sections 5.1.2 (Modelling Success and Failure), 5.1.3 (Knowledge
Versus Memory).

The way that Sequence and Fallback handle the values Success and Failure from their children
can be thought of in terms of exceptions in programming. These values then are two distinct
exceptions which can be thrown by a program, with Sequence and Fallback acting as code blocks
which catch and process the respective errors. Adding further control flow nodes is no different
than catching more exceptions. The ‘thrown error’ analogy provides insight to an obvious use
case for k-BTs: failure handling. In [5], the authors argue that failure handling is easier in BTs
than TRs, and significantly easier than in DTs, as more return values can be handled. the k-BTs
make this yet more streamlined, essentially by allowing for numerous distinct error codes which
can be handled differently. Failure conditions can now be broken into any number of natural
failure cases and assigned distinct return values. Of course, as we do not consider either Success
or Failure to have inherent meaning, the additional return values can equally be interpreted as
different types of Success.

These values can also be though of as degrees of Success (or Failure). For instance, consider
a BT controlling an agent with an action which succeeds when some number of items are in a
goal region. In such a case, it could be useful to have metadata storing a ‘partially successful’
value if some number are within the goal region. This same idea could be extended to risk, with
various return values indicating the probability of successful of unsuccessful completion. This
type of reasoning is useful for tasks where overall Success/Failure is unusual or not critical, and
where a ‘reasonable’ performance is acceptable.

We need not solely interpret the additional values as variants of Success and Failure. For
example, consider the discussion in Section 5.1.3, where a robot action Unlock Door returns
Success if the door is unlocked and Failure if there is no key. However, its action will depend on
whether the knowledge of whether the door is locked is stored within its representation of the
world. In this case, we could add an additional value ‘Unknown’, which is returned when the
robot is uncertain about the status of the door. This can be either handled in the tree, allowing
us to not execute this action if the robot is uncertain, or ignored in the tree, in which case it is
treated as ‘Running’ and the action is still selected. In both cases, ‘Unknown’ is not merely a
variation on Success or Failure but a concept which cannot be be obviously defined as either.

7 Expressiveness of Behavior Trees

In this section we explore the expressiveness of BTs. Here we would like to know, not how a
given BT should operate, but whether we can construct BTs to solve various computational
problems on the BT layer. In the previous sections we saw that preserving the reactiveness and
modularity of BTs imposes limitations on which problems can be solved with BTs. The question
now arises: what can we express as a BT without violating these principles? We show that there
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exists a trade-off in BTs between reactiveness and expressiveness and we describe the nature of
that trade-off.

7.1 Comparing by selections

We must first answer how we can measure the expressiveness of a given layer of the architec-
ture. As the previous sections argue, BTs should not used in isolation to construct complex
architectures—at least the lower layers should be implemented in a different form. We cannot
therefore simply compare the overall output of the systems, because the actual output is dictated
by the actions, which are implemented at other layers to the BT itself. In such a case, every
possible architecture of arbitrary complexity could be implemented by a trivial BT. Specifically,
one could add a trivial top layer consisting of a BT with a single action, where that action
contains the entire behavior of the agent and is always selected by the BT. This tells us nothing
at all about what decision-making can and cannot be constructed by BTs.

Instead, we must compare the input and output of a single layer. ASMs will provide the
formalisation to make this possible.

Definition 7.1. Let X and Y be classes of control architectures, such as FSMs or BTs, and let
XASM and YASM be their sets of derived ASMs. We say X is more expressive than/at least
as expressive as Y if YASM ⊂ XASM/YASM ⊆ XASM . We say X and Y are equivalently
expressive or simply equivalent if XASM = YASM .

We shall from here use boldface to denote sets of ASMs. For instance, BT shall denote
the ASMs derived from BTs, and TR, DT, FSM are defined similarly. We shall also write
Reactive for the set of all reactive ASMs, and Constant, for the set of all ASMs that are
constant functions.9

This idea of expressiveness is consistent with and formalises the work of other authors in
this area. In [10, 27] it is proven that BTs are at least as expressive as TRs and DTs, and their
argument extends to this ASM definition, they construct a BT with the same ASM for each
DT/TR. In addition, in [15] it is shown that a graph-structured reactive architecture called a
decision structure generalises all the k-BTs, in this sense. We shall write the corresponding class
of ASMs as DS. One can observe easily that DTs generalise TRs, by constructing a tree of the
form ‘if k1 select a1 else (if k2 select a2 else (. . . ))’. Similarly, the argument given in [3, 5]
that the FSMs can express BTs extends to this definition. In fact, this argument allows FSMs
to construct any reactive ASM, by constructing a complete directed graph with all arcs into a
given node labelled by the preimage of that action in the reactive architecture. Finally, it is
straightforward to show that the 2-BTs and 1-BTs have the same ASMs as the BTs and TRs
respectively, and that all of the aforementioned architectures generalise the constant ASMs. Note
that this relation is transitive as it is derived from a subset relation.

From these arguments, we can immediately present a number of arguments from a variety of
sources in a single hierarchy.

Theorem 7.2 (The Weak ASM Hierarchy).

Constant ⊆ TR ⊆ DT ⊆ BT ⊆ 3-BT ⊆ · · · ⊆ k-BT ⊆ · · · ⊆ DS ⊆ Reactive ⊆ FSM

9One can conceive yet more computationally powerful ASMs, for instance corresponding to Turing Machines,
by exploiting the close relationship between ASMs and models of computation. For instance, one can show that
an ASM can be repreented by an FSM if and only if the preimage of every action in A is a regular language,
which are the languages recognisable by deterministic finite automata. Such abstractions will not be necessarily
for the arguments we make here, however.
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Note that all the sets are related by non-strict subset relations, because while we have proved
each generalises its predecessor we have not stated any proofs that this relationship is strict.
Now we shall improve this hierarchy with some such results.

Lemma 7.3. Constant 6= TR.

This can be trivially shown by the fact that any TR which can select more than one action
has a non-constant ASM.

Lemma 7.4. Reactive 6= FSM.

This is again trivial, as not all FSMs are reactive. An example is an FSM with two states
and a single transition. Finally, we can show that all reactive architectures in fact recognise the
same sets of ASMs.

Lemma 7.5. Reactive = TR.

Proof. We have not prohibited the construction of arbitrary conditions (which are predicates
Σ → {True, False}), so long as implicit memory is not used. Specifically, given any reactive
ASM r : Σ→ A, A = {α1, . . . , αn}, the TR

x ∈ r−1({α1})→ α1

x ∈ r−1({α2})→ α2

...

x ∈ r−1({αn})→ αn

has the same derived ASM.

This result gives us the following stronger hierarchy.

Theorem 7.6 (The ASM Hierarchy).

Constant ⊂ TR = BT = Reactive ⊂ FSM

In some sense this result is not very satisfying, as we would like to separate the reactive
architectures into a useful hierarchy, rather than collapse them. We do exactly this with a
stronger form of generalisation in Section 7.3, but we first digress to discuss FSMs.

7.2 BTs versus FSMs, with insights from structured programming

In this section we discuss further the relationship between BTs and FSMs, beginning with an
immediate corollary of the results of the previous section.

Corollary 7.7. Finite State Machines are more expressive than BTs.

Unsurprisingly, if implicit memory is used, the above result does not hold, as BTs are no
longer reactive. In fact, if implicit memory is allowed, one can construct BTs which are as
expressive as FSMs. The following result was proved in [3].

Lemma 7.8. If a finite amount of Boolean implicit memory is allowed, then all the ASMs
corresponding to FSMs can be derived from BTs.
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Proof. Using auxiliary variables, keep track of the state of the FSM as the input is processed, and
construct a BT which checks these auxiliary variables and selects the appropriate corresponding
action. That is, the tree consists of a Fallback node each of whose children is of the form
FSM in Statei→Transition FSM Appropriately→ do Action i.

Within the broad analogies with structured programming we have explored in this paper,
this result specifically has many interesting parallels.

In 1966, Böhm and Jacopini [29] published a result proving that all programs could be
constructed as programs consisting of only while loops and if statements, assuming tests and
assignments on some auxiliary variables were allowed. This Theorem was later shown to have an
essentially trivial proof in [30] (whose roots lay in earlier work of Kleene and von Neumann [31]),
where auxiliary variables store the state of the original program and a single enclosing while
loop repeatedly selects the corresponding code blocks and updates the auxiliary program-state
variables accordingly.

This trivial form of Böhm-Jacopini Theorem exactly matches how the BT emulates the FSM
in the proof above. The repeated tick generation at the root corresponds to the outer while loop,
with the additional variables storing the FSM state and selecting the appropriate action. 10

This Theorem was widely cited by supporters of the structured programming paradigm as
an argument for the abolition of go tos. It is interesting to note however that this theorem
did not itself motivate structured programming, as the movement generally traces its roots to
the Djikstra’s letter [9], published two years later in 1968. To quote Knuth, “from a practical
standpoint [the Böhm-Jacopini Theorem] is meaningless ... we have eliminated all the go tos,
but we’ve actually lost all the structure” [14]. Dijkstra, who cites this result as a theoretical
justification for structured programming, himself points out that “the exercise to translate an
arbitrary flow diagram more or less mechanically into a jumpless one, however, is not to be
recommended. Then the resulting flow diagram cannot be expected to be more transparent
than the original one” [9]. Indeed, in their original paper, the Böhm and Jacopini conjectured,
and Floyd and Knuth later proved [32], that the auxiliary variables form a critical part of this
proof—there are some programs which cannot be ‘structured’ without additional variables.

Lemma 7.8, originally proved in [3] and reproved in [5, 10, 18], has similarly been used as a
theoretical justification for structuring control architectures as BTs. Our aim in this paper is
to outline the principles of BT use, and to identify when an action selection mechanism can be
structured as a BT in a way consistent with these principles, in the same vein as [14] discusses
go tos. We have shown already that implicit memory makes the BT layer less readable and less
modular, and so we believe it should be avoided. The conclusion of this section should therefore
be that BTs and FSMs are not the same in terms of expressiveness, because Lemma 7.8 does not
reflect how we use BTs. As a final appeal to authority, we again quote Knuth: “The underlying
structure of the program is what counts, and we want only to avoid usages which somehow clutter
up the program. ... The real goal is to formulate our programs in such a way that they are easily
understood.” [14]

7.3 Comparing by structure

In this section we introduce the definition of what we call structural equivalence, which will allow
us to separate the reactive architectures by their expressiveness.

10In fact, this can recreate the entire proof of the Böhm-Jacopini Theorem, and use BTs to simulate ASMs
which are even more complex than FSMs (see the previous footnote). However, as we argue, this is not necessarily
a useful way of thinking about BTs as it goes against the principles of BTs we have set out in this paper. In
addition, the full expressive power of BTs is not needed, as TRs can also be used to construct the same proof.
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Considering the previous discussion, one may note that the result of Lemma 7.5 similarly
deconstructs given reactive architecture in order to have a TR emulate it. Instead of additional
memory, this used the weaker assumption that additional actions (in this case in the form of
conditions) could be constructed as necessary. This was sufficient to distinguish between reac-
tive and non-reactive architectures, but consistent with the goal of formulating understandable
structures we would prefer a definition which can distinguish reactive architectures and which
preserves structure.

To begin, note that all the control architectures we have so far discussed have been built from
‘nodes’ labelled by actions. This includes BTs, k-BTs, DTs, TRs and FSMs 11. The ‘nodes’ are
precisely the places where actions are applied; for BTs and k-BTs this is the leaves, for FSMs
and DTs this is any node in the structure and for TRs this is an entry in the list. The size of a
specific such architecture will be the number of ‘nodes’, for instance, the number of leaves in a
BT. By an unlabelled architecture we mean the structure with blank node labels, such as a BT
with blank leaves.

Definition 7.9. Let X1 and X2 be unlabelled control architectures, both of size n. We say X1

and X2 are structurally equivalent if we can order both sets of nodes so that given any list of n
actions α1, . . . , αn, applying these actions to the nodes in those orders gives the same derived
ASM.

As an example using BTs, the unlabelled trees (◦→◦)→◦ and ◦→(◦→◦) are structurally
equivalent as whenever we replace the leaves ◦ by actions from left to right the two trees give
the same ASM (this means the associativity of → and ? are structural properties of BTs, and in
fact they are really the only structural properties—see Lemma 7.12). Essentially, two trees are
structurally equivalent when they produce the same ASM regardless of which actions are chosen
to label the tree. As an example of two trees not structurally equivalent, consider (a→ b) ? b and
(a ? b)→ b. These both give the same ASM as written for any a and b, but in general each tree
(◦→◦) ? ◦ and (◦ ? ◦)→◦ can be labelled by any three actions a, b, c, and in general (a→ b) ? c
and (a ? b)→ c are not the same as ASMs. The same ideas hold for the other architectures.

Now, we will compare architectures based on structure, using a stronger form of expressive-
ness. In the following we use calligraphic font to denote unlabelled structures, so for instance
BT represents the set of unlabelled BTs.

Definition 7.10. Let X and Y be sets of unlabelled control architectures, such as unlabelled
BTs or unlabelled DTs. We say Y strongly generalises X if for every x ∈ X there exists a
structurally equivalent y ∈ Y. We use X ≺ Y to mean ‘Y strongly generalises X , but X does
not strongly generalise Y’.

Note that if Y strongly generalises X , then XASM ⊆ YASM , where XASM and YASM are
the sets of derived ASMs constructed by applying all possible sequences of actions to label the
structures in X and Y. Hence we know that at least as strong relationships must hold between
sets of ASMs for strong generalisation as for generalisation—that is, if two sets are properly
distinct in the first hierarchy, such as FSMs and BTs, then they must be distinct under strong
generalisation. However, this will now allow us to separate the reactive architectures (except for
decision trees) as the following hierarchy.

Theorem 7.11 (The Reactive Hierarchy).

T R ≺ BT ≺ 3-BT ≺ · · · ≺ k-BT ≺ · · · ≺ DS ≺ Reactive

11This also includes decision structures, a graph-structured control architecture introduced in [15]. We will
only mention them in passing here as we provide a full treatment in the concurrently-written paper [15]
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Proof. Follows from Theorem 7.2 and the results of [15]. Most follow from the fact that the
k-BTs strongly generalise the n-BTs for any k > n.

Decision Trees no longer fit cleanly into this hierarchy, because unlike the other architectures
they cannot have any actions applied to their nodes. Instead, the internal nodes must be con-
ditions. This makes it trickier to compare directly with the other sets. Greater discussion is
provided in [15], where it is proved that DT ≺ DS, but the set is otherwise incomparable to the
other classes.

The definition of structural equivalence and this resultant classification of reactive architec-
tures again has analogous grounding in structured programming. In [33], Kosaraju analyses
differences in expressiveness between the programs constructible by different programming con-
structs, and so constructs hierarchies of classes of structured programs. This is analogous to
what we have done here with control architectures. In order to compare such programs by their
flowcharts (the graph structure of their code blocks), Kosaraju states that “we divorce ourselves
from problems involved with specific data types and primitive instructions ... [and] concentrate
on flow chart schemas where primitive actions and predicates are represented by uninterpreted

symbols”. In fact, his notion of weak reducibility of flowcharts corresponds directly to our defi-
nition of strong generalisation.

7.4 Do memory nodes increase expressiveness?

In the previous section we showed that BTs are less expressive than FSMs, if we obey the princi-
ples of BT use and use the standard interpretation of the Sequence and Fallback nodes. However
we discussed in Section 5 some extensions which are used to overcome these limitations on ex-
pressiveness, seemingly in a less damaging way than implicit memory. For instance, ‘Control flow
nodes with memory’ and Decorator nodes implementing what we call ‘eternal memory’ are both
sometimes used as simple extensions which violate reactiveness by manipulating memory, but do
so in a controlled and readable way. So, do these additions allow us to increase expressiveness
to at least the level of an FSM? The answer, as we will show, is negative—BTs using these tools
are still strictly less expressive than FSMs.

We will show this by constructing an FSM whose derived ASM cannot be realised by a BT,
even with the addition of control flow nodes with memory and eternal memory Decorators. This
proof is informally presented in depth because it provides insight into the limitations of how
these concepts access memory.

Now consider the FSM M shown in Figure 4. Let T be some BT, which may contain control
flow nodes with memory and eternal memory Decorators. Firstly, note that there cannot be any
inputs for which both B and C return Success, and no input for which A and B return Success
and C returns Failure, as in both cases the FSM does not make a selection. Otherwise, as A,
B and C can be any actions, we can assume fairly that there exist inputs for which all other
combinations of return values of A, B and C are returned.
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We will write inputs x ∈ Σ as x = (vA, vB, vC) where vA, vB and vC are the return values
of A, B and C respectively. There is no loss of generality by assuming this, as if there were
any pair of inputs x1, x2 ∈ Σ for which the return values of A, B and C are identical, then
clearly MASM (x1) = MASM (x2) and so if TASM (x1) 6= TASM (x2) then T does not realise
the same behavior as M . We shall write s and f to represent returning Success and Failure
respectively, and r to represent returning any other value (thus returning ‘Running’ in the usual
BT interpretation).

Consider the input sequence

z = (r, r, r), (s, r, r), (r, s, r), (r, f, s), (r, s, r), (r, r, f)

to which M selects
y = A,B,C,B,C,A

Eternal memory: Suppose T contains eternal memory. Thus once some subtrees return Success
or Failure, they are never ticked again. Suppose we apply the input sequence zn, which is z

repeated n times. Eventually, after some large enough n to tick the whole tree, all eternal
memory subtrees either always return Success or Failure or are never ticked in subsequent inputs
of the sequence z. Then, let m = n + 1. In the last six inputs of zm (which is the last copy of
z), T must behave as if it contained no eternal memory.

Nodes with memory: Now we focus our attention to the last six inputs of zm. Suppose T

matches the first four outputs of this sequence. However, in the fourth input (r, f, s), T must
select B, which returns Failure in that state. As a result the top-level tree returns Failure, and
so all subtrees which had been ticked are reset. Then for the subsequent input (r, s, r) T must
select A, as BTs without memory always select their leftmost node if it runs, and by the selection
of A on the first input this must be A (recall that the eternal memory has no effect). This differs
from M , so T cannot realise the same ASM.

We know that preserving reactiveness while increasing expressiveness is not possible, and so
a trade-off between reactiveness and expressiveness always exists. Now we see that these BT
extensions, which come at the cost of reactiveness, do not greatly increase expressiveness. This
does not rule out the possibility of other (non-reactive) BT extensions increasing expressiveness
to the level of FSMs, but it suggests that such constructions will not be straightforward.

7.5 How many BTs can we build?

In Section 7.3 we introduced the concept of structural equivalence, as a way of comparing between
reactive architectures. In this context we saw that BTs were limited within the class of reactive
ASMs. To gain an understanding of how expressive BTs are, we now enumerate the BTs up
to structural equivalence. This both lends intuition to which reactive ASMs are realisable by
BTs and provides consequences for research involving generating or evolving BTs automatically,
such as [24–26], where knowing how many non-equivalent structures are possible provides insight
into the proportion of those that have been constructed. The following Lemma provides a useful
insight into structural equivalence within BTs (and k-BTs).

Lemma 7.12. Every k-BT is structurally equivalent to exactly one in compressed form, where
every internal node has at least two children and all the children of an internal node are either
leaves or are different control flow node than their parent. For BTs this means each tier of the
tree alternates containing only Sequence and Fallback operators.

Proof. Firstly, we show there exists a structurally equivalent tree in compressed form. Let T be
our original BT. If the root of T has one child, and let T ′ be the single subtree. Both have the
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same number of nodes, and applying actions from left to right gives the same ASM as the root
operator has no effect, thus they are structurally equivalent. Now suppose the root is a Sequence
node (Fallback argument is identical), and one child tree c also has root node Sequence. Let T ′

be the tree where c is replaced under the root node by all of c’s children. The first of the children
is ticked under the same conditions in T and T ′, and the others are ticked in each case after
the previous returns Success. Thus we observe T and T ′ are structurally equivalent. Repeating
this process inductively gives a structurally equivalent tree in compressed form. Now we show
this is unique. Suppose two compressed-form trees A and B are structurally equivalent. If A
and B both have one leaf then they are identical. Suppose now the leaves are a1, . . . , an and
b1, . . . , bn respectively. Assume that for all compressed-form trees of up to n− 1 leaves, if they
are structurally equivalent then they are identical. Assume without loss of generality that the
root node of A is Sequence, with children A1, . . . , Ak (the case for Fallback, or any of the k

nodes for a k-BT, is identical to this). If any of these subtrees return Success, the next subtree is
ticked, and if any other value is returned the root returns that value. By structural equivalence,
we can choose sequences of actions which always select any particular subtree in A, and these
must always select the same subtree in B. Thus the equivalent subsets B1, . . . , Bk also have the
property that when an action within Bi returns Success, the next node ticked is either within
Bi or is the leftmost node in Bi+1. If nodes in Bi return other values we never tick anything
subsequently that is not in Bi, as the same input into A does not leave the corresponding subtree.
B is in compressed form, so we conclude the root node is a Sequence and each of these subsets
is a subtree of that Sequence. Finally, as each subtree Bi is structurally equivalent to Ai, they
are identical, and so A and B are identical.

Theorem 7.13. The number of non-structurally equivalent BTs with n leaves is counted by
the big Schröder numbers, the first few terms of which are 1, 2, 6, 22, 90, 394, 1806, . . . (sequence
A006318 in the OEIS [34]).

Proof. By the above Lemma, it is sufficient to count unlabelled compressed form BTs. There
is one unlabelled compressed form BT. The little Schröder numbers sn are known to count the
ordered rooted trees with n leaves and no internal node of degree less than two. For each such
tree with n > 1, there are precisely two unlabelled compressed form BTs, one with root →
and the other with root ?. The big Schröder numbers are twice the little Schröder numbers for
n > 1.
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