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Prime Values of Quadratic Polynomials

N. A. Carella

Abstract : This note investigates the prime values of the polynomial f(t) = qt2 + a for
any fixed pair of relatively prime integers a ≥ 1 and q ≥ 1 of opposite parity. For a large
number x ≥ 1, an asymptotic result of the form

∑

n≤x1/2, n odd Λ(qn
2 + a) ≫ qx1/2/2ϕ(q)

is achieved for q ≪ (log x)b, where b ≥ 0 is a constant.

1 Introduction

The basic problem of prime values of linear polynomials f(t) = qt+ a ∈ Z[t] is completely
solved. Dirichlet theorem for primes in arithmetic progressions proves that any admissible
linear polynomial has infinitely many prime values. The quantitative form of this theorem
has the asymptotic formula

∑

n≤x
n≡amod q

Λ(n) ∼ 1

ϕ(q)
x, (1)

where gcd(a, q) = 1, as x → ∞. The next basic problem of prime values of quadratic
polynomials f(t) = at2+ bt+ c ∈ Z[t] has very precise heuristics and many partial results,
but there is no qualitative nor quantitative results known. This note investigates the prime
values of the admissible quadratic polynomials f(t) = qt2 + a ∈ Z[t], and proposes the
following result.

Theorem 1.1. Let x ≥ 1 be a large number. Let a and q be a pair of relatively prime

integers, with opposite parity, and q ≪ (log x)b, where b ≥ 0 is a constant. Then,

∑

n≤x1/2

n odd

Λ(qn2 + a) ≫ q

2ϕ(q)
x1/2 +O

(

x1/2e−c
√
log x

)

, (2)

where c > 0 is an absolute constant.

The core of the proof in Section 2 consists of the quadratic to linear identity in Section
6, and other results proved in Section 3 to Section 8. Theorem 1.1 proves the predicted
asymptotic formula

∑

n≤x1/2

n odd

Λ(qn2 + a) ∼ cf
2
x1/2, (3)

but not the constant cf ≥ 0, see [3] for finer details. The conjectured constant, which
depends on the polynomial f(t) = qt2 + a, has the form

cf = ǫ
∏

p≥3
p | q

(

p

p− 1

)

∏

p≥3
p ∤ q

(

1−
(−aq

p

)

1

p

)

, (4)
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where

ǫ =

{

1/2 if q 6≡ 0mod 2,
1 if q ≡ 0mod 2.

(5)

The conjectured general formula for the constant cf (a, c) ≥ 0 attached to an admissible
quadratic polynomial f(t) = at2 + bt + c ∈ Z[t] appears in [16, p. 46], [3, p. 364], et alii.
Discussions on the convergence of the product (4) appears in [3], [13, Section 5], et alii.
Results on the average value cf (a, c), and other properties appear in [5], [25], et cetera,
optimization and numerical techniques appear in [18], and similar references.

The result in Theorem 1.1 is a special case of the Bateman-Horn Conjecture for poly-
nomials over the integers, see [3], and [13] for a survey. Some references on the vast
literature on the theory of prime values of polynomials are provided here. The general
circle methods are introduced in [22], [28], and the heuristics for admissible quadratic
polynomials was proposed in [16, p. 46]. More recent discussions are given in [26, p. 406],
[23, p. 342], et cetera. Some partial results are proved in [15], [20], [5], [8], [17], [19],
and the recent literature. The results for the associated least common multiple problem
log lcm[f(1)f(2) · · · f(n)] appears in [6], et cetera. The related problem for almost primes
appears in [17], [19], et alii. Topics on the Bateman-Horn Conjecture for polynomials
over numbers fields and functions fields appear in [4], [7], [10], et alii, and for multivari-
able polynomials appears in [9], et cetera. A very recent proof for certain collection of
quadratic polynomials f(t) = a(u)t2 + b(u)t + c(u) ∈ Fq[u][t] over function fields of odd
characteristic is proposed in [27, Theorem 1.2].

2 Prime Values of Quadratic Polynomials

For any pair of fixed integers 1 ≤ a ≤ q such that gcd(a, q) = 1, the polynomial
f(t) = qt2 + a is irreducible, and it has fixed divisor div(f) = gcd(f(Z)) = 1, see [14,
p. 395] for more details.

For an integer n ≥ 1, the vonMangoldt function Λ : N −→ R is defined by

Λ(n) =

{

log p if n = pk,
0 if n 6= pk,

(6)

where n = pk is a prime power, and the Euler totient function ϕ : N −→ Q is defined by
ϕ(n) = n

∏

p|n (1− 1/p). A primes counting function, weighted by Λ(n), is defined by

ψ2(x, q, a) =
∑

n≤x1/2

n odd

Λ(qn2 + a). (7)

Proof. (Theorem 1.1): Given a large number x ≥ 1, let p ≡ 1mod 4 be a large prime such
that x < p, and let N = 2p. Further, assume that [x1/2] = 2k is an even integer. Now,
in terms of the quadratic to linear identity in Lemma 6.1, the weighted primes counting
function has the form

∑

n≤x1/2

n odd

Λ(qn2 + a) =
1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

s≤x1/2,

∑

1≤u<N
gcd(u,N)=1

ei2π(s
2−n)u/N (8)

=
1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

1≤u<N
gcd(u,N)=1

e−i2πun/N
∑

1≤s≤x1/2

ei2πus
2/N .
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This step removes any reference to nonlinear polynomial. Next step employs the quadratic
symbol

( s

N

)

=







−1 if s is a quadratic nonresidue modN,
0 if gcd(s,N) 6= 1,
1 if s is a quadratic residue modN,

(9)

to remove the nonlinear exponential term in the finite inner sum in (8). This procedure
yields

ψ2(x, q, a) =
1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

1≤u<N
gcd(u,N)=1

e−i2πun/N
∑

1≤s≤x1/2

(

1 +
( s

N

))

ei2πus/N

=
1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

1≤u<N
gcd(u,N)=1

∑

1≤s≤x1/2

ei2πu(s−n)/N (10)

+
1

ϕ(N)

∑

n≤x
n odd

Λ(qn + a)
∑

1≤u<N
gcd(u,N)=1

e−i2πun/N
∑

1≤s≤x1/2

( s

N

)

ei2πus/N

= M(x) +E(x),

Applying Lemma 3.1 to the main term M(x) and Lemma 4.1 to the error term E(x) yield

∑

n≤x1/2

n odd

Λ(qn2 + a) = M(x) + E(x) (11)

≫
[

q

2ϕ(q)
x+O

(

xe−c
√
log x

)

]

+ [0]

≫ q

2ϕ(q)
x+O

(

xe−c
√
log x

)

,

where c > 0 is an absolute constant, as x→ ∞. �

3 The Main Term

The partial main term is evaluated in this section.

Lemma 3.1. Given a large number x ≥ 1, let p ≡ 1mod 4 be a large prime such that

x < p, and let N = 2p. Further, assume that [x1/2] = 2k is an even integer. Let a and q
be a pair of relatively prime integers, with opposite parity, and q ≪ (log x)b, where b ≥ 0
is a constant. Then,

1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

1≤u<N
gcd(u,N)=1

∑

1≤s≤N1/2

ei2πu(s−n)/N ≫ q

2ϕ(q)
x1/2 +O

(

x1/2e−c
√
log x

)

,

(12)
where c > 0 is an absolute constant.
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Proof. Consider the dyadic partition

M(x) =
1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

1≤u<N
gcd(u,N)=1

∑

1≤s≤x1/2

ei2πu(s−n)/N (13)

=
1

ϕ(N)

∑

n≤x
n odd
n=s

Λ(qn+ a)
∑

1≤s≤x1/2

∑

1≤u<N
gcd(u,N)=1

ei2πu(s−n)/N

+
1

ϕ(N)

∑

n≤x
n odd
n 6=s

Λ(qn+ a)
∑

1≤s≤x1/2

∑

1≤u<N
gcd(u,N)=1

ei2πu(s−n)/N

= M0(x) +M1(x).

The first term in (13) has the value

M0(x) =
1

ϕ(N)

∑

n≤x
n odd
n=s

Λ(qn+ a)
∑

1≤s≤x1/2

∑

1≤u<N
gcd(u,N)=1

ei2πu(s−n)/N (14)

=
∑

n≤x1/2

n odd

Λ(qn+ a)

≫ q

2ϕ(q)
x1/2 +O

(

x1/2e−c
√
log x

)

,

since qn+a ≤ qx1/2+a, as x→ ∞, see [11, Theorem 8.8], [21, Corollary 11.19], et cetera.
The second term in (13) has the value

M1(x) =
1

ϕ(N)

∑

n≤x
n odd
n 6=s

Λ(qn+ a)
∑

1≤s≤x1/2

∑

1≤u<N
gcd(u,N)=1

ei2πu(s−n)/N (15)

=
1

ϕ(N)

∑

n≤x
n odd
n 6=s

Λ(qn+ a)
∑

1≤s≤x1/2

cN (s− n)

= 0,

where s 6= n implies that n > x1/2, and cN (s− n) is a Ramanujan sum. The last equality
in (15) follows from Lemma 7.2 since n ≤ x is odd, and [x1/2] = 2k. �

4 The Error Term

The error term is evaluated in this section.

Lemma 4.1. Given a large number x ≥ 1, let p ≡ 1mod 4 be a large prime such that

x < p, and let N = 2p. Further, assume that [x1/2] = 2k is an even integer. Then,

1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

1≤u<N
gcd(u,N)=1

e−i2πun/N
∑

1≤s≤x1/2

( s

N

)

ei2πus/N = 0. (16)
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Proof. By definition the integers u and N are relatively prime; gcd(u,N) = 1. Thus, the
change of variable z = us yields

E(x) =
1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

1≤u<N
gcd(u,N)=1

e−i2πun/N
∑

1≤s≤x1/2

( s

N

)

ei2πus/N (17)

=
1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

1≤u<N
gcd(u,N)=1

(

u−1

N

)

e−i2πun/N
∑

1≤z≤x1/2

( z

N

)

ei2πz/N .

Since n ≤ x < p is odd and N = 2p, the integers n and N are relatively prime; gcd(n,N) =
1. Thus, the change of variable w = un yields

E(x) =
1

ϕ(N)

∑

n≤x
n odd

Λ(qn + a)
∑

1≤z≤x1/2

( z

N

)

ei2πz/N
∑

1≤u<N
gcd(u,N)=1

(

u−1

N

)

e−i2πun/N (18)

=
1

ϕ(N)

∑

n≤x
n odd

(

n−1

N

)

Λ(qn+ a)
∑

1≤z≤x1/2

( z

N

)

ei2πz/N
∑

1≤w<N
gcd(w,N)=1

(w

N

)

e−i2πw/N .

The congruence relations p ≡ 1mod 4, and N = 2p ≡ 2mod 4 imply that the Gauss sum

∑

1≤w<N
gcd(w,N)=1

(w

N

)

e−i2πw/N = 0 (19)

vanish, see Theorem 8.2. Therefore, E(x) = 0. �

5 Characteristic Functions For Integer Powers

An explicit representation of the characteristic function Q : N −→ {0, 1} of square odd
integers on an interval [1, x] is introduced below. The parameters were chosen to fit the
application within.

Lemma 5.1. Given a large number x ≥ 1, let p ≥ 2 be a large prime such that x < p,
and let N = 2p. Further, assume that [x1/2] = 2k is an even integer. If n ≤ x is a fixed

odd integer, then,

Q(n) =
1

ϕ(N)

∑

1≤s≤x1/2,

∑

0≤u≤N−1
gcd(u,N)=1

ei2π(s
2−n)u/N =

{

1 if n = s2,
0 if n 6= s2.

(20)

Proof. Assume n = s2 is a square. The hypothesis n ≤ x implies that the equation
s2 − n = 0 has a unique integer solution s ∈ [1, x1/2] for each square integer n ∈ [1, x].
Thus, the double finite sum has the value

1

ϕ(N)

∑

1≤s≤x1/2,

∑

0≤u≤N−1
gcd(u,N)=1

ei2π(s
2−n)u/N = 1. (21)

Assume n 6= s2 is not a square. The hypothesis N = 2p, with p > 2 prime, and an odd
integer n ≤ x and s ≤ x1/2, imply that the Ramanujan sum has the value cN (s2 − n) =
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(−1)s for s2 − n 6= 0, see Lemma 7.1. Hence,

1

ϕ(N)

∑

1≤s≤x1/2,

∑

0≤u≤N−1
gcd(u,N)=1

n 6=s2

ei2π(s
2−n)u/N =

1

ϕ(N)

∑

1≤s≤x1/2

n 6=s2

cN (s2 − n) (22)

= 0,

the last equality follows from Lemma 7.2 since [x1/2] = 2k is an even integer. �

This technique is very flexible, and has the advantages of being easily extended to other
classes of integer powers as cubic integers, and quartic integers, et cetera.

6 Quadratic To Linear Identity

The quadratic to linear inequality trades off the evaluation of
∑

n≤x1/2,odd n Λ(qn
2+a) for

the evaluation of a product of some exponential sums and
∑

n≤x,odd n Λ(qn+ a).

Lemma 6.1. Given a large number x ≥ 1, let p ≥ 2 be a large prime such that x < p,
and let N = 2p. Further, assume that [x1/2] = 2k is an even integer. If a and q is a pair

of relatively prime integers, and opposite parity, then,

∑

n≤x1/2

odd n

Λ(qn2 + a) =
1

ϕ(N)

∑

n≤x
n odd

Λ(qn+ a)
∑

s≤x1/2,

∑

0≤u<N
gcd(u,N)

ei2π(s
2−n)u/N . (23)

Proof. Summing the product of Λ(qn+ a) and the characteristic function Q(n) of square
odd integers n ≤ x return

∑

n≤x
n odd

Λ(qn+ a)Q(n) =
∑

n≤x
n odd

Λ(qn + a)
1

ϕ(N)

∑

s≤x1/2,

∑

0≤u<N
gcd(u,N)

ei2π(s
2−n)u/N (24)

=
∑

m≤x1/2

odd m

Λ(qm2 + a),

where m2 = n ≤ x. The last line follows from the definition of Q(n), see Lemma 5.1. �

This concept has a straight forward extension to the cubic to linear identity, the quartic

to linear identity, et cetera.

7 Ramanujan Sums

Lemma 7.1. Given a large number x ≥ 1, let p ≥ 2 be a large prime such that x < p,
and let N = 2p. Further, assume that [x1/2] = 2k is an even integer. If n ≤ x is a fixed

odd integer, and s ≤ x1/2, then,

1. cN (s− n) =
∑

1≤u<N
gcd(u,N)=1

s−n 6=0

ei2πu(s−n)/N = (−1)s .

2. cN (s2 − n) =
∑

1≤u<N
gcd(u,N)=1
s2−n 6=0

ei2πu(s
2−n)/N = (−1)s .
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Proof. (1) For fixed odd integer n ≤ x, and s ≤ x1/2, where s− n 6= 0, the absolute value
of the difference of these integers satisfies 0 < |s− n| < p. Hence, for N = 2p,

gcd(s− n, 2p) =

{

1 if s ≡ 0mod 2,
2 if s ≡ 1mod 2.

(25)

The Ramanujan sum, see [1, Theorem 8.6], [21, Theorem 4.1], et cetera, has the value

cN (s− n) =
∑

d|gcd(s−n,N)

dµ(N/d) =

{

1 if gcd(s− n), 2p) = 1,
−1 if gcd(s− n), 2p) = 2.

(26)

Combining (25) and (26) yield cN (s − n) = (−1)s. (2) The same proof applies to this
case. �

Lemma 7.2. Given a large number x ≥ 1, let p ≥ 2 be a large prime such that x < p,
and let N = 2p. Further, assume that [x1/2] = 2k is an even integer. If n ≤ x is an odd

integer, then,

1.
∑

s≤x1/2

s−n 6=0

cN (s− n) =

{

0 if [x1/2] = 2k,

−1 if [x1/2] = 2k ± 1.

2.
∑

s≤x1/2

s2−n 6=0

cN (s2 − n) =

{

0 if [x1/2] = 2k,

−1 if [x1/2] = 2k ± 1.

Proof. (1) For a fixed odd integer n 6= s2 ≤ x, and s ≤ x1/2 such that s−n 6= 0, the finite
sum cN (s− n) = (−1)s, see Lemma 7.1. Thus,

∑

s≤x1/2

s−n 6=0

cN (s− n) =
∑

s≤x1/2

(−1)s =

{

0 if [x1/2] = 2k,

−1 if [x1/2] = 2k ± 1.
(27)

(2) The same proof applies to this case. �

8 Gauss Sums

Theorem 8.1. (Gauss) If N ≥ 1 is an integer, then,

∑

0≤s≤N−1

ei2πs
2/N =















√
N if N ≡ 1mod 4,

0 if N ≡ 2mod 4,

i
√
N if N ≡ 3mod 4,

(1 + i)
√
N if N ≡ 0mod 4.

(28)

Proof. A proof based on finite Fourier transform appears in [2, Theorem I.1.1], and a proof
based on the Poisson summation formula appears in [21, Corollary 9.16]. �

Theorem 8.2. If N ≥ 1 is an integer, and (n |N) is the quadratic symbol modulo N ,

then,

∑

1≤s≤N−1
gcd(s,N)=1

( s

N

)

ei2πs/N =















√
N if N ≡ 1mod 4,

0 if N ≡ 2mod 4,

i
√
N if N ≡ 3mod 4,

(1 + i)
√
N if N ≡ 0mod 4.

(29)
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Proof. Use the quadratic symbol (9) to remove the nonlinear term from the exponential
sum:

∑

0≤s<N

e−i2πs2/p =
∑

0≤s<N

(

1 +
( s

N

))

ei2πs/N (30)

=
∑

0≤s<N

ei2πs/N +
∑

0≤s<N

( s

N

)

ei2πs/N .

The first term vanishes, and the second term is the same as Theorem 8.1. Further, the
quadratic symbol

( s

N

)

=

{

±1 if gcd(s,N) = 1,
0 if gcd(s,N) 6= 1,

(31)

and (0 |N) = 0. These observations complete the proof. �

9 Euler Polynomial and Primes

The properties of the integers represented by the polynomial f(t) = t2 + 1 ∈ Z[t], such
as squarefree values, almost prime values, and prime values, etc., are heavily studied
in number theory. As early as 1760, Euler was developing the theory of prime values
of polynomials. In fact, Euler computed an impressive large table of the prime values
p = n2 + 1, see [12, p. 123]. Probably, the prime values of polynomials was studied by
other researchers before Euler. Later, circa 1910, Landau posed an updated question of
the same problem about the primes values of this polynomial. A heuristic argument, based
on circle methods, was demonstrated about two decades later. Surveys of the subsequent
developments appear in [23, p. 342], [24, Section 19], and similar references.

Corollary 9.1. Let x ≥ 1 be a large number. Then

∑

n≤x1/2

Λ(n2 + 1) ≫ x1/2

2
+O

(

x1/2e−c
√

(log x)b
)

, (32)

where c > 0 is an absolute constant.

Proof. Consider the polynomial f(t) = 4t2 + 1 ∈ Z[t], where q = 4 and a = 1. Then,
∑

n≤x1/2

Λ(n2 + 1) =
∑

n≤x1/2/2

Λ(4n2 + 1) +O (log x) (33)

≥
∑

n≤x1/2/2
n odd

Λ(4n2 + 1)

≫ 4

2ϕ(4)

x1/2

2
+O

(

x1/2e−c
√

(log x)b
)

,

where c > 0 is an absolute constant. The third line in (33) follows from Theorem 1.1. �

The standard heuristic for the prime values of the polynomial f(t) = t2+1 ∈ Z[t] predicts
the followings data.

Conjecture 9.1. ([16]) Let x ≥ 1 be a large number. Let Λ be the vonMangoldt function,

and let χ(n) = (n | p) be the quadratic symbol modulo p. Then

∑

n≤x1/2

Λ
(

n2 + 1
)

= cfx
1/2 +O

(

x1/2

log x

)

, (34)

8



where the density constant

cf =
∏

p≥3

(

1− χ(−1)

p− 1

)

= 1.37281346 . . . . (35)

A list of the prime values of the polynomial f(t) = t2 + 1 is archived in OEIS A002496.
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