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A CHAIN OF NORMALIZERS IN THE SYLOW 2-SUBGROUPS OF THE

SYMMETRIC GROUP ON 2n LETTERS

RICCARDO ARAGONA, ROBERTO CIVINO, NORBERTO GAVIOLI, AND CARLO MARIA SCOPPOLA

Abstract. On the basis of an initial interest in symmetric cryptography, in the present work
we study a chain of subgroups. Starting from a Sylow 2-subgroup of AGL(2, n), each term
of the chain is defined as the normalizer of the previous one in the symmetric group on 2n

letters. Partial results and computational experiments lead us to conjecture that, for large
values of n, the index of a normalizer in the consecutive one does not depend on n. Indeed,
there is a strong evidence that the sequence of the logarithms of such indices is the one of the
partial sums of the numbers of partitions into at least two distinct parts.

1. Introduction

Let n be a non-negative integer and let Sym(2n) denote the symmetric group on 2n letters.
The study of the conjugacy class in Sym(2n) of the elementary abelian regular 2-subgroups has
recently drawn attention for its application to block cipher cryptanalysis, and in particular to
differential cryptanalysis [BS91]. The reader which is familiar with symmetric cryptography will
not find hard to realize that the key-addition layer of a block cipher (see e.g. [DR13, BKL+07,
NBoS77]) acts in general on the partially encrypted states as an elementary abelian regular 2-
subgroup of the message space. In a recent paper [CCS17], it has been shown that a cryptanalyst
can derive from such subgroups new operations on the message space F

n
2 of the block cipher,

which can be used to perform algebraic and statistical attacks. Indeed, although the encryption
functions, in order to be secure, are designed to be far from being linear with respect to the
classical bitwise addition modulo 2, it is possible to attack the encryption scheme by means of
a variation of the classical differential attack, where instead a newly designed operation is used
[CBS18]. Such operation is defined starting from a conjugate of the translation group T on the
message space.

A study of regular subgroups of the affine group is carried out in [CDVS06, CR09] by means
of radical algebras. We point out that there is an interesting connection between our study of
the position of a regular subgroup in the symmetric group, in terms of the chain of normalizers
defined below, and the rather recent theory of braces, introduced in [Rum07], since the above
mentioned new operation can be used to construct a brace on T . Indeed, when + and ◦ respec-
tively denote the (additive) laws induced by T and by one of its affine conjugates, the structure
(T, +, ◦) is a two-sided brace and (T, +, ·) is a radical ring, where a · b is defined as a + b + a ◦ b
for each a, b ∈ T . For an extensive survey and detailed references on braces see e.g. [Ced18].
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In a recent paper [ACGS19], we considered the elements of the conjugacy class T Sym(2n) which
are subgroups of the affine group AGL(T ). We showed that, if T g ∩ T has index 4 in T , then
there exists a Sylow 2-subgroup U < AGL(T ) containing both T g and T as normal subgroups.
The normalizer N1 of U in Sym(2n) contains U as a subgroup of index 2 and interchanges T and
T g by conjugation. The 2-group N1 is therefore contained in a Sylow 2-subgroup Σ of Sym(2n).
Motivated by a computational evidence, we prove here that this is the general behavior. We
define a chain starting from U and where the k-th term Nk is the normalizer in Sym(2n) of the
previous Nk−1. We show that Nk is actually the normalizer of Nk−1 in Σ, and thus the Nks form
a sequence of 2-groups ending at Σ. Philip Hall, indeed, proved that Σ is self-normalizing (see
e.g. [CF64]). Using the software package GAP [GAP20], we computed the normalizer chain for
n ≤ 11. We experimentally noticed that the sequence defined by ck = log2 |Nk : Nk−1| does
not depend on n if k ≤ n − 2 and, in such cases, {ck}k≥1 represents the sequence of partial
sum of the sequence {bk+2}k≥1, where bk counts the number of partitions of k into at least two
distinct parts, a well-known sequence of integers [OEI, https://oeis.org/A317910], also appear-
ing in commutative algebra problems [ES14]. For larger values of n, the computational problem
becomes intractable using the standard libraries, and so its investigation requires a theoretical
approach. For small values of k, by way of an elementary but increasingly cumbersome analysis,
we show that the previous claim is true. In the general case, the claim remains an open problem.
We believe that more sophisticated combinatorial and group theoretical tools could prove that,
for k ≤ n−2, the integers ck do not depend on n and are related to the sequence bk as previously
mentioned.

The paper is organized as follows: in Sec. 2 we introduce the notation and provide some
preliminary results. The normalizer chain is defined in Sec. 3, which contains the main con-
siderations that led us to formulate Conjecture 1. Some theoretical evidence in support of our
conjecture, i.e. Theorem 4.7, is proved in Sec. 4, where we also discuss some open problems. To
conclude, Sec. 5 is devoted to the computational aspects and contains the GAP code used for
our computations.

2. Notation and preliminaries

In this section, we recall some well known facts and a preliminary result on the imprimitivity
action of subgroups of the symmetric group on a finite set.

Definition 2.1. Let Ω 6= ∅ and let G ≤ Sym(Ω) be a transitive permutation group. An
imprimitivity system B for G is a G-invariant partition of Ω. The group G is primitive if G
has only the trivial partitions {Ω} and the set of the singletons of Ω as imprimitivity systems.
Otherwise, G is said to be imprimitive.

Definition 2.2. Let G act imprimitively on the set Ω. An imprimitivity chain B0 ≻ · · · ≻ Bt of
depht t is a sequence of imprimitivity systems for G acting on Ω, where B0 and Bt are the trivial
partitions. We also require that for each B ∈ Bm+1 there exists B′ ∈ Bm such that B ⊂ B′ for
0 ≤ m ≤ t − 1.

Note that the imprimitivity chain B0 ≻ · · · ≻ Bt can be represented by its imprimitivity tree

which is the rooted tree (V, E), where

• the set of vertices V is
⋃t

m=0 Bm, more precisely a vertex is a subset of Ω belonging to
some partition Bi and the root vertex is Ω;

• two vertices X and Y in V are connected by an edge e ∈ E if and only if there exists m
such that X ∈ Bm, Y ∈ Bm+1 and Y ⊂ X .

https://oeis.org/A317910
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In the remainder of this work, we will consider the special case of a subgroup G of the sym-

metric group Sym(Xn), where Xn
def
= {1, . . . , 2n}.

For 0 ≤ m ≤ n and 0 ≤ k ≤ 2m − 1, the following notation is used:

• Bn
m,k

def
= {k2n−m + 1, . . . , (k + 1)2n−m}, and in particular Xn = Bn

0,0;

• Bn
m

def
=
{

Bn
m,0, . . . , Bn

m,2m−1

}
;

• for 1 ≤ i ≤ n

si
def
=

2i−1

∏

j=1

(j, j + 2i−1);

• tn
i

def
=

{

si if i = n

tn−1
i · (tn−1

i )sn if 1 ≤ i < n.

The symmetric group Sym(2n) acts on the set of partitions of Xn and, with respect to this
action, we define the subgroup

Σn
def
=

n⋂

m=1

StabSym(2n)(B
n
m) = 〈s1, . . . , sn〉 ∼= ≀ni=1C2,

which is the n-th iterated wreath product of copies of the cyclic group C2 of order 2, i.e. a Sylow
2-subgroup of Sym(2n). Notice that Bn

0 ≻ · · · ≻ Bn
n is an imprimitivity chain Cn of maximal

depth for Σn and that Σn is the stabilizer of Cn in Sym(2n).

Let Tn,0
def
= {1} and, for 1 ≤ i ≤ n, let us define Tn,i

def
= 〈tn

1 , . . . , tn
i 〉. Clearly Tn,i ≤ Tn,i+1,

for 0 ≤ i ≤ n − 1. The group Tn
def
= Tn,n is a regular elementary abelian subgroup of Sym(2n)

of order 2n contained in Σn, whose normalizer in Sym(2n) is AGL(Tn), the affine general linear
group. We also define

Un
def
= AGL(Tn) ∩ Σn = NΣn

(Tn).

The group Tn is a uniserial module for Un whose maximal flag Fn is defined as

{1} = Tn,0 < · · · < Tn,n = Tn.

Given a subgroup H ≤ Σn−1, we define the diagonal embedding of H into Σn as

∆n(H)
def
= {(x, xsn ) | x ∈ H}.

Remark 1. It was already known to Dixon [Dix71] that the set of elementary abelian regular
subgroups of Sym(2n) form a unique conjugacy class. Moreover, a transitive abelian subgroup
of Sym(2n) is regular and so is self-celtralizing. In particular, (Tn)g is self-centralizing in Σn,
for every g ∈ Sym(2n).

Lemma 2.3. Up to conjugation by elements of Σn, the group Tn is the unique elementary abelian

regular subgroup of Sym(2n) having Cn as imprimitivity chain.

Proof. First, recall that Σn stabilizes Cn for every n. We argue by induction on n, the result
being trivial when n = 1. Let T be an elementary abelian regular subgroup of Sym(2n) having
Cn as imprimitivity chain and let M be the stabilizer in T of {1, . . . , 2n−1} = Bn

1,0 ∈ Bn
1 . In

particular, M stabilizes also Bn
1,1 = (Bn

1,0)sn = {2n−1 + 1, . . . , 2n}. The group M acts on Bn
1,0

as an elementary abelian regular subgroup M1 of S2n−1 having Cn−1 as imprimitivity chain. By
induction, M1 = (Tn−1)h1 for some h1 ∈ Σn−1. Similarly, the group M acts faithfully on Bn

1,1

as an elementary abelian regular subgroup M2 of (S2n−1)sn having (Cn−1)sn as imprimitivity
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chain, and thus we find by induction M2 = ((Tn−1)h2 )sn for some h2 ∈ Σn−1. Finally, we have
that

M =
{

(mh1 , mh2sn) | m ∈ Tn−1

}
= ∆n(Tn−1)(h1,h

sn

2
).

If t ∈ T \ M then t interchanges Bn
1,0 and Bn

1,1 and centralizes M . Let us write t in the form

t = (a, bsn)sn, where a, b ∈ Σn−1 and (mh1 , mh2sn ) = (mh1 , mh2sn)t = (mh2b, (mh1a)sn). Note
that

• 1 = t2 = (a, bsn)sn(a, bsn)sn = (ab, (ba)sn), and so a = b−1;
• mh1 = mh2b and mh2sn = mh1asn for all m ∈ Tn−1, from which we derive

h1ah−1
2 , h2bh−1

1 ∈ CΣn−1
(Tn−1) = Tn−1,

i.e. a = h−1
1 uh2 = uh1h−1

1 h2 and b = a−1 = h−1
2 h1uh1 = uh2h−1

2 h1 for some u ∈ Tn−1.

Then we have

t = (a, bsn)sn = (uh1h−1
1 h2, uh2sn(h−1

2 h1)sn)sn

≡ (h−1
1 h2, (h−1

2 h1)sn)sn = s
(h1,h

sn

2
)

n mod M.

Since Tn = ∆n(Tn−1) ⋊ 〈sn〉, then T = T
(h1,h

sn

2
)

n , as required. �

Remark 2. Notice that the chain Cn is a maximal imprimitivity chain for Tn, even though it is
not the only one. It is known that every maximal imprimitivity chain for Tn determines and is
determined by a maximal flag {1} = Tn,0 < · · · < Tn,n = Tn. Indeed, the partition Bi is the set of
the orbits of Tn,n−i, and conversely Tn,n−i is the pointwise stabilizer of the action of Tn over Bi.
Any Sylow 2-subgroup U of AGL(Tn) is the stabilizer by conjugation of a maximal flag of Tn, and
therefore it stabilizes also the associated imprimitivity chain. In particular, the stabilizer of Cn in
AGL(Tn) is Un = Σn ∩ AGL(Tn). More generally, any maximal flag F of Tn determines a Sylow
2-subgroup UF of AGL(Tn) and a Sylow 2-subgroup ΣF [Lei88, Theorem p. 226] of Sym(2n)
such that UF = ΣF ∩ AGL(Tn). The maps F 7→ UF and F 7→ ΣF are injective. Consequently,
for every Sylow 2-subgroup U of AGL(Tn) there exists a unique Sylow 2-subgroup Σ of Sym(2n)
such that U = Σ ∩ AGL(Tn). In particular, the intersection AGL(Tn) ∩ Σn = NΣn

(Tn) = Un is
a Sylow 2-subgroup of AGL(Tn).

3. Experimental evidence on a normalizer chain

Let us start by defining the normalizer chain of Tn.

Definition 3.1. Using the same notation of the previous section, the normalizer chain of Tn is
defined as the sequence {Nk

n}k≥0, where

N0
n

def
= Un = NΣn

(Tn), N1
n

def
= NSym(2n)(Un),

and recursively, for k > 1,

Nk
n

def
= NSym(2n)(N

k−1
n ).

Considering Σn in place of Sym(2n) the resulting chain is the same, as proven in the next
theorem.

Theorem 3.2. For every k ≥ 1, we have Nk
n = NΣn

(Nk−1
n ). In particular, Nk

n is a 2-group.

Proof. Suppose that B is a system of imprimitivity for Nk−1
n . For each x ∈ Nk

n , the partition
Bx is a system of imprimitivity for (Nk−1

n )x and so for Nk−1
n , since (Nk−1

n )x = Nk−1
n . Thus, for

a given x ∈ Nk
n and an imprimitivity chain C for Nk−1

n , the set Cx is also an imprimitivity chain
for Nk−1

n and a fortiori for Un. Since, by Remark 2, the imprimitivity chain Cn is the unique
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maximal one for Un = N0
n, we have Cx

n = Cn. Hence Cn is stabilized by Nk
n for every k, yielding

Nk
n ≤ Σn. �

A direct consequence of the previous theorem is that there exists d(n) ∈ N such that

Nk
n = Nd(n)

n = Σn

for every k ≥ d(n). We can interpret d(n)+1 as an upper bound for the defect δ(n) of Tn in Σn, i.e.
the length of the shortest subnormal series from Tn to Σn. Recalling that Σn is self-normalizing
in Sym(2n) (see [CF64]), as already pointed out in the introduction, the fact previously stated
represents a further argument showing that every Sylow 2-subgroup of AGL(Tn) is contained in
exactly one Sylow 2-subgroup of Sym(2n).

We already recalled in Remark 2 that N0
n = Un normalizes a maximal flag F of Tn. Below

we study the action by conjugation of N1
n over F .

Proposition 3.3. The group N1
n normalizes each term of the flag {Tn,0, . . . , Tn,n−2}.

Proof. It is enough to prove that each element of N1
n \ Un normalizes Tn,i for 0 ≤ i ≤ n − 2.

For each g ∈ N1
n \ Un, from [ACGS19, Corollary 3] we have that Tn,n−2 = Tn ∩ T g

n is normal
in N1

n. Hence, for every subgroup H = Tn,i where i < n − 2 and for every g ∈ N1
n \ Un, we

have Hg ≤ Tn,n−2. If x ∈ Un, we clearly have (Hg)x = (Hgxg−1

)g = Hg. Since Tn is a uniserial
U -module, we conclude that Hg belongs to Fn. Thus T g

n,i = Hg = Tn,i. �

We also used GAP to calculate Nk
n for n ≤ 11. The computational results are summarized in

Fig. 1, where the entry in position (k, n) denotes the logarithm in base 2 of the size of Nk−1
n . We

observe that, in each column, consecutive values above the diagonal (bold values in the figure)
have fixed differences. Such differences are listed in the (auxiliary) last column. For example, the
number “+7” appearing in the last position of the fifth row denotes that the difference between
log2 |N4

j | and log2 |N3
j | equals 7, where 5 ≤ j ≤ 11, reading the table from left to right, starting

from the position (5, 5) containing the bold number, i.e. the number 35.

n 2 3 4 5 6 7 8 9 10 11

log2 |Un| 3 6 10 15 21 28 36 45 55 66
log2 |N1

n| - 7 11 16 22 29 37 46 56 67 +1
log2 |N2

n| - - 13 18 24 31 39 48 58 69 +2
log2 |N3

n| - - 14 22 28 35 43 52 62 73 +4
log2 |N4

n| - - 15 23 35 42 50 59 69 80 +7
log2 |N5

n| - - - 25 37 53 61 70 80 91 +11
log2 |N6

n| - - - 27 41 57 77 86 96 107 +16
log2 |N7

,n| - - - 28 45 64 84 109 119 130 +23

log2 |N8
n| - - - 29 46 67 89 113 151 162 +32

log2 |N9
n| - - - 30 47 71 95 122 155 205 +43

Figure 1. The logarithm of the size of the normalizers, when n ≤ 11

The table suggests that the values log2

∣
∣Nk

n : Nk−1
n

∣
∣, reported in the last column of Fig. 1,

do not depend on n, if n ≥ k + 2, and match with those of the sequence {aj}
j≥1 of the partial

sums of the sequence {bj}
j≥1 counting the number of partitions of j into at least two dis-

tinct parts. The reader is referred to The On-Line Encyclopedia of Integer Sequences at [OEI,
https://oeis.org/A317910] for a list of values and additional information. In the next section

https://oeis.org/A317910
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

bj 0 0 1 1 2 3 4 5 7 9 11 14 17 21
aj 0 0 1 2 4 7 11 16 23 32 43 57 74 95

Figure 2. First values of the sequences aj and bj

we show that for small values of k this is actually true. The above evidence is now summarized
here as a conjecture.

Conjecture 1. For n ≥ k+2 ≥ 3, the number log2

∣
∣Nk

n : Nk−1
n

∣
∣ is independent of n and is equal

to (k + 2)-th term of the sequence {aj}
j≥1 of the partial sums of the sequence {bj}

j≥1 counting

the number of partitions of j into at least two distinct parts.

The first values of the sequences aj and bj are listed in Fig. 2.

4. Theoretical evidence

In this section we prove Theorem 4.7 which solves Conjecture 1 in the cases 1 ≤ k ≤ 4, by
providing an explicit construction of Nk

n . We first need the following general lemma.

Lemma 4.1. Let G = A⋊B be a group and H a subgroup of G containing B. If [NA(H∩A), B] ≤
H, then

NG(H) = NA(H ∩ A) ⋊ B.

Proof. Clearly B ≤ H ≤ NG(H). Let x ∈ NA(H ∩ A) ≤ A E G. Then [H, x] ⊆ A, since A
is normal in G. Let h ∈ H and let us write h = bk where b ∈ B and k ∈ A ∩ H . We have
[h, x] = [bk, x] = [b, x]k[k, x] ∈ H , since [b, x] ∈ H as [NA(H ∩ A), B] ≤ H by hypotheses. Thus
[H, x] ⊆ H ∩ A and thus NA(H ∩ A) ≤ NG(H).
Let x ∈ NA(H ∩ A), k ∈ H ∩ A and b ∈ B. Notice that

kxb

= (( kb−1

︸︷︷︸

∈H∩A

)x)b ∈ H ∩ A.

This implies that NA(H ∩ A) is normalized by B. As a consequence, we have

NG(H) ≥ NA(H ∩ A) ⋊ B.

Conversely, let x ∈ NG(H). Since G = A ⋊ B, we can find b ∈ B ≤ H ≤ NG(H) such that
x = bu with u ∈ A. Clearly, u ∈ NG(H) ∩ A = NA(H). If h ∈ H ∩ A, then [u, h] ∈ H ∩ A, since
A is normal in G. Thus x = bu ∈ NA(H ∩ A) ⋊ B. �

Consider now the set-wise stabilizer Qn in Σn of Xn−1. This group acts also on Xsn

n−1 =

{2n−1 + 1, . . . , 2n} and so Qn = Σn−1 × (Σn−1)sn and Σn = Qn ⋊ 〈sn〉, where sn interchanges
the two direct factors of Qn. We can give a general procedure for the construction of the nor-
malizer NΣn

(Y ) of a subgroup Y ≤ Σn containing Tn such that [NQn
(Y ∩ Qn), sn] ⊆ Y . Since

tn = sn ∈ Y , we have Y sn = Y and NΣn
(Y ) = NQn

(Y ∩ Qn) ⋊ 〈sn〉 by Lemma 4.1.

Let us apply the previous construction to obtain a description of Un as the normalizer of Tn

in Σn.

Proposition 4.2. We have that

Un = 〈sn〉 ⋉
(
∆n(Un−1) · (Tn−1 × T sn

n−1)
)

= 〈sn〉 ⋉
(
∆n(Un−1) · Tn−1

)
.
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Proof. Using the same notation as above, we notice that

Tn ∩ Qn = ∆n(Tn−1) = {(t, tsn) | t ∈ Tn−1}.

We first claim that

NQn
(Tn ∩ Qn) = ∆n(Un−1) · Tn−1.

It is straightforward to check that ∆n(Un−1) normalizes Tn ∩ Qn = ∆n(Tn−1) and that Tn−1

centralizes Tn ∩ Qn, hence

NQn
(Tn ∩ Qn) ≥ ∆n(Un−1) · Tn−1.

Now, let x = (a, bsn) ∈ NQn
(Tn ∩ Qn), where a, b ∈ Σn−1, and y = (t, tsn ) ∈ ∆n(Tn−1) =

Tn ∩ Qn < Tn−1 × T sn

n−1. We have that

yx = (ta, (tb)sn) = (t̄, t̄sn) ∈ ∆n(Tn−1) < Tn−1 × T sn

n−1

for some t̄ ∈ Tn−1, and so ta = t̄ = tb. It follows that a, b ∈ Un−1 and ab−1 ∈ CΣn−1
(Tn−1) =

Tn−1 by Remark 1. Therefore a = bt̃, with t̃ ∈ Tn−1 and x = (b, bsn) · (t̃, 1) ∈ ∆n(Un−1) · Tn−1,
giving the opposite inclusion. In conclusion,

NQn
(Tn ∩ Qn) = ∆n(Un−1) · Tn−1.

In order to apply Lemma 4.1, it remains to be shown that [∆n(Tn−1) · Tn−1, sn] ≤ Tn. Notice
that ∆n(Tn−1) · Tn−1 = Tn−1 × T sn

n−1, and thus [∆n(Tn−1) · Tn−1, sn] ≤ ∆n(Tn−1) ≤ Tn, as
claimed. �

Proposition 4.3. Let H E K ≤ Σn−1 and U
def
= 〈sn〉 ⋉ (∆n(K) · (H × Hsn)). If we define

• L
def
= NΣn−1

(K) ∩ NΣn−1
(H),

• M
def
= CK(K/H),

then

NΣn
(U) = 〈sn〉 ⋉ (∆n(L) · (M × M sn)) .

Moreover, M E L ≤ Σn−1.

Proof. The inclusion NΣn
(U) ≥ 〈sn〉⋉(∆n(L) · (M × M sn)) is straightforward since every factor

of the second member is contained in the first one.
Note that U ∩ Qn = ∆n(K) · (H × Hsn). Let us start considering the group

N
def
= NQn

(U) = NΣn
(U) ∩ Qn.

Let x = (a, bsn) ∈ N , where a, b ∈ Σn−1. First we note that [x, sn] = (a−1b, (b−1a)sn ) ∈
U ∩ Qn = ∆n(K) · (H × Hsn). In particular, a−1b ∈ K.

Let y = (h, 1sn) ∈ H × Hsn ≤ U ∩ Qn, where h ∈ H and 1 ∈ Σn−1. We have yx = (ha, 1sn) ∈
∆n(K)·(H×Hsn ) = ∆n(K)⋉(H×1). Since ∆n(K)∩(H×1) = 1, then ha ∈ H for all h ∈ H and
so a ∈ NΣn−1

(H). Similarly, we have that b ∈ NΣn−1
(H). Now, letting u = (k, ksn) ∈ ∆n(K),

we have

ux =
(
ka, (kb)sn

)
= (ka, (ka)sn ) ·

(
1, ((ka)−1kb)sn

)
(1)

∈ ∆n(K) · (H × Hsn)

= ∆n(K) ⋉ (1 × Hsn),

and so a ∈ NΣn−1
(K) ∩ NΣn−1

(H) = L. Similarly, b ∈ NΣn−1
(K) ∩ NΣn−1

(H) = L. Again by
Eq. (1) we have b = am with m = a−1b ∈ CL(K/H) ∩ K = M . It follows that

x = (a, bsn) = (a, asn ) · (1, msn) ∈ ∆n(L) · (M × M sn).
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Hence N ≤ ∆n(L) · (M × M sn). As a consequence we have

NΣn
(U) = 〈sn〉 ⋉ N = 〈sn〉 ⋉

(
∆n(L) · (M × M sn)

)
,

as required.
We also trivially have that M ≤ L ≤ Σn−1. If m ∈ M , k ∈ K and l ∈ L then

[k, ml] = l−1 [kl−1

, m]
︸ ︷︷ ︸

∈H

l ∈ H,

and therefore ml ∈ M and M E L. �

The following technical definition is necessary to provide a recursive construction for the
normalizer chain of Tn in Σn.

Definition 4.4. For a given natural number n we define the series
{

Ck
n

}

k≥0
and

{
Dk

n

}

k≥0

recursively as follows:

C0
n

def
= Tn,

D0
n

def
= NΣn

(C0
n) = Un,

Ck
n

def
= C

D
k−1

n

(
Dk−1

n /Ck−1
n

)
for k ≥ 1,

Dk
n

def
= NΣn

(Ck−1
n ) ∩ NΣn

(Dk−1
n ) for k ≥ 1.

Proposition 4.5. For each k ≥ 1 we have that

Nk
n = 〈sn〉 ⋉

(
∆n(Dk

n−1) ·
(
Ck

n−1 × (Ck
n−1)sn

))

= 〈sn〉 ⋉
(
∆n(Dk

n−1) ⋉
(
Ck

n−1 × {1}
))

.

Proof. The result follows by a recursive application of Proposition 4.3, assuming H = Ck−1
n−1,

K = Dk−1
n−1, L = Dk

n−1 and M = Ck
n−1, beginning with C0

n−1 = Tn−1 which is normal in

D0
n−1 = Un−1. �

4.1. The case 1 ≤ k ≤ 4. The main result of this work will be proved in this section. In order
to do so, let us denote by Θn the group of the upper unitriangular matrices and by Zh(Θn) the
h-th term of its upper central series.

By Proposition 4.2
Un = 〈sn〉 ⋉

(
∆n(Un−1) ⋉ (Tn−1 × {1})

)

and
Tn = 〈sn〉 · ∆n(Tn−1).

Hence

Θn
∼= Un/Tn = ∆n(Un−1/Tn−1) ⋉ (Tn−1 × {1}) = ∆n(Θn−1) ⋉ (Tn−1 × {1}) .

Moreover, notice that Θn = Un−1. It is easily checked that

Z1(Θn) = Tn−1,1 × {1} .

Proceeding by induction we obtain the following generalization.

Lemma 4.6. We have that

Zh(Θn) = ∆n(Zh−1(Θn−1)) ⋉ (Tn−1,h × {1}) .

Proof. If Gh
def
= ∆n(Zh−1(Θn−1)) ⋉ (Tn−1,h × {1}), then Gh/Gh−1 is a central section of Θn,

hence Gh ≤ Zh(Θn). Notice that |Gh : Gh−1| = |Zh(Θn) : Zh−1(Θn)|, which is known to be 2h.
Therefore Zh(Θn) = Gh. �
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We are now ready to prove our main result.

Theorem 4.7. Let n be a non-negative integer. Then Conjecture 1 is true for 1 ≤ k ≤ 4.

Proof. Let us prove each case separately. We will use Proposition 4.3 repeatedly without further
mention. Since C0

n = Tn and D0
n = Un, by Proposition 4.2 we have

N0
n = 〈sn〉 ⋉

(
∆n(Un−1) ⋉ (Tn−1 × {1})

)
= Un.

[k = 1] Since C1
n = CUn

(Un/Tn) = Z1(Θn) ⋉ Tn and D1
n = Un ∩ NΣn

(Un) = Un, we obtain

N1
n = 〈sn〉 ⋉

(
∆n(Un−1) ⋉ ((Z1(Θn−1) ⋉ Tn−1) × {1})

)
,

and so
∣
∣N1

n : N0
n

∣
∣ =

∣
∣N1

n : Un

∣
∣ = 2 = 21, since |Z1(Θn−1)| = 2.

[k = 2] We have C2
n = CUn

(
Un/ (Z1(Θn) ⋉ Tn)

)
= Z2(Θn) ⋉ Tn and

D2
n = NΣn

(C1
n) ∩ NΣn

(Un)

= NΣn
(Z1(Θn) ⋉ Tn) ∩ N1

n

= NN1
n
(Z1(Θn) ⋉ Tn)

= Un.

The last equality depends on the fact that

|Tn · T g
n | = 2n+2,

where g ∈ N1
n \ Un from [ACGS19, Corollary 3], and that |(Z1(Θn) ⋉ Tn)| = 2n+1. We

consequently obtain that

N2
n = 〈sn〉 ⋉

(
∆n(Un−1) ⋉ ((Z2(Θn−1) ⋉ Tn−1) × {1})

)
,

and so
∣
∣N2

n : N1
n

∣
∣ = 22 = 4, since |Z2(Θn−1) : Z1(Θn−1)| = 22.

[k = 3] We have that C3
n = CUn

(Un/
(
Z2(Θn) ⋉ Tn)

)
= Z3(Θn) ⋉ Tn and

D3
n = NΣn

(Z2(Θn) ⋉ Tn) ∩ NΣn
(Un)

= NΣn
(Z2(Θn) ⋉ Tn) ∩ N1

n

= NN1
n
(Z2(Θn) ⋉ Tn)

= N1
n.

In order to prove last equality, we first show that [N1
n, Tn] ≤ Z2(Θn) ⋉ Tn. For each

g ∈ N1
n \ Un, we have that [[T g

n , Un], Un] is a normal subgroup of Un of index at least
4 in T g

n . Since T g
n is uniserial for Un, then [[T g

n , Un], Un] is necessarily contained in the
unique subgroup of index 4 in T g

n and normal in Un, which is T g
n ∩ Tn (see [ACGS19]).

Hence (Tn · T g
n)/Tn lies in the second term of the upper central series of the quotient

Un/Tn = Θn. Thus T g
n ≤ Z2(Θn) ⋉ Tn. We are left with proving that [N1

n, Z2(Θn)] ≤
Z2(Θn) ⋉ Tn, which is a direct consequence of the following straightforward properties:

• Z2(Θn) = ∆n(Z1(Θn−1)) ⋉ (Tn−1,2 × {1}) (Lemma 4.6);
• [sn, ∆n(Z1(Θn−1)) ⋉ (Tn−1,2 × {1})] ≤ Tn;
• [∆n(Un−1), ∆n(Z1(Θn−1))] ≤ Tn;
• [∆n(Un−1), Tn−1,1 × {1}] ≤ Tn−1,2 × {1} ≤ Z2(Θn);
• [Z1(Θn−1) ⋉ Tn−1, ∆n(Z1(Θn−1))] ≤ Tn−1,1 × {1} = Z1(Θn) ≤ Z2(Θn);
• [Z1(Θn−1) ⋉ Tn−1, Tn−1,2 × {1}] = {1}.

In conclusion, we derive that

N3
n = 〈sn〉 ⋉

(
∆n(N1

n−1) ⋉ ((Z3(Θn−1) ⋉ Tn−1) × {1})
)
,
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and so
∣
∣N3

n : N2
n

∣
∣ = 24 = 16, as

∣
∣N1

n−1 : Un−1

∣
∣ = 21 and |Z3(Θn−1) : Z2(Θn−1)| = 23.

The same result can be also obtained as follows. Note that Z2(Θn) ⋉ Tn = Z3(Un) · Tn.
Since Z3(Un) is a characteristic subgroup of Un we have (Z2(Θn) ⋉ Tn)x = (Z3(Un) ·
Tn)x = Z3(Un) · T x

n ≤ Z2(Θn) · Tn · T x
n = Z2(Θn)⋉ Tn for all x ∈ N1

n. As a consequence
[N1

n, Z2(Θn)] ≤ [N1
n, Z2(Θn)Tn] ≤ Z2(Θn) ⋉ Tn.

[k = 4] We mimic the argument provided for the case k = 3. We start by computing

C4
n = CN1

n

(
N1

n/(Z3(Θn) ⋉ Tn)
)

= CM

(

∆n(Θn−1) ⋉
(
(Z1(Θn−1) ⋉ Tn−1) × {1}

)

∆n(Z2(Θn−1)) ⋉
(
(Z1(Θn−1) ⋉ Tn−1,3) × {1}

)

)

⋉ Tn

=
(
∆n(Z3(Θn−1)) ⋉

(
(Z1(Θn−1) ⋉ Tn−1,4) × {1}

))
⋉ Tn,

where M
def
= ∆n(Θn−1) ⋉

(
(Z1(Θn−1) ⋉ Tn−1) × {1}

)
. Moreover

D4
n = NΣn

(Z3(Θn) ⋉ Tn) ∩ NΣn
(N1

n)

= NΣn
(Z3(Θn) ⋉ Tn) ∩ N2

n

= NN2
n
(Z3(Θn) ⋉ Tn)

= N2
n.

The last equality is derived proceeding as in the case k = 3, provided that n is sufficiently
large (e.g. n ≥ 5). In conclusion, we derive that

N4
n = 〈sn〉 ⋉

(
∆n(N2

n−1) ⋉
(
C4

n−1 × {1}
))

,

and so
∣
∣N4

n : N3
n

∣
∣ = 27. Indeed,

∣
∣N2

n−1 : N1
n−1

∣
∣ = 22 and

∣
∣C4

n−1 : C3
n−1

∣
∣ = 25, since

C4
n−1 =

(
∆n−1(Z3(Θn−2)) ⋉

(
(Z1(Θn−2) ⋉ Tn−2,4) × {1}

))
⋉ Tn−1

and

C3
n−1 =

(
∆n−1(Z2(Θn−2)) ⋉ (Tn−2,3 × {1})

)
⋉Tn−1,

where |Z3(Θn−2) : Z2(Θn−2)| = 23, |Tn−2,4, Tn−2,3| = 2 and |Z1(Θn−2)| = 2.

Finally, notice that, if n ≥ k + 2, the construction of Nk
n described above does not depend on

the dimension n and the integers corresponding to log2

∣
∣Nk

n : Nk−1
n

∣
∣ for 1 ≤ k ≤ 4 are respectively

the 3-rd, the 4-th, the 5-th and the 6-th term of the sequence {aj} of the partial sums of the
sequence {bj} counting the number of partitions of j into at least two distinct parts (see Fig. 2
and the auxiliary column of Fig. 1). Therefore, Conjecture 1 is true for 1 ≤ k ≤ 4. �

Although we have a recursive method, it appears that the construction of Nk
n requires ad hoc

computations that become increasingly complex as k grows.

Open Problem 1. Find a closed and concise formula for Nk
n .

Moreover, even though the sequence of the indices log2

∣
∣Nk

n : Nk−1
n

∣
∣ seems to be predictable

for k ≤ n − 2, as conjectured in this paper, it is hard to figure any conjecture on the values
appearing under the bold diagonal of the table in Fig. 1.

Open Problem 2. Determine log2

∣
∣Nk

n : Nk−1
n

∣
∣ for all natural numbers k and n.
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5. Some computational aspects

We can derive from Proposition 4.2 the following efficient construction of Un, which has been
useful to speed up the process of computing the normalizer chain.

The center Z(Un) is the subgroup 〈tn
1 〉, which is actually the center of Σn. Let

un
1,j

def
= tn

n−j+1 for 1 ≤ j ≤ n, un
2,j

def
= un−1

1,j−1 for 2 ≤ j ≤ n,

and for 3 ≤ i ≤ j ≤ n

un
i,j

def
= un−1

i−1,j−1(un−1
i−1,j−1)sn .

Using this notation, it easy to recognize that

U1 = T1,

U2 =
〈
u2

1,1, u2
1,2, u2

2,2

〉
,

U3 =
〈
u3

1,1, u3
1,2, u3

1,3, u3
2,2, u3

2,3, u3
3,3

〉
,

...

Un =
〈
un

i,j | 1 ≤ i ≤ j ≤ n
〉

.

As an example of this construction, we conclude the paper by showing the GAP code which
we used to build the normalizer chains displayed in Fig. 1. The orders of the normalizer are also
provided. The code below is specialized to the case n = 8.

dim:=8;

gens:=[];

# will contain generators for T_n

ngens:=[];

# will contain generators for U_n

sgens:=[];

# will contain generators for Sigma_n

# construction of the previous list

for i in [1..dim] do

x:=();

for j in [1..2^(i-1)] do

x:=x*(j,j+2^(i-1));

od;

newgens:=[];

newngens:=[];

for y in gens do

Add(newgens, y*y^x);

od;

for y in ngens do

Add(newngens, y*y^x);
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Append(newngens,gens);

od;

newgens:=Set(newgens);

newngens:=Set(newngens);

gens:=newgens;

ngens:=newngens;

Add(gens, x);

Add(ngens,x);

Add(sgens,x);

tmpsyl:=Group(ngens);

ngens:=MinimalGeneratingSet(tmpsyl);

tmpsyl:=false;

od;

t:=Group(gens); # the group T_n

sigma:=Group(sgens); # the group

Sigma_n u:= Group(ngens); # the group U_n

sym:=SymmetricGroup(2^dim);

n:=u;

# here the normalizer chain computation starts

sz:=Collected(Factors(Size(n)));

# the orders of the normalizer chain as power of 2

lst:=[[t,Collected(Factors(Size(t)))],[n,sz]];

# will contain the normalizers and their orders

flag:=true;

Print(Collected(Factors(Size(u))));

# construction of the normalizers and order display

while flag do

m:=n;

n:=Normalizer(sym,m);

if n<>m then

sz:=Collected(Factors(Size(n)));

Print(sz,"\n"); Add(lst,[n,sz]);

else

flag:=false;

fi;

od;
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