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MACMAHON’S STATISTICS ON HIGHER-DIMENSIONAL PARTITIONS

ALIMZHAN AMANOV AND DAMIR YELIUSSIZOV

Abstract. We study some combinatorial properties of higher-dimensional partitions which

generalize plane partitions. We present a natural bijection between d-dimensional partitions

and d-dimensional arrays of nonnegative integers. This bijection has a number of important ap-

plications. We introduce a statistic on d-dimensional partitions, called the corner-hook volume,

whose generating function has the formula of MacMahon’s conjecture. We obtain multivariable

formulas whose specializations give analogues of various formulas known for plane partitions.

We also introduce higher-dimensional analogues of dual Grothendieck polynomials which are

quasisymmetric functions and whose specializations enumerate higher-dimensional partitions of

a given shape. Finally, we show probabilistic connections with a directed last passage percolation

model in Z
d.

1. Introduction

Higher-dimensional partitions are classical combinatorial objects introduced by MacMahon

over a century ago. While the concept itself is a straightforward generalization of the usual

integer partitions, the problems related to it are very challenging. For (2-dimensional) plane

partitions, MacMahon obtained his celebrated enumerative formulas [Mac16] (cf. [Sta99, Ch. 7]).

For general d-dimensional partitions, he only conjectured a formula of the volume generating

function, which was later computed to be incorrect [ABMM67].

Despite long interest and many connections to various fields including algebra, combinatorics,

geometry, probability and statistical physics, the subject remains rather mysterious—very little

is known about d-dimensional partitions for d ≥ 3. See [ABMM67, Knu70, Gov13] on some

computational and enumerative aspects; [MR03, BGP12, DG15] on asymptotic data and con-

nections to physics; [BBS13, Nek17, CK18] on further aspects particularly related to the theory

of Donaldson-Thomas invariants. (See also the remarks and references in final Sec. 8.)

At the same time, the theory of plane partitions has greatly developed, see [And98, Sta99,

Krat16] and many references therein. Its success mainly comes from the theory of symmetric

functions, especially by using the Robinson-Schensted-Knuth (RSK) correspondence and Schur

polynomials. The lack of tools for higher-dimensional generalizations makes it difficult to ap-

proach them, and here one can try to develop analogous methods. This paper is in this direction.

Let us summarize our results.

1.1. Higher-dimensional partitions and matrices. Firstly, we present a natural bijection

between d-dimensional arrays of nonnegative integers and d-dimensional partitions, see Sec. 3.

Roughly speaking, any d-dimensional partition can be viewed as a matrix of largest paths for

some source weight matrix. The bijection has nice properties which relate natural statistics for

both objects. We then give a number of applications.
1
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1.2. Corner-hook volume and interpretation of MacMahon’s numbers. One of the

main consequences of our bijection is the multivariable generating series presented in Theo-

rem 4.2 whose specializations allow to explicitly compute generating functions for certain sta-

tistics on d-dimensional partitions. In particular, we introduce two statistics on d-dimensional

partitions: corners cor(·) and corner-hook volume | · |ch (see Sec. 4 and 5 for definitions) with

generating functions shown below.

Theorem 1.1 (Corner-hook generating function, cf. Corollary 5.4). We have the following

generating function
∑

π

tcor(π)q|π|ch =
∞∏

n=1

(1− tqn)−(
n+d−2
d−1 ),

where the sum runs over d-dimensional partitions π.

For d = 2, this formula is equidistributed with Stanley’s trace generating function [Sta99,

Thm. 7.20.1] but the statistics are not identical. MacMahon conjectured [Mac16] that the

generating function
∞∑

n=0

md(n) q
n =

∞∏

n=1

(1− qn)−(
n+d−2
d−1 )

gives the volume generating function
∑

π q
|π| for d-dimensional partitions. This was shown

to be incorrect for d ≥ 3 [ABMM67]. However, from Theorem 1.1 we obtain the following

interpretation of MacMahon’s numbers md(n), thus ‘correcting’ his guess via the corner-hook

volume statistic so that

md(n) = |{d-dimensional partitions π : |π|ch = n}|.
More generally, we also prove results for generating functions over partitions with fixed shape.

Theorem 1.2 (Corner-hook generating function with fixed shape, cf. Theorem 5.2). Let ρ be

a shape of a fixed d-dimensional partition. We have the following generating function
∑

sh(π)⊆ρ

tcor(π)q|π|ch =
∏

(i1,...,id)∈ρ

(

1− tqi1+...+id−d+1
)−1

,

where the sum runs over d-dimensional partitions π of shape ρ.

1.3. d-dimensional Grothendieck polynomials. To develop tools for studying d-dimensional

partitions, one might be looking for analogues of Schur polynomials whose specializations allow

to enumerate them. We work in a slightly different direction. In Sec. 6 we define higher-

dimensional analogues of dual Grothendieck polynomials. These new functions are indexed by

shapes of d-dimensional partitions and in specializations they compute the number of such par-

titions. For d = 2, they turn into the dual symmetric Grothendieck polynomials (indexed by

partitions) known as K-theoretic analogues of Schur polynomials introduced in [LP07] (see also

[Yel17, Yel19] for more on these functions).

Let us illustrate our results in the special case for (3-dimensional) solid partitions. We define

the polynomials (see eq. (8)) gπ(x;y; z) in three sets of variables indexed by plane partitions

{π}. These polynomials enumerate solid partitions within a given shape, e.g. we have

g[b]×[c]×[d](1
a+1; 1b; 1c) = number of solid partitions inside the box [a]× [b]× [c]× [d].
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We show that the following generating series identity holds.

Theorem 1.3 (Cauchy-type identity for 3d Grothendieck polynomials, cf. Corollary 6.5). We

have
∑

π

gπ(x;y; z) =

a∏

i=1

b∏

j=1

c∏

k=1

1

1− xiyjzk
,

where the sum runs over plane partitions π with shape inside the rectangle b× c.

It is known that dual Grothendieck polynomials (for d = 2) are symmetric (in x). As we

show, this is no longer the case for d ≥ 3. However, we prove that these new functions are

quasisymmetric, the next known class containing symmetric functions (see e.g. [Sta99, Ch. 7.19]).

Theorem 1.4 (cf. Theorem 6.9). We have: gπ(x;y; z) is quasisymmetric in x.

1.4. Last passage percolation in Z
d. It turns out that these problems are closely related to

the directed last passage percolation model with geometric weights in Z
d (see [Mar06] for a survey

on this probabilistic model). We prove that d-dimensional Grothendieck polynomials naturally

compute distribution formulas for this model (see Theorem 7.1). See Sec. 7 for details.

2. Preliminary definitions

We use the following basic notation: N is the set of nonnegative integers; Z+ is the set of

positive integers; {e1, . . . , ed} is the standard basis of Zd; and [n] := {1, . . . , n}.
A d-dimensional N-matrix is an array (ai1,...,id)i1,...,id≥1 of nonnegative integers with only

finitely many nonzero elements. A d-dimensional partition is a d-dimensional N-matrix (πi1,...,id)

such that

πi1,...,id ≥ πj1,...,jd for i1 ≤ j1, . . . , id ≤ jd.

Let M(d) be the set of d-dimensional N-matrices and P(d) be the set of d-dimensional partitions.

For π = (πi1,...,id) ∈ P(d), the volume (or size) of π denoted by |π| is defined as

|π| =
∑

i1,...,id

πi1,...,id .

Any partition π is uniquely determined by its diagram D(π) which is the set

D(π) := {(i1, . . . , id, i) ∈ Z
d+1
+ : 1 ≤ i ≤ πi1,...,id}.

The shape of π denoted by sh(π) is the set

sh(π) := {(i1, . . . , id) ∈ Z
d
+ : πi1,...,id > 0}.

Note that sh(π) is a diagram of some (d− 1)-dimensional partition. Let

M(n1, . . . , nd) = {(ai) : ai ∈ N, i ∈ [n1]× · · · × [nd]}
be the set of [n1]× · · · × [nd] N-matrices and

P(n1, . . . , nd+1) := {π ∈ P(d) : D(π) ⊆ [n1]× · · · × [nd+1]}
be the set of boxed d-dimensional partitions.

For d = 2, 3 partitions are called plane partitions and solid partitions.1

1In some literature, there is a +1 shift in dimensions, when partitions are associated with their diagrams.
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3. A bijection between d-dimensional N-matrices and partitions

3.1. Last passage matrix. A lattice path in Z
d is called directed if it uses only steps of the

form i → i+ eℓ for i ∈ Z
d and ℓ ∈ [d]. Given a d-dimensional N-matrix A = (ai1,...,id), define the

last passage times 2

Gi1,...,id := max
Π : (i1,...,id)→∞d

∑

(j1,...,jd)∈Π

aj1,...,jd ,

where the maximum is over directed lattice paths Π which start at (i1, . . . , id) ∈ Z
d
+. It is easy

to see that the following recurrence relation holds

Gi = ai +max
ℓ∈[d]

Gi+eℓ , i ∈ Z
d
+.(1)

Notice that the matrix G = (Gi)i∈Zd
+
∈ P(d) is a d-dimensional partition.

3.2. The bijection. Define the map Φ : M(d) → P(d) as follows

Φ : A 7−→ G(2)

Let ρ ⊂ Z
d
+ be a shape of some d-dimensional partition (or a diagram of a (d − 1)-dimensional

partition). Let

P(ρ, n) := {π ∈ P(d) : sh(π) ⊆ ρ, π1,...,1 ≤ n}

be the set of d-dimensional partitions whose shape is a subset of ρ and the largest entry is at

most n. Let

M(ρ, n) := {A = (ai) ∈ M(d) : ai > 0 =⇒ i ∈ ρ, G1,...,1 ≤ n}

be the set of d-dimensional N-matrices whose support (i.e. the set of indices corresponding to

positive entries) lies inside ρ and the largest last passage time is at most n.

Theorem 3.1. The map Φ defines a bijection between the sets M(ρ, n) and P(ρ, n).

Proof. Let A = (ai) ∈ M(ρ, n). By construction of the map, it is not difficult to see that

π = Φ(A) ∈ P(ρ, n). Indeed, we have the largest last passage time π1,...,1 ≤ n, and sh(π) ⊆ ρ

since if ai > 0 then i ∈ ρ.

Conversely, given π ∈ P(ρ, n), to reconstruct the inverse map Φ−1, using the recurrence (1)

we define the matrix A = (ai) given by

ai = πi −max
ℓ∈[d]

πi+eℓ ≥ 0, i ∈ Z
d
+.(3)

Let G = (Gi) = Φ(A). Let us check that G = π and A ∈ M(ρ, n). Since sh(π) ⊆ ρ we have

ai = 0 for all i 6∈ ρ (in particular, A ∈ M(ρ,∞)). Hence Gi = πi = 0 for all i 6∈ ρ. Consider

the directed graph Γ on the vertex set i ∈ ρ and edges i → i+ eℓ (when i+ eℓ ∈ ρ) for ℓ ∈ [d].

Then Γ is acyclic (i.e. has no directed cycles). Notice that ai = πi = Gi if a vertex i ∈ Γ has no

outgoing edges. Since Γ is acyclic, we can sort its vertices in linear order (i(1), . . . , i(m)) so that

2 We use terminology related to probabilistic model of last passage percolation, see Sec. 7.
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Figure 1. A plane partition π ∈ P(2) whose sh(π) corresponds to the partition

(3, 2); its boxed diagram presentation as a pile of cubes in R
3; and boxes of this

diagram which correspond to corners.

the edges go only in one direction i(ℓ) → i(k) for ℓ < k. We already noticed that πi(m) = Gi(m) .

Then inductively on ℓ = m− 1, . . . , 1 we have

πi(ℓ) = ai(ℓ) + max
i(ℓ)→i(k)

πi(k) = ai(ℓ) + max
i(ℓ)→i(k)

Gi(k) = Gi(ℓ) .

Therefore, π = G. In particular, G1,...,1 ≤ n and hence A ∈ M(ρ, n). �

Corollary 3.2. The map Φ defines a bijection between each of the following pairs of sets:

(i) M([n1]× · · · × [nd], nd+1) and P(n1, . . . , nd+1)

(ii) M(n1, . . . , nd) and P(n1, . . . , nd,∞)

(iii) M(ρ,∞) and P(ρ,∞)

(iv) M(d) and P(d).

Remark 1. The item (i) above states that the set of boxed d-dimensional partitions with diagrams

inside the box [n1] × · · · × [nd+1] is equal to the number of [n1] × · · · × [nd] N-matrices whose

largest last passage time is at most nd+1.

Remark 2. For d = 2, the map Φ gives a bijection between N-matrices and plane partitions. This

bijection is essentially equivalent (up to diagram rotations) to the one studied in [Yel19a, Yel19b].

Note that one can construct d-dimensional partitions G dynamically using an insertion type

procedure as in RSK. Note also that similar largest path (last passage time) properties hold for

RSK as well, see [Pak01, Sag01].

4. Multivariate identities

4.1. Corners. Given a partition π ∈ P(d), define the set of corners as follows

Cor(π) := {i ∈ Z
d+1
+ : i ∈ D(π), i+ eℓ 6∈ D(π) for all ℓ ∈ [d]}.

(Here {eℓ} is the standard basis in Z
d+1.) Let cor(π) := |Cor(π)| be the number of corners of

π. Define also the set of top corners as follows

Cr(π) := {i ∈ Z
d+1
+ : i ∈ D(π), i+ eℓ 6∈ D(π) for all ℓ ∈ [d+ 1]} ⊆ Cor(π).

Let cr(π) := |Cr(π)| be the number of top corners of π. Note that the set of corners Cr(π)

uniquely determines the partition π.
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Example 4.1. Let d = 2 and π be the plane partition given in Fig. 1. We then have

Cor(π) = {(i, j, k) ∈ D(π) : (i+ 1, j, k), (i, j + 1, k) 6∈ D(π)}
= {(1, 1, 4), (1, 3, 1), (1, 3, 2), (2, 2, 1), (2, 2, 2), (2, 2, 3)}

Cr(π) = {(i, j, k) ∈ D(π) : (i+ 1, j, k), (i, j + 1, k), (i, j, k + 1) 6∈ D(π)}
= {(1, 1, 4), (1, 3, 2), (2, 2, 3)}

where corners in Fig. 1 correspond to local configurations and top corners correspond to the

configurations .

4.2. Main formulas. For each i ∈ [d], let x(i) = (x
(i)
1 , x

(i)
2 , . . .) be a countable set of indetermi-

nate variables.

Theorem 4.2. Let ρ ⊂ Z
d
+ be a fixed shape of a d-dimensional partition. We have the following

multivariate generating function identities

∑

π∈P(d),
sh(π)⊆ρ

∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id
=

∏

(i1,...,id)∈ρ

(

1− x
(1)
i1

· · · x(d)id

)−1
(4)

∑

π∈P(d),
sh(π)=ρ

∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id
=

∏

(i1,...,id)∈Cr(ρ)

x
(1)
i1

· · · x(d)id

∏

(i1,...,id)∈ρ

(

1− x
(1)
i1

· · · x(d)id

)−1
(5)

It is convenient to define weights of matrices and partitions as follows. Given a matrix

A = (ai1,...,id) ∈ M(d), we associate to it a multivariable monomial weight

wA :=
∏

(i1,...,id)∈Z
d
+

(

x
(1)
i1

· · · x(d)id

)ai1,...,id
.

Given a partition π ∈ P(d), we associate to it a multivariable monomial weight

w(π) :=
∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id
.

Lemma 4.3. Let A = (ai) ∈ M(d) and π = (πi) = Φ(A) ∈ P(d). Then wA = w(π).

Proof. Let us first show that

πi −max
ℓ∈[d]

πi+eℓ = |{id+1 : (i, id+1) ∈ Cor(π)}|, i ∈ Z
d
+.

Indeed, (i, id+1) ∈ Cor(π) iff id+1 > πi+eℓ for all ℓ ∈ [d]. From the description of Φ we then have

the following equalities

ai = πi −max
ℓ∈[d]

πi+eℓ = |{id+1 : (i, id+1) ∈ Cor(π)}|, i = (i1, . . . , id) ∈ Z
d
+.
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Now we have

wA =
∏

(i1,...,id)∈Z
d
+

(

x
(1)
i1

· · · x(d)id

)ai1,...,id

=
∏

(i1,...,id)∈Z
d
+

(

x
(1)
i1

· · · x(d)id

)|{id+1:(i1,...,id,id+1)∈Cor(π)}|

=
∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id

= w(π)

which gives the needed. �

Lemma 4.4. Let A = (ai) ∈ M(ρ,∞) and π = (πi) = Φ(A) ∈ P (ρ,∞). The following are

equivalent:

(a) ai > 0 for all i ∈ Cr(ρ)

(b) sh(π) = ρ.

Proof. Let i ∈ Cr(ρ). Assume (a) holds. Since A ∈ M(ρ,∞) we have ai+eℓ = 0 for all ℓ ∈ [d].

Therefore, πi = ai > 0 and πi+eℓ = 0. Hence sh(π) = ρ.

Assume (b) holds. Then we have πi+eℓ = 0 for all ℓ ∈ [d]. Therefore, ai = πi > 0. �

Proof of Theorem 4.2. Firstly note that
∑

A=(ai)∈M(ρ,∞)

wA =
∑

A=(ai)∈M(ρ,∞)

∏

(i1,...,id)∈ρ

(

x
(1)
i1

· · · x(d)id

)ai1,...,id

=
∏

(i1,...,id)∈ρ

(

1− x
(1)
i1

· · · x(d)id

)−1
.

On the other hand, using Theorem 3.1 and Lemma 4.3 we have
∑

A=(ai)∈M(ρ,∞)

wA =
∑

π∈P(ρ,∞)

w(π) =
∑

π∈P(d), sh(π)⊆ρ

∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id

and hence the identity (4) follows.

Let M(ρ,∞) = {A ∈ M(ρ,∞) : i ∈ Cr(ρ) =⇒ ai > 0}. Similarly, note that
∑

A=(ai)∈M(ρ,∞)

wA =
∑

A=(ai)∈M(ρ,∞)

∏

(i1,...,id)∈Cr(ρ)

x
(1)
i1

· · · x(d)id

∏

(i1,...,id)∈ρ

(

x
(1)
i1

· · · x(d)id

)ai1,...,id

=
∏

(i1,...,id)∈Cr(ρ)

x
(1)
i1

· · · x(d)id

∏

(i1,...,id)∈ρ

(

1− x
(1)
i1

· · · x(d)id

)−1
.

On the other hand, using Lemma 4.4 we have
∑

A=(ai)∈M(ρ,∞)

wA =
∑

π∈P(ρ,∞),sh(π)=ρ

w(π) =
∑

π∈P(d), sh(π)=ρ

∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id

and hence the identity (5) follows. �
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4.3. Some special cases. Let us list few immediate special cases of the above formulas.

Corollary 4.5 (Boxed case). We have

∑

π∈P (n1,...,nd,∞)

∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id
=

n1∏

i1=1

· · ·
nd∏

id=1

(

1− x
(1)
i1

· · · x(d)id

)−1

Corollary 4.6 (Solid partitions, d = 3). Let ρ be a plane partition. We have
∑

π∈P(3), sh(π)⊆D(ρ)

∏

(i,j,k,ℓ)∈Cor(π)

xiyjzk =
∏

(i,j,k)∈D(ρ)

(1− xiyjzk)
−1

∑

π∈P(3), sh(π)=D(ρ)

∏

(i,j,k,ℓ)∈Cor(π)

xiyjzk =
∏

(i,j,k)∈D(ρ)

(1− xiyjzk)
−1

∏

(i,j,k)∈Cr(ρ)

xiyjzk.

Corollary 4.7 (Plane partitions, d = 2). Let λ be a partition. We have
∑

π∈P(2), sh(π)⊆λ

∏

(i,j,k)∈Cor(π)

xiyj =
∏

(i,j)∈D(λ)

(1− xiyj)
−1

∑

π∈P(2), sh(π)=λ

∏

(i,j,k)∈Cor(π)

xiyj =
∏

(i,j)∈D(λ)

(1− xiyj)
−1

∏

(i,j)∈Cr(λ)

xiyj.

Remark 3. For d = 2, the formula in the special rectangular case (up to rotation of diagrams of

plane partitions) was proved in [Yel19b].

5. MacMahon’s numbers and statistics

5.1. Corner-hook volume. Let π ∈ P(d) be a d-dimensional partition. For each point (i1, . . . , id),

define the cohook length

ch(i1, . . . , id) := i1 + . . . + id − d+ 1.

Define now the corner-hook volume statistics | · |ch : P(d) → N computed as follows

|π|ch :=
∑

(i,id+1)∈Cor(π)

ch(i).

Example 5.1. Let d = 2 and π be the plane partition given in Fig. 1. Recall that

Cor(π) = {(i, j, k) ∈ D(π) : (i+ 1, j, k), (i, j + 1, k) 6∈ D(π)}
= {(1, 1, 4), (1, 3, 1), (1, 3, 2), (2, 2, 1), (2, 2, 2), (2, 2, 3)}

and hence we have

|π|ch = (1 + 1− 1) + (1 + 3− 1) + (1 + 3− 1) + (2 + 2− 1) + (2 + 2− 1) + (2 + 2− 1) = 16.

Theorem 5.2. Let ρ ⊂ Z
d
+ be a fixed shape of a d-dimensional partition. We have the following

generating functions
∑

π∈P(d), sh(π)⊆ρ

tcor(π)q|π|ch =
∏

(i1,...,id)∈ρ

(

1− tqi1+···+id−d+1
)−1

,

∑

π∈P(d), sh(π)=ρ

tcor(π)q|π|ch = tcr(ρ)q|ρ|cr
∏

(i1,...,id)∈ρ

(

1− tqi1+···+id−d+1
)−1

,
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where

|ρ|cr :=
∑

(i1,...,id)∈Cr(ρ)

ch(i1, . . . , id).

Proof. In Theorem 4.2 set x
(1)
i = tqi and x

(k)
i = qi−1 for all i ≥ 1 and k ≥ 2. �

Corollary 5.3 (Boxed version). We have

∑

π∈P (n1,...,nd,∞)

tcor(π)q|π|ch =

n1∏

i1=1

· · ·
nd∏

id=1

(

1− tqi1+···+id−d+1
)−1

.

Corollary 5.4 (Full generating function). We have

∑

π∈P(d)

tcor(π)q|π|ch =
∏

n≥1

(1− tqn)−(
n+d−2
d−1 ).

Corollary 5.5 (Interpretation of MacMahon’s numbers). We have

∑

π∈P(d)

q|π|ch =
∏

n≥1

(1− qn)−(
n+d−2
d−1 ) =

∞∑

n=0

md(n)q
n

and hence

md(n) = |{π ∈ P(d) : |π|ch = n}|,

i.e. md(n) is the number d-dimensional partitions whose corner-hook volume is n.

Corollary 5.6 (Pyramid partitions). Let ∆d(m) be a d-dimensional partition whose diagram is

D(∆d(m)) = {(i1, . . . , id+1) : Z
d+1
+ : i1 + · · ·+ id+1 − d ≤ m}. We have

∑

π∈P (∆d−1(m),∞)

tcor(π)q|π|ch =

m∏

n=1

(1− tqn)−(
n+d−2
d−1 ).

Corollary 5.7 (q = 1 specialization). We have

∑

π∈P(d), sh(π)⊆ρ

tcor(π) = (1− t)−|ρ|,

∑

π∈P(d), sh(π)=ρ

tcor(π) = tcr(ρ)(1− t)−|ρ|.

Then the number of π ∈ P(d) of shape ρ with k corners is equal to
(k−cr(ρ)+|ρ|−1

|ρ|−1

)
.

5.2. Solid partitions, d = 3. Let us restate some of these results for solid partitions. Let

π ∈ P(3) be a solid partition. We then have

|π|ch =
∑

(i,j,k,ℓ)∈Cor(π)

(i+ j + k − 2).
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Corollary 5.8. Let ρ be a fixed plane partition. We have

∑

π∈P(3), sh(π)⊆ρ

tcor(π)q|π|ch =
∏

(i,j,k)∈D(ρ)

(

1− tqi+j+k−2
)−1

∑

π∈P(3), sh(π)=ρ

tcor(π)q|π|ch = tcr(ρ)q|ρ|cr
∏

(i,j,k)∈D(ρ)

(

1− tqi+j+k−2
)−1

and in particular the boxed version

∑

π∈P (n1,n2,n3,∞)

tcor(π)q|π|ch =

n1∏

i=1

n2∏

j=1

n3∏

k=1

(

1− tqi+j+k−2
)−1

5.3. Plane partitions, d = 2. Similarly, let us restate some of these results for plane partitions.

Let π ∈ P(2) be a plane partition. We then have

|π|ch =
∑

(i,j,k)∈Cor(π)

(i+ j − 1).

Corollary 5.9. Let λ be a fixed partition. We have
∑

π∈P(2), sh(π)⊆λ

tcor(π)q|π|ch =
∏

(i,j)∈D(λ)

(
1− tqi+j−1

)−1

∑

π∈P(2), sh(π)=λ

tcor(π)q|π|ch = tcr(λ)q|λ|cr
∏

(i,j)∈D(λ)

(
1− tqi+j−1

)−1

and in particular the boxed version

∑

π∈P (n1,n2∞)

tcor(π)q|π|ch =

n1∏

i=1

n2∏

j=1

(
1− tqi+j−1

)−1

Let us look on the last boxed formula. On the other hand, the following trace generating

function is known for plane partitions (see e.g. [Sta99, Thm 7.20.1])

n1∏

i=1

n2∏

j=1

(
1− tqi+j−1

)−1
=

∑

π∈P (n1,n2∞)

ttr(π)q|π|,

where tr(π) :=
∑

i πi,i is the trace of a plane partition. Therefore, in this case we actually have

the following equidistribution result.

Theorem 5.10 (Equidistribution of (tr, vol) and (cor, ch-vol) for plane partitions). We have

∑

π∈P (n1,n2∞)

tcor(π)q|π|ch =
∑

π∈P (n1,n2∞)

ttr(π)q|π|.

Remark 4. Up to a variation of the | · |ch statistic, this result was proved by the second author

in [Yel19b]. We also have a direct bijective argument for (a stronger version of) this identity

which is somewhat long and will be addressed elsewhere.
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Remark 5. The formulas in Theorem 5.2 can be viewed as higher-dimensional analogues of the

well-known formula
∑

sh(π)=λ

q|π| =
∏

(i,j)∈D(λ)

(

1− qhλ(i,j)
)−1

,

where λ is a (usual) partition, hλ(i, j) = λi − i+ λ′
j − j + 1 are hook lengths, and the sum runs

over reverse plane partitions π, see [Sta99, Ch. 7.22]. Its combinatorial proof is known as the

Hillman-Grassl correspondence [HG76].

Remark 6. There are various enumeration and generating function formulas known for classes

of symmetric plane partitions, see [Sta86]. Similarly, one can define classes of symmetries of

diagrams for d-dimensional partitions. Are there any explicit corner-hook generating functions

over symmetric d-dimensional partitions as in Theorem 5.2?

5.4. Other statistics. Theorem 4.2 is a source for many statistics over d-dimensional partitions,

whose generating functions can be computed explicitly by taking appropriate specializations. For

instance, another interesting statistic | · |c : P(d) → N is given by

|π|c :=
∑

(i1,...,id+1)∈Cor(π)

i1, π ∈ P(d).

Then via the substitution x
(1)
i → qi and x

(k)
i = 1 for all k ≥ 2 and i ≥ 1 we obtain the following

generating function

∑

π∈P (n1,...,nd,∞)

q|π|c =

n1∏

i=1

(1− qi)−n2···nd .

Another curious statistic is given by

|π|p :=
∑

(i1,...,id+1)∈Cor(π)

(i1 + 2 i2 + . . .+ d id), π ∈ P(d)

for which via the substitution x
(k)
i = qki for all k, i ≥ 1, we obtain the following generating

function
∑

π∈P(d)

q|π|p =
∞∏

n=1

(1− qn)−p(n,d),

where p(n, d) is the number of integer partitions of n into d distinct parts.

6. d-dimensional Grothendieck polynomials

6.1. Definitions. Let π be a d-dimensional partition. Define the set

sh1(π) := {(i2, . . . , id+1) : (i1, . . . , id+1) ∈ D(π)}
which can be viewed as a shape of π with respect to the first coordinate. Note that if π ∈
P(n1, . . . , nd+1), then sh1(π) is a diagram of (d−1)-dimensional partition from P(n2, . . . , nd+1).

Alternatively, sh1(π) is the diagram of the partition (π1,i2,...,id). For example, if π is the plane

partition in Fig. 1, then sh1(π) corresponds to the partition (4, 3, 2) which is the first row of π.

Throughout this section, let us assume that we have the sets of variables

x(i) = (x
(i)
1 , . . . , x(i)ni

), i ∈ [d].
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Definition 6.1. Let ρ be a (d− 1)-dimensional partition from the set P(n2, . . . , nd+1). Define

the d-dimensional Grothendieck polynomials in d sets of variables as follows

gρ(x
(1); . . . ;x(d)) :=

∑

π : sh1(π)=ρ

∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id
,(6)

where the sum runs over d-dimensional partitions π ∈ P(n1, . . . , nd+1) with sh1(π) = ρ (here ρ

is identified with its diagram).

In the specialization x
(k)
i = 1 for all k ≥ 2, we simply denote these polynomials by gρ(x) =

gρ(x1, x2, . . .) in one set of variables x(1) = x = (x1, . . . , xn1) so that

gρ(x) =
∑

π : sh1(π)=ρ

n1∏

i=1

x
ci(π)
i , where ci(π) := |{i : (i, i) ∈ Cor(π)}|(7)

and the sum runs over π ∈ P(n1, . . . , nd+1).

6.2. Examples.

Example 6.2. Consider the case d = 2. Let λ ∈ P(n2, n3) be a partition and x(1) = x,x(2) = y.

Then (7) becomes

gλ(x) =
∑

π : sh1(π)=λ

n1∏

i=1

x
ci(π)
i , where ci(π) = |{(j, k) : (i, j, k) ∈ Cor(π)}|

and the sum runs over plane partitions π ∈ P(n1, n2, n3). One can see that this gives the dual

symmetric Grothendieck polynomials defined in [LP07] (but phrased in a slightly different yet

equivalent form).3 More generally, (6) becomes

gλ(x;y) =
∑

π : sh1(π)=λ

∏

(i,j,k)∈Cor(π)

xiyj

which gives a generalized version as in [Yel19b] or by changing g̃λ(x;y) = yλgλ(x;y
−1) the

refined version introduced in [GGL16]. These polynomials are symmetric in the variables x.

Example 6.3. Let d = 3, (n1, n2, n3, n4) = (3, 2, 2, 2), and x(1) = x = (x1, x2, x3), x
(2) = y =

(y1, y2), x
(3) = z = (z1, z2). Note that in this case, 3-dimensional Grothendieck polynomials are

indexed by plane partitions and defined as sums over solid partitions. Consider few examples.
(a) Let ρ = 2 1 . Then we have

gρ(x;y; z) = (x2

1
x2 + x2

1
x3 + x1x

2

2
+ x1x

2

3
+ x2

2
x3 + x2x

2

3
+ 2x1x2x3) · y31z21z2

+ (x2

1
+ x2

2
+ x2

3
+ x1x2 + x1x3 + x2x3) · y21z1z2

which coincides with the ordinary dual Grothendieck polynomial indexed by the partition

λ = (2, 1), i.e. in this case we have gλ(x) = gρ(x,1,1).

(b) Let ρ =
1 1

1
. Then we have

gρ(x;y; z) = (x2

1
x2 + x2

1
x3 + x2

2
x3) · y21y2z21z2 + 2x1x2x3 · y21y2z21z2

+ (x2

1
+ x2

2
+ x2

3
+ 2x1x2 + 2x1x3 + 2x2x3) · y1y2z1z2

3 The polynomials {gλ} are usually defined using reverse plane partitions, see [LP07, Yel17, Yel19].
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and in particular,

gρ(x) = x2

1
x2 + x2

1
x3 + x2

2
x3 + 2x1x2x3 + x2

1
+ x2

2
+ x2

3
+ 2(x1x2 + x1x3 + x2x3).

(c) Let ρ =
2 1

1
. Then we have

gρ(x,y, z) = (3x2

1
x2x3 + 3x1x

2

2
x3 + 2x1x2x

2

3
+ x2

1
x2

2
+ x2

1
x2

3
+ x2

2
x2

3
+ x3

1
x2 + x3

1
x3 + x3

2
x3) · y31y2z31z2

+ (4x1x2x3 + 2x2

1
x2 + 2x2

1
x3 + 2x2

2
x3 + 3x1x

2

2
+ 3x1x

2

3
+ 3x2x

2

3
+ x3

1
+ x3

2
+ x3

3
) · y2

1
y2z

2

1
z2.

Let us illustrate few examples of solid partitions contributing to the last expansion. Each

2
1

1

k

ji

sh1(π) = ρ

2
1

12
1

11
1

k

ji

π(1)

2
1

12
1

11
1

k

ji

π(2)

picture here represents a solid partition as a filling of a diagram of some plane partition with

numbers written on top of each box (to make entries of inner boxes visible, some facets are

removed). On the left, we have sh1(π) = ρ. The next two are solid partitions π(1) and π(2)

represented as fillings of diagrams of plane partitions sh(π(1)) =
2 1

2 1

1 1

and sh(π(2)) =
2 1

2 1

2

;

each has the weight w(π(i)) = x22x3 · y21y2z21z2; and both have the same sh1(π
(i)) = ρ (i = 1, 2)

displayed on the left.

6.3. Properties. We now prove some properties of d-dimensional Grothendieck polynomials.

Theorem 6.4 (Cauchy-type identity). Let η ∈ P(n2, . . . , nd) be a (d−2)-dimensional partition.

Let n×η be a (d−1)-dimensional partition with the diagram D(n×η) = {(i, i) : i ∈ [n], i ∈ D(η)}.
Then we have the following generating series:

∑

ρ∈P(η,∞)

gρ(x
(1); . . . ;x(d)) =

∏

(i1,...,id)∈D(n1×η)

(

1− x
(1)
i1

· · · x(d)id

)−1
.

Proof. Notice that we have
∑

ρ∈P(η,∞)

gρ(x
(1); . . . ;x(d)) =

∑

ρ∈P(η,∞)

∑

sh1(π)=ρ

w(π) =
∑

π∈P(n1×η,∞)

w(π)

On the other hand, from Theorem 4.2 we have

∑

π∈P(n1×η,∞)

w(π) =
∏

(i1,...,id)∈D(n1×η)

(

1− x
(1)
i1

· · · x(d)id

)−1

which gives the result. �
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Corollary 6.5. We have

∑

ρ∈P(n2,...,nd,∞)

gρ(x
(1); . . . ;x(d)) =

n1∏

i1=1

· · ·
nd∏

id=1

(

1− x
(1)
i1

· · · x(d)id

)−1
.

Lemma 6.6 (Simple branching rule). We have

gπ(1, x1, . . . , xn) =
∑

ρ⊆π

gρ(x1, . . . , xn).

Proof. Given a plane partition τ with sh1(τ) = π, it contributes to the l.h.s. the weight
∏n

i=1 x
ci+1(τ)
i (see eq. (7)). Let us form the new partition ρ ⊆ π with the diagram

{(i, i) : (i+ 1, i) ∈ D(τ)}

so that
∏n

i=1 x
ci+1(τ)
i =

∏n
i=1 x

ci(ρ)
i which contributes to the r.h.s. In other words, remove from

D(τ) the points with the first coordinate 1, then decrease by 1 the first coordinates for the

remaining points. It is not difficult to see that this defines a proper weight-preserving bijection

between both sides of the equation. �

Denote 1k = (1, . . . , 1) with k ones.

Proposition 6.7 (Boxed specialization). We have

g[n2]×···×[nd+1](1
n1+1) = g[n2]×···×[nd+1](1

n1+1; 1n2 ; . . . ; 1nd) = |P(n1, . . . , nd+1)|.

Proof. Denote B = [n2]×· · ·×[nd+1]. Let ρ be a partition diagram inside B. From the definition

of g we immediately obtain that

gρ(1
n1 ; . . . ; 1nd) = |{π ∈ P(n1, . . . , nd+1) : sh1(π) = ρ}|.

Therefore, using the branching formula above we get

gB(1
n1+1; 1n2 ; . . . ; 1nd) =

∑

ρ⊆B

gρ(1
n1 ; 1n2 ; . . . ; 1nd)

=
∑

ρ⊆B

|{π ∈ P(n1, . . . , nd+1) : sh1(π) = ρ}|

= |P(n1, . . . , nd+1)|
which gives the needed. �

6.4. Quasisymmetry. It is known that the dual Grothendieck polynomials gλ(x) are symmet-

ric in x (in the case d = 2). As Example 6.3 shows, the generalized polynomials gρ are not

necessarily symmetric for d ≥ 3. However, as we show in this subsection, these polynomials are

always quasisymmetric.

Definition 6.8. A polynomial f ∈ Z[x1, . . . , xn] is called quasisymmetric if for all 1 ≤ ℓ1 <

· · · < ℓk ≤ n, 1 ≤ j1 < · · · < jk ≤ n, and a1, . . . , ak ∈ Z+ we have

[xa1ℓ1 · · · x
ak
ℓk
] f = [xa1j1 · · · x

ak
jk
] f,

where [xα]f denotes the coefficient of the monomial xα in f .

Theorem 6.9. We have: gρ(x
(1); . . . ;x(d)) is quasisymmetric in the variables x(1).
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Proof. To simplify notation let us denote x(1) = x = (x1, x2, . . .). We need to show that for all

a1, . . . , ak ∈ Z+, 1 ≤ ℓ1 < · · · < ℓk ≤ n1, 1 ≤ j1 < · · · < jk ≤ n1 we have

[xa1ℓ1 · · · x
ak
ℓk
] gρ = [xa1j1 · · · x

ak
jk
] gρ.

Let L and R be the sets of d-dimensional partitions which contribute to the l.h.s. and r.h.s.

respectively. We are going to construct a weight-preserving bijection φ : L → R.

Let π ∈ L for which we have π ∈ P(n1, . . . , nd+1) with sh1(π) = D(ρ) and w(π) = xa1ℓ1 · · · x
ak
ℓk
×

w′, where w′ is the the remaining product which does not contain the variables x.

For a matrix X = (xi)i∈Zd
+
, define the submatrices X(ℓ) = (xℓ,i)i∈Zd−1

+
. Let |X| denotes the

sum of the entries of X.

Let A = (ai) = Φ−1(π) ∈ M(n1, . . . , nd). Note that A(ℓ) ∈ M(n2, . . . , nd) for ℓ ∈ [n1]. Since

Φ preserves weights, i.e. wA = w(π) (see Lemma 4.3) we must have A(ℓ) 6= 0 iff ℓ ∈ {ℓ1, . . . , ℓk}.
We then have

w(π) = wA =

n1∏

i=1

x
|A(i)|
i

∏

i=(i2,...,id)

(x
(2)
i2

· · · x(d)id
)ai,i =

k∏

i=1

xaiℓi × w′.

Let us now construct another matrix B = (bi) ∈ M(n1, . . . , nd) so that B(j) 6= 0 iff j ∈
{j1, . . . , jk} and B(ji) = A(ℓi) for all i ∈ [k]. Let π′ = Φ(B). We then clearly have

w(π′) = wB =
k∏

i=1

xaiji × w′.

Let us show that sh1(π
′) = D(ρ) = sh1(π). Recall that sh1(π

′) is the diagram of the partition

(π′
1,i2,...,id

). By definition of Φ, each entry π′
1,i2,...,id

is the largest weight directed path from

(1, i2, . . . , id) to (n1, . . . , nd) through the matrix B. Similarly, each entry π1,i2,...,id is the largest

weight directed path from (1, i2, . . . , id) to (n1, . . . , nd) through the matrix A. We then have

π1,i2,...,id = max
Π:(1,i2,...,id)→(n1,...,nd)

∑

(ℓ,i)∈Π, ℓ∈{ℓ1,...,ℓk}

aj

= max
Π:(1,i2,...,id)→(n1,...,nd)

∑

(j,i)∈Π, j∈{j1,...,jk}

bj

= π′
1,i2,...,id

.

Hence π′ ∈ R, we can set φ : π 7→ π′ and it is a well-defined bijection between L and R. �

Let us define the boxed polynomials

F(n1,...,nd+1)(x
(1); . . . ;x(d)) :=

∑

π∈P(n1,...,nd+1)

∏

(i1,...,id+1)∈Cor(π)

x
(1)
i1

· · · x(d)id
,

which is a bounded version of the Cauchy product as by Theorem 4.2 we have

lim
nd+1→∞

F(n1,...,nd+1)(x
(1); . . . ;x(d)) =

n1∏

i1=1

· · ·
nd∏

id=1

(

1− x
(1)
i1

· · · x(d)id

)−1
.
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These polynomials can also be expanded as follows:

F(n1,...,nd+1)(x
(1); . . . ;x(d)) =

∑

ρ∈P(n2,...,nd+1)

∑

sh1(π)=ρ

w(π) =
∑

ρ∈P(n2,...,nd+1)

gρ(x
(1); . . . ;x(d)).

Corollary 6.10 (Full quasisymmetry of boxed polynomials). We have: F(n1,...,nd+1) is qua-

sisymmetric in each set of the variables x(1); . . . ;x(d) independently.

Proof. The quasisymmetry in x(1) is immediate from the previous theorem. The same holds for

any other set of variables by noting that the definitions of Cor(π) and weights π are symmetric

in the first d coordinates and hence we may repeat the proof by ‘rotation’, i.e. moving any

coordinate as the first one. �

Definition 6.11. Let A = (ai1,...,id) ∈ M(n1, . . . , nd). For each ℓ ∈ [d], consider the matrices

B
(ℓ)
i = (ai1,...,id)iℓ=i, i.e. submatrices of A with fixed ℓ-th coordinate. Define the vectors

sℓ(A) := (|B(ℓ)
1 |, |B(ℓ)

2 |, . . .),
where |B| denotes the sum of entries of B. For example, if d = 2, then s1(A) is the vector of

row sums of A, and s2(A) is the column sums of A. Let us also say that A is a packed matrix if

for each ℓ ∈ [d], the sequence sℓ(A) does not contain zeros between its positive entries. Denote

by pack(A) the packed matrix formed from A by removing its zero submatrices B
(ℓ)
i = 0.

For a composition α = (α1, . . . , αk) ∈ Z
k
+, recall the monomial quasisymmetric functions

Mα(x) :=
∑

i1<...<ik

xα1
i1

· · · xαk

ik
.

Note that they form a basis of the algebra of quasisymmetric functions.

It is easy to see that

F(n1,...,nd,∞) =
∑

A∈M(n1,...,nd)

wA =
∑

α(1),...,α(d)

m
α(1),...,α(d) (x

(1))α
(1) · · · (x(d))α

(d)
,

where m
α(1),...,α(d) is the number of A ∈ M(n1, . . . , nd) with sℓ(A) = α(ℓ) ∈ N

nℓ. The following

result is a finite boxed version of this expansion.

Theorem 6.12 (Monomial basis expansion of boxed polynomials). We have

F(n1,...,nd+1) =
∑

α(1),...,α(d)

m
(nd+1)

α(1),...,α(d) Mα(1)(x(1)) · · ·Mα(d)(x(d)),

where the sum runs over compositions α(1), . . . , α(d) such that |α(i)| = |α(j)| for all i, j, and the

coefficient m
(nd+1)

α(1),...,α(d) is equal to the number of packed matrices A ∈ M([n1]× · · · × [nd], nd+1)

such that sℓ(A) = α(ℓ) for all ℓ ∈ [d].

Proof. Let P ∈ M([n1]×· · ·×[nd], nd+1) be a packed matrix and let M(P ) be the set of matrices

A ∈ M([n1]×· · ·× [nd], nd+1) such that pack(A) = P . Let sℓ(P ) = α(ℓ). Then (by an argument

as in Theorem 6.9) it is not difficult to obtain that we have
∑

A∈M(P )

wA = m
(nd+1)

α(1),...,α(d) Mα(1)(x(1)) · · ·Mα(d)(x(d)).
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Therefore, we obtain

F(n1,...,nd+1) =
∑

π∈P(n1,...,nd+1)

w(π)

=
∑

A∈M([n1]×···×[nd],nd+1)

wA

=
∑

P packed

∑

A∈M(P )

wA

=
∑

α(1),...,α(d)

m
(nd+1)

α(1),...,α(d) Mα(1)(x(1)) · · ·Mα(d)(x(d))

as needed. �

Remark 7. For d = 2, packed matrices appear in the algebra of matrix quasisymmetric functions,

see [DHT02].

6.5. Dual Grothendieck polynomials, d = 2. Recall that in this case (see Example 6.2), we

get the following definition of polynomials gλ(x;y) indexed by partitions λ. We define

gλ(x;y) :=
∑

π : sh1(π)=λ

∏

(i,j,k)∈Cor(π)

xiyj

where the sum runs over plane partitions π. The polynomials gλ(x;y) are generalizations of

dual Grothendieck polynomials which correspond to the specialization gλ(x) = gλ(x;1). In fact,

gλ(x;y) is symmetric in x. The Cauchy-type identity in Corollary 6.5 becomes

∑

λ∈P(n2,∞)

gλ(x;y) =

n1∏

i=1

n2∏

j=1

1

1− xiyj
,

which was proved in [Yel19a, Yel19b]. The boxed specialization formula in Proposition 6.7

becomes the following

g[n2]×[n3](1
n1+1) = |P(n1, n2, n3)|,

the number of plane partitions inside the box [n1]× [n2]× [n3], for which there is also the famous

MacMahon boxed product formula

|P(n1, n2, n3)| =
n1∏

i=1

n2∏

j=1

n3∏

k=1

i+ j + k − 1

i+ j + k − 2
.

Using determinantal formulas for dual Grothendieck polynomials [Yel17] we also have the fol-

lowing ‘coincidence’ formula (see [Yel19a, Yel19b]) connecting them with the Schur polynomials

{sλ} as follows

g[n2]×[n3](x) = s[n2]×[n3](x, 1
n2−1).
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6.6. 3d Grothendieck polynomials, d = 3. In this case, we get the following definition of

polynomials gρ(x;y; z) indexed by plane partitions ρ. We define

gρ(x;y; z) :=
∑

π : sh1(π)=ρ

∏

(i,j,k,ℓ)∈Cor(π)

xiyjzk,(8)

where the sum runs over solid partitions π ∈ P(n1, n2, n3, n4). Note also that if ρ satisfies

D(ρ) = {(1, i, j) : (i, j) ∈ D(λ)} where λ is a partition, we then have gρ(x;y;1) = gλ(x;y)

reduces to the 2d case discussed above. The polynomials gρ(x;y; z) are quasisymmetric in x.

Then Cauchy-type identity in Corollary 6.5 becomes

∑

ρ∈P(n2,n3,∞)

gρ(x;y; z) =

n1∏

i=1

n2∏

j=1

n3∏

k=1

(1− xiyjzk)
−1 .

The boxed specialization formula becomes the following

g[n2]×[n3]×[n4](1
n1+1) = |P(n1, n2, n3, n4)|,

the number of solid partitions inside the box [n1]× [n2]× [n3]× [n4].

Remark 8 (On higher-dimensional Schur polynomials and SSYT). Note that the d-dimensional

Grothendieck polynomials gρ(x) are inhomogeneous. It is well known that for d = 2 we have

gλ = sλ + lower degree terms. By analogy, the top degree homogeneous component of gρ(x)

denoted by sρ(x) can be viewed as a higher-dimensional analogue of Schur polynomials. It sums

over a subset of d-dimensional partitions which are analogous to semistandard Young tableaux

(SSYT) for the case d = 2. By Theorem 6.9, {sρ} are also quasisymmetric polynomials. Are

there any interesting properties of these functions and tableaux?

7. Last passage percolation in Z
d

In this section we consider a directed last passage percolation model with geometric weights

and show its connections with d-dimensional Grothendieck polynomials studied in the previous

section.

Let W = (wi)i∈Zd
+
be a random matrix with i.i.d. entries wi which have geometric distribution

with parameter q ∈ (0, 1), i.e.

Prob(wi = k) = (1− q) qk, k ∈ N.

Define the last passage times as follows

G(i) = G(1 → i) = max
Π:1→i

∑

j∈Π

wj, i ∈ Z
d
+,

where the maximum is over directed lattice paths Π from (1, . . . , 1) to i. Using Kingman’s

subadditivity theorem, one can show that there is a deterministic limit shape ϕ : Rd
≥0 → R≥0

(see [Mar06]) such that as n → ∞ we have a.s. convergence

1

n
G(⌊nx⌋) → ϕ(x), x ∈ R

d
≥0.

The case d = 2 is exactly solvable and ϕ(x, y) = (x + y + 2
√
qxy)/(1 − q); moreover, the

fluctuations around the shape are of order n1/3 and tend to the Tracy-Widom distribution

[Joh00]. However, much less is known for d ≥ 3.
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Now we are going to show that d-dimensional Grothendieck polynomials naturally appear in

distribution formulas for this model.

Theorem 7.1. Let n1, . . . , nd ∈ Z+ and ρ ∈ P(n2, . . . , nd,∞) be a (d−1)-dimensional partition.

Denote n = (n2 + 1, . . . , nd + 1) and N = n1 · · ·nd. We have the following joint distribution

formula

Prob (G(n1,n− i) = ρi : i ∈ [n2]× · · · × [nd]) = (1− q)N gρ(q, . . . , q
︸ ︷︷ ︸

n1 times

).

Proof. Let us flip and truncate the matrix W to get W ′ = (w′
i) = (w(n1+1,n)−i)i∈[n1]×···×[nd].

Let π = (πi) ∈ P(n1, . . . , nd,∞) and (ai) = Φ−1(π). We obtain

Prob(W ′ = Φ−1(π)) =
∏

i∈[n1]×···×[nd]

Prob(w′
i = ai) = (1− q)NqS(π),

where S(π) =
∑

i ai. Note that from (7) we have

(1− q)Ngρ(q, . . . , q
︸ ︷︷ ︸

n1 times

) = (1− q)N
∑

π : sh1(π)=ρ

qc1(π)+...+cn1 (π)

=
∑

π : sh1(π)=ρ

(1− q)NqS(π)

=
∑

π : sh1(π)=ρ

Prob(W ′ = Φ−1(π)),

where the sum runs over π ∈ P(n1, . . . , nd,∞). Observe that we have Φ(W ′) = (G(i))i∈Zd
+
.

Therefore, now we get

Prob (G(n1,n− i) = ρi : i ∈ [n2]× · · · × [nd]) =
∑

π : sh1(π)=ρ

Prob(Φ(W ′) = π)

= (1− q)Ngρ(q, . . . , q
︸ ︷︷ ︸

n1 times

)

as needed. �

Corollary 7.2 (Single point distribution formula). We have

Prob(G(n1, . . . , nd) ≤ n) = (1− q)N g[n2]×···×[nd]×[n](1, q, . . . , q
︸ ︷︷ ︸

n1 times

)

Proof. Follows by combining the theorem with Lemma 6.6. �

Corollary 7.3 (The case d = 2). Let λ ∈ P(n2,∞) be a partition. We have

Prob (G(n1, n2 + 1− i) = λi : i ∈ [n2]) = (1− q)n1n2 gλ(q, . . . , q
︸ ︷︷ ︸

n1 times

).

Remark 9. This formula (which shows that dual symmetric Grothendieck polynomials arise

naturally in the last passage percolation model) was proved in [Yel19a] and in more general case

with different parameters in [Yel20]. Note that in this case we can obtain many determinantal

formulas.
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Remark 10. Theorem 7.1 suggests a probability distribution on the set P(n2, . . . , nd,∞) of

(d− 1)-dimensional partitions defined as follows:

Probg(ρ) := (1− q)n1···nd gρ(q, . . . , q
︸ ︷︷ ︸

n1 times

), ρ ∈ P(n2, . . . , nd,∞).

8. Concluding remarks and open questions

8.1. After defining plane partitions in EC2 [Sta99, Ch. 7.20], Richard Stanley writes:

“ ... It now seems obvious to define r-dimensional partitions for any r ≥ 1.

However, almost nothing significant is known for r ≥ 3.”

Few more remarks and references on the subject can be found in an early survey [Sta71] (on the

theory of plane partitions). For more recent works, see [MR03, BGP12, Gov13, DG15].

8.2. Asymptotics. MacMahon’s numbers md(n) have the following asymptotics [BGP12]

lim
n→∞

n−d/(1+d) logmd(n) =
1 + d

d
(d ζ(1 + d))1/(1+d) ,

where ζ is the Riemann zeta function (which is computed based on the explicit formula for

the generating function). It was conjectured in [BGP12] and (for solid partitions) in [MR03]

supported by numerical experiments, that pd(n), the number of d-dimensional partitions of

volume (size) n, has exactly the same asymptotics. However, later computations reported in

[DG15] suggest that this is not the case (for d = 3) and that p3(n) is asymptotically larger

than m3(n) (despite the fact that m3(n) = p3(n) for n ≤ 5 and m3(n) > p3(n) for the next

many values of n [ABMM67, DG15]; cf. the sequences A000293, A000294 in [OEIS]). See also

[Ekh12] and a useful resource [Gov] for more related data. Given our interpretation for md(n)

(Corollary 5.5), is it possible to compare them with pd(n)?

8.3. d-dimensional Grothendieck polynomials. Are there any (algebraic, determinantal)

formulas for d-dimensional Grothendieck polynomials? They will be important for at least two

applications: enumeration of boxed higher-dimensional partitions, and computing distribution

formulas (or performing asymptotic analysis) for the last passage percolation problem discussed

above. Note that for d = 2, there are several determinantal formulas (Jacobi-Trudi, bialternant

types) known, see [Yel17, AY20].
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