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Abstract

We extend our investigations of 2-determinants, which we defined in a previous

paper. For a linear homogenous recurrence of the second order, we define the notion

of a fundamental sequence. We use fundamental sequences to investigate relations

between different sequences satisfying the same recurrence of the second order. Also,

we define the notion of a universal property and derive several results thereupon. At the

end of the paper, we show that some standard identities, such as d’Ocagne’s, Cassini’s,

and Catalan’s, hold for every fundamental sequence. We illustrate our results with a

number of examples.

1 Introduction

We continue our investigations of 2-determinants, defined in [1]. For a linear homogenous
recurrence of the second order, we define the notion of a fundamental sequence. We use
fundamental sequences to investigate relations between different sequences satisfying the
same recurrence.

The main representatives of the fundamental sequences are: Fibonacci numbers and poly-
nomials, bisection of Fibonacci numbers, positive integers, Pell numbers, Jacobhtal numbers,
Mersenne numbers, and Chebyshev polynomials of the second kind.

We say that a property of a sequence which satisfies a linear recurrence of the second
order is universal if it does not depend on the fundamental sequence of that recurrence. We
list several such sequences.

Our method produces a number of identities. We restrict our attention to the so-called
bilinear identities, such as d’Ocagne’s, Cassini’s, Vajda’s, and Catalan’s identities, and prove
their analogs for some other fundamental sequences. We call universal those properties that
depend only on their recurrences, and not on their fundamental sequences.
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Let x and y be integer-valued variables. We consider the following recurrence of the
second order:

an+1(x, y) = x · an(x, y) + y · an−1(x, y), n > 0, (1)

where a0(x, y) = 0, a1(x, y) = 1.

Definition 1. We say that the sequence (a) = (a0(x, y), a1(x, y), a2(x, y), . . .) defined by (1)
is fundamental.

In two particular cases, we give combinatorial interpretations of fundamental sequences
in terms of restricted words over a finite alphabet.

Proposition 2. If x > 0 and y > 0, then an+1(x, y) equals the number of words of length

n over the alphabet {0, 1, . . . , x+ y − 1}, such that the letters {0, 1, . . . , y − 1} avoid runs of

odd lengths.

Proof. We denote by dn+1 the number of required words of length n. If n = 0, then d1 = 1,
since the empty word has no runs of zeros of an odd length. Also, d2 = x, since a word of
length 1 consists of one letter from {y, y + 1, . . . , x + y − 1}. Obviously, there are x such
words.

Assume that n > 2. If a word of length n begins with a letter from {y, y+1, . . . , x+y−1},
then there are x choices for the first letter of such a word. If a word begins with a letter
from {0, 1, . . . , y−1}, then there are y choices for the first letter of such a word and the next
letter must be the same since runs of length 1 are not allowed. The remaining part of such
a word can be an arbitrary subword satisfying the given condition. We see that dn satisfies
the same recurrence as an, with the same initial conditions. This implies that dn = an for
n ≥ 1.

In Proposition 12 in [2], when x > 0 and y > 0 we derived the following explicit formula
for an(x, y):

an(x, y) =

⌊n−1

2
⌋

∑

k=0

(

n− 1− k

k

)

· xn−2k−1 · yk. (2)

In fact, this formula is true in the general case, without any restrictions on x and y.

Proposition 3. If a0(x, y) = 0, a1(x, y) = 1, and an+1(x, y) = x·an(x, y)+y ·an−1(x, y), n >

1, then

an(x, y) =

⌊n−1

2
⌋

∑

k=0

(

n− 1− k

k

)

· xn−2k−1 · yk.

Proof. We prove the formula by induction on n. It is obvious that the formula holds for
n = 0 and n = 1. Assume that the formula holds for all integers less than n+ 1. Then from
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an+1(x, y) = x · an(x, y) + y · an−1(x, y) we have

an+1(x, y) = x

⌊n−1

2
⌋

∑

k=0

(

n− 1− k

k

)

· xn−2k−1 · yk + y

⌊n−2

2
⌋

∑

k=0

(

n− 2− k

k

)

· xn−2k−2 · yk

=

⌊n−1

2
⌋

∑

k=0

(

n− 1− k

k

)

· xn−2k · yk +

⌊n−2

2
⌋

∑

k=0

(

n− 2− k

k

)

· xn−2k−2 · yk+1

=

⌊n−1

2
⌋−1

∑

k=0

(

n− 2− k

k + 1

)

· xn−2k−2 · yk+1 +

⌊n−2

2
⌋

∑

k=0

(

n− 2− k

k

)

· xn−2k−2 · yk+1 + xn.

If n is odd, then ⌊n−1

2
⌋ − 1 = ⌊n−2

2
⌋, and we have

an+1(x, y) =

⌊n−1

2
⌋−1

∑

k=0

[(

n− 2− k

k + 1

)

+

(

n− 2− k

k

)]

· xn−2k−2 · yk+1 + xn

=

⌊n−1

2
⌋−1

∑

k=0

(

n− 1− k

k + 1

)

· xn−2k−2 · yk+1 + xn

=

⌊n

2
⌋

∑

k=0

(

n− k

k

)

· xn−2k · yk.

If n is even, then ⌊n−1

2
⌋ = ⌊n−2

2
⌋, and we have

an+1(x, y) =

⌊n−1

2
⌋−1

∑

k=0

[(

n− 2− k

k + 1

)

+

(

n− 2− k

k

)]

· xn−2k−2 · yk+1 + xn + y⌊
n

2
⌋

=

⌊n−1

2
⌋−1

∑

k=0

(

n− 1− k

k + 1

)

· xn−2k−2 · yk+1 + xn + y⌊
n

2
⌋

=

⌊n

2
⌋

∑

k=0

(

n− k

k

)

· xn−2k · yk.

It would be nice to have a combinatorial description for an(x, y) in the general case, not
only when x > 0 and y > 0. In the following proposition, we give a combinatorial description
of an(x, y) in the case when x > 0, y < 0, and −y < x. This is the first situation where one
of the variables x and y takes negative values.
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Proposition 4. Let x > 0, y < 0, and −y < x. If bn is the number of words of length n− 1
over {0, 1, . . . , x− 1} with no subword of the form 0i, where i ∈ {1, 2, . . . ,−y}, then

bn =

⌊n−1

2
⌋

∑

k=0

(

n− 1− k

k

)

· xn−2k−1 · yk. (3)

Proof. Let dn be the number of words of length n− 1. It is obvious that d1 = 0 and d2 = x.
Assume that n > 2. We have xdn−1 words beginning with an arbitrary letter. From this
number, we must subtract the number of words which begin with subwords of the form 0i,
1 ≤ i ≤ −y. Hence, dn satisfies the same recurrence as an does.

2 Ten fundamental sequences

Some well-known integer sequences are fundamental, for instance, Fibonacci numbers Fn,
Fibonacci polynomials, Jacobhstal numbers, and Pell numbers. They are obtained when
x > 0, y > 0. The first example concerning the case x > 0, y < 0 shows that positive
integers also make a fundamental sequence. Chebyshev polynomials of the second kind,
bisection of Fibonacci numbers, and Mersenne numbers also belong to this class.

In the cases under consideration, x and y will always have fixed values, so that we can
write an instead of an(x, y), omitting x and y to simplify notation, as their values will always
be clear from the context.

Example 5. For x = 1 and y = 1, we have an+1 = Fn, n ≥ 1. Also, (2) is the standard
expression for the Fibonacci numbers in terms of the binomial coefficients:

Fn =

⌊n−1

2
⌋

∑

k=0

(

n− k − 1

k

)

.

Combinatorially, the Fibonacci number Fn equals the number of binary words of length n

avoiding a run of zeros of odd length.

Example 6. If x > 0 and y = 1, then an+1 = Fn(x), n ≥ 1, where Fn(x) is the nth Fibonacci
polynomial. Also, (2) gives the explicit expression for Fn(x):

Fn(x) =

⌊n−1

2
⌋

∑

k=0

(

n− k − 1

k

)

xn−2k−1.

Combinatorially, if x > 0 is an integer, then Fn(x) equals the number of words of length n

over {0, 1, . . . , x− 1} in which 0 avoids runs of odd lengths.
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Example 7. For x = 2 and y = 1, we have an+1 = Pn, where Pn, n ≥ 0, is the nth Pell
number. From (2), we obtain

Pn =

⌊n−1

2
⌋

∑

k=0

2n−2k−1 ·

(

n− k − 1

k

)

.

Also, Pn equals the number of ternary words of length n in which 0 avoids runs of odd
lengths.

The Pell numbers are sometimes called “silver Fibonacci numbers”.

Example 8. For x = 1 and y = 2, we have an+1 = Jn, where Jn, (n = 0, 1, 2, . . .), are the
Jacobsthal numbers. From (2), we obtain

Jn =

⌊n−1

2
⌋

∑

k=0

2k
(

n− k − 1

k − 1

)

.

Also, the number Jn equals the number of ternary words of length n in which 0 and 1
avoid runs of odd lengths.

Example 9. Let x = 3, y = 1, and n > 0. If n is even, then an+1 = ⌈Φ · an⌉. If n is odd,
then an+1 = ⌊Φ · an⌋. Here, Φ is the golden ratio. The numbers an+1 are sometimes called
“bronze Fibonacci numbers”. Furthermore, we have

an+1 =

⌊n−1

2
⌋

∑

k=0

3n−2k−1

(

n− k − 1

k

)

.

Also, an+1 equals the number of quaternary words of length n in which 0 avoids runs of
odd lengths.

Example 10. When x = 2 and y = 2, an+1 is the number of ways to tile a board of length
n using red and blue tiles of length 1 and 2. We also have

an+1 =

⌊n−1

2
⌋

∑

k=0

2n−k−1

(

n− k − 1

k

)

.

The term an+1 counts quaternary words of length n such that 0 and 1 avoid runs of length
1 and 2.

Example 11. If x = 2 and y = −1, then a0 = 0, a1 = 1, and an+1 = 2an − an−1, which is
the recurrence for non-negative integers. Thus, we obtain

n =

⌊n−1

2
⌋

∑

k=0

(−1)k · 2n−2k−1

(

n− k − 1

k

)

, n > 0.

This formula for n may seem rather complex, but its combinatorial meaning is very simple.
Namely, n equals the number of binary words of length n− 1 avoiding 01, which is obvious.
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Example 12. When x = 3 and y = −1, we have an = F2n. From (3), we obtain

F2n =

⌊n−1

2
⌋

∑

k=0

(−1)k · 3n−2k−1 ·

(

n− k − 1

k

)

.

Also, F2n + 1 equals the number of ternary words of length n avoiding 01.

Example 13. When x = 3 and y = −2, we have an = 2n − 1. These numbers are usually
called the Mersenne numbers. We have

2n − 1 =

⌊n−1

2
⌋

∑

k=0

(−2)k · 3n−2k−1 ·

(

n− k − 1

k

)

.

Also, 2n+1 − 1 equals the number of ternary words of length n avoiding 01 and 02.

Example 14. If x = 2z and y = −1, then an = Un(z), where Un(z) is the Chebyshev
polynomial of the second kind. From (3), we obtain the following well-known formula:

Un(z) =

⌊n−1

2
⌋

∑

k=0

(−1)k ·

(

n− k − 1

k

)

(2z)n−2k−1.

If z > 0 is an integer, then Un+1(z) equals the number of words of length n over the
alphabet {0, 1, . . . , 2z − 1} avoiding the subword 01.

3 Generalized d’Ocagne’s identity

Throughout this section, we assume that (a) is a fundamental sequence, and that (b) =
(b0, b1, . . .) and (c) = (c0, c1, . . .) both satisfy (1).

The basic result that we use to investigate fundamental sequences is the one proved in
Proposition 8 in [1]. The following identity is a direct corollary of Proposition 8 in [1].

Theorem 15 (Generalized d’Ocagne’s identity).
∣

∣

∣

∣

bk bk+m

ck ck+m

∣

∣

∣

∣

= (−y)k · am ·

∣

∣

∣

∣

b0 b1
c0 c1

∣

∣

∣

∣

. (4)

To clarify the name, we prove that the d’Ocagne’s identity for Fibonacci numbers is a
particular case of this identity. When x = y = 1, (2) becomes the recurrence for Fibonacci
numbers. Hence, am = Fm, m ≥ 0. For sequences (b) and (c), we again choose the Fibonacci
numbers with the initial conditions such that the determinant on the right-hand side of (4) is
equal to 1. For instance, we can choose c0 = 0, c1 = 1, and b0 = 1, b1 = 1, that is, bk = Fk+1

and ck = Fk. We thus obtain
∣

∣

∣

∣

Fk+1 Fk+m+1

Fk Fk+m

∣

∣

∣

∣

= (−1)k · Fm,
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which is d’Ocagne’s identity.
In Section 4 of [1], we stated a number of d’Ocagne’s identities for Fibonacci numbers

and polynomials, and Chebyshev polynomials.

Definition 16. A property of sequences (b) and (c) is said to be universal if it does not
depend on the fundamental sequence (a), that is, if it depends only on the recurrence, but
not on the initial conditions.

We derive several universal properties. Note that, for m = 1, we have a1 = 1, so that
from (4) we obtain the following identity.

Identity 17 (Generalized Cassini’s identity).

∣

∣

∣

∣

bk bk+1

ck ck+1

∣

∣

∣

∣

= (−y)k ·

∣

∣

∣

∣

b0 b1
c0 c1

∣

∣

∣

∣

.

Assuming that x = y = 1, b0 = 1, b1 = 1, c0 = 0, and c1 = 1, we obtain the standard
Cassini’s identity for Fibonacci numbers.

As an immediate consequence of the Cassini’s identity, we obtain the next basic property.

Corollary 18. The determinant

∣

∣

∣

∣

bk bk+1

ck ck+1

∣

∣

∣

∣

is always divisible by (−y)k. If

∣

∣

∣

∣

b0 b1
c0 c1

∣

∣

∣

∣

= 1, then

∣

∣

∣

∣

bk bk+1

ck ck+1

∣

∣

∣

∣

= (−y)k.

Next, we assume that k ≥ p. Replacing k by k − p in (4) yields

∣

∣

∣

∣

bk−p bk+m−p

ck−p ck+m−p

∣

∣

∣

∣

= (−y)k−p · am ·

∣

∣

∣

∣

b0 b1
c0 c1

∣

∣

∣

∣

.

If we apply (4) to the right-hand side of the previous equality, we obtain the following
universal property.

Identity 19 (Index reduction formula). If k ≥ p, then

∣

∣

∣

∣

bk bk+m

ck ck+m

∣

∣

∣

∣

= (−y)p ·

∣

∣

∣

∣

bk−p bk−p+m

ck−p ck−p+m

∣

∣

∣

∣

.

In particular, if k = p, then by using the index reduction formula, we can write d’Ocagne’s
identity in a universal form:

∣

∣

∣

∣

bk bk+m

ck ck+m

∣

∣

∣

∣

= (−y)k ·

∣

∣

∣

∣

b0 bm
c0 cm

∣

∣

∣

∣

.

By comparing the last equality with (4), we obtain the following identity.
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Identity 20 (Reduced d’Ocagne’s identity).

am ·

∣

∣

∣

∣

b0 b1
c0 c1

∣

∣

∣

∣

=

∣

∣

∣

∣

b0 bm
c0 cm

∣

∣

∣

∣

.

We illustrate this formula with two identities. The first identity concerns Fibonacci and
Lucas numbers (Ln, n ≥ 0).

Identity 21. For arbitrary non-negative numbers m, p, and q, where m > p, the following

holds

Fm ·

∣

∣

∣

∣

Lp Lp+1

Lq Lq+1

∣

∣

∣

∣

=

∣

∣

∣

∣

Lp Lm

Lq Lm

∣

∣

∣

∣

.

The next identity concerns Chebyshev polynomials Un(x) of the second kind, and Cheby-
shev polynomials Tn(x) of the first kind.

Identity 22.

Um(x) ·

∣

∣

∣

∣

Tp(x) Tp+1(x)
Tq(x) Tq+1(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

Tp(x) Tm(x)
Tq(x) Tm(x)

∣

∣

∣

∣

.

4 Some bilinear identities

We note that the left-hand side of (4) is bilinear, while the right-hand side is generally not
bilinear. However, it is easy to make the right-hand side bilinear, and thus obtain a number
of bilinear identities. For instance, we take b0 = bp, b1 = bp+1 and c0 = 0, c1 = 1. This
implies that (c) = (a), and subsequently, we obtain the following identity.

Identity 23 (Generalized Vajda’s identity).
∣

∣

∣

∣

bk+p bk+m+p

ak ak+m

∣

∣

∣

∣

= (−y)k · am · bp. (5)

It is clear that, if ai = Fi, bi = Fi (i = 0, 1, . . .), we obtain Vajda’s identity for Fibonacci
numbers.

We now give three examples of Vajda’s identity for non-Fibonacci numbers.

Identity 24 (Vajda’s identity for positive integers). If ai = i, i ≥ 0, then
∣

∣

∣

∣

k + p k +m+ p

k k +m

∣

∣

∣

∣

= m · p.

In (5), if we set m = p = r, and k = n− r, we obtain the following identity.

Identity 25 (Generalized Catalan’s identity).
∣

∣

∣

∣

bn bn+r

an−r an

∣

∣

∣

∣

= (−y)n−r · a2r.
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It is clear that this identity generalizes the standard Catalan’s identity for Fibonacci
numbers, which is obtained for (a) = (b) = (F ) and y = 1. We illustrate this case with
several examples.

Identity 26 (Jacobhstal numbers). If an = bn = Jn, then

J2

n − Jn−i · Jn+i = (−2)n−i · J2

i .

Identity 27 (Pell numbers). If an = bn = Pn, then

P 2

n − Pn−i · Pn+i = (−1)n−i · P 2

i .

Identity 28 (Chebyshev polynomials of the second kind). Assume that an = Un(z). Then

U2

n(z)− Un−i(z) · Un+i(z) = (−1)n−i · U2

i (z).

Let p and q be arbitrary non-negative integers. By replacing b0 by bp and c0 by cq, we
obtain

∣

∣

∣

∣

bk+p bk+m+p

ck+q ck+m+q

∣

∣

∣

∣

= (−y)k · am ·

∣

∣

∣

∣

bp bp+1

cq cq+1.

∣

∣

∣

∣

.

We next assume that p > q. By using the index reduction theorem, we obtain

∣

∣

∣

∣

bp bp+1

cq cq+1

∣

∣

∣

∣

= (−y)q ·

∣

∣

∣

∣

bp−q bp−q+1

c0 c1.

∣

∣

∣

∣

.

Now, we again assume that (c) = (a), so that we obtain

∣

∣

∣

∣

bp bp+1

aq aq+1

∣

∣

∣

∣

= (−y)q · bp−q.

Additionally, by substituting m− k for m, we finally obtain the following identity.

Identity 29 (Four parameter identity).

∣

∣

∣

∣

bk+p bm+p

ak+q am+q

∣

∣

∣

∣

= (−y)k+q · am−k · bp−q. (6)

From this identity, we can easily obtain Vajda’s generalized identity. But since there is
one parameter more, we are able to derive some other identities too. For instance, if we set
p = m and q = k, we obtain the following identity.

Identity 30.
∣

∣

∣

∣

bk+m b2m
a2k ak+m

∣

∣

∣

∣

= (−y)2k · am−k · bm−k. (7)
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In the case when (a) = (b) = (F ) and y = 1, we obtain the following identity for Fibonacci
numbers:

F 2

k+m − F 2

m−k = F2k · F2m.

Also, if p = m+ 1, q = k + 1, then the following identity holds.

Identity 31.
∣

∣

∣

∣

bk+m+1 b2m+1

a2k+1 ak+m+1

∣

∣

∣

∣

= (−y)2k+1 · am−k · bm−k.

In particular, we have

F 2

k+m+1 + F 2

m−k = F2k+1 · F2m+1.
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