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Abstract

A matching of the set [2n] = {1, 2, ..., 2n} is a partition of [2n] into blocks with two
elements, i.e. a graph on [2n] such that every vertex has degree one. Given two matchings
σ and τ , we say that σ is a pattern of τ when σ can be obtained from τ by deleting some of
its edges and consistently relabelling the remaining vertices. This is a partial order relation
turning the set of all matchings into a poset, which will be called the matching pattern poset.
In this paper, we continue the study of classes of pattern avoiding matchings, initiated by
Chen, Deng, Du, Stanley and Yan (2007), Jelinek and Mansour (2010), Bloom and Elizalde
(2012). In particular, we work out explicit formulas to enumerate the class of matchings
avoiding two new patterns, obtained by juxtaposition of smaller patterns, and we describe
a recursive formula for the generating function of the class of matchings avoiding the lifting
of a pattern and two additional patterns. Finally, we introduce the notion of unlabeled
pattern, as a combinatorial way to collect patterns, and we provide enumerative formulas
for two classes of matchings avoiding an unlabeled pattern of order three. In one case, the
enumeration follows from an interesting bijection between the matchings of the class and
ternary trees.

1 Introduction

Let n ∈ N∗ and set as usual [n] = {1, 2, ..., n}. A matching of [2n] is a partition of [2n] into
blocks having two elements. Note that a matching of [2n] is the same as a graph on [2n] such
that every vertex has degree one, hence we will borrow some standard terminology from graph
theory, as well as the usual representation of graphs using diagrams consisting of dots and lines.
In particular, every matching of [2n] will be represented either by a circular or by a linear chord
diagram, as shown in Figure 1. Let τ be a matching of [2n]. The integer n, i.e. the number of
edges of τ , will be called the order of τ and will be denoted by |τ |. The set of all matchings
will be denoted by M and the set of all matchings of order n will be denoted by Mn. Given
e ∈ τ , the integers min(e) and max(e) will be called the left vertex and the right vertex of e
respectively. Given a subset S of τ and e ∈ S, we will say that e is the leftmost (respectively
rightmost) edge of S when min(e) ≤ min(f) (respectively max(e) ≥ max(f)) for every f ∈ S.
Following [JM], we will represent τ by means of the unique integer sequence τ̃ ∈ [n]2n such
that τ̃min(e) = τ̃max(e) and τ̃min(e) < τ̃min(f) for every e, f ∈ τ such that min(e) < min(f). Using
this encoding, the vertices of τ are represented by the elements of τ̃ and two vertices of τ are
connected by an edge when the corresponding components of τ̃ are equal (see Figure 2). In the
following, we will always identify matchings with their corresponding integer sequences. Let σ
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Figure 1: The circular chord diagram representing the perfect matching
{{1, 8}, {2, 5}, {3, 6}, {4, 7}} on the set [8] and the corresponding linear chord diagram.

1 2 1 2 3 4 3 4

Figure 2: Encoding the matching {{1, 3}, {2, 4}, {5, 7}, {6, 8}} in the sequence 12123434.

and τ be matchings. The matching σ(τ + |σ|) will be called the juxtaposition of σ and τ (where
τ + |σ| denotes the sequence obtained from τ by adding |σ| to each of its elements). Its linear
chord diagram can be indeed represented by juxtaposing the linear chord diagrams of σ and τ ,
respectively. The matching 1(τ + 1)1 will be called the lifting of τ . Its linear chord diagram can
be represented by nesting the linear chord diagram of σ into an additional edge. The matching
obtained from the sequence τn...τ2τ1 by suitably renaming its elements so to obtain a valid
matching will be called the reversal of τ and denoted by τ . Its linear chord diagram can be
represented by reflecting the linear chord diagram of τ along a vertical line.

Given k ∈ N∗, let σ be a matching of [2k] and i = (i1, ..., ik) ∈ [2n]2k. We say that i is an
occurrence of σ in τ when i1 < i2 < ... < i2k and {ip, iq} ∈ τ if and only if {p, q} ∈ σ, for every
p, q ∈ [2k] (see Figure 3). We say that σ is a pattern of τ , and write σ ≤ τ , when there is an
occurrence of σ in τ , and that τ avoids σ otherwise. The relation ≤ is a partial order turning
the set of all matchings into a poset, which we will call the matching pattern poset. If S is a set
of matchings, the class of all matchings avoiding every pattern in S will be denoted by M(S),
the class of all matchings in M(S) of order n will be denoted by Mn(S) and the generating
function of the sequence {|Mn(S)|}n∈N will be denoted by M(S, z). We say that σ and τ are
Wilf-equivalent when M(σ, z) =M(τ, z).

In Section 3 we investigate classes of the formM(σ(τ+|σ|)) andM(1(σ+1)1, χ, χ), providing
a general approach which yields enumerative formulas for some patterns σ, τ and χ. Following
a recursive approach already described in [JM], we reduce the enumeration of M(σ(τ + |σ|))
to the enumeration of a specific class of matchings µ(σ) (depending on σ) and the class M(τ),
finding an explicit answer for the prefix σ = 1212. Moreover, we introduce a suitable pattern

1 2 3 4 5 6 7 8

Figure 3: (2,4,5,7) is an occurrence of the perfect matching {{1, 3}, {2, 4}} in the perfect match-
ing {{1, 8}, {2, 5}, {3, 6}, {4, 7}}.
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χ = 123132 to relate the generating function of M(1(σ + 1)1, χ, χ) to the generating function
of M(σ, χ, χ).

In Section 4 we introduce the notion of unlabeled matching, which is an equivalence class
of matchings having the same unlabeled circular chord diagram. This seems a reasonable and
combinatorially meaningful way to collect patterns. As a first result concerning unlabeled
pattern avoidance, we provide enumerative formulas for two classes of matchings avoiding an
unlabeled pattern of order three, as well as a bijection between matchings avoiding a certain
unlabeled pattern and ternary trees.

Finally, Section 5 is a first step towards the study of the enumerative combinatorics of the
intervals in the matching pattern poset, and Section 6 provides some hints for further work.

2 Previous work

Given a permutation σ of [n], we can construct a matching of [2n] by connecting the ver-
tices {1, ..., n} with the vertices {n+ 1, ..., 2n} in the order prescribed by σ, thus obtaining the
matching corresponding to the integer sequence 12...nσ1...σn. A matching of this kind will be
called a permutational matching and it is immediate to notice that a matching of [2n] is per-
mutational if and only if it avoids the pattern 1122, so that |Mn(1122)| = n!. Two remarkable
examples of permutational matchings are 123...n123...n and 123...nn...321, which will be called
the totally crossing and the totally nesting matching of [2n] respectively. It is easy to see that
the map sending every permutation to the corresponding permutational matching is a poset
embedding, hence we can regard the permutation pattern poset as a subposet of the matching
pattern poset. Throughout this paper we will denote by Cn = 1

n+1

(
2n
n

)
the nth Catalan number

and by C(z) the generating function of Catalan numbers. As for other enumerative results
on pattern avoidance, it is well known that noncrossing matchings have a Catalan structure,
therefore |Mn(1212)| = Cn, and it is also well known that nonnesting matchings are counted by
the same sequence, that is |Mn(1221)| = Cn. More surprisingly, it was proved in [CDDSY] that
the matchings 123...k123...k and 123...kk...321 are Wilf-equivalent for every k ∈ N∗. No closed
formula for the number of matchings avoiding these patterns is available in general, although
it was proved in [GB] that |Mn(123123)| = CnCn+2 − C2

n+1. Furthermore, Wilf-equivalences
between several classes of patterns are established in [JM] through bijective methods; for in-
stance, as an immediate consequence of Lemmas 3.7 and 3.10 in that paper, one can deduce the
following useful fact.

Proposition 2.1. If σ and σ′ are two Wilf-equivalent matchings and τ and τ ′ are two Wilf-
equivalent matchings, then σ(τ + |σ|) and σ′(τ ′ + |σ′|) are Wilf-equivalent.

Moreover, the same paper also contains an enumerative result which reduces the enumeration
of M(11(σ + 1)) to the enumeration of M(σ) in a recursive fashion. Finally, aside for the
classes of patterns mentioned above, the only (up to Wilf-equivalence) further class of matchings
avoiding a small pattern has been enumerated in [BE], proving that

M(123132, z) =
54z

1 + 36z − (1− 12z)
3
2

.

In the same paper, some enumerative results are given for most of the classes of matchings
avoiding a pair of permutational patterns of order three. Nevertheless, enumerating all the
remaining classes of matchings avoiding a single patterns of order three remains an open problem
and it is likely to be a hard one. Indeed, it is suggested in [BE] that enumeration of the class
of matchings avoiding the pattern 123231 could be related to the enumeration of the class of
permutations avoiding 1324, which is considered to be a very hard problem.
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3 Pattern avoidance

3.1 The juxtaposition of two patterns

Let σ and τ be two matchings. In this section we investigate the class of matchings avoiding
the juxtaposition of σ and τ . To this purpose, we define a set of matchings depending on σ.
Let n ∈ N and λ be a matching of order n. We will say that λ minimally contains σ when it
contains σ and the matching obtained from λ by deleting its rightmost edge does not contain
σ. Denote by µ(σ) the set of matchings minimally containing σ, by µn(σ) the set of elements
in µ(σ) with order n and by µ(σ, z) the corresponding generating function. Generalizing an
approach already used in [JM], the following formula allows us to relate the enumeration of
M(σ(τ + |σ|)) to the enumeration of M(σ), µ(σ) and M(τ).

Proposition 3.1. Let σ and τ be matchings and n ∈ N, with n ≥ |σ|. Then

|Mn(σ(τ + |σ|))| = |Mn(σ)|+
n∑

`=|σ|

n−∑̀
k=0

(
2`+ k − 1

k

)(
2n− 2`− k

k

)
k!|µ`(σ)||Mn−`−k(τ)| (1)

Proof. Given λ ∈ Mn(σ(τ + |σ|)), then either λ ∈ Mn(σ) or σ is a pattern of λ. From now
on we assume that the latter case occurs, since the former one is taken into account by the
first summand in the right hand side of (1). For h ∈ [2n], we denote by λ≤h the pattern of λ
consisting of all the edges of λ with both vertices smaller than or equal to h, by λ≥h the pattern
of λ consisting of all the edges of λ with both vertices bigger than or equal to h and finally by
λh the pattern of λ consisting of all the edges of λ that are neither in λ≤h nor in λ≥h. Note
that an edge of λ belongs to λh if and only if its left vertex is smaller than or equal to h and
its right vertex is bigger than or equal to h.

λ≤h λ≥h

λh

Now let h denote the smallest integer such that λ≤h contains an occurrence of σ (of course such
an h exists because λ≤2n = λ) and let ` be the order of λ≤h. Then, by definition, λ≤h ∈ µ`(σ) and
` ∈ {|σ|, ..., n}, hence there are |µ`(σ)| possible choices for λ≤h. Furthermore, λh ∈ Mk(1122)
for some k ∈ {0, ..., n− `}, hence there are |Mk(1122)| = k! possible choices for λh. Moreover,
λ≥h ∈ Mn−`−k(τ) because λ ∈ Mn(σ(τ + |σ|)), hence there are |Mn−`−k(τ)| possibile choices
for λ≥h. Finally, notice that h = 2`+ k and that the vertex h necessarily belongs to λ≤h, hence
the left vertices of the edges of λh can be chosen among the vertices of λ smaller than h in(
2`+k−1

k

)
ways. Similarly, the right vertices of the edges of λh can be chosen among the vertices

of λ bigger than h in
(
2n−2`−k

k

)
ways. This explains the factors in the remaining summands of

the right hand side of (1) and concludes the proof.

Unfortunately, Formula (1) is not very informative, as enumerating µ(σ) is often as difficult
as enumerating M(σ) itself. Nevertheless, one might still hope that this task can be achieved
for some special prefixes σ. For instance, note that, for σ = 11 and n ∈ N∗, we easily recover
the formula

|Mn(11(τ + 1))| =
n∑
k=1

k!

(
2n− k − 1

k − 1

)
|Mn−k(τ)|
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which can be found in [JM]. The next proposition shows that the prefix σ = 1212 can be also
succesfully addressed.

Proposition 3.2. Let n ∈ N, with n ≥ 2, then

(i)

|µn(1212)| =
n−2∑
k=0

(2k + 1)CkCn−k−2 + Ck|µn−k−1(1212)|; (2)

(ii)

µ(1212, z) =
C(z)− 1

(1− 2zC(z))(1− zC(z))
; (3)

(iii) |µn(1212)| is the (n− 1)th term of sequence A002054 in [S], i.e.

|µn(1212)| =
(

2n− 1

n− 2

)
.

Proof. (i) Let λ ∈ µn(1212) and let λ̂ denote the matching obtained from λ by removing its
rightmost edge, so that λ̂ ∈ Mn−1(1212). Using the standard decomposition of noncrossing
matchings, we can write λ̂ = π(|π| + 1)(σ + |π| + 1)(|π| + 1), where π ∈ Mn−k−2(1212) and
σ ∈Mk(1212) for some k ∈ {0, ..., n− 2}, as shown in the picture below:

π σ

Since 1212 ≤ λ, there are two cases:

• The rightmost edge of λ crosses the rightmost edge of λ̂, as shown in the picture below:

π σ

In this case the left vertex of the rightmost edge of λ can be inserted in all the possible
places between the vertices of the rightmost edge of λ̂, that are 2k+1 possible places, and
therefore there are (2k + 1)CkCn−k−2 possible choices for λ.

• The rightmost edge of λ crosses an edge of π, as shown in the picture below:

π σ

In this case, the pattern of λ consisting of π and the rightmost edge of λ minimally contains
1212, hence there are Ck|µn−k−1(1212)| possible choices for λ.

5



Now summing over k ∈ {0, ..., n− 2} we find (2).
(ii) It follows from (i) that

µ(1212, z) =
∑
n≥2

(
n−2∑
k=0

(2k + 1)CkCn−k−2

)
zn +

∑
n≥2

(
n−2∑
k=0

Ck|µn−k−1(1212)|

)
zn

Now

∑
n≥2

(
n−2∑
k=0

(2k + 1)CkCn−k−2

)
zn = z2

∑
n≥0

(
n∑
k=0

(2k + 1)CkCn−k

)
zn

= 2z2
∑
n≥0

(
n∑
k=0

kCkCn−k

)
zn + z2

∑
n≥0

(
n∑
k=0

CkCn−k

)
zn

= z2(2zC ′(z)C(z) + C(z)2)

On the other hand, we have C(z) = 1 + zC(z)2, therefore

2zC(z)C ′(z) + C(z)2 = (zC(z)2)′ = (C(z)− 1)′ = C ′(z)

hence

C ′(z) =
C(z)2

1− 2zC(z)

and finally ∑
n≥2

(
n−2∑
k=0

(2k + 1)CkCn−k−2

)
zn =

z2C(z)2

1− 2C(z)
=
z(C(z)− 1)

1− 2zC(z)
.

Similarly, we get

∑
n≥2

(
n−2∑
k=0

Ck|µn−k−1(1212)|

)
zn = z2

∑
n≥0

(
n∑
k=0

Ck|µn−k+1(1212)|

)
zn

= z2C(z)
∑
n≥0
|µn+1(1212)|zn

= zC(z)µ(1212, z)

Summing up, we have

µ(1212, z) =
z(C(z)− 1)

1− 2zC(z)
+ zC(z)µ(1212, z),

hence

µ(1212, z) =
z(C(z)− 1)

(1− 2zC(z))(1− zC(z))
.

(iii) The generating function for sequence A002054 can be found in [S] and is given by

f(z) =
zC(z)3

1− 2zC(z)
.
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On the other hand

zC(z)3(1− zC(z)) = C(z)(C(z)− 1)(1− zC(z)) =

C(z)(C(z)− 1− zC(z)2 + zC(z)) = zC(z)2 = C(z)− 1,

hence µ(1212, z) = zf(z), thus proving (3).

Unfortunately, we have not been able to provide a neat combinatorial argument to explain
the appearance of the binomial coefficient in Proposition 3.2. However, observe that, as a
byproduct, we also find the following identity:

n−1∑
k=1

k∑
i=1

∑
α∈(N∗)k
|α|=n

(2αi − 1)Cα1−1...Cαk−1 =

(
2n− 1

n− 2

)

which holds for every n ∈ N such that n ≥ 2. Indeed, the left hand side of the above equation
counts all matchings in µn(1212) by deleting the rightmost edge, then counting the resulting
1212−avoiding matchings according to the number of factors. As an immediate consequence of
Proposition 2.1, 3.1 and 3.2 we deduce the following.

Theorem 3.1. Let σ ∈ {1212, 1221} and let τ be a matching. Then, for n ≥ 2,

|Mn(σ(τ + 2))| = Cn +
n∑
`=2

n−∑̀
k=0

(
2`− 1

`− 2

)(
2`− 1 + k

k

)(
2(n− `)− k

k

)
k!|Mn−`−k(τ)|.

Specializing τ in Theorem 3.1, we are able to enumerate a couple of new classes of matchings
avoiding a single pattern (see also Figure 3.1).

Corollary 3.1. Let n ∈ N, with n ≥ 2, and σ ∈ {1212, 1221}.

(i) If τ ∈ {1212, 1221}, then

|Mn(σ(τ + 2))| = Cn +
n∑
`=2

n−∑̀
k=0

(
2`− 1

`− 2

)(
2`+ k − 1

k

)(
2n− 2`− k

k

)
k!Cn−`−k.

(ii) If τ ∈ {123123, 123321}, then

|Mn(σ(τ+2))| = Cn+

n∑
`=2

n−∑̀
k=0

(
2`− 1

`− 2

)(
2`+ k − 1

k

)(
2n− 2`− k

k

)
k!(Cn−`−kCn−`−k+2−C2

n−`−k+1).

3.2 The lifting of a pattern

In this section we investigate classes of matchings avoiding the lifting of a given matching σ.
The enumeration of such classes seems to be a hard problem in general, since a special instance
of it is the enumeration of matchings avoiding the pattern 123231, which is the lifting of 1212,
and it was remarked in Section 1 that this is likely to be a hard problem. However, if we
impose additional constraints, namely the avoidance of a special pattern χ and its reversal χ,
the description of the structure of matchings avoiding the lifting of σ becomes more accessible.
We start by fixing some preliminary definitions. Let e and f be any two edges of σ. We say
that e is nested in f when min(f) < min(e) and max(e) < max(f). We say that e is a nested

7



n Mn(12123434) Mn(1212345345)

1 1 1
2 3 3
3 15 15
4 104 105
5 910 944
6 9503 10341
7 114317 133132
8 1547124 1961919
9 23169162 32441303
10 379308106 592718236

Figure 4: The first terms of the sequences of Corollary 3.1. This sequences are not recorded in
[S].

edge when it is nested in some edge of σ and that e is a top edge otherwise. The pattern of σ
consisting of all the nested edges of σ will be called the core of σ and the pattern of σ consisting
of all the top edges of σ will be called the roof of σ. Note that, by definition, the roof of σ
is a nonnesting matching. We say that a matching is connected when it is nonempty and it is
not the juxtaposition of two nonempty matchings. Let S be a set of matchings and n ∈ N,
we denote by M∗(S) the class of all connected matchings, by M∗n(S) the set of matchings in
M∗(S) of order n and by M∗(S, z) the generating function of M∗(S). In the following we will
make some use of the so-called symbolic method, borrowing some standard constructions and
notations from [FS], such as disjoint union, cartesian product and composition of combinatorial
classes (in particular, the operator Seq), which will allow us to easily translate combinatorial
descriptions into generating functions.

Remark. Note that, by definition,M(S) = Seq(M∗(S)) and thereforeM(S, z) = 1
1−M∗(S,z) . In

particular, C(z) =M(1221, z) = 1
1−M∗(1221,z) , which leads to

M∗(1221, z) =
C(z)− 1

C(z)
=
zC(z)2

C(z)
= zC(z)

which means that, for every n ∈ N∗, there are Cn−1 connected nonnesting matchings of order
n.

We are now in a position to state and prove the main result of this section.

Theorem 3.2. Let σ be a connected matching and set χ = 123132, so that χ = 123213. Then

M(1(σ + 1)1, χ, χ, z) =
1

1− zM(σ, χ, χ, z)C(zM(σ, χ, χ, z)2)
.

Proof. Let n ∈ N∗, λ ∈ M∗n(1(σ + 1)1, χ, χ) and m be the order of its roof. The matching λ
is required to avoid both χ and χ, that are the matchings represented by the following linear
chord diagrams:

8



This means that every nested edge of λ is forced to never cross a top edge of λ. Therefore
the core of λ can be decomposed as the juxtaposition of 2m − 1 (possibly empty) matchings
λ1, ..., λ2m−1 ∈M(σ, χ, χ), moreover the occurrences of these factors in λ are separated by the
vertices of the top edges of λ. Conversely, every matching constructed as above belongs to
the class M∗(1(σ + 1)1, χ, χ), because σ is connected and so no occurrence of σ can show up
by juxtaposing two patterns in the class M(σ, χ, χ). Thus M∗n(1(σ + 1)1, χ, χ) is the set of
matchings obtained by choosing some m ∈ N∗ and a matching inM∗m(1221), then replacing its
edges other than the rightmost one with ({ } ×M∗(σ, χ, χ)2)−structures and the rightmost
edge with a ({ } ×M∗(σ, χ, χ))−structure. An instance of this decomposition is illustrated
in the following figure when the roof is 121323.

It follows that the combinatorial classM∗(1(σ+1)1, χ, χ) is isomorphic to the combinatorial
class

{ } ×M(σ, χ, χ)×
∑
m≥1
M∗m(1221)× ({ } ×M(σ, χ, χ)2)m−1

and this isomorphism immediately translates into the following expression for the generating
function

M∗(1(σ + 1)1, χ, χ, z) = zM(σ, χ, χ, z)
∑
m≥1

[zm](zC(z))(zM(σ, χ, χ, z)2)m−1

= zM(σ, χ, χ, z)
∑
m≥0

Cm(zM(σ, χ, χ, z)2)m

= zM(σ, χ, χ, z)C(zM(σ, χ, χ, z)2).

Now the claim follows from the above Remark.

Note that, at least in principle, iterating Theorem 3.2 allows us to find expressions for
the generating function of M(12...k(σ + k)k...21, χ, χ) in terms of the generating function of
M(σ, χ, χ), for every k ∈ N∗. As an immediate application, we are able to compute the
generating function of two classes of matchings avoiding three patterns of order three.

Corollary 3.2. The following equality holds

M(123231, 123132, 123213, z) =M(123321, 123132, 123213, z) =
1

1− zC(z)C(C(z)− 1)

and |Mn(123231, 123132, 123213)| = |Mn(123321, 123132, 123213)| is the nth term of sequence
A125188 in [S].

Proof. Let σ ∈ {1212, 1221}, then it follows from Theorem 3.2 that

M(1(σ + 1)1, χ, χ, z) =
1

1− zM(σ, χ, χ, z)C(M(σ, χ, χ, z))

9



where χ = 123132 and χ = 123213. Moreover, M(σ, χ, χ, z) = M(σ, z) = C(z) and the first
claim follows. The generating function for sequence A125188 can be found in [S] and is given
by

f(z) =
1 + zC(z)−

√
1− zC(z)− 5z

2z(1 + C(z))

Applying the change of variable y = zC(z), so that z = y(1− y) and C(z) = 1
1−y , some routine

computations show that f(z) = 1
1−zC(z)C(C(z)−1) , hence the second claim also follows.

Sequence A125188 counts Dumont permutations of the first kind avoiding the patterns
2413 and 4132, but we have not been able to find any bijection with our classes of pattern
avoiding matchings. Note that, for σ ∈ {1212, 1221}, iterating Theorem 3.2 allows to prove
that M(12...k(σ + k)k...21, χ, χ, z) is an algebraic function of C(z), hence it is itself algebraic,
for every k ∈ N∗.

4 Unlabeled pattern avoidance

In this section we introduce the notion of unlabeled matching, which provides a way to
collect patterns that are combinatorially equivalent, in a sense that is specified below. Given
n ∈ N∗, let γn denote the 2n−cycle (1 2 3 ... 2n) on [2n] and let σ and τ be two match-
ings of order n. We say that σ and τ are ciclically equivalent when there exists k ∈ [2n]
such that {i, j} ∈ σ if and only if {γkn(i), γkn(j)} ∈ τ , for every i, j ∈ [2n]. In other words,
two matchings are ciclically equivalent when they have the same unlabeled circular chord
diagram. An equivalence class of matchings is called an unlabeled matching. For instance,
[112323] = {112323, 123231, 123312, 121233, 121332, 122313}. Thus, an unlabeled matching can
be represented by an unlabeled circular chord diagram; for instance, the unlabeled matching
[112323] can be represented by the following unlabeled chord diagram

Note that a matching avoids an unlabeled pattern if and only if its circular chord diagram avoids
the unlabeled chord diagram of the pattern.

The unlabeled matchings of order 2 are exactly [1122] = {1122, 1221} and [1212] = {1212}.
Note that, for every n ∈ N∗, a matching λ of order n avoids [1122] if and only if it is permuta-
tional and nonnesting, henceMn([1122]) = {123...n123...n}. We thus haveM([1212], z) = C(z)
and M([1122], z) = 1

1−z . The unlabeled matchings of order 3 are exactly five, namely:

[112323] = {112323, 123231, 123312, 121233, 121332, 122313},

[123132] = {121323, 123213, 121323},

[123321] = {123321, 122133, 112332},

[112233] = {112233, 122331},

[123123] = {123123}.
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Clearly |Mn([123123])| = CnCn+2−C2
n+1. In this section we will work out explicit formulas to

enumerate M([112323]) and M([123132]).

Proposition 4.1. The generating function of matchings avoiding the unlabeled pattern [112323]
is given by

M([112323], z) = C(z) +
z2

(1− z)2(1− 2z)

As a consequence, its coefficients have the following closed form:

|Mn([112323])| = Cn + 2n − n− 1,

for n ≥ 2.

Proof. Clearly the noncrossing matchings inMn([112323]) are counted by the Catalan number
Cn, hence it remains to count the crossing matchings in Mn([112323]). Let λ be a crossing
matching inMn([112323]). Let σ denote the pattern of λ consisting of all the edges intersecting
the leftmost edge of λ and let τ denote the pattern of λ consisting of all the remaining edges.
Note that σ is nonempty, otherwise, since λ is assumed to be crossing, there would be a pair
of crossing edges that do not cross the leftmost edge of λ, thus forming an occurrence of
[112323]. Assume that σ contains k edges, where k ∈ [n − 1]. Observe that σ has to be
permutational, because an occurrence of 1122 in σ should have at least one edge which does not
cross the leftmost edge of λ, against the definition of σ. Moreover, since σ avoids [112323], the
corresponding permutation has to avoid both the permutation patterns 231 and 312, therefore
there are |Sk(231, 312)| = 2k−1 possible choices for σ. Furthermore, τ must be noncrossing,
otherwise any pair of crossing edges of τ together with the leftmost edge of λ would form an
occurrence of [112323]. Finally, using a similar argument, we deduce that each edge of τ has to
cross all the edges of σ. We can thus conclude that τ is the juxtaposition of two totally crossing
matchings of order n− k such that the leftmost one is nonempty. Hence there are exactly n− k
possibile choices for τ . In other words, λ has the form illustrated by the following linear chord
diagram

... ... ... ...

σ

τ

From this characterization of Mn([112323]), it follows that

|Mn([112323])| = Cn +
n−1∑
k=1

(n− k)2k−1,
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hence

M([112323], z) = C(z) +
∑
n≥2

n−1∑
k=1

(n− k)2k−1zn

= C(z) + z2
∑
n≥0

n∑
k=0

(n− k + 1)2kzn

= C(z) + z2

∑
n≥0

(n+ 1)zn

∑
n≥0

2nzn


= C(z) +

z2

(1− z)2(1− 2z)
.

Finally we can compute the partial fraction decomposition of z2

(1−z)2(1−2z) to find

z2

(1− z)2(1− 2z)
= z2

[
−3 + 2z

(1− z)2
+

4

1− 2z

]

= z2

−3
∑
n≥0

(n+ 1)zn + 2z
∑
n≥0

(n+ 1)zn + 4
∑
n≥0

2nzn


=
∑
n≥2

(2n − n− 1)zn,

which proves the claim.

The sequence enumeratingM([112323]) begins 1, 1, 1, 3, 9, 25, 68, 189, ... and it is not recorded
in [S], however it is worth noting that 2n−n− 1 is the nth Eulerian number (sequence A000295
in [S]).

Our last result concerns the unlabeled pattern [123132], which is represented by the following
unlabeled chord diagram:

It turns out that matchings avoiding [123132] have a ternary tree structure and the following
discussion is in fact devoted to describe a bijection between this class of matchings and ternary
trees. To this purpose, recall that, for k ∈ N∗, a k-ary tree is an ordered rooted tree such that
every node has at most k children. Let Tk denote the combinatorial class of k−ary trees. Note
that every k−ary tree is either empty or it can be decomposed as in the following figure:

T1 T2 . . . Tk−1 Tk

12



where • is the root and T1, ..., Tk ∈ Tk. Therefore the combinatorial classes Tk and {∅} +
{•}× (Tk)k are isomorphic and the isomorphism translates into the functional equation Tk(z) =
1 + zTk(z)k for the generating function Tk(z) of the class Tk. This equation can be classically
solved by Lagrange’s inversion as follows

[zn]Tk(z) = [zn](Tk(z)− 1) =
1

n
[wn−1](1 + w)kn =

1

n
[wn−1]

kn∑
i=0

(
kn

i

)
wi =

1

n

(
kn

n− 1

)
=

1

(k − 1)n+ 1

(
kn

n

)
In particular, when k = 3, we thus get

[zn]T3(z) =
1

2n+ 1

(
3n

n

)
for every n ∈ N∗.

Now we recursively define a map ϕ : {∅} + {•} × (T3)3 −→ M([123132]) as follows. Set
ϕ(∅) = ∅; furthermore, for every (T1, T2, T3) ∈ (T3)3, let ϕ(•, T1, T2, T3) be the matching whose
linear chord diagram Γ is constructed as follows:

1. Denote with Γ(i) the linear chord diagram of ϕ(Ti), for every i ∈ {1, 2, 3}.

2. If Γ(1) is empty, then:

1. draw a vertex `′ on the left of a vertex r′ and connect them with an edge;

2. draw Γ(2) between `′ and r′ and Γ(3) to the right of r′.

3. If Γ(1) is nonempty, then:

1. let ` and r denote the left and right vertex of the leftmost edge of Γ(1), respectively;
draw two vertices `′ and r′ to the left of ` and r, respectively, and connect them with
an edge.

2. draw Γ2 between `′ and ` and Γ3 between r′ and r.

In other words, the map ϕ can be represented by the following diagram:

T1 T2 T3
ϕ(T2) ϕ(T1) ϕ(T3)

ϕ

Figure 1: The bijection ϕ between ternary trees and matchings avoiding the pattern [123132].

1

Conversely, define recursively a map ψ :M([123132]) −→ T3 as follows. Set ψ(∅) = ∅. For
every λ ∈M([123132]) \ {∅}, let ψ(λ) be the ternary tree defined as follows:

1. Suppose that the leftmost edge of λ does not cross any other edge. In this case, denote
by λ2 the pattern of λ consisting of all the edges of λ which are nested below the leftmost
edge of λ and denote by λ3 the pattern of λ consisting of all the remaining edges of λ
other than the leftmost edge. We then define ψ(λ) = (•, ∅, ψ(λ2), ψ(λ3)).
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Figure 5: The linear chord diagram of a matching with semilength 11 avoiding the unlabeled
pattern [123132] and the corresponding 3−ary tree.

2. Suppose that the leftmost edge ` of λ crosses some other edge of λ and let `′ denote the
leftmost edge of λ among those crossed by `. Let λ2 denote the pattern of λ consisting of
all e ∈ λ such that min(`) < min(e) < max(e) < min(`′) and let λ3 denote the pattern of
λ consisting of all e ∈ λ such that max(`) < min(e) < max(e) < max(`′). Finally, let λ1
denote the pattern of λ consisting of all the remaining edges of λ other than `. We then
define ψ(λ) = (•, ψ(λ1), ψ(λ2), ψ(λ3)).

Proposition 4.2. The maps ϕ and ψ are well defined mutually inverse bijections. In particular

|Mn([123132])| = 1

2n+ 1

(
3n

n

)
,

for every n ∈ N.

Proof. The main thing we have to prove is that ϕ is well defined. Denote by Λ the unlabeled
chord diagram of [123132]. Given T = (•, T1, T2, T3) ∈ {•}× (T3)3, we now prove (by induction
hypothesis on the number of nodes of T ) that ϕ(T ) ∈M([123132]). Using the same notation as
in the definition of ϕ, we first observe that (by induction hypothesis) there is no occurrence of
Λ in Γ(1). Furthermore, the edge {`′, r′} cannot be involved in any occurrence of Λ. Suppose in
fact that Λ0 is an occurrence of Λ involving {`′, r′}. If Γ(1) is nonempty, then it is not difficult
to realize that the leftmost edge {`, r} of Γ(1) cannot occur in Λ0 (this is due to the choice of
the specific pattern Λ). Thus we can replace {`′, r′} with {`, r} in Λ0 to get an occurrence of Λ
in Γ(1), which is a contradiction. On the other hand, if Γ(1) is empty, it is easy to check that
{`′, r′} cannot belong to any occurrence of Λ in ϕ(T ). Finally, no edge in Γ(2) or Γ(3) can be
involved in an occurrence of Λ, because both ϕ(T2) and ϕ(T3) avoid [123132] (by induction) and
each of the edges of their chord diagrams does not cross any of the remaining edges of ϕ(T ).
To conclude, it suffices to prove that ϕ and ψ are mutually inverse, which is immediate by their
construction.

5 Combinatorics of intervals: preliminary results

Another important topic that deserves to be investigated is the combinatorics of the intervals
of the matching pattern poset. In this sense, typical questions concern the counting of elements
or, more generally, the enumeration of (saturated) chains of a given interval. Another important
line of research is the computation of the Möbius function. These are problems that have been
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classically studied for many combinatorial posets, such as Bruhat orders [T] and Tamari lattices
[CCP, F]. In this section we just scratch the surface of this vast subject, by proposing a couple
of relatively simple results concerning the enumeration of intervals of the form [ , τ ], when τ
has a specific form. In particular, in all the cases we will consider τ will be noncrossing.

Given a matching τ , we say that an edge of τ is small whenever its vertices are consecutive
integers. If τ(n, k) is a noncrossing matching of size n having k small edges, what is the
cardinality of the interval [ , τ(n, k)]? This may be a difficult problem in general. Here we
address only a few very simple cases.

First of all, it is immediate to see that:

• |[ , τ(n, 0)]| = 0, for all τ(n, 0) (since there are no noncrossing matchings having no small
edges);

• |[ , τ(n, 1)]| = n, for all τ(n, 1) (since, in this case, the interval is a chain having n
elements, which are all totally nesting matchings).

When k = 2, the generic noncrossing matching having 2 small edges has the following form:

r s

k

where an edge labeled x stands for a totally nesting matching having x edges. In words, the
above matching is the juxtaposition of two totally nesting matchings having r and s edges,
respectively, enclosed in a totally nesting matching having k edges. In order to have easy inline
notations, such a matching will be denoted k(r; s). Assuming w.l.o.g. that r ≥ s, it is easy
to see that [ ,k(r; s)] contains r + k matchings having 1 small edge and rs(k + 1) matchings
having 2 small edges. Therefore |[ ,k(r; s)]| = r + k + rs(k + 1).

When k = 3, again w.l.o.g., the generic matching τ(n, 3) has the form

a b c

h

k

Similarly as before, we denote the above matching with k(h(a;b); c). We can count the
elements of [ ,k(h(a;b); c)] with respect to the number of small edges.

• In order to count the number χ1 of matchings having one small edge, we have to understand
how many edges the largest totally nesting matching smaller than k(h(a;b); c) has. To
construct such a matching, we take the k external edges, and add the largest number
between c and h+ max(a, b). Therefore χ1 = max(k + h+ a, k + h+ b, k + c).

• Matching having two edges can be obtained in two different ways from k(h(a;b); c).
First, we can remove the totally nesting matchings having c, thus obtaining the matching
(h + k)(a;b), which has ab(h + k + 1) matchings with 2 small edges below. The sec-
ond option is to remove one of the two totally nesting matchings with a and b edges,
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and precisely the smaller one, thus obtaining the matching k((max(a,b) + h); c), which
has (max(a, b) + h)c(k + 1) matchings with 2 small edges below. However, there are
matchings in common in the two above cases, which causes an overcount. Indeed, the
matchings which can be obtained in both the above cases are precisely those lying below
k(a; min(b, c)) and having 2 small edges, which are a·min(b, c)·(k+1). From the above con-
sideration, we can write the total number χ2 of elements of the interval [ ,k(h(a;b); c)]
having 2 small edges, which is χ2 = ab(h+k+1)+(max(a, b)+h)c(k+1)−a·min(b, c)·(k+1).

• Finally, the total number χ3 of matchings in [ ,k(h(a;b); c)] having 3 small edges is
immediate to compute, and we get χ3 = abc(h+ 1)(k + 1).

Summing up the above contribution, we then find the desired closed expression for |[ ,k(h(a;b); c)]|.

Our last example concerns a class of noncrossing matchings defined in a recursive fashion.
Before introducing them, we state an easy, but useful, lemma whose proof is left to the reader.

Lemma 5.1. Let σ and τ be any matchings. Then the following are equivalent:

(i) σ ≤ τ ;

(ii) σ ≤ τ

(iii) σ ≤ τ

Set τ0 = ∅. For every n > 0, define:

• τ2n−1 = τ2n−2 , and

• τ2n = τ2n−1 .

Denote with fn the cardinality of the interval [ , τn] and with fn,k the number of elements
having k edges of the same interval, for k > 0. In particular, it is clear that fn,k = 0 for n < k
and whenever n ≤ 0 or k ≤ 0 (actually, when n = k = 0, we set fn,k = 0 by convention). In the
next proposition we give closed formulas for such quantities.

Proposition 5.1. Let n > 0 and 0 < k ≤ n, and denote with ϕn the n-th Fibonacci number.
Then:

(i) fn,k =
∑n−1

i=0

(
k−1

n−k−1
)
;

(ii) fn = ϕn+2 − 1.

Proof. We use the following notations: An,k is the set of all matchings in [ , τ2n] having k edges,
Bn,k is the set of all matchings in [ , τ2n−1] having k edges, and Cn,k is the set of all matchings of

the form σ , with σ ∈ Bn,k−1. We then have that f2n,k = |An,k| = |Bn,k|+|Cn,k|−|Bn,k∩Cn,k|.
By definition, we have |Bn,k| = f2n−1,k and clearly |Cn,k| = f2n−1,k−1. Furthermore, as a
consequence of Lemma 5.1 and of the specific shape of the matchings under consideration, the

set Bn,k ∩ Cn,k is precisely the set of matchings of the form σ , with σ ∈ Bn−1,k−1, hence
|Bn,k ∩ Cn,k| = f2n−3,k−1. We thus get the recurrence relation f2n,k = f2n−1,k + f2n−1,k−1 −
f2n−3,k−1. Using a completely similar argument, we can also prove the analogous recurrence
f2n−1,k = f2n−2,k + f2n−2,k−1 − f2n−4,k−1. Summing up, we thus have the following recurrence
relation, which holds for all n, k ≥ 2:

fn,k = fn−1,k + fn−1,k−1 − fn−3,k−1. (4)
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Together with the starting condition f1,1 = 1, formula (4) allows us to compute the gener-
ating function F (x, y) =

∑
n,k≥0 fn,kx

nyk. Indeed, using standard arguments, our recurrence
translates into the functional equation

F (x, y) = xy + xF (x, y) + xyF (x, y)− x3F (x, y),

which gives

F (x, y) =
xy

1− x− xy + x3y
.

It turns out that F (x, y) = xyG(x, y), where G(x, y) is the generating function given in
[S] for the number triangle A004070: from there, we deduce the desired closed form given in
(i) for fn,k. Moreover, denoting with Φ(x) =

∑
n≥0 ϕnx

n the generating function of Fibonacci
numbers, it is easy to see that

Φ(x)− x

1− x
=

x

1− x− x2
− x

1− x
= x2f(x, 1),

which proves (ii).

6 Conclusion and further work

The enumerative combinatorics of the matching pattern poset remains still largely unknown.
Although some major efforts to enumerate pattern avoiding matchings have already been spent,
as mentioned in Section 2, the enumeration of most classes of matchings avoiding a single
pattern of order three is still lacking. To this regard, in the present paper we have introduced
the notion of unlabeled pattern, and we have enumerated matchings avoiding the unlabeled
patterns [123123], [112323] and [123132], respectively. However we did not succeed in finding
a formula for the number of matchings avoiding the remaining two unlabeled patterns of order
three, namely [123321] and [112233], although matchings in the former class seem to have a
rather neat combinatorial structure.

In Section 5 we have started the investigation of the combinatorial structure of intervals
in the matching pattern poset, with special emphasis on enumerative issues. However, all
important general questions concerning this topic are completely unanswered yet. How many
elements does a generic interval contain? How many (saturated) chain of fixed length? What is
the Möbius function? In which cases an interval has a (possibly distributive) lattice structure?
Notice that the subposet of noncrossing matchings is isomorphic to the pattern order on 231-
avoiding permutations (this is rather easy to show, see also [AB]). This can be useful, for
instance, in the computation of the Möbius function, since the results developed in [BJJS] can
be applied. However, it is possible (and maybe likely) that the specific combinatorial structure
of matchings may help in finding neater formulas.
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