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ON SCHUBERT VARIETIES OF COMPLEXITY ONE

EUNJEONG LEE, MIKIYA MASUDA, AND SEONJEONG PARK

Abstract. Let B be a Borel subgroup of GLn(C) and T a maximal torus
contained in B. Then T acts on GLn(C)/B and every Schubert variety is

T-invariant. We say that a Schubert variety is of complexity k if a maximal T-
orbit in Xw has codimension k. In this paper, we discuss topology, geometry,
and combinatorics related to Schubert varieties of complexity one.

1. Introduction

The flag manifold Fℓ(Cn) is the homogeneous space GLn(C)/B, where B is the
set of all upper triangular matrices in GLn(C). The left action of B on Fℓ(Cn) has
finitely many orbits BwB/B, where w is a permutation in Sn, and the Schubert
variety Xw is the (Zariski) closure of the B-orbit BwB/B. Most Schubert varieties
are not smooth and they are desingularized to Bott–Samelson varieties, see [2, 8].

Let T be the set of all diagonal matrices in GLn(C). Then T is isomorphic to
the torus (C∗)n and acts on Fℓ(Cn) by the left multiplication, and every Schubert
varietyXw is a T-invariant irreducible subvariety ofFℓ(Cn). We say that a Schubert
variety Xw is of complexity k with respect to the action of T (or simply, Xw is of
complexity k) if a maximal T-orbit in Xw has codimension k. In this paper, we are
interested in the Schubert varieties of complexity one.

There were several studies on Schubert varieties of complexity zero (i.e., toric
Schubert varieties) and related combinatorics. It is known that Xw is of complexity
zero if and only if a reduced decomposition of w consists of distinct letters, and in
this case Xw is smooth and isomorphic to a Bott–Samelson variety ([10], [17]). On
the other hand, permutation patterns are related to the form of reduced decompo-
sitions. A reduced decomposition of w consists of distinct letters if and only if w
avoids the patterns 321 and 3412, see [24]. It was also shown in [23] that a reduced
decomposition of w consists of distinct letters if and only if the Bruhat interval
[e, w] is isomorphic to the Boolean algebra Bℓ(w) of rank ℓ(w), where ℓ(w) is the
length of w. The Bruhat interval polytope Qv,w, introduced in [25], is the convex
hull of the points (u(1), . . . , u(n)) in Rn for all v ≤ u ≤ w. The Schubert variety
Xw is a smooth toric variety if and only if Qe,w is combinatorially equivalent to the

ℓ(w)-dimensional cube Iℓ(w), see [21].

Theorem 1.1. [10, 17, 23, 24, 21] The following are equivalent:

(0) Xw is a toric variety (i.e., of complexity zero).
(1) Xw is a smooth toric variety.
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(2) w avoids the patterns 321 and 3412.
(3) A reduced decomposition of w consists of distinct letters.
(4) Xw is isomorphic to a Bott–Samelson variety.
(5) The Bruhat interval [e, w] is isomorphic to Bℓ(w), the Boolean algebra of

rank ℓ(w).
(6) The Bruhat interval polytope Qe,w is combinatorially equivalent to the ℓ(w)-

dimensional cube.

Recall that for a decomposition w = si1 . . . siℓ of a permutation w, the Bott–
Samelson variety Zw is defined by the orbit space of Bsi1B × · · · × BsiℓB by the

right action of Bℓ in (2.2). Then Zw has an iterated CP 1-bundle structure because

BsikB/B
∼= CP 1. Note that BsikB/B = Xsik

and BsikB/B
∼= Fℓ(C2) = CP 1. A

Bott–Samelson variety Zw is not a toric variety in general, but it is diffeomorphic to
a toric variety, called a Bott manifold. We refer the reader to [13] for more details.

In this article, we study an analog of the equivalent statements (1)∼(6) in The-
orem 1.1 for Schubert varieties of complexity one. Whereas every toric Schubert
variety is smooth, not every Schubert variety of complexity one is smooth. For
example, the Schubert varieties X3214 and X3412 are of complexity one, but X3214

is smooth and X3412 is singular.
Jantzen [15] generalized the notion of Bott–Samelson varieties. For an ordered

tuple of permutations (w1, . . . , wr), the variety Z(w1,...,wr) is the orbit space of

Bw1B × · · · × BwrB by the right action of Br in (4.1). Unfortunately, there
was no name for the variety Z(w1,...,wr) in [15], but now, it is called a generalized
Bott–Samelson variety (cf. [4] and [22]). When Xwi

is a flag manifold for every
i = 1, . . . , r, the variety Z(w1,...,wr) is called a flag Bott–Samelson variety, see [11].

Theorem 1.2. For a permutation w in Sn, the following are equivalent:

(1′) Xw is smooth and of complexity one.
(2′) w contains the pattern 321 exactly once and avoids the pattern 3412.
(3′) There exists a reduced decomposition of w containing sisi+1si as a factor

and no other repetitions.
(4′) Xw is isomorphic to a flag Bott–Samelson variety Z(w1,...,wr) such that

r = ℓ(w) − 2, wk = sjsj+1sj for some 1 ≤ k ≤ r, wi = sji for i 6= k, and
j1, . . . , jk−1, jk+1, . . . , jr, j, j + 1 are pairwise distinct.

(5′) The Bruhat interval [e, w] is isomorphic to S3 ×Bℓ(w)−3.
(6′) The Bruhat interval polytope Qe,w is combinatorially equivalent to the prod-

uct of the hexagon and the cube Iℓ(w)−3.

Theorem 1.3. For a permutation w in Sn, the following are equivalent:

(1′′) Xw is singular and of complexity one.
(2′′) w contains the pattern 3412 exactly once and avoids the pattern 321.
(3′′) There exists a reduced decomposition of w containing si+1sisi+2si+1 as a

factor and no other repetitions.
(4′′) Xw is isomorphic to a generalized Bott–Samelson variety Z(w1,...,wr) such

that r = ℓ(w) − 3, wk = sj+1sjsj+2sj+1 for some 1 ≤ k ≤ r, wi = sji for
i 6= k, and j1, . . . , jk−1, jk+1, . . . , jr, j, j + 1, j + 2 are pairwise distinct.

(5′′) The Bruhat interval [e, w] is isomorphic to [e, 3412]×Bℓ(w)−4.
(6′′) The Bruhat interval polytope Qe,w is combinatorially equivalent to the prod-

uct of Qe,3412 and the cube Iℓ(w)−4.
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The equivalence between the first two statements (respectively, the second and
the third statements) in Theorems 1.2 and 1.3 is an immediate consequence of [19]
and [24] (respectively, [7]). The following diagram shows how we prove the main
theorems in the paper. We prove Theorems 1.2 and 1.3 in parallel.

(1′) (2′) (3′)

(4′)(5′)(6′)

Proposition 3.7

([19, 24])

Theorem 3.9

([7])
Theorem 4.7

Corollary 4.9

Proposition 5.2

Theorem 5.8

Like as a Bott–Samelson variety is diffeomorphic to a Bott manifold having a
higher rank torus action, a flag Bott–Samelson variety is diffeomorphic to a flag
Bott manifold which admits a higher rank torus action. Whereas a Bott manifold is
a toric variety, a flag Bott manifold is not a toric variety in general, but it becomes
a GKM manifold. In addition, we will see that every smooth Schubert variety of
complexity one is diffeomorphic to a flag Bott manifold.

This paper is organized as follows. Section 2 contains basic notions and facts
about symmetric groups, Schubert varieties, Bott–Samelson varieties and Bott tow-
ers. In Section 3, we introduce the various relation between the pattern avoidance
of a permutation and the complexity of a Schubert variety, and see the equivalence
among the first three statements in Theorems 1.2 and 1.3. In Section 4, we in-
troduce the notions of flag Bott–Samelson varieties and generalized Bott–Samelson
varieties, and prove the implications (1′) ⇒ (4′) ⇒ (5′) and (1′′) ⇒ (4′′) ⇒ (5′′) in
Theorems 1.2 and 1.3, respectively. In Section 5, we study the properties of Bruhat
intervals and Bruhat interval polytopes related to Schubert varieties of complexity
one, and then complete proofs of Theorems 1.2 and 1.3. In Section 6, we intro-
duce the notion of flag Bott manifolds, and then show that every smooth Schubert
variety of complexity one is diffeomorphic to a flag Bott manifold.

2. Preliminaries

In this section, we first prepare basic facts about symmetric groups and Schu-
bert varieties from [3], and then see the relation among Schubert varieties, Bott–
Samelson varieties, and Bott towers.

Let G = GLn(C) and B the set of upper triangular matrices in G. We denote
by T the set of diagonal matrices in G. Then, T ∼= (C∗)n. The homogeneous space
G/B is a smooth projective variety can be identified with the set

Fℓ(Cn) = {({0} ( V1 ( V2 ( · · · ( Vn = Cn) | dimC Vi = i for i = 1, . . . , n}

of chains of subspaces of Cn. The Weyl group of G is identified with the symmetric
group Sn on the set [n] := {1, 2, . . . , n}. For an element w ∈ Sn, we use the
one-line notation

w = w(1)w(2) · · ·w(n).

In this one-line notation, the identity element e is presented by e = 1 2 · · · n.
We denote the set of transpositions by

(2.1) T = {(i, j) | 1 ≤ i < j ≤ n},
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which are permutations on [n] swapping i and j. The simple transpositions si are
the transpositions of the form

si := (i, i+ 1), for i = 1, . . . , n− 1.

Since Sn is generated by simple transpositions, every w ∈ Sn can be expressed as a
product of simple transpositions. If w = si1 · · · siℓ and ℓ is minimal among all such
expressions, then ℓ is called the length of w (written ℓ(w) = ℓ) and the expression
si1 · · · siℓ is called a reduced decomposition (or reduced expression or reduced word)
for w. We denote by R(w) the set consisting of all reduced decompositions of w. A
consecutive substring of a reduced decomposition is called a factor . For instance,
since

R(321) = {s1s2s1, s2s1s2} and R(3412) = {s2s3s1s2, s2s1s3s2},

no reduced decomposition for 3412 contains sisi+1si as a factor unlike 321.
The Bruhat order on Sn is defined by v ≤ w if a reduced decomposition of v is

a substring of some reduced decomposition of w. Then Sn with the Bruhat order
is a graded poset, with rank function given by length. Figure 1 gives the Hasse
diagram for the Bruhat order on S4.

4321

4312 4231 3421

4132
4213

3412
2431

3241

1432 4123 2413 3142 2341 3214

1423
1342

2143
3124

2314

1243 1324 2134

1234

Figure 1. The Bruhat order on S4.

The complex torus T acts on G/B by the left multiplication, and the set of T-
fixed points is identified with Sn. More precisely, each element w ∈ Sn corresponds
to a coordinate flag given by

({0} ( 〈ew(1)〉 ( 〈ew(1), ew(2)〉 ( · · · ( Vn = Cn)

where e1, . . . , en are the standard basis vectors in Cn. We denote by wB this
standard coordinate flag. It is well-known that Fℓ(Cn) has a Bruhat decomposition

Fℓ(Cn) =
⊔

w∈Sn

BwB/B.

Moreover, the B-orbit BwB/B is isomorphic to Cℓ(w) and called a Schubert cell .
The (Zariski) closure of BwB/B is the Schubert variety Xw, and each Schubert
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variety decomposes into Schubert cells:

Xw =
⊔

v≤w

BvB/B.

Note that most Schubert varieties are singular, and they are desingularized using
Bott–Samelson varieties. Let w be a permutation and consider a decomposition w =
(i1, . . . , iℓ) of w (not necessarily reduced). The Bott–Samelson variety associated
with w, denoted Zw, is the quotient of Bsi1B × · · · × BsiℓB by the action of

Bℓ := B × · · · ×B︸ ︷︷ ︸
ℓ

given by:

(2.2) (b1, . . . , bℓ) · (p1, . . . , pℓ) := (p1b1, b
−1
1 p2b2, . . . , b

−1
ℓ−1pℓbℓ)

for (b1, . . . , bℓ) ∈ Bℓ and (p1, . . . , pℓ) ∈
∏ℓ

k=1 BsikB. Then Zw is smooth and it

has an iterated CP 1-bundle structure because BsikB/B
∼= CP 1. Moreover, the

left multiplication of B on Bsi1B induces an action of B on Zw and we have a
B-equivariant map

pw : Zw → G/B

defined by pw(p1, . . . , pℓ) = p1 · · · pℓB. If w is a reduced decomposition of w, then
pw gives a resolution of singularities for Xw. See [2, 8] for details.

A Bott–Samelson variety Zw is not a toric variety in general, but it is diffeomor-
phic to a toric variety, called a Bott manifold.

Definition 2.1. [13] A Bott tower is an iterated CP 1-bundle:

Bℓ Bℓ−1 · · · B1 B0,

P (C⊕ ξℓ) CP 1 {a point}

πℓ πℓ−1 π2 π1

where each Bk is the complex projectivization of the Whitney sum of a holomorphic
line bundle ξk over Bk−1 and the trivial bundle C. Each Bk is called a Bott manifold
(of height k).

Let γj be the tautological line bundle over Bj and γj,i the pullback of γj by the
projection πi ◦ · · · ◦ πj+1 : Bi → Bj for i > j. For convenience, we define γj,j = γj .
Then for each k = 2, . . . , ℓ, there exist aj,k ∈ Z for 1 ≤ j < k such that

ξk =
⊗

1≤j<k

γ
⊗aj,k

j,k−1

in Definition 2.1 since the Picard number of Bk is k (cf. [14, Exercise II.7.9]). Each
Bott tower is determined by the list of the integers aj,k (1 ≤ j < k ≤ ℓ), and we
visualize them as an upper triangular matrix




0 a1,2 a1,3 . . . a1,ℓ
0 a2,3 . . . a2,ℓ

. . .
. . .

...
0 aℓ−1,ℓ

0



.

Note that each Bott manifold Bℓ is a smooth projective toric variety whose fan is
determined by the above matrix. The moment polytope of Bℓ is combinatorially
equivalent to the ℓ-dimensional cube Iℓ.



6 EUNJEONG LEE, MIKIYA MASUDA, AND SEONJEONG PARK

Theorem 2.2 ([13, Proposition 3.10]). For w ∈ Sn, let w = (i1, i2, . . . , iℓ) be a
reduced decomposition. Then the Bott–Samelson variety Zw is diffeomorphic to a
Bott manifold Bℓ determined by the integers

(2.3) aj,k = 〈eij − eij+1, eik − eik+1〉

for 1 ≤ j < k ≤ ℓ. Here, e1, . . . , en+1 are the standard basis vectors in Rn+1 and
〈·, ·〉 is the standard inner product in Rn+1.

Note that most Schubert varieties are neither smooth nor toric. However toric
Schubert varieties are smooth and they are Bott manifolds. For a toric Schubert
variety Xw, every reduced decomposition of w consists of distinct letters, and hence
for the associated Bott manifold the integers aj,k in (2.3) are either 0 or −1.

3. Pattern avoidance and the complexity

In this section, we define the complexity of a Schubert variety using the notion
of complexity of a torus action, and see the relation between the complexity of
a Schubert variety and patterns of a permutation. We also show the equivalence
among the first three statements in Theorems 1.2 and 1.3.

Let X be a smooth complex projective algebraic variety having an action of
algebraic torus T = (C∗)n. When the maximal T-orbit in X has codimension k, we
call the number k the complexity of the action.

Every Schubert variety Xw is a T-invariant irreducible subvariety of Fℓ(Cn).
Note that the T-fixed point set of Xw is the set of coordinate flags uB for u ≤ w.
That is, there is a bijection between (Xw)

T and the Bruhat interval

[e, w] := {v ∈ Sn | v ≤ w}.1

Using the Plücker embedding, we get a moment map µ : Fℓ(Cn) → Rn which sends

uB 7→ (u−1(1), . . . , u−1(n)),

and the image µ(Fℓ(Cn)) is a simple convex polytope

Permn−1 := Conv{(w(1), . . . , w(n)) ∈ Rn | w ∈ Sn},

called the permutohedron.
The notion of Bruhat interval polytopes was introduced in [25] as a generalization

of the notion of permutohedra. For two elements v and w in Sn with v ≤ w in
Bruhat order, the Bruhat interval polytope Qv,w is the convex polytope given by
the convex hull of the points (u(1), . . . , u(n)) ∈ Rn for v ≤ u ≤ w. Then for a
Schubert variety Xw, the moment map image µ(Xw) becomes the Bruhat interval
polytope

Qe,w−1 := Conv{(u(1), . . . , u(n)) ∈ Rn | u ≤ w−1},

and moreover, the images µ(uB) for all u ≤ w are the vertices of the Bruhat interval
polytope Qe,w−1 .

Proposition 3.1 (cf. [25, Proposition 6.20] and references therein). The vertices
of Qe,w−1 are the points (u(1), . . . , u(n)) ∈ Rn for all u ≤ w−1.

We refer the readers to [21] for more details on moment maps and the correspon-
dence between Schubert varieties and Bruhat interval polytopes.

1For v, w in Sn with v < w in Bruhat order, the Bruhat interval [v, w] is the subposet of
(Sn, <) consisting of all the permutations u with v ≤ u ≤ w, and the Bruhat interval [e,w] is also
known as the principal order ideal of w, see [23].
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Remark 3.2 (cf. [21, Remark 4.4]). For every w ∈ Sn with n ≤ 4, Qv,w and
Qv−1,w−1 are combinatorially equivalent. However, for w = 35412 inS5, the Bruhat
interval polytopesQe,w andQe,w−1 are not combinatorially equivalent. In fact, their
f -vectors are different:

f(Qe,35412) = (60, 123, 82, 19, 1) and f(Qe,45132) = (60, 122, 81, 19, 1),

so Qe,w has one more edge than Qe,w−1 . These vectors are computed by a computer
program SageMath.

Note that the complex dimension of a maximal T-orbit in Xw is the same as
the real dimension of the moment map image µ(Xw). Hence we can define the
complexity of Xw as follows:

c(w) = dimCXw − dimRQe,w−1 = ℓ(w) − dimRQe,w−1 .

See [21, Section 6] for more details. For example, c(3142) = 3−3 = 0 and c(4132) =
4− 3 = 1, see Figure 2.

1234

1243
1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412
3421

4123

4132

4213

4231
4312

4321

(1) Q
e,3142−1 = Qe,2413.

1234

1243
1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412
3421

4123

4132

4213

4231
4312

4321

(2) Q
e,4132−1 = Qe,2431.

Figure 2. Moment map images of X3142 and X4132.

For a permutation w ∈ Sn, the dimension of the polytope Qe,w is related to a
reduced decomposition of w. The support of w is the set of distinct letters appearing
in a reduced decomposition of w, and we denote it by supp(w). In fact, supp(w) is
the same as the set of atoms in the Bruhat interval [e, w].

It follows from [20, Corollary 7.13] that the dimension of a Bruhat interval
polytope Qe,w is determined by the number of edges emanating from the vertex
(1, 2, . . . , n), and moreover, by [20, Remark 7.5(5)], that number is the same as the
cardinality of supp(w). Indeed, the vertices connecting to the vertex (1, 2, . . . , n)
by an edge are presented by

(1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n)

ith
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for all si ∈ supp(w). Therefore, the complexity of Xw is determined by the support
of w:

c(w) = ℓ(w)− |supp(w)|.

It means that c(w) equals the number of repeated letters in a reduced decomposition
of w. In [24], Tenner denoted this quantity by rep(w) and found a relation with
patterns in w.

Definition 3.3. For w ∈ Sn and p ∈ Sk with k ≤ n, we say that the permutation w
contains the pattern p if there exists a sequence 1 ≤ i1 < · · · < ik ≤ n such that
w(i1) · · ·w(ik) is in the same relative order as p(1) · · · p(k). If w does not contain p,
then we say that w avoids p, or is p-avoiding.

For example, the permutation 4231 in S4 has the pattern 321 twice. Let
[321; 3412](w) be the number of distinct 321-and 3412-patterns in a permutation w.
Then we can interpret Theorem 2.17 in [24] in terms of the complexity of Xw.

Theorem 3.4. [24, Theorem 2.17] For a permutation w in Sn, we have

(1) c(w) = 0 if and only if [321; 3412](w) = 0, and
(2) c(w) = 1 if and only if [321; 3412](w) = 1.

Example 3.5. For w ∈ S4, [321; 3412](w) = 1 if and only if w is one of the
following permutations

1432, 3214, 4132, 4213, 2431, 3241, 3412.

The first six permutations contains the 321-pattern once, and the last one avoids
it.

Recall that not every Schubert variety is smooth, and Lakshmibai and Sandhya
characterized the smoothness of Schubert varieties in terms of pattern avoidance.

Theorem 3.6. [19] For a permutation w ∈ Sn, the Schubert variety Xw is smooth
if and only if w avoids the patterns 3412 and 4231.

Combining Theorems 3.4 and 3.6, we obtain the following proposition. It shows
the equivalence between the first two statements in Theorems 1.2 and 1.3.

Proposition 3.7. For w ∈ Sn, the following hold:

(1) Xw is a toric variety if and only if w avoids the patterns both 321 and 3412;
(2) Xw is smooth and of complexity one if and only if w has the pattern 321

exactly once and avoids the pattern 3412; and
(3) Xw is singular and of complexity one if and only if w has the pattern 3412

exactly once and avoids the pattern 321.

In general, c(w) ≤ [321; 3412](w) and the equality holds only when w avoids
every pattern in the set

{4321, 34512, 45123, 35412, 43512, 45132, 45213, 53412, 45312, 45231},

see [24, Theorem 3.2]. For example, the permutation 4321 has four distinct 321-
patterns but c(4321) = 3. In the set above, every pattern except 4321 has the
pattern 3412. Since w avoids the pattern 3412 when Xw is smooth, we get the
following proposition.

Proposition 3.8. For a smooth Schubert variety Xw, the complexity of Xw is less
than or equal to the number of distinct 321-patterns in w, and the equality holds if
and only if w avoids 4321.



ON SCHUBERT VARIETIES OF COMPLEXITY ONE 9

Since c(w) equals the number of repeated letters in a reduced decomposition
of w, Theorem 3.4(1) implies that a permutation w ∈ Sn avoids both 321-and
3412-patterns if and only if every reduced decomposition of w consists of distinct
letters. Daly characterized the reduced decomposition of the permutations satisfy-
ing [321; 3412](w) = 1 as follows.

Theorem 3.9. [7] For a permutation w ∈ Sn, the following hold:

(1) w contains exactly one 321 pattern and avoids 3412 if and only if there
exists a reduced decomposition of w containing sisi+1si as a factor and no
other repetitions.

(2) w contains exactly one 3412 pattern and avoids 321 if and only if there
exists a reduced decomposition of w containing si+1sisi+2si+1 as a factor
and no other repetitions.

The above theorem shows the equivalence between the second and the third
statements in Theorems 1.2 and 1.3.

It is also shown in [6] that there is a one-to-one correspondence between

{w ∈ Sn | w contains exactly one 321 pattern and avoids 3412}

and

{w ∈ Sn+1 | w contains exactly one 3412 pattern and avoids 321},

and the cardinality of the set is given in A001871 in OEIS [1]. Thus we obtain that

#{Xw ⊆ Fℓ(Cn) | Xw is smooth and of complexity one}

= #{Xw′ ⊆ Fℓ(Cn+1) | Xw′ is singular and of complexity one}.

4. Flag Bott–Samelson varieties and
generalized Bott–Samelson varieties

In this section, we recall flag Bott–Samelson varieties from [11] and generalized
Bott–Samelson varieties from [15].

Let G = GLn(C). For a subset I ⊆ [n] := {1, . . . , n}, we define the subgroup WI

of W by

WI := 〈si | i ∈ I〉.

Then the parabolic subgroup PI of G corresponding to I is defined by

PI = BwIB ⊆ G,

where wI is the longest element in WI .

Definition 4.1 ([11, Definition 2.1]). Let I = (I1, . . . , Ir) be a sequence of subsets
of [n]. The flag Bott–Samelson variety ZI is defined by the orbit space

ZI := (PI1 × · · · × PIr )/Θ,

where the right action Θ of Br := B × · · · ×B︸ ︷︷ ︸
r

on
∏r

k=1 PIk is defined by

(4.1) Θ((p1, . . . , pr), (b1, . . . , br)) = (p1b1, b
−1
1 p2b2, . . . , b

−1
r−1prbr)

for (p1, . . . , pr) ∈
∏r

k=1 PIk and (b1, . . . , br) ∈ Br.

https://oeis.org/A001871
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Note that PIk/B
∼= Fℓ(C|Ik|) for k = 1, . . . , r. Hence if |I1| = · · · = |Ir| = 1,

then ZI becomes a Bott–Samelson variety. Each Bott–Samelson variety can be
described as an iterated CP 1-bundle, whereas each flag Bott–Samelson variety can
be described as an iterated bundle whose fiber at each stage is a flag manifold.

We recall properties of flag Bott–Samelson varieties from [11, Proposition 2.3].
The flag Bott–Samelson variety ZI is a smooth projective variety and admits a nice
decomposition of affine cells. For (w1, . . . , wr) ∈

∏r

k=1WIk , we define Z ′
(w1,...,wr)

and Z(w1,...,wr) in ZI by

Z ′
(w1,...,wr)

:= (Bw1B × · · · ×BwrB)/Θ,

Z(w1,...,wr) := (Bw1B × · · · ×BwrB)/Θ.

We call Z(w1,...,wr) a generalized Bott–Samelson variety, see [15] and also [4, 22].
Then Z ′

(w1,...,wr)
is an open dense subset of the generalized Bott–Samelson variety

Z(w1,...,wr) and we have that

Z ′
(w1,...,wr)

≃ C
∑r

k=1 ℓ(wk).

For wk ∈WIk , since BwkB =
⊔

v∈WI
v≤wk

BvB, we have that

(4.2) Z(w1,...,wr) =
⊔

(v1,...,vr)∈
∏r

k=1
WIk

vk≤wk for k=1,...,r

Z ′
(v1,...,vr)

.

Note that ZI = Z(wI1 ,...,wIr )
, where I = (I1, . . . , Ir) and wIk is the longest element

in WIk for k = 1, . . . , r.

Example 4.2. Let I = ({1, 2}, {3}). Then we have that

ZI = Z ′
(e,e) ⊔ Z

′
(s1,e)

⊔ Z ′
(s2,e)

⊔ Z ′
(s1s2,e)

⊔ Z ′
(s2s1,e)

⊔ Z ′
(s1s2s1,e)

⊔ Z ′
(e,s3)

⊔ Z ′
(s1,s3)

⊔ Z ′
(s2,s3)

⊔ Z ′
(s1s2,s3)

⊔ Z ′
(s2s1,s3)

⊔ Z ′
(s1s2s1,s3)

.

Each Z ′
(w1,w2)

is isomorphic to an affine cell as follows:

Z ′
(e,e) ≃ C0, Z ′

(s1,e)
≃ Z ′

(s2,e)
≃ Z ′

(e,s3)
≃ C1,

Z ′
(s1s2,e)

≃ Z ′
(s2s1,e)

≃ Z ′
(s1,s3)

≃ Z ′
(s2,s3)

≃ C2,

Z ′
(s1s2s1,e)

≃ Z ′
(s1s2,s3)

≃ Z ′
(s2s1,s3)

≃ C3, Z ′
(s1s2s1,s3)

≃ C4.

The multiplication map

pI : ZI → G/B, [p1, . . . , pr] 7→ p1 · · · prB

is well-defined because of the definition of the right action Θ. The maximal torus T
acts on a generalized Bott–Samelson variety Z(w1,...,wr) by

t · [g1, . . . , gr] = [tg1, g2, . . . , gr].

We note that the multiplication map pI is T-equivariant.

Proposition 4.3 ([11, Proposition 2.7]). Let (w1, . . . , wr) ∈
∏r

k=1WIk . Suppose
that w1 · · ·wr = v and ℓ(w1) + · · ·+ ℓ(wr) = ℓ(v). Then the multiplication map pI
induces a birational morphism:

pI |Z(w1,...,wr)
: Z(w1,...,wr) → Xv.

Indeed, we have an isomorphism between dense open subsets:

Z ′
(w1,...,wr)

∼
−→ BvB/B.
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Example 4.4. Let G = GL3(C), and let I = ({1}, {2}, {1}). Then the flag Bott–
Samelson variety ZI has the decomposition:

ZI = Z ′
(e,e,e) ⊔ Z

′
(s1,e,e)

⊔ Z ′
(e,s2,e)

⊔ Z ′
(s1,s2,e)

⊔ Z ′
(e,e,s1)

⊔ Z ′
(s1,e,s1)

⊔ Z ′
(e,s2,s1)

⊔ Z ′
(s1,s2,s1)

.

By Proposition 4.3, the multiplication map pI induces the isomorphismZ ′
(w1,w2,w3)

∼=

Bw1w2w3B/B except for (w1, w2, w3) = (s1, e, s1). Moreover, one can see that the
multiplication map pI is injective on ZI \ (Z ′

(s1,e,s1)
⊔ Z ′

(s1,e,e)
⊔ Z ′

(e,e,s1)
).

Corollary 4.5. Suppose that I1, . . . , Ir are pairwise disjoint subsets of [n]. Then
the multiplication map pI with I = (I1, . . . , Ir) induces an isomorphism between
Z(w1,...,wr) and its image Xw1···wr

as T-varieties, where wk is an element in WIk .

Proof. We first note that Xw1···wr
=

⊔
v≤w1···wr

BvB/B. Since I1, . . . , Ir are pair-
wise disjoint and wk ∈ WIk , we have that

v ≤ w1 · · ·wr ⇐⇒ v = v1 · · · vr, and vk ≤ wk in WIk .

Therefore, we get that

(4.3) Xw1···wr
=

⊔

(v1,...,vr)∈
∏r

k=1
WIk

vk≤wk for k=1,...,r

Bv1 · · · vrB/B.

This implies that the Schubert variety Xw1···wr
can be decomposed into affine cells

indexed by elements in
∏r

k=1[e, wk], where [e, wk] is a Bruhat interval in WIk .
Moreover, since I1, . . . , Ir are pairwise disjoint, we know that ℓ(v1 · · · vr) = ℓ(v1) +
· · · + ℓ(vr). Hence by Proposition 4.3, the multiplication map pI induces a T-
equivariant isomorphism

Z ′
(v1,...,vr)

∼= Bv1 · · · vrB/B

for each (v1, . . . , vr) ∈
∏r

k=1WIk . Hence by combining the above isomorphism with
equations (4.2) and (4.3), the result follows. �

Example 4.6. Continuing Example 4.2, the multiplication map pI induces the
isomorphisms:

Z ′
(e,e)

∼= BeB/B, Z ′
(s1,e)

∼= Bs1B/B,

Z ′
(s2,e)

∼= Bs2B/B, Z ′
(s1s2,e)

∼= Bs1s2B/B,

Z ′
(s2s1,e)

∼= Bs2s1B/B, Z ′
(s1s2s1,e)

∼= Bs1s2s1B/B,

Z ′
(e,s3)

∼= Bs3B/B, Z ′
(s1,s3)

∼= Bs1s3B/B,

Z ′
(s2,s3)

∼= Bs2s3B/B, Z ′
(s1s2,s3)

∼= Bs1s2s3B/B,

Z ′
(s2s1,s3)

∼= Bs2s1s3B/B, Z ′
(s1s2s1,s3)

∼= Bs1s2s1s3B/B

Since we have the decomposition Xw =
⊔

v≤w BvB/B, we get an isomorphism

ZI = Z(s1s2s1,s3)
∼= Xs1s2s1s3 . Indeed, {1, 2} ∩ {3} = ∅.

Theorem 4.7. Every Schubert variety Xw of complexity one is T-equivariantly
isomorphic to a generalized Bott–Samelson variety. If Xw is of complexity one and
smooth, then it is T-equivariantly isomorphic to a flag Bott–Samelson variety.

Proof. By Proposition 3.7 and Theorem 3.9, if Xw is smooth, then there exists a
reduced decomposition w = si1 · · · siℓ of w containing sisi+1si as a factor and no
other repetitions. On the other hand, if Xw is singular, then there exists a reduced
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decomposition w = si1 · · · siℓ of w containing si+1sisi+2si+1 as a factor and no
other repetitions. Hence there is a reduced decomposition w such that

(1) if Xw is smooth, then (iq, iq+1, iq+2) = (i, i + 1, i) for some 1 ≤ q ≤ ℓ − 2;
and

(2) if Xw is singular, then (iq, iq+1, iq+2, iq+3) = (i + 1, i, i+ 2, i+ 1) for some
1 ≤ q ≤ ℓ− 3.

Now we define a sequence I = (I1, . . . , Ir) as follows:

(1) If Xw is smooth, then r = ℓ− 2 and we set

Ik =





{ik} if 1 ≤ k < q,

{i, i+ 1} if k = q,

{ik+2} if k > q.

(2) If Xw is singular, then r = ℓ− 3 and we set

Ik =





{ik} if 1 ≤ k < q,

{i, i+ 1, i+ 2} if k = q,

{ik+3} if k > q.

Then, in any case, the subsets I1, . . . , Ir are pairwise disjoint. Moreover, if Xw is
smooth, then the concatenation of longest elements in WIk is the same as w. Hence
by Corollary 4.5, the Schubert variety Xw is T-equivariantly isomorphic to the flag
Bott–Samelson variety ZI .

If Xw is singular, then we set

wk =





sik if 1 ≤ k < q,

si+1sisi+2si+1 if k = q,

sik+3 if q < k ≤ r.

Then (w1, . . . , wr) ∈
∏r

k=1WIk and w = w1 . . . wr. Hence by Corollary 4.5, Xw is T-
equivariantly isomorphic to the generalized Bott–Samelson variety Z(w1,...,wr). �

The above theorem proves the implications (1′) ⇒ (4′) and (1′′) ⇒ (4′′) in
Theorems 1.2 and 1.3, respectively.

The following proposition can be checked easily and we omit the proof.

Proposition 4.8. There is a natural bijection between the set of T-fixed points in
Z(w1,...,wr) and the product of Bruhat intervals

[e, w1]× · · · × [e, wr].

If a Schubert variety Xw and a generalized Bott–Samelson variety Z(w1,...,wr) are
isomorphic as T-varieties, then they have the same set of T-fixed points. Hence we
get the following.

Corollary 4.9. If a Schubert variety Xw is isomorphic to a generalized Bott–
Samelson variety Z(w1,...,wr) as T-varieties, then the Bruhat interval [e, w] is iso-

morphic to the product of Bruhat intervals
∏r

k=1[e, wk].

The above corollary shows the implications (4′) ⇒ (5′) and (4′′) ⇒ (5′′) in
Theorems 1.2 and 1.3, respectively.
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5. Bruhat intervals and Bruhat interval polytopes

In this section, we study the properties of the Bruhat interval [e, w] and the
Bruhat interval polytope Qe,w for a permutation w with c(w) ≤ 1. We will complete
proofs of Theorems 1.2 and 1.3.

Recall that the following seven permutations in S4

1432, 3214, 4132, 4213, 2431, 3241, 3412

satisfy [321; 3412](w) = 1 (in Example 3.5). One can easily check that

• If w is either 1432 or 3214, then the Bruhat interval [e, w] is isomorphic to
S3 and the Bruhat interval polytope Qe,w is combinatorially equivalent to
the hexagon Perm2.

• If w is one of the permutations 4132, 4213, 2431 and 3241, then the Bruhat
interval [e, w] is isomorphic to S3 ×B1 and the Bruhat interval polytope
Qe,w is combinatorially equivalent to the hexagonal prism, Perm2 ×I.

• If w = 3412, then the Bruhat interval [e, w] and Qe,w are given in Fig-
ure 3. Thus [e, w] is isomorphic to neither S3 × B1 nor B4, and Qe,w is
combinatorially equivalent to neither the hexagonal prism nor a 4-cube.

Here, Bℓ denotes the Boolean algebra of length ℓ. The above situation happens in
general and we have the following lemma that is obvious but plays a role in our
argument.

Lemma 5.1. For any positive integer i, the following hold:

(1) if w = sisi+1si, then [e, w] is isomorphic to S3 as a poset, and Qe,w is
combinatorially equivalent to the hexagon Perm2; and

(2) if w = si+1sisi+2si+1, then [e, w] is isomorphic to [e, 3412] as a poset, and
Qe,w is combinatorially equivalent to Qe,3412.

4321

4312 4231 3421

4132
4213

3412

2431
3241

1432 4123 2413 3142 2341 3214

1423
1342

2143

3124
2314

1243 1324 2134

1234

1234

1243
1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412
3421

4123

4132

4213

4231
4312

4321

Figure 3. The Bruhat interval [e, 3412] and the Bruhat interval
polytope Qe,3412.
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Therefore, if w = si+1sisi+2si+1 for some positive integer i, then [e, w] is isomor-
phic to neither S3 ×B1 nor B4, and Qe,w is combinatorially equivalent to neither
the hexagonal prism nor a 4-cube.

Proposition 5.2. For a permutation w in Sn, the following hold:

(1) If the Bruhat interval [e, w] is isomorphic to S3 × Bℓ(w)−3 (as a poset),
then Xw is smooth and of complexity one.

(2) If the Bruhat interval [e, w] is isomorphic to [e, 3412]×Bℓ(w)−4 (as a poset),
then Xw is singular and of complexity one.

Note that the converse of each statement in the above proposition is also true
by Theroem 4.7 and Corollary 4.9.

Proof of Proposition 5.2. Let us prove the first statement. Assume that the Bruhat
interval [e, w] is isomorphic to a poset S3 ×Bℓ−3. Note that

(1) S3 ×Bℓ−3 has ℓ− 1 atoms;
(2) S3 ×Bℓ−3 has rank ℓ; and
(3) every subinterval of S3 × Bℓ−3 is isomorphic to S3 × Bk (k < ℓ − 3) or

Bk′ (k′ ≤ ℓ− 1).

From (1) and (2) above, we get c(w) = 1. If Xw is not smooth, then w con-
tains 3412 exactly once and avoids 321. Then by Theorem 3.9, there is a reduced
decomposition w of w such that

w = si1 · · · sik−1
sik+1

siksik+2
sik+1

sik+3
· · · siℓ−1

and ik+1 = ik + 1, ik+2 = ik + 2.

However, the interval [e, sik+1siksik+2sik+1] is a subinterval of neither S3 ×Bℓ−3

nor Bℓ by (3). Therefore, Xw is smooth.
Now we prove the second statement. Note that [e, 3412]×B

ℓ−4 and S3×B
ℓ−3.

Since we already showed that Xw is smooth and c(w) = 1 if and only if [e, w] is
isomorphic to S3 ×Bℓ−3 in the above, it is enough to show that c(w) = 1. Since
the poset [e, 3412]×Bℓ−4 has ℓ − 1 atoms and is of rank ℓ, if [e, w] is isomorphic
to [e, 3412]×Bℓ−4, then we get c(w) = 1. This proves the proposition. �

Therefore, the first five statements in Theorems 1.2 and 1.3 are equivalent.
Now we determine the combinatorial type of the Bruhat interval polytope Qe,w

when c(w) = 1. The combinatorial aspects of Bruhat interval polytopes are well-
studied in [25]. Every face of a Bruhat interval polytope is itself a Bruhat interval
polytope. However, for a subinterval [x, y] of an interval [v, w], Qx,y may not be a
face of Qv,w. For a subinterval [x, y] of [v, w], we introduce a directed graph Gv,w

x,y

which will be used to determine whether Qx,y is a face of Qv,w.
Let v ≤ w in Sn. For u ∈ [v, w], we define

T (u, [v, w]) := {(i, j) ∈ T | u < u(i, j) ≤ w, ℓ(u(i, j))− ℓ(u) = 1},

T (u, [v, w]) := {(i, j) ∈ T | v ≤ u(i, j) < u, ℓ(u)− ℓ(u(i, j)) = 1},

where T is the set of transpositions in Sn, see (2.1). We first construct a labelled
graph Gx,y on [n] = {1, . . . , n} having an edge between the vertices a and b if and

only if (a, b) ∈ T (x, [x, y]).

Theorem 5.3. [25] Let [x, y] ⊆ [v, w]. We define the graph Gv,w
x,y as follows:

(1) The vertices of Gv,w
x,y are {1, 2, . . . , n}, with vertices i and j identified if they

are in the same connected component of the graph Gx,y.
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(2) There is a directed edge i→ j if (i, j) ∈ T (y, [v, w]).
(3) There is a directed edge j → i if (i, j) ∈ T (x, [v, w]).

Then the Bruhat interval polytope Qx,y is a face of the Bruhat interval polytope
Qv,w if and only if the graph Gv,w

x,y is a directed acyclic graph.

Remark 5.4. The above theorem used Lemma 4.18 in [25]. Unfortunately, the
proof of the lemma had a gap. Recently, the gap has been corrected by Caselli,
D’Adderio and Marietti, see [5, Remarks 5.5].

Example 5.5. Let w = 1432, x = 1324, and y = 1342. Then we have T (x, [x, y]) =
{(3, 4)}, T (y, [e, w]) = {(2, 3)}, and T (x, [e, w]) = {(2, 3)}. Hence Ge,w

x,y is not
acyclic, and thus Qx,y is not a face of Qe,w. See Figure 4.

1 2 3 4

(1) G1324,1342 .

1 2 3, 4

(2) G
1234,1432

1324,1342
.

Figure 4. Examples of Gx,y and Gv,w
x,y .

We will use the following fact. Let a, b ∈ Sn which do not have sr in their
supports. Then we have that

(5.1) a ≤ b ⇐⇒ sra ≤ srb ⇐⇒ asr ≤ bsr.

In particular,

(5.2) ℓ(b)− ℓ(a) = ℓ(srb)− ℓ(sra) = ℓ(bsr)− ℓ(asr).

Hence

(5.3) T (a, [a, b]) = T (sra, [sra, srb]).

For ŵ = srw or wsr, in order to see which subinterval of [v, ŵ] gives a face of Qv,ŵ,
we prepare the following lemma.

Lemma 5.6. Let u, v, w ∈ Sn with v ≤ u ≤ w and sr /∈ supp(w). Then

(1) T (u, [v, srw]) = T (u, [v, w]) and T (u, [v, wsr]) = T (u, [v, w]);

(2) T (u, [v, srw]) = T (u, [v, w]) ∪ {(u−1(r), u−1(r + 1))};

(3) T (u, [v, wsr ]) = T (u, [v, w]) ∪ {(r, r + 1)};

(4) T (sru, [v, srw]) = T (u, [v, w]);

(5) T (sru, [v, srw]) = T (u, [v, w]) ∪ {(u−1(r), u−1(r + 1))};

(6) T (usr, [v, wsr]) = {(sr(i), sr(j)) | (i, j) ∈ T (u, [v, w])}; and

(7) T (usr, [v, wsr]) = {(sr(i), sr(j)) | (i, j) ∈ T (u, [v, w])} ∪ {(r, r + 1)}.

Proof. The first statement is clear from the definition of T (u, [v, w]) and the as-
sumption sr /∈ supp(w). In (2)∼(5), the inclusion (⊇) is clear and hence it is
enough to check the inclusion (⊆).

In (2) and (3), for (i, j) ∈ T (u, [v, srw]) (respectively, (i, j) ∈ T (u, [v, wsr ])),
if sr ∈ supp(u(i, j)), then u(i, j) = sru = u(u−1(r), u−1(r + 1)) (respectively,
u(i, j) = usr = u(r, r+ 1)); otherwise, (i, j) ∈ T (u, [v, w]). This proves (2) and (3).
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In (4) and (5), we use (5.1) and (5.2). For (i, j) ∈ T (sru, [v, srw]) in (4), since
sru < sru(i, j) ≤ srw and ℓ(sru(i, j)) − ℓ(sru) = 1, we have u < u(i, j) ≤
w and ℓ(u(i, j)) − ℓ(u) = 1. This proves that (i, j) ∈ T (u, [v, w]). In (5), if
(i, j) ∈ T (sru, [v, srw]), then sru(i, j) = u or srv ≤ sru(i, j) < sru. Note that
sru(u

−1(r), u−1(r+1)) = u. Thus if sru(i, j) = u, then (i, j) = (u−1(r), u−1(r+1));
otherwise, (i, j) ∈ T (u, [v, w]).

Let us prove (6). It follows from (5.1) and (5.2) that there exists z ∈ [usr, wsr]
such that ℓ(z)− ℓ(usr) = 1 if and only if there exists z′ ∈ [u,w] such that z = z′sr
and ℓ(z′)−ℓ(u) = 1. Here, z′ is of the form z′ = u(i, j) for some (i, j) ∈ T (u, [v, w]).
Since z = u(i, j)sr = usr(sr(i), sr(j)), we get

T (usr, [v, wsr]) ⊇ {(sr(i), sr(j)) | (i, j) ∈ T (u, [v, w])}.

On the other hand, if z′sr = usr(i
′, j′) for (i′, j′) ∈ T (usr, [v, wsr ]), then z′ =

usr(i
′, j′)sr = u(sr(i

′), sr(j
′)) and z′ ≤ w. Hence there exists (i, j) ∈ T (u, [v, w])

such that (i′, j′) = (sr(i), sr(j)). This proves (6).
Finally, we prove (7). If (i, j) ∈ T (usr, [v, wsr ]), then usr(i, j) = u or vsr ≤

usr(i, j) < usr. If usr(i, j) = u, then (i, j) = (r, r + 1). If vsr ≤ usr(i, j) < usr,
then there exists u′ ∈ [v, w] such that usr(i, j) = u′sr and u′ < u. Then u′ =
usr(i, j)sr = u(sr(i), sr(j)). Note that

ℓ(u)− ℓ(u′) = ℓ(usr)− ℓ(u′sr) = ℓ(usr)− ℓ(usr(i, j)) = 1.

Hence (sr(i), sr(j)) ∈ T (u, [v, w]). Thus, we get

T (usr, [v, wsr]) ⊆ {(sr(i), sr(j)) | (i, j) ∈ T (u, [v, w])} ∪ {(r, r + 1)}.

On the other hand, (r, r + 1) ∈ T (usr, [v, wsr]) clearly. For (i, j) ∈ T (u, [v, w]),
since v ≤ u(i, j) < u and ℓ(u) − ℓ(u(i, j)) = 1, we get vsr ≤ u(i, j)sr < usr and
ℓ(usr)− ℓ(u(i, j)sr) = 1 by (5.1) and (5.2). Note that u(i, j)sr = usr(sr(i), sr(j)).
Therefore, (sr(i), sr(j)) ∈ T (usr, [v, wsr]). This proves (7). �

Proposition 5.7. For v, w in Sn with v ≤ w, if sr 6∈ supp(w), then both Qv,srw

and Qv,wsr are combinatorially equivalent to the polytope Qv,w × I.

Proof. Note that for u ∈ Sn with u ≤ srw (respectively, u ≤ wsr), if sr ∈ supp(u),
then there is a unique u′ such that sru

′ = u (respectively, u′sr = u) because
sr /∈ supp(w). We set

ũ =

{
u if sr /∈ supp(u),

u′ if sr ∈ supp(u)
and ŵ = srw or wsr .

Then what we have to prove is that for any [x, y] ⊆ [v, ŵ],

Qx,y is a face of Qv,ŵ if and only if Qx̃,ỹ is a face of Qv,w,

which is equivalent to

(∗) Gv,ŵ
x,y is acyclic if and only if Gv,w

x̃,ỹ is acyclic

by Theorem 5.3. We will prove (∗) in the following.
Note that for each [x, y] ⊆ [v, ŵ], there are three possibilities:

(i) (x̃, ỹ) = (x, y), i.e., sr 6∈ supp(y),
(ii) (x̃, ỹ) = (x′, y′), i.e., sr ∈ supp(x), and
(iii) (x̃, ỹ) = (x, y′), i.e., sr 6∈ supp(x) but sr ∈ supp(y).
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Since sr 6∈ supp(w), the graph Gx̃,ỹ has no directed edge between [r] and [n] \ [r].
We prove (∗) by showing that Gv,ŵ

x,y is the directed graph Gv,w
x̃,ỹ with one directed

edge added between [r] and [n]\[r] in (i) and (ii) and with a pair of vertices in [r]
and [n]\[r] identified in (iii).

Case 1: ŵ = srw. Note that in cases (i) and (ii), T (x, [x, y]) = T (x̃, [x̃, ỹ])

by (5.3). Hence the vertex set of Gv,ŵ
x,y is the same as that of Gv,w

x̃,ỹ . In case (i), it

follows from (1) and (2) of Lemma 5.6 that

T (x, [v, srw]) = T (x̃, [v, w])

and
T (y, [v, srw]) = T (ỹ, [v, w]) ∪ {(y−1(r), y−1(r + 1))}.

Hence the graph Gv,ŵ
x,y is obtained from Gv,w

x̃,ỹ by adding a directed edge from

y−1(r) ∈ [r] to y−1(r + 1) ∈ [n] \ [r]. In case (ii), it follows from (4) and (5)
of Lemma 5.6 that

T (y, [v, srw]) = T (ỹ, [v, w])

and
T (x, [v, srw]) = T (x̃, [v, w]) ∪ {((x̃)−1(r), (x̃)−1(r + 1))}.

Hence the graph Gv,ŵ
x,y is obtained from Gv,w

x̃,ỹ by adding a directed edge from

(x̃)−1(r+1) ∈ [n] \ [r] to (x̃)−1(r) ∈ [r]. In case (iii), by (1) and (4) of Lemma 5.6,
we have

T (x, [v, srw]) = T (x̃, [v, w]) and T (y, [v, srw]) = T (ỹ, [v, w]).

Since
T (x, [x, y]) = T (x̃, [x̃, ỹ]) ∪ {(x−1(r), x−1(r + 1))}

by Lemma 5.6(2), the graph Gv,ŵ
x,y is obtained from Gv,w

x̃,ỹ by identifying the vertices

x−1(r) ∈ [r] and x−1(r + 1) ∈ [n] \ [r]. This proves Case 1.

Case 2: ŵ = wsr. In case (i), since T (x, [x, y]) = T (x̃, [x̃, ỹ]), the vertex set of

Gv,ŵ
x,y is the same as that of Gv,w

x̃,ỹ . It follows from (1) and (3) of Lemma 5.6 that

T (x, [v, wsr ]) = T (x̃, [v, w])

and
T (y, [v, wsr]) = T (ỹ, [v, w]) ∪ {(r, r + 1)}.

Hence the graph Gv,ŵ
x,y is obtained from Gv,w

x̃,ỹ by adding a directed edge from r to

r + 1. In case (ii), since x̃(i, j)sr = x̃sr(sr(i), sr(j)) = x(sr(i), sr(j)), we get

T (x, [x, y]) = {(sr(i), sr(j)) | (i, j) ∈ T (x̃, [x̃, ỹ])}

similarly to the proof of (6) in Lemma 5.6. Hence Gx,y is obtained from Gx̃,ỹ by
interchanging the labelling of the vertices r and r+1. By (6) and (7) of Lemma 5.6,
we have

T (y, [v, wsr]) = {(sr(i), sr(j)) | (i, j) ∈ T (ỹ, [v, w])}

and
T (x, [v, wsr ]) = {(sr(i), sr(j)) | (i, j) ∈ T (x̃, [v, w])} ∪ {(r, r + 1)}.

Thus the graph Gv,ŵ
x,y is obtained from Gv,w

x̃,ỹ by interchanging the labelling of the

vertices r and r + 1 and then adding a directed edge from r + 1 to r. In case (iii),
it follows from (1) and (6) of Lemma 5.6 that

T (x, [v, wsr ]) = T (x̃, [v, w])
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and

T (y, [v, wsr ]) = {(sr(i), sr(j)) | (i, j) ∈ T (ỹ, [v, w])}.

Note that

T (x, [x, y]) = T (x̃, [x̃, ỹ]) ∪ {(r, r + 1)}

by Lemma 5.6(3). Hence the graph Gx,y is obtained from Gx̃,ỹ by adding an edge

between the vertices r and r+ 1. Therefore, the graph Gv,ŵ
x,y is obtained from Gv,w

x̃,ỹ

by identifying the vertices r and r + 1. �

The above proposition implies that Qe,w is combinatorially equivalent to the

cube Iℓ(w) if Xw is of complexity zero, i.e., a reduced decomposition of w consists
of distinct letters.

Theorem 5.8. For a permutation w in Sn, the following hold:

(1) the Schubert variety Xw is smooth and of complexity one if and only if Qe,w

is combinatorially equivalent to the polytope Perm2 ×I
ℓ(w)−3, and

(2) the Schubert variety Xw is singular and of complexity one if and only if
Qe,w is combinatorially equivalent to the polytope Qe,3412 × Iℓ(w)−4.

Proof. Since both the polytopes Perm2 ×Iℓ(w)−3 and Qe,3412× Iℓ(w)−4 are ℓ(w)− 1
dimensional, we get c(w) = 1. Hence it suffices to prove the ‘only if’ part in each
statement.

If a Schubert variety Xw is smooth and of complexity one, then w has a reduced
decomposition w of the form:

w = si1 · · · sik−1
siksik+1

siksik+2
· · · siℓ−1

and ik+1 = ik + 1.

Hence the polytope Qe,w is combinatorially equivalent to Qe,siksik+1sik
× Iℓ(w)−3 ∼=

Perm2 ×Iℓ(w)−3 by Lemma 5.1 and Proposition 5.7. If Xw is singular and of com-
plexity one, then w has a reduced decomposition w of the form:

w = si1 · · · sik−1
sik+1

siksik+2
sik+1

sik+3
· · · siℓ−1

and ik+1 = ik + 1, ik+2 = ik + 2.

HenceQe,w is combinatorially equivalent toQe,sik+1sik sik+2sik+1×I
ℓ(w)−4 ∼= Qe,3412×

Iℓ(w)−4 by Lemma 5.1 and Proposition 5.7. �

The first statement in the above theorem shows the equivalence between (1′)
and (6′) in Theorem 1.2, and hence it proves Theorem 1.2. The second statement
in the above theorem shows the equivalence between (1′′) and (6′′) in Theorem 1.3,
and hence it proves Theorem 1.3.

Note that for a permutation w in Sn, the following hold:

(1) w avoids the patterns 3412 and 4231 if and only if w−1 avoids those patterns,
and

(2) [321; 3412](w) = 1 if and only if [321; 3412](w−1) = 1.

Hence Xw is smooth and of complexity one if and only if Xw−1 is smooth and of
complexity one.

Corollary 5.9. For w ∈ Sn, if [321; 3412](w) = 1, then the Bruhat interval poly-
topes Qe,w and Qe,w−1 are combinatorially equivalent.

Therefore, for a Schubert variety Xw of complexity one, Xw is smooth if and
only if the moment polytope Qe,w−1 is simple.
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6. Flag Bott manifolds

Like as a Bott–Samelson variety is diffeomorphic to a Bott manifold with a
higher rank torus action, a flag Bott–Samelson variety is diffeomorphic to a flag
Bott manifold with a higher rank torus action. Whereas a Bott manifold is a toric
variety, a flag Bott manifold is not a toric variety in general, but it becomes a GKM
manifold, see [18]. We have previously observed in Theorem 4.7 that there is an
isomorphism between a smooth Schubert variety and a flag Bott–Samelson variety.
Using the diffeomorphism between a flag Bott–Samelson variety and a certain flag
Bott manifold, we will provide a formula for the cohomology ring of a smooth
Schubert variety of complexity one.

Recall that for a holomorphic vector bundle E over a complex manifoldM , there
is an associated flag-bundle Fℓ(E) obtained from E by replacing each fiber Ep by
the full flag manifold Fℓ(Ep).

Definition 6.1 ([18, Deifnition 2.1]). A flag Bott tower is an iterated flag-bundle

Fr
πr−→ Fr−1

πr−1
−→ · · ·

π2−→ F1
π1−→ F0 = {a point}

of manifolds Fk = Fℓ
(
C⊕

⊕nk

m=1 ξ
(m)
k

)
, where ξ

(m)
k is a holomorphic line bundle

over Fk−1 for each 1 ≤ m ≤ nk and 1 ≤ k ≤ r. Each Fk is called a flag Bott
manifold (of height k).

Because we are considering an iterated full flag-bundle, there is an isomorphism

ψ : Zn1 × · · · × Znr → Pic(Fr).

Therefore, there is a sequence
(
a
(m)
1,k , a

(m)
2,k , . . . , a

(m)
k−1,k

)

of integer vectors with a
(m)
j,k ∈ Znj which maps to ξ

(m)
k via ψ. Hence a set

{a
(m)
j,k }1≤m≤nk,1≤j<k≤r of integer vectors determines a flag Bott manifold.

Theorem 6.2. [11, Theorem 4.10] Let I = (I1, . . . , Ir) be a sequence of subsets
of [n], where Ik = {uk,1, . . . , uk,nk

} for 1 ≤ k ≤ r. Assume that each Ik is an
interval. Then the flag Bott–Samelson variety ZI is diffeomorphic to a flag Bott
manifold Fr determined by the vectors

a
(m)
j,k = (a

(m)
j,k (1), . . . , a

(m)
j,k (nj)) ∈ Znj (1 ≤ m ≤ nk and 1 ≤ j < k ≤ r)

where

a
(m)
j,k (p) = 〈euj,p

− euj,nj+1 , euk,m
− euk,nk+1

〉

for 1 ≤ p ≤ nj. Here, euk,1
, . . . , euk,nk+1

are the standard basis vectors of Rnk+1

for 1 ≤ k ≤ r.

Theorem 6.3. Let Xw be a smooth Schubert variety of complexity one. Then Xw

is diffeomorphic to a flag Bott manifold of height ℓ(w) − 2

Fℓ(w)−2 Fℓ(w)−3 · · · F1 F0 = {a point},
πℓ(w)−2 πℓ(w)−3 π2 π1

where Fq → Fq−1 is a Fℓ(C3)-bundle for some 1 ≤ q ≤ ℓ(w) − 2 and Fk → Fk−1

is a CP 1-bundle for every k 6= q. Furthermore, the iterated bundle structure is
completely determined by a reduced decomposition of w.
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Proof. Let ℓ(w) = ℓ. From the proof of Theorem 4.7, we may assume that Xw is
isomorphic to a flag Bott–Samelson variety ZI , where I = (I1, . . . , Iℓ−2) of length
ℓ− 2 consists of the sets

Ik =





{ik} if 1 ≤ k < q,

{i, i+ 1} if k = q,

{ik+2} if k > q.

Note that w = (i1, . . . , iq−1, i, i+ 1, i, iq+3, . . . , iℓ). Thus Xw is diffeomorphic to a
flag Bott manifold of height ℓ− 2 by Theorem 6.2. Furthermore, for each 1 ≤ k ≤
ℓ− 2, the manifold Fk is determined as follows.

(1) If 1 ≤ k < q, then nk = 1 and Fk = Fℓ(C⊕ ξk), where ξk is a holomorphic

line bundle determined by a sequence (a
(1)
1,k, . . . , a

(1)
k−1,k) of integers, where

a
(1)
j,k = 〈eij − eij+1, eik − eik+1〉 ∈ Z.

(2) If k = q, then nj = 1 for j < k = q and nk = 2 and Fk = Fℓ(C ⊕ ξ
(1)
k ⊕

ξ
(2)
k ), where ξ

(1)
k and ξ

(2)
k determined by sequences (a

(1)
1,q, . . . , a

(1)
q−1,q) and

(a
(2)
1,q , . . . , a

(2)
q−1,q) of integers, respectively. Here, we have that

a
(1)
j,q = 〈eij − eij+1, ei − ei+2〉 ∈ Z,

a
(2)
j,q = 〈eij − eij+1, ei+1 − ei+2〉 ∈ Z.

(3) If k > q, then nk = 1 and Fk = Fℓ(C ⊕ ξk), where ξk is a holomorphic

line bundle determined by a sequence (a
(1)
1,k, . . . , a

(1)
k−1,k) of integer vectors,

where

a
(1)
j,k =





〈eij − eij+1, eik+2
− eik+2+1〉 if j < q,

(〈ei − ei+2, eik+2
− eik+2+1〉, 〈ei+1 − ei+2, eik+2

− eik+2+1〉) if j = q,

〈eij+2 − eij+2+1, eik+2
− eik+2+1〉 if j > q.

This proves the theorem. �

Combining Theorem 2.2 with Theorems 4.7 and 6.3, we conclude that every
smooth Schubert variety of complexity ≤ 1 is isomorphic to a flag Bott–Samelson
variety, and hence it is diffeomorphic to a flag Bott manifold whose height is de-
termined by the length ℓ(w) and the complexity c(w). Therefore, using [16, Corol-
lary 4.4], we provide the cohomology ring H∗(Xw;Z) of a smooth Schubert variety
Xw with c(w) ≤ 1.

Corollary 6.4. Let Xw be a smooth Schubert variety of complexity one. Suppose
that w = si1 . . . siq−1sisi+1sisiq+3 . . . siℓ is a reduced decomposition of w. Then the
cohomology ring H∗(Xw;Z) is given as follows:

H∗(Xw;Z) ∼= Z[yj,1, . . . , yj,nj+1 | 1 ≤ j ≤ ℓ− 2]/〈I1, . . . , Iℓ−2〉.
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Here, yj,k’s are degree two elements and Ik is the ideal given as follows.

For k < q : Ik = (1 − yk,1)(1− yk,2)−


1−

k−1∑

j=1

a
(1)
j,kyj,1


 ,

for k = q : Iq = (1− yq,1)(1− yq,2)(1 − yq,3)

−


1−

q−1∑

j=1

a
(1)
j,qyj,1





1−

q−1∑

j=1

a
(2)
j,q yj,1


 ,

for k > q : Ik = (1 − yk,1)(1− yk,2)

−


1−

∑

1≤j≤k−1,
j 6=q

a
(1)
j,kyj,1 − (a

(1)
q,k(1)yq,1 + a

(1)
q,k(2)yq,2)


 .

Example 6.5. Suppose that w = s1s2s3s4s3. Then the Schubert variety Xw is
smooth of complexity one. By Theorem 6.2, the Schubert variety Xw is diffeomor-
phic to a flag Bott manifold of height 3 with n1 = n2 = 1 and n3 = 2 which is
determined by the following integer vectors:

a
(1)
1,2 = 〈e1 − e2, e2 − e3〉 = −1,

a
(1)
1,3 = 〈e1 − e2, e3 − e5〉 = 0, a

(2)
1,3 = 〈e1 − e2, e4 − e5〉 = 0,

a
(1)
2,3 = 〈e2 − e3, e3 − e5〉 = −1, a

(2)
2,3 = 〈e2 − e3, e4 − e5〉 = 0.

Therefore, by Corollary 6.4, the cohomology ring of Xw is

H∗(Xw;Z) ∼= Z[yj,1, . . . , yy,nj+1 | 1 ≤ j ≤ 3]/〈I1, . . . , I3〉,

where

I1 = (1 − y1,1)(1 − y1,2)− 1,

I2 = (1 − y2,1)(1 − y2,2)− (1 + y1,1),

I3 = (1 − y3,1)(1 − y3,2)(1− y3,3)− (1 + y2,1).

This gives relations among generators:

y1,1 + y1,2 = y1,1y1,2 = 0,

y2,1 + y2,2 + y1,1 = y2,1y2,2 = 0,

y3,1 + y3,2 + y3,3 + y2,1 = y3,1y3,2 + y3,1y3,3 + y3,2y3,3 = y3,1y3,2y3,3 = 0.

Therefore, by setting y1 = y1,1, y2 = y2,1, y3 = y3,1, y4 = y3,2, we have that

H∗(Xw;Z) ∼= Z[y1, . . . , y4]/I,

where I is an ideal generated by

y21 , y2(y1 + y2), (y2 + y3)y3 + (y2 + y3 + y4)y4, y3y4(y2 + y3 + y4).

We enclose this section by mentioning other studies on the cohomology rings
of smooth Schubert varieties. Indeed, the cohomology rings of smooth Schubert
varieties are studied in [12] (also, see [9]). We will demonstrate their result for
a specific permutation 23541, which is the one considered in Example 6.5. First
we recall from [9] that this permutation is related to a partition as follows. For
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a given partition λ = (0 ≤ λ1 ≤ · · · ≤ λn), one may associate a permutation
w = w(1) . . . w(n) by the recursive rule

w(i) = max({1, . . . , λi} \ {w(1), . . . , w(i− 1)}).

For example, if λ = (2, 3, 5, 5, 5), then the corresponding permutation is 23541. We
denote by Xλ the Schubert variety given by the permutation coming from λ. The
presentation for the cohomology ring of Xλ is given as follows:

(6.1) H∗(Xλ;Z) ∼= Z[x1, . . . , xn]/〈hλi−i+1(i) | 1 ≤ i ≤ n〉

where hm(N) is the complete homogeneous symmetric function:

hm(N) := hm(x1, . . . , xN ) =
∑

1≤i1≤···≤im≤N

xi1 · · ·xim .

For the partition λ = (2, 3, 5, 5, 5), the ideal J := 〈hλi−i+1(i) | 1 ≤ i ≤ n〉 on
the right hand side of (6.1) is generated by the complete homogeneous symmetric
polynomials

h2(1) = x21,

h2(2) = x21 + (x1 + x2)x2,

h3(3) = (x1 + x2 + x3)x
2
1 + (x1x2 + x22)(x2 + x3) + (x1 + x2 + x3)x

2
3,

h2(4) = x21 + (x1 + x2)x2 + (x1 + x2 + x3)x3 + (x1 + x2 + x3 + x4)x4,

h1(5) = x1 + x2 + x3 + x4 + x5.

Moreover, we get that Z[x1, . . . , x5]/J ∼= Z[x1, . . . , x4]/J
′, where

J ′ = 〈x21, (x1 + x2)x2, (x1 + x2 + x3)x
2
3, (x1 + x2 + x3)x3 + (x1 + x2 + x3 + x4)x4〉.

By sending y1 7→ −x1, y2 7→ x1 + x2, y3 7→ x3, y4 7→ x4, we obtain an isomorphism
Z[x1, . . . , x5]/I ∼= Z[y1, . . . , y5]/J

′ between the two cohomology ring representa-
tions. For instance, we have that

(y2 + y3)y3 + (y2 + y3 + y4)y4 7→ (x1 + x2 + x3)x3 + (x1 + x2 + x3 + x4)x4,

y3y4(y2 + y3 + y4)

7→ x3x4(x1 + x2 + x3 + x4)

= x3((x1 + x2 + x3)x3 + (x1 + x2 + x3 + x4)x4)− (x1 + x2 + x3)x
2
3.

Remark 6.6. The notion of flag Bott–Samelson variety can be defined in a gen-
eral Lie type, where G is a simply-connected semisimple algebraic group over C.
Furthermore, Proposition 4.3, Corollary 4.5, and Theorem 6.2 are still true in a
general Lie type.
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