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FIBONACCI IDENTITIES FROM JORDAN IDENTITIES

SANTIAGO ALZATE, OSCAR CORREA, AND RIGOBERTO FLÓREZ

Abstract. In this paper, we connect two well established theories, the Fibonacci numbers and the
Jordan algebras. We give a series of matrices, from literature, used to obtain recurrence relations
of second-order and polynomial sequences. We also give some identities known in special Jordan
Algebras. The matrices play a bridge role between both theories. The mentioned matrices connect
both areas of mathematics, special Jordan algebras and recurrence relations, to obtain new identities
and classic identities in Fibonacci numbers, Lucas numbers, Pell numbers, binomial transform,
tribonacci numbers, and polynomial sequences among others. The list of identities in this paper
contains just a few examples of many that the reader can find using this technique.

1. Introduction

Many authors have used power of matrices to study recurrence relations. In 1981 Gould [9] wrote
a historical paper about the origins of using matrices in research with the Fibonacci sequence.
Gould’s paper has a bibliography with 45 items. Since then many papers have appeared using this
technique.

The study of the Fibonacci sequence and its identities became more visible when in 1963 Hoggatt
and Brousseau founded the Fibonacci Quarterly journal. By the same time researchers in another
area of mathematics were working actively finding identities in Jordan algebras —our interest
here— (see for example, [8, 10, 11, 12, 13]). These two areas of mathematics may have several
topics in common. Therefore, the main objective of this paper, through examples, is to show some
connections between both, the recursive sequences and the special Jordan algebra identities. We
are wondering if the experts in Jordan algebras can find a deeper connection. There are still many
things, on how this connection works, that we would like to understand better. For example, we
believe there is a direct relationship between the power associativity in Jordan identities and the
arguments of the Fibonacci recurrence.

In this paper, we use matrices to bridge recurrence relations identities with special Jordan al-
gebras identities. We take a collection of matrices associated to sequences (Fibonacci sequences,
Lucas sequences, and matrices associated to other recursive identities) from the literature; we also
take a collection of special Jordan algebras identities, from the literature, to obtain identities in
numerical sequences.

Using identities from abstract algebra we can obtain more complex, general, and sophisticated
numerical identities. For example, we give classic identities, new identities, and very complex
identities in Fibonacci identities, Lucas identities, Pell identities, and many others.

Williams [21] and Mc Laughlin [17] give simple forms to construct sequences from 2×2 matrices.
Here we use the technique given in [17] and the special Jordan algebra identities to show a new
form to construct identities for recursive relations of order two.
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2. Some Previous Results and Motivation

In this section, we give a series of matrices, from literature, used to obtain recurrence relations
of second-order and polynomial sequences. Most of these matrices can be found in [1, 9, 16, 18, 22].
In Section 4, there is a more general form for powers of matrices associated to recurrence relations
of order two.

Our aim is to use matrices to connect the special Jordan algebra identities with the recurrence
relations to obtain new identities associated to numerical sequences or polynomial sequences.

2.1. Fibonacci Matrices and generalized Fibonacci matrices. From (2) we obtain these
sequences: the matrix Fn

1 is the matrix associated to Fibonacci sequence. The matrix Gn
2 gives rise

to Jacobsthal numbers an = an−1 + 2an−2, with a0 = 0, a1 = 1 (A001045). From [9] we have the
general case, the matrix Gn

b gives rise to

gn = gn−1 + b · gn−2, with g0 = 0, g1 = 1, where b ∈ Z>0. (1)

We now give sequences associated with some values of b. From (2) with b = 1 we have Fn
1 the

Fibonacci sequence; the equation (2) with b = 2 gives the Jacobsthal numbers Jn := gn see A001045;
the equation (2) with b = 3 gives A006130; the equation (2) with b = 4 gives A006131; the equation
(2) with b = 5 gives A015440; and the equation (2) with b = 6 gives A015441. We summarize these
results in (3).

F1 :=

[

1 1
1 0

]

; G2 :=

[

1 2
1 0

]

; Gb :=

[

1 b
1 0

]

. (2)

The powers of these matrices are

Fn
1 =

[

Fn+1 Fn

Fn Fn−1

]

; Gn
2 =

[

J2n−1 J2n
J2n J2n+1

]

; Gn
b =

[

gn+1 bgn
gn+1 bgn−1

]

. (3)

The powers of the matrix L give rise to a matrix where the entries are Lucas numbers and
Fibonacci numbers [14].

L := (1/2)

[

1 5
1 1

]

; Ln = (1/2)

[

Ln 5Fn

Fn Ln

]

. (4)

The generalized Fibonacci numbers are defined as wn = pwn−1 − qwn−2, where w0 = 0, and
w1 = 1 for p and q in Z≥0. This recurrence relation is represented by the power of the matrix W
in (5) (see [1, 9, 16]). Particular cases of this sequence are in A015518 and A006190.

W :=

[

p −q
1 0

]

; Wn =

[

wn+1 −qwn

wn −qwn−1

]

. (5)

2.2. Pell matrices and generalized Pell matrices. The matrices in (6) are obtained from
particular cases of (5) (see also [5, 9]). Using (6) and power matrices we have that: Pn

2 gives rise to
Pell numbers pn = 2pn−1+pn−2, where p0 = 0, p1 = 1; the matrix Pn

3 gives rise to bn = 3bn−1+bn−2,
where b0 = 0, b1 = 1, and in general Pn

b gives rise to cn = b · cn−1 + cn−2, where c0 = 0, c1 = 1.
Sequences associated with some values of b; b = 2 gives A000129; b = 3 gives A006190; b = 4 gives
A001076; b = 5 gives A052918; and b = 6 gives A005668. We summarize these results in (7).

P2 :=

[

2 1
1 0

]

; P3 :=

[

3 1
1 0

]

; Pb :=

[

b 1
1 0

]

. (6)

The powers of these matrices are

Pn
2 =

[

pn+1 pn
pn pn−1

]

; Pn
3 =

[

bn+1 bn
bn bn−1

]

; Pn
b =

[

cn+1 cn
cn cn−1

]

. (7)
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2.3. Fibonacci Polynomials. The following matrices that give rise to Fibonacci polynomials can
be found in [18].

Q(x) :=

[

x 1
1 0

]

; Qn(x) =

[

Fn+1(x) Fn(x)
Fn(x) Fn−1(x)

]

. (8)

2.4. Special Jordan Algebra background. In this section, we give the background of special
Jordan algebras and three identities needed to show the examples required for this motivation
section. The identities in Lemma 1 are part of Lemma 3 on page 7. Part of the discussion here and
some notation can be found in [11, 12, 13].

A Jordan algebra A is a non-associative algebra over a field not of characteristic 2 whose multi-
plication satisfies that a · b = b · a (commutative law) and (a2 · b) · a = a2 · (b · a) (Jordan identity).
Let (A,+,×, ∗) be the vector space of all n×n matrices over R, where +, ×, and ∗ are the matrix
addition, matrix product, and the scalar product, respectively. For simplicity, we use ab instead
of a × b. (In this paper n = 2.) The vector space A gives rise to the special Jordan algebra
A+ = (A,+, ·, ∗), where the Jordan product (denoted by ·) is defined as a · b = (ab+ ba)/2. We use
{a, b, c} to denote this ternary operation

{a, b, c} = (1/2) [(ab)c+ (cb)a] . (9)

Lemma 1 ([11, 13]). Let A be a special Jordan algebra with the ternary operation {·, ·, ·}. If
a, b, c ∈ A, where a · b is the Jordan product, then these identities hold

(1) {an, am, bn} = a(m+n) · bn,
(2) {al, {am, b, am}, al} = {am+l, b, am+l},
(3) {an, b, an} · c = 2{an, (an · b), c} − {a2n, b, c},
(4) {am, b, an} · al = {am, (b · al), an}.

3. Examples of applicability of the Jordan identities in numerical sequences

In this section, we give some a few examples on how to apply identities from special Jordan
algebras to obtain new identities of order two recurrences relations. For example, we show some
new and old identities in Fibonacci numbers, generalized Fibonacci numbers, Lucas numbers, Pell
numbers, and combinations of some of them.

3.1. Example. As a first example we show an application of Lemma 1 Part (1) to F1 in (2). In
this example, we use the Jordan identity to prove Identity VI in [2] (more general). Thus, we prove
that F2n+1 = F 2

n+1 +F 2
n . Letting a = F1 and b = I2 (the 2-by-2 identity matrix) in Lemma 1 Part

(1) we obtain that

{am, an, b} = a(m+n) · b,
{Fm

1 ,Fn
1 , I2} = Fm+n

1 · I2.
This and (3) imply that

{

[

Fm+1 Fm

Fm Fm−1

]

,

[

Fn+1 Fn

Fn Fn−1

]

,

[

1 0
0 1

]

}

=

[

Fm+n+1 Fm+n

Fm+n Fm+n−1

]

. (10)

Applying (9) to the left side of this equality and simplifying we have the identity

[

FmFn + Fm+1Fn+1 (FnLm + FmLn)/2
(FnLm + FmLn)/2 Fm−1Fn−1 + FmFn

]

=

[

Fm+n+1 Fm+n

Fm+n Fm+n−1

]

.

Taking m = n+ 1 and simplifying we obtain the desired identity.
3



3.2. Example. We now give a second example on the application of Lemma 1 Part (1) to F1 in
(3) and L in (4). Thus, letting a = F1 and b = L in Lemma 1 Part (1) we obtain that

{an, am, bn} = a(m+n) · bn,
{Fn

1 ,Fm
1 ,Ln} = Fm+n

1 · Ln.

This, (3), and (4) imply that
{

[

Fn+1 Fn

Fn Fn−1

]

,

[

Fm+1 Fm

Fm Fm−1

]

,

[

Ln/2 5Fn/2
Fn/2 Ln/2

]

}

=

[

Fm+n+1 Fm+n

Fm+n Fm+n−1

]

·
[

Ln/2 5Fn/2
Fn/2 Ln/2

]

=

[

(LnFm+n+1 + 3FnFm+n)/2 (2LnFm+n + 5FnLm+n)/4
(2LnFm+n + FnLm+n)/4 (LnFm+n−1 + 3FnFm+n)/4

]

. (11)

Applying (9) and simplifying we have that the left side (top) of this last equation is equal to
[

Ln(FmFn + Fm+1Fn+1)/2 Ln(LmFn + FmLn)/4
Ln(LmFn + FmLn)/4 Ln(Fm−1Fn−1 + FmFn)/2

]

+

[

3Fn(Fm−1Fn + FmFn+1)/2 5Fn(Fm−1Fn−1 + 2FmFn + Fm+1Fn+1)/4
Fn(Fm−1Fn−1 + 2FmFn + Fm+1Fn+1)/4 3Fn(FmFn−1 + Fm+1Fn)/2

]

.

Since the entries of the sum of these last matrices are equal to the entries of the right side matrix
(bottom) of (11), after doing some simplifications, we obtain these four identities.

LnFm+n+1 + 3FnFm+n = Ln(FmFn + Fm+1Fn+1) + 3Fn(Fm−1Fn + FmFn+1).

2LnFm+n + 5FnLm+n = Ln(LmFn + FmLn) + 5Fn(Fm−1Fn−1 + 2FmFn + Fm+1Fn+1).

2LnFm+n + FnLm+n = Ln(LmFn + FmLn) + Fn(Fm−1Fn−1 + 2FmFn + Fm+1Fn+1).

LnFm+n−1 + 3FnFm+n = 2Ln(Fm−1Fn−1 + FmFn) + 6Fn(FmFn−1 + Fm+1Fn).

3.3. Example. In this example, we apply special Jordan identities to Fibonacci polynomials. In
this case, we use Lemma 1 Part (3) with (8). We take an = Qn(x), b = Qm(x) and c = I2. So,

{an, b, an} · c = 2{an, (an · b), c} − {a2n, b, c}.
{Qn(x),Qm(x),Qn(x)} · I2 = 2{Qn(x), (Qn(x) · Qm(x)), I2} − {Q2n(x),Qm(x), I2}.

These give rise to the following identities. For simplicity of the identities we set ft = Ft(x) and
lt = Lt(x) (Lucas polynomial) for every t > 0. (For more identities in Fibonacci polynomials see
[7].)

fm−1f
2
n + fn+1(2fmfn + fm+1fn+1) = fm−1f

2
n + 2fmfnfn+1 + fm+1(f

2
n + 2f2

n+1 − f2n+1).

fn(fm−1fn−1 + fm+1fn+1) + fm(f2
n + fn−1fn+1) =

fm(4f2
n + l2n − l2n)/2 + fn(fm−1fn−1 + fm+1fn+1).

3.4. Example. In this example, we apply special Jordan identities combining Fibonacci numbers
and Lucas numbers with a matrix having a variable. In this case, we use Lemma 1 Part (1) with

n = m and an = Ln and b =

[

x 1
1 0

]

.

5xF 2
n + 6LnFn + xL2

n = 6F2n + 2xL2n,

5F 2
n + 5xLnFn + L2

n = 5xF2n + 2L2n.
4



4. Recursive Relations from 2× 2 matrices

This section is based on the results found by Mc Laughlin [17]. We now give a summary of the
results from [17] that we are going to use here in this paper.

Let T := a+ d and D := ad− bc be the trace and the determinant of A, where

A =

[

a b
c d

]

.

If α = (T +
√
T 2 − 4D)/2 and β = (T −

√
T 2 − 4D)/2, then for α 6= β, I2 —the 2 × 2 identity

matrix— and

zn :=
αn − βn

α− β
=

⌊n−1

2
⌋

∑

m=0

(

n

2m+ 1

)

T n−2m−1(T 2 − 4D)m/2n−1, (12)

this holds

An = znA− zn−1DI2. (13)

Theorem 2 ([17]). If

yn =

⌊n

2
⌋

∑

i=0

(

n− i

i

)

T n−2i(−D)i,

then

An =

[

yn − dyn−1 byn−1

cyn−1 yn − ayn−1

]

.

We have observed that if A := {{1, 1}, {1, 0}} and

Zn :=
αn + βn

T
=

⌊n

2
⌋

∑

i=0

(

n

2i

)

T n−2i(T 2 − 4D)i/2n−1,

then the Lucas sequence can be obtained by An−1B = ZnA − Zn−1DI2, where B := A2 + I2 =
[

3 1
1 2

]

.

4.1. Matrices associated to k-th binomial transform of Fibonacci numbers. We now give
some examples of matrices using the technique in Theorem 2 and (13). The first entries of the
matrices T n

k+1 given in (14) give rise to the k-th binomial transform of Fk+1 (see [20]). For the
particular case T n

2 gives rise to {F2n+1} and {F2n} see [18, 19].
In general, T n

k+1 gives rise to the sequences

hn,k(j) =

n
∑

i=0

(−1)i−1+j

(

n

i

)

Fi−j(k + 1)n−i.

We summarize these results in (15). When k varies for small values the sequences are in [22]. For
example, when k = 2 we obtain the sequence dn = 5dn−1 − 5dn−2, where the initial conditions
depend on the position in the matrix. For example, the sequence associated to the entry (1, 1) of
T n
3 is dn,11 = 5dn−1 − 5dn−2, where d0 = 1, d1 = 3; the sequence associated to the entries (1, 2)

or (2, 1) is dn,12 = 5dn−1 − 5dn−2, where d0 = 1, d1 = 5; and the sequence associated to the entry
(2, 2) is dn,22 = 5dn−1 − 5dn−2, where d0 = 2, and d1 = 5 (see A081567, A030191, and A020876).

T2 :=
[

2 1
1 1

]

; Tk+1 :=

[

k + 1 1
1 k

]

. (14)

The powers of these matrices are
5
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T n
2 =

[

F2n+1 F2n

F2n F2n−1

]

; T n
k+1 =

[

hn,k(1) hn−1,k(0)
hn−1,k(0) hn,k(−1)

]

. (15)

4.2. Other matrices. The following matrices can be found in [17].

M1 :=

[

2 1
−1 0

]n

=

[

n+ 1 n
−n −n+ 1

]

. (16)

M2 :=

[

3 1
−2 0

]n

=

[

2n+1 − 1 2n − 1
−2n+1 + 2 −2n + 2

]

. (17)

M3 :=

[

−2 −1
1 1

]n

= (−1)n
[

Fn+2 Fn

−Fn −Fn−2

]

. (18)

4.3. Example. In this example, we apply special Jordan identities to k-th binomial transform of
Fibonacci numbers. In this case, we use Lemma 1 Part (4). We take a = Tk+1 from (15), b = I2
and c = Tk+1 from (15). So, the entries (1,1) of all matrices give

h3n,k(1) = hn,k(0)h2n,k(0) + hn,k(1)h2n,k(1)− h2n,k(0)(2hn,k(1) + hn,k(−1)).

This is equivalent to

(

n
∑

i=0

(−1)i
(

n

i

)

Fi−1(k + 1)n−i

)3

=

n
∑

i=0

(−1)i−1

(

n

i

)

Fi(k + 1)n−i
2n
∑

i=0

(−1)i−1

(

2n

i

)

Fi(k + 1)2n−i+

n
∑

i=0

(−1)i
(

n

i

)

Fi−1(k + 1)n−i
2n
∑

i=0

(−1)i
(

2n

i

)

Fi−1(k + 1)2n−i+

−
(

n
∑

i=0

(−1)i−1

(

n

i

)

Fi(k + 1)n−i

)2( n
∑

i=0

(−1)i
(

n

i

)

(2Fi−1 + Fi+1)(k + 1)n−i

)

.

4.4. Fibonacci-Lucas matrix. The powers of the matrix L give rise to a matrix where the entries
are Lucas numbers and Fibonacci numbers [14].

L := (1/2)

[

1 5
1 1

]

; Ln = (1/2)

[

Ln 5Fn

Fn Ln

]

. (19)

The powers of matrix Sk give rise to the sequences {(k2 + 1)n} and {k(k2 + 1)n}. Since the
matrix S2

k in (20) is diagonalizable, it is easy to see that the matrices S2n
k and S2n+1

k are correct.

Sk :=

[

1 k
k −1

]

; S2
k =

[

k2 + 1 2k
2k k2 + 1

]

.

S2n
k =

[

(k2 + 1)n 0
0 (k2 + 1)n

]

; S2n+1
k =

[

(k2 + 1)n k(k2 + 1)n

k(k2 + 1)n (k2 + 1)n

]

. (20)
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4.5. Tribonacci identities. In this section, we give matrices associated to third-order recurrence
relations. For example, the matrix associated to the tribonacci sequence is denoted by T0,0,1,
where the sequence generated by the powers of T0,0,1 is given by tn = tn−1 + tn−2 + tn−3, where
t0 = 0, t1 = 0, and t2 = 1 [3, 23]. The sequence generated by the powers of the matrix T1,2,1 is
sn = sn−1 + 2sn−2 + sn−3, where s0 = 0, s1 = 1, and s2 = 1 [23]. The sequence generated the
powers of the matrix Tr,s,t is un = run−1 + sun−2 + tun−3, where u0 = 0, u1 = 1, and u2 = r [23].
For matrices in (24) see [18].

T0,0,1 :=





1 1 1
1 0 0
0 1 0



 ; T n
0,0,1 :=





tn+2 tn + tn+1 tn+1

tn+1 tn + tn−1 tn
tn tn−1 + tn−2 tn−1



 . (21)

T1,2,1 :=





1 2 1
1 0 0
0 1 0



 ; T n
1,2,1 :=





sn+1 2sn + sn−1 sn
sn 2sn−1 + sn−2 sn−1

sn−1 2sn−2 + sn−3 sn−2



 . (22)

Tr,s,t :=





r s t
1 0 0
0 1 0



 ; T n
r,s,t :=





un+1 sun + tun−1 un
un sun−1 + tun−2 un−1

un−1 sun−2 + tun−3 un−2



 . (23)

TF :=





0 0 1
0 1 2
1 1 1



 ; T n
F :=





F 2
n−1 Fn−1Fn F 2

n

2Fn−1Fn F 2
n−1 + Fn+1Fn 2Fn+1Fn

F 2
n FnFn+1 F 2

n+1



 . (24)

4.6. Example. In this case, we use Lemma 1 Part (1). We take a = T0,0,1 from (21) and b = I3.

(1) tm+n+2 = tmtn+1 + tm+1(tn + tn+1) + tm+2tn+2.
(2) 2tm+n+1 = tm−1tn+1 + tm+2tn+1 + tm(2tn + tn+1) + tm+1(tn−1 + tn + tn+2).

5. Identities in Jordan Algebras

In this section, we give a series of special Jordan algebra identities from classic literature [11, 12,
13] (a few identities of many in the literature).

5.1. Special Jordan Algebra background. In this section, we complete the identities given in
Subsection 2.4. We recall that the Jordan product is defined as a · b = (ab+ ba)/2 and that {a, b, c}
denotes the ternary operation

{a, b, c} = (1/2) [(ab)c+ (cb)a] . (25)

Lemma 3 ([11, 13]). Let A be a special Jordan algebra with the ternary operation {·, ·, ·}. If
a, b, c ∈ A, where a · b is the Jordan product, then these identities hold

(1) {an, am, bn} = a(m+n) · bn.
(2) {al, {am, b, am}, al} = {am+l, b, am+l}.
(3) {an, b, an} · c = 2{an, (an · b), c} − {a2n, b, c}.
(4) 2({anm, b, c} · an) = {an, {a(mn−n), b, c}, an}+ {a(mn+n), b, c}.
(5) 2({an, b, an} · an) = {an, b · an, an}+ {a2n, b, an}.
(6) {am, b, an} · al = {am, (b · al), an}.
(7) {am, b, am} · al = {am+l, b, am}.
(8) {al, {am, b, an}, c} = {a(l+m), b · an, c} + {a(l+n), b · am, c} − {a(l+m+n), b, c}.
(9) {al, {am, b, c}, an} = {a(l+m), b, c} · an + {a(m+n), b, c} · al − {a(l+m+n), b, c}.

Lemma 4 ([13, 15]). Let A be a special Jordan algebra with the ternary operation {·, ·, ·}. If
a, b, c ∈ A, where a · b is the Jordan product, then these identities hold

(1) 2{an, b, c} · a = {a, {an−1, b, c}, a} + {an+1, b, c}.
7



(2) {an, {am, b, am}, c} = 2{an+m, (am · b), c} − {an+2m, b, c}.

6. Proving classical Fibonacci identities using Jordan identities

As an example, of the application of the Jordan algebras in numerical sequences, we give different
proofs of some classic identities. The proofs in this section are obtained applying just one of Jordan
identitites (Lemma 3 Part (1)). Note it is one of the simpler Jordan identity, so this shows that
Jordan identities are also a great tool to re-prove classical identities. For example, Identity Part
(1) is the Lucas identity [18, 24], Identities Parts (2), (3), (4), (7), are in [24], Identities in Parts
(5), (8) are in [4], Identity in Part (6) is in [6], the Identities in Parts (9) and (10) are applications
of Part (8).

Proposition 5. For n ≥ 1, these hold.

(1) F 2
n + F 2

n+1 = F2n+1,
(2) Fn(Fn−1 + Fn+1) = F2n,
(3) 5F 2

n + L2
n = 2L2n,

(4) FnLn = F2n,
(5) FmFn + Fm+1Fn+1 = Fm+n+1,
(6) 5FmFn + LmLn = 2Lm+n,
(7) FnLm + FmLn = 2Fm+n,
(8) FmFn−1 + Fm+1Fn = Fm+n,
(9) FmFn + 2Fm+1Fn+1 + Fm+2Fn+2 = Fm+n+1 + Fm+n+3,

(10) F 2
n−1 + 2F 2

n + F 2
n+1 = F2n−1 + F2n+1.

Proof. The proofs of all parts of this proposition follow from Lemma 3 Part (1). Therefore, here we
indicate the matrices used for an, am, and b. For the proof of Parts (1) and (2), we use an = Fn

1 ,

am = Fn
1 from (3) and b =

[

1 0
0 1

]

.

The proof of Parts (3) and (4), uses n = m, an = Ln from (19) with b =

[

1 0
0 1

]

.

The proof of Part (5), uses an = Fn
1 , a

m = Fm
1 from (3) with b =

[

1 0
0 0

]

.

The proof of Parts (6) and (7), uses an = Ln, am = Lm from (19) with b =

[

0 1
0 0

]

.

The proof of Part (8), uses an = Fn
1 , a

m = Fm
1 from (3) with b =

[

0 0
0 1

]

.

The proof of Part (9), uses an = Fn+1
1 , am = Fm+1

1 from (3) with b =

[

0 1
0 0

]

.

The proof of Part (10), uses n = m, an = Fn
1 from (3) with b =

[

0 1
1 0

]

. �

7. Recursive relations identities from Jordan identities

Using the mentioned matrices in Sections 2 and 4, and the identities in Section 5, we connect both
areas of mathematics, special Jordan algebras and recurrence relations. Here we give a collection of
identities of Fibonacci numbers, Lucas numbers, Pell numbers, and the binomial transform. This
list is not complete, these identities are actually a few examples of many that the reader can find
using this technique. Since the main objective of this paper is to show the path between special
Jordan algebras and the recurrences relations, the identities are simplified but not too deep.
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7.1. Fibonacci and other identities from Jordan identities. The proofs of the following
theorems are straightforward applications of the identities given in Lemmas 3 and 4. and the
matrices that are given in Sections 2. The proofs are made following the technique used in Section
3.

Proposition 6. If Fn is a Fibonacci number and Ln is a Lucas number, then these identities hold

(1) Fm(F2nFn+1 + FnF2n+1) = F2n+1(Fm+n+1 − Fm+1Fn+1)− F2n(Fm−1Fn − Fm+n),
(2) 5F 2

n = Fn+2(2Fn+3 − 3Fn−1)− Fn+1(6Fn + Fn+1),
(3) Fn+1(2Fn+2 − Fn+1) = FnFn+3 + Fn−1Fn+2,
(4) 5(F 2

n+1 + F 2
n) = 4F2n + 5F2n+1 − 4Fn(Fn−1 + Fn+1),

(5) 11F 2
n+1 = 13F2n + 6F2n−1 + 11F2n+1 − 6F 2

n−1 − 17F 2
n − 13Fn(Fn−1 + Fn+1),

(6) 3F 2
n+1 = 5F2n + 2F2n−1 + 3F2n+1 − 2F 2

n−1 − 5Fn(Fn−1 + Fn+2),
(7)

Fn−1

(

F 2
2n − FnF2nFn+1 + F 2

2n−1 − F 2
n(F2n−1 + F2n+1)

)

=

2F 2
n−1FnF2n + F 3

n−1F2n−1 + Fn

(

F 2
nF2n + FnFn+1F2n+1 − F2n(F2n−1 + F2n+1)

)

,

(8) Fr((Fn−1−Fn+1)Fm+2+(Fm−1−Fm+1)Fn+2) = ((2Fn+Fn+1)Fm+Fm+1Fn)(Fr−1−Fr+1),
(9)

Fm−1((3Fn+1 − 2Fn−1)Fr + Fn(Fr−1 − Fr+1)) =

Fm+1(−3Fn−1Fr + 4Fn+1Fr + 2Fn(Fr−1 − Fr+1))− Fm(Fn−1 − 2Fn+1)(Fr−1 − Fr+1).

Proof. This proof is a straightforward application of Lemma 3. In this lemma we use Parts (1)–(6)
setting a = F1, from (2) and (3), b = T2 from (14) and (15) and c = L from (19).

The Proof of Part (1) uses Lemma 3 Part (1).
The Proofs of Parts (2) and (3) use Lemma 3 Part (2).
The Proofs of Parts (4)–(6) use Lemma 3 Part (3).
The Proof of Part (7) uses Lemma 3 Part (5).
The Proofs of Parts (8) and (9) use Lemma 3 Part (6). �

Proposition 7. If Fn is a Fibonacci number and Ln is a Lucas number, then these identities hold

(1) F 2
n+2 − F 2

n = F2n+2,

(2) F 2
n−2 + 2F 2

n + 2F 2
n+3 + 8FnFn+2 = 8F 2

n+2 + 4FnFn−2 + F 2
n+1,

(3) F 2
n−2 + F2n+1 + 6FnFn+2 + 2Fn+1Fn+3 = Fn−1Ln+2 + 4F 2

n+2 + Fn−2(3Fn + Fn+2),

(4) F 2
n−2 + 2FnLn + 2FnFn+2 + 2F 2

n+1 = F 2
n−1 + F 2

n + 2F 2
n+2,

(5)

3F 3
n + 2F 2

n (Fn+2 + Ln) = Fn−2Fn (2Fn + 3Ln)+

Fn

(

−3Fn+2Ln + 2F 2
n+2 + 2F2n + F2n−2 − 2F2n+2

)

+
(

F 2
n+2 + 3F2n − L2n

)

Ln + F 2
n−2 (Fn + Ln) ,

9



(6)

5Fn (2Fn2Fn+2 − (Fn2−2 − 2Fn2+2)Fn+2 + Fn2+n−2 − 2Fn2+n − 2Fn2+n+2) =

F 2
nLn

(

−Fn2−n−2 + Fn2−n+2 − 3F(n−1)n

)

+

2FnLn (Fn2−2 − 2Fn2+2 + Fn−2Fn2−n−2 + 2Fn+2Fn2−n+2)

+ LnFn−2

(

3Fn2 − Fn2−2 + Fn2+2 + Fn+2Fn2−n−2 − Fn+2Fn2−n+2 − 3F(n−1)nFn+2

)

+ Ln (−3Fn2Fn+2 + Fn+2Fn2−2 − Fn+2Fn2+2 − Fn2+n−2 + 3Fn2+n + Fn2+n+2)+

2F 2
n

(

6Fn2 + 3 (Fn2−2 − Fn2+2 + Fn+2Fn2−n+2)− 2F(n−1)nFn+2

)

+

− F 3
n

(

Fn2−n−2 − 2Fn2−n+2 + 2F(n−1)n

)

+ Fn−2F
2
n

(

6Fn2−n−2 + 8F(n−1)n

)

+

5FnFn−2

(

2Fn2 − Fn2−2 + 2Fn2+2 + Fn+2Fn2−n−2 − 2Fn+2Fn2−n+2 − 2F(n−1)nFn+2

)

,

(7)

Fn

(

Fn (6Fn2 − 2Fn2−2 + 4Fn2+2) + F 2
n

(

2F(n−1)n − 3Fn2−n+2

)

− 3Fn2+n−2 − 4Fn2+n

)

=

Ln

(

Fn2−n−2F
2
n−2 +

(

2Fn2−2 − 3FnF(n−1)n

)

Fn−2 − 3FnFn2 + 2F 2
nFn2−n+2 + Fn2+n−2

)

+

FnFn−2

(

8Fn2 + 6Fn2−2 + Fn

(

2Fn2−n−2 − 4Fn2−n+2 − 6F(n−1)n

))

+

FnF
2
n−2

(

3Fn2−n−2 + 4F(n−1)n

)

,

(8) Fn−2F2n−1F
2
n + F2nF2n−1Fn + Fn+2F2n+1

(

F 2
n+2 − F2n+2

)

= F 2
nFn+2 (F2n−1 + F2n+1),

(9)

F2nFn+2F
2
n +

(

−2F 2
2n + F2n−2F2n−1 + F2n+1

(

2F 2
n+2 − F2n+2

))

Fn+

F 2
n−2 (F2nFn+2 + 2FnF2n−1) + F2nFn+2 (F2n−2 − F2n+1) =

Fn−2

(

F2nF
2
n + Fn+2 (F2n−1 + F2n+1)Fn + F2n

(

F 2
n+2 − F2n−1 − F2n+2

))

+ (F2n−1 + F2n+1)F
3
n ,

(10) F2n−1F
3
n−2 + Fn (FnFn+2 − F2n)F2n+1 = Fn−2

(

F 2
n (F2n−1 + F2n+1)− F2n−2F2n−1

)

,
(11) Fn (Fl−2 + Fl+2) = Fl (Fn−2 + Fn+2),
(12)

F2n+1F
2
l+n+2 − F2n−1F

2
l+n = F 2

l

(

F 2
nF2n+1 − F 2

n−2F2n−1

)

+

2Fl+2FlFn (Fn−2F2n−1 − Fn+2F2n+1) + F 2
l+2

(

F 2
n+2F2n+1 − F 2

nF2n−1

)

,

(13)

F2n+1Fl+nFl+n+2 + F2nF
2
l+n = F 2

l (F2nF
2
n + (Fn−2F2n−1 − Fn+2F2n+1)Fn − Fn−2F2nFn+2)+

Fl(Fl−2(F
2
nF2n+1 − F 2

n−2F2n−1) + Fl+2(F
2
n+2F2n+1 − F 2

nF2n−1))+

F2nFl+n−2Fl+n+2 + F2n−1Fl+n−2Fl+n+

Fl−2Fl+2(Fn−2F2n−1Fn − Fn+2F2n+1Fn − F 2
nF2n + Fn−2F2nFn+2),

(14)

F2n−1F
2
l+n−2 = F 2

l−2

(

F 2
n−2F2n−1 − F 2

nF2n+1

)

+

2FlFl−2Fn (Fn+2F2n+1 − Fn−2F2n−1) + F2n+1F
2
l+n + F 2

l

(

F 2
nF2n−1 − F 2

n+2F2n+1

)

,

(15)

2F 2
n−2Fn +

(

4F 2
n+2 − 3F2n − 6F2n+2

)

Fn + 2F3n + 7Fn+2F2n+2 =

4F 3
n + 2F 3

n+2 + Fn−2

(

F 2
n + 2Fn+2Fn − 3F 2

n+2 − 4F2n + 3F2n+2

)

+ 5F3n+2,
10



(16)

24F 2
nFn+2 + 21Fn+2F2n+2 + 14F2nFn+2 + 6F3n−2 + 5F 3

n−2 =

F 2
n−2 (2Fn + Fn+2) +

(

19F 2
n − 13Fn+2Fn − F 2

n+2 + 12F2n − 11F2n−2 + F2n+2

)

Fn−2+

7F 3
n + 10F 3

n+2 + 13F3n + Fn+2F2n−2 + Fn

(

4F 2
n+2 + 30F2n + 3F2n−2 − 3F2n+2

)

+ 11F3n+2,

(17)

6F2nFn+2 + 3F3n+2 + F 3
n + 2F 3

n+2 + Fn+2F2n−2 = F 3
n−2 + (2Fn − Fn+2)F

2
n−2+

(

−3F 2
n − 5Fn+2Fn + F 2

n+2 + 4F2n + 3F2n−2 − F2n+2

)

Fn−2+

5F3n + 4F 2
nFn+2 + 5Fn+2F2n+2 + Fn

(

4F 2
n+2 − 6F2n + 3F2n−2 − 3F2n+2

)

+ 2F3n−2,

(18)

8F2nFn+2 + 3Fn+2F2n−2 + 2F 3
n = F 3

n−2 + (2Fn − 3Fn+2)F
2
n−2+

(5F2n−2 − 4FnFn+2)Fn−2 + 4F3n + 2F 2
nFn+2 + Fn

(

4F 2
n+2 − 3F2n + 6F2n−2

)

+ 4F3n−2,

(19)

Fn

(

6Fn+2F2n+2 + 2F3n − 3F 3
n+2 − 4F2nFn+2 − 3F3n+2

)

=

Ln

(

Fn−2F
2
n − 3Fn+2F

2
n + 3F2nFn + 2

(

F 3
n+2 − 2F2n+2Fn+2 + F3n+2

))

+

Fn

(

4F 3
n − 6Fn+2F

2
n + Fn−2 (3Fn + 2Fn+2)Fn +

(

−6F 2
n+2 + 6F2n − 2F2n−2 + 4F2n+2

)

Fn

)

,

(20)

Fn(Fn(6F2n − 2F2n−2 + 4F2n+2)− 3F3n−2) =

Fn(3F
3
n−2 + 6FnF

2
n−2 + (−6F 2

n − 4Fn+2Fn + 8F2n + 6F2n−2)Fn−2 − 2F 3
n + 4F3n + 3F 2

nFn+2)+

Ln(F
3
n−2 + (2F2n−2 − 3F 2

n)Fn−2 − 3FnF2n + 2F 2
nFn+2 + F3n−2).

Proof. This proof is a straightforward application of Lemma 3. In this lemma we use Parts (1)–(8)
setting a = M3 from (18), b = T2 from (15), and c = L from (19).

The Proof of Part (1) uses Lemma 3 Part (1).
The Proofs of Parts (2)–(4) use Lemma 3 Part (2).
The Proof of Part (5) uses Lemma 3 Part (3).
The Proofs of Parts (6) and (7) use Lemma 3 Part (4).
The Proofs of Parts (8)–(10) use Lemma 3 Part (5).
The Proof of Part (11) uses Lemma 3 Part (6).
The Proofs of Parts (12)–(14) use Lemma 3 Part (7).
The Proofs of Parts (15)–(18) use Lemma 3 Part (8).
The Proofs of Parts (19) and (20) use Lemma 3 Part (9). �

Proposition 8. If Fn is a Fibonacci number and Ln is a Lucas number, then these identities hold

(1) 8Fn−2 + 16Fn−1 + 5Fn+2 = 5Fn + 13Fn+1,
(2) Fn−1 + 16Fn + 8Fn+1 = 11Fn+2 + 2Fn−2,
(3) 4Fn + 8Fn+1 = 11Fn−1 + 6Fn−2 + 3Fn+2,
(4)

Fm+1Fm+n + 7Fm+1Fm+n+1 = 3F 2
m−1Fn + 2F 2

m+1Fn+1 + F 2
m (7Fn + 4Fn+1)+

Fm−1 (Fm+1 (Fn + 3Fn+1) + Fm (7Fn + 3Fn+1)− 7Fm+n − 3Fm+n+1)+

Fm (2Fm+1 (Fn + 4Fn+1)− 9Fm+n − 11Fm+n+1) + 4F2m+n + 5F2m+n+1,
11



(5)

Fm−1 (11Fm+n−1 + 12Fm+n + Fm+n+1) = F 2
m−1 (5Fn−1 + Fn)+

Fm−1 (Fm+1 (Fn−1 + 10Fn + Fn+1) + Fm (11Fn−1 + 12Fn + Fn+1))+

2F 2
m+1Fn + 10F 2

m+1Fn+1 + F 2
m (11Fn−1 + 13Fn + 6Fn+1)− Fm+1Fm+n−1+

− 14Fm+1Fm+n − 21Fm+1Fm+n+1 + 6F2m+n−1 + 13F2m+n + 11F2m+n+1+

Fm (2Fm+1 (Fn−1 + 11Fn + 6Fn+1)− 13Fm+n−1 − 34Fm+n − 13Fm+n+1) ,

(6)

Fm−1 (4Fm+n + Fm+n+1) +Fm+1Fm+n−1 + 6Fm+1Fm+n +5Fm+1Fm+n+1 = F 2
m−1 (Fn−1 + Fn)+

Fm−1 (Fm+1 (Fn−1 + 2Fn + Fn+1) + Fm (3Fn−1 + 4Fn + Fn+1)− 3Fm+n−1)+

2F 2
m+1Fn + 2F 2

m+1Fn+1 + F 2
m (3Fn−1 + 5Fn + 2Fn+1)+

Fm (2Fm+1 (Fn−1 + 3Fn + 2Fn+1)− 5 (Fm+n−1 + 2Fm+n + Fm+n+1))+

2F2m+n−1 + 5F2m+n + 3F2m+n+1.

Proof. This proof is a straightforward application of Lemma 4. Set a = Fn
1 from (3), b = T n

2 from
(15), and c = Ln from (19).

The Proofs of Parts (1)–(3) use Lemma 4 Part (1).
The Proofs of Parts (4)–(6) use Lemma 4 Part (2). �

7.2. Binomial transform of Fibonacci numbers identities. In this section, we use the se-
quence give in Section 4.1 and the identities from Section 5.

Proposition 9. If k, n ≥ 1 and i ∈ {−1, 0, 1} and

hn,k(j) =

n
∑

i=0

(−1)i−1+j

(

n

i

)

Fi−j(k + 1)n−i,

then these identities hold

(1)

hn,k(1)(hm,k(1)hn,k(1) − hm+n,k(1)) + h2n,k(0)hm,k(−1) = hn,k(0)(hm+n,k(0) − 2hm,k(0)hn,k(1)),

(2)

hm+n,k(0)(hn,k(1) + hn,k(−1)) = 2hm,k(0)(h
2
n,k(0) + hn,k(1)hn,k(−1))+

hn,k(0)(2hm,k(1)hn,k(1)− hm+n,k(1) + 2hm,k(−1)hn,k(−1)− hm+n,k(−1)),

(3)

h2n,k(0)hm,k(1) + hn,k(−1)(hm,k(−1)hn,k(−1)− hm+n,k(−1)) =

hn,k(0)(hm+n,k(0)− 2hm,k(0)hn,k(−1)),

(4)

h2n+1,k(0) + h2n+1,k(1) = h2n,k(0)(1 + (1 + k)2) + (1 + k)2h2n,k(1)+

h2n,k(−1) + 2(1 + k)hn,k(0)(hn,k(1) + hn,k(−1)),

(5) h3n,k(1) = hn,k(0)h2n,k(0) + hn,k(1)h2n,k(1)− h2n,k(0)(2hn,k(1) + hn,k(−1)),
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(6)

2h3n,k(0) = h2n,k(0)(hn,k(1) + hn,k(−1)) + hn,k(0)(−2h2n,k(1)+

h2n,k(1)− 2hn,k(1)hn,k(−1)− 2h2n,k(−1) + h2n,k(−1)),

(7)

h2n,k(1)h2n,k(1) = h4n,k(0) + h4n,k(1)− hn,k(0)h2n,k(0)(hn,k(1) + hn,k(−1))

+ h2n,k(0)(3h
2
n,k(1) − h2n,k(1) + 2hn,k(1)hn,k(−1) + h2n,k(−1)),

(8)

2h2n,k(0)h2n,k(0) = 4h3n,k(0)(hn,k(1) + hn,k(−1))− h2n,k(0)(h
2
n,k(1) + h2n,k(−1))

+ hn,k(0)(hn,k(1) + hn,k(−1))(2h2n,k(1)− h2n,k(1) + 2h2n,k(−1)− h2n,k(−1)),

(9) h3n,k(1) + h3n,k(1) + h2n,k(0)(2hn,k(1) + hn,k(−1)) = 2(hn,k(0)h2n,k(0) + hn,k(1)h2n,k(1)),

(10)

h2n,k(0)(hn,k(1) + hn,k(−1)) = h3n,k(0) + h3n,k(0) + hn,k(0)(h
2
n,k(1)− h2n,k(1)+

hn,k(1)hn,k(−1) + h2n,k(−1)− h2n,k(−1)),

(11)

hn,k(1)(2hn,k(1)h2n,k(1)− h3n,k(1)− h3n,k(1)) = h4n,k(0)+

hn,k(0)(h3n,k(0)− h2n,k(0)(3hn,k(1) + hn,k(−1))) + h2n,k(0)(3h
2
n,k(1)− h2n,k(1)

+ 2hn,k(1)hn,k(−1) + h2n,k(−1)− h2n,k(−1)).

Proof. Proof of Parts (1)–(3). These proofs are straightforward applications of Lemma 3 Part (1)
by setting a = Tk+1, and b = Tk+1.

Proof of Part (4). This proof is a straightforward application of Lemma 3 Part (2) by setting
a = Tk+1 and b = I2.

Proof of Parts (5) and (6). These proofs are straightforward applications of Lemma 3 Part (3)
by setting a = Tk+1, and b = I2 and c = Tk+1.

Proof of Parts (7) and (8). These proofs are straightforward applications of Lemma 3 Part (5)
by setting a = Tk+1, and b = Tk+1.

Proof of Parts (9) and (10). These proofs are straightforward applications of Lemma 3 Part (8)
by setting a = Tk+1, and b = c = I2.

Proof of Part (11). This proof is a straightforward application of Lemma 3 Part (9) by setting
a = Tk+1, b = I2, and c = Tk+1. �

7.3. Pell identities from Jordan identities. We recall that the Pell numbers sequence is given
by the recursive relation pn = 2pn−1 + pn−2, where p0 = 0, p1 = 1.

Proposition 10. If Pn is a Pell number, then these identities hold

(1) PmPn + Pm+1Pn+1 =Pm+n+1,
(2)

Pm−1(nPn−1 − nPn + Pn) + Pm((n + 1)Pn−1 + 2nPn − (n− 1)Pn+1)+

Pm+1((n+ 1)Pn + nPn+1) = n(Pm+n−1 + Pm+n+1) + 2Pm+n,

(3) Pn+2 = Pn + 2Pn+1,
(4) 2Pn+2Pn+1 + PnPn+2 = P 2

n + Pn+1(2Pn + 5Pn+1 − Pn−1),
(5) P 2

n+1 + 2Pn+2Pn+1 − PnPn+2 = −P 2
n + 2Pn+1Pn + Pn+1(Pn−1 + 4Pn+1),
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(6) P2n+1 = P 2
n + P 2

n+1,

(7) 4P2n + 3P2n−1 + 2P2n+1 = 3P 2
n−1 + 5P 2

n + 2P 2
n+1 + 4PnPn−1 + 4PnPn+1,

(8) 7P 2
n = −3Pn−1Pn−1 + 2PnPn−1 − 4P 2

n+1 − 2P2n + 2PnPn+1 + 3P2n−1 + 4P2n+1,

(9) 3P 2
n = −Pn−1(3Pn−1 + 2Pn) + 2P2n − 2PnPn+1 + 3P2n−1,

(10)

2Pn(3Pmn − Pmn+1) + 18Pn+1Pmn+1 = −P 2
n(2Pmn−n + 3Pmn−n−1)+

2Pn+1(3Pmn−n − Pmn−n+1)Pn + 9(Pmn−n+1P
2
n+1 + Pmn+n+1),

(11)

Pn−1(4Pmn + 3Pmn−1 + 2Pmn+1) + Pn+1(4Pmn + 3Pmn−1 + 2Pmn+1)

+ Pn(−2Pmn − 3Pmn−1 + 9Pmn+1) = P 2
n(2Pmn−n − 3Pmn−n−1 − 4Pmn−n+1)+

Pn−1(Pn+1(4Pmn−n + 3Pmn−n−1 + 2Pmn−n+1)− Pn(2Pmn−n + 3Pmn−n−1))+

9Pn+1Pmn−n+1Pn + 3Pmn+n−1 + 4Pmn+n + 2Pmn+n+1,

(12)

Pn−1(2Pmn − 3Pmn−1 − 4Pmn+1) + Pn+1(2Pmn − 3Pmn−1 − 4Pmn+1)+

Pn(−2Pmn − 3Pmn−1 + 9Pmn+1) = P 2
n(4Pmn−n + 3Pmn−n−1 + 2Pmn−n+1)+

9Pn+1Pmn−n+1Pn − Pn−1(Pn(2Pmn−n + 3Pmn−n−1)+

Pn+1(−2Pmn−n + 3Pmn−n−1 + 4Pmn−n+1))− 3Pmn+n−1 + 2Pmn+n − 4Pmn+n+1,

(13)

2Pn(3Pmn − Pmn+1)− 2Pn−1(2Pmn + 3Pmn−1) + P 2
n−1(2Pmn−n + 3Pmn−n−1) =

2PnPn−1(3Pmn−n − Pmn−n+1) + 9P 2
nPmn−n+1 − 3Pmn+n−1 − 2Pmn+n,

(14) (n− 1)Pn−1P
2
n = 2Pn+1P

2
n + (n− 1)P2nPn + (n+ 1)Pn+1

(

P 2
n+1 − P2n+1

)

,
(15)

Pn−1

(

nP 2
n − 2Pn+1Pn − (n− 1)P2n + n

(

P2n+1 − P 2
n+1

))

+ Pn+1((n + 1)P2n + nP2n−1) =

2P 3
n − nPn+1P

2
n +

(

2(n + 1)P 2
n+1 + 2nP2n + nP2n−1 − P2n−1 − nP2n+1 − P2n+1

)

Pn+

P 2
n−1(nPn+1 − 2(n− 1)Pn),

(16)

Pn−1(nP
2
n + 2Pn+1Pn + (n − 1)P2n + n(P2n+1 − P 2

n+1)) + 2P 3
n + nPn+1P

2
n =

(−2(n+ 1)P 2
n+1 + 2nP2n − nP2n−1 + P2n−1 + nP2n+1 + P2n+1)Pn+

P 2
n−1(2(n − 1)Pn + nPn+1) + Pn+1((n + 1)P2n − nP2n−1),

(17) (n− 1)P 3
n−1 =

(

2P 2
n + (n− 1)P2n−1

)

Pn−1 + (n+ 1)Pn(PnPn+1 − P2n),
(18) (Pl−1 − Pl+1)(Pm+1Pn + PmPn+1) = Pl(Pm−1Pn+1 + Pm+1(Pn−1 − 2Pn+1)),
(19) 2(Pl−1 − Pl+1)PmPn = Pl(Pn(Pm−1 − Pm+1) + Pm(Pn−1 − Pn+1)),
(20)

(1− n)P 2
l+m + P 2

l+m+1 + nP 2
l+m+1 = P 2

l

(

(n + 1)P 2
m − (n− 1)P 2

m−1

)

+

2Pl+1PlPm((n+ 1)Pm+1 − (n− 1)Pm−1) + P 2
l+1

(

(n+ 1)P 2
m+1 − (n− 1)P 2

m

)

,
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(21)

Pl+m−1(nPl+m+1 − (n− 1)Pl+m)− Pl+m(nPl+m − (n+ 1)Pl+m+1) =

Pl−1Pl+1(Pm−1(−nPm + nPm+1 + Pm) + Pm((n+ 1)Pm+1 − nPm))+

PlPl+1

(

(n+ 1)P 2
m+1 − (n− 1)P 2

m

)

+ P 2
l (Pm(nPm + (n+ 1)Pm+1)+

Pl−1Pl

(

(n+ 1)P 2
m − (n− 1)P 2

m−1

)

+ Pm−1(−nPm − nPm+1 + Pm)),

(22)

Pl+m+1((n+ 1)Pl+m − nPl+m−1)− Pl+m((n − 1)Pl+m−1 − nPl+m) =

P 2
l Pm−1(−nPm + nPm+1 + Pm) + P 2

l Pm((n + 1)Pm+1 − nPm)+

Pl+1Pl

(

(n+ 1)P 2
m+1 − (n− 1)P 2

m

)

+ Pl+1Pl−1Pm(nPm + (n+ 1)Pm+1)+

PlPl−1

(

(n+ 1)P 2
m − (n− 1)P 2

m−1

)

+ Pl+1Pl−1Pm−1(−nPm − nPm+1 + Pm),

(23)

P 2
l+m−1 + P 2

l+m = P 2
l−1

(

(n+ 1)P 2
m − (n− 1)P 2

m−1

)

+

2PlPl−1Pm((n+ 1)Pm+1 − (n − 1)Pm−1) + nP 2
l+m−1 − nP 2

l+m+

P 2
l

(

(n+ 1)P 2
m+1 − (n− 1)P 2

m

)

,

(24) P 2
l+m+1 = P 2

l P
2
m + 2PlPl+1Pm+1Pm + P 2

l+1P
2
m+1,

(25)

P 2
l+m = Pl+m−1Pl+m+1 + 2Pl+mPl+m+1 − 2Pl+1PlP

2
m+1−

P 2
l (P

2
m + 2Pm+1Pm − Pm−1Pm+1)− Pl−1(2PlP

2
m+

Pl+1(−P 2
m + 2Pm+1Pm + Pm−1Pm+1)),

(26)

PnPl+m + PmPl+n + 3PmPl+n+1 + Pm+1Pl+n+1 = PlPm+1Pn + Pm−1Pl+n+1

+ PlPm(6Pn + Pn+1) + (Pn−1 − 3Pn − Pn+1)Pl+m+1 + Pl+1(2PmPn − Pm−1Pn+1+

3PmPn+1 + Pm+1(−Pn−1 + 3Pn + 2Pn+1)),

(27)

Pn−1Pl+m−1 + Pn−1Pl+m+1 + 2Pl+1PmPn + 20PnPl+m + 2PnPl+m+1 + 2PnPl+m−1+

Pn+1Pl+m−1 + 21Pn+1Pl+m+1 + Pm−1Pl+n−1 + 2PmPl+n−1 + Pm+1Pl+n−1 + 20PmPl+n+

Pm−1Pl+n+1 + 2PmPl+n+1 + 21Pm+1Pl+n+1 + 16Pl+m+n = Pl+1Pm+1Pn−1 + 10Pn−1Pl+m+

2Pl+1Pm+1Pn + Pl+1Pm−1Pn+1 + 2Pl+1PmPn+1 + 20Pl+1Pm+1Pn+1 + 6Pn+1Pl+m+

Pl−1(Pm+1(Pn−1 + 2Pn) + Pm−1Pn+1 + 2Pm(9Pn + Pn+1))+

Pl(−10Pm−1Pn+1 + 4Pm(6Pn + 5Pn+1) + Pm+1(4(5Pn + Pn+1)− 10Pn−1))+

10Pm−1Pl+n + 6Pm+1Pl+n + 2Pl+m+n−1 + 22Pl+m+n+1,

(28)

6Pn+1Pl+m + 3PmPl+n−1 + PmPl+n + 6Pm+1Pl+n + 2Pl+m+n−1 + PnPl+m = PlPm+1Pn+

Pl−1(4PmPn − Pm+1(Pn−1 − 3Pn)− Pm−1Pn+1 + 3PmPn+1) + Pm−1Pl+n−1+

Pm+1Pl+n−1 + PlPmPn+1 + 6PlPm+1Pn+1 + (Pn−1 − 3Pn + Pn+1)Pl+m−1 + 6Pl+m+n,
15



(29)

Pn(Pl+1(Pm − 3Pm+1)− Pl+m + 3Pl+m+1) =

Pl(−2Pm−1Pn + 6PmPn − PmPn+1 + 3Pm+1Pn+1 + Pm+n − 3Pm+n+1),

(30)

Pn−1Pl+m−1 + 11Pl−1Pm+n+1 + 16Pl+m+n + Pn+1Pl+m−1 + Pl−1Pm+n−1 =

4PnPl+m−1 − 12PnPl+m + Pl−1Pm−1Pn+1 − 8Pl−1PmPn+1+

11Pl−1Pm+1Pn+1 + 8Pn+1Pl+m − 11Pn+1Pl+m+1 + 8Pl−1Pm+n+

− 2Pl(−6PmPn−1 − 4PmPn − Pm+1Pn + Pm−1(2Pn−1 + Pn)− 2Pm+n−1 + 6Pm+n)+

Pl+1(Pm−1Pn−1 − 8PmPn−1 + 11Pm+1Pn−1 − Pm+n−1 + 8Pm+n − 11Pm+n+1)+

8Pn−1Pl+m − 11Pn−1Pl+m+1 − 4Pl−1Pm−1Pn + 12Pl−1PmPn + 2Pl+m+n−1 + 22Pl+m+n+1,

(31)

6Pn−1Pl+m + 3PnPl+m+1 + 2Pl+m+n−1 = 2Pn−1Pl+m−1 + 6Pl+m+n + PnPl+m+

Pl−1(−2Pm−1Pn−1 + 6PmPn−1 − PmPn + 3Pm+1Pn + 2Pm+n−1 − 6Pm+n)+

Pl(−PmPn−1 + 3Pm+1Pn−1 + Pm+n − 3Pm+n+1).

Proof. This proof is a straightforward application of Lemma 3. In this lemma we use Parts (1)–(8)
setting a = P2 from (7), b = M1 from (16), c = M2 from (17), d = Sk from (20), and to use Parts
(8) and (9) of the lemma we set c = L from 19.

The Proofs of Parts (1) and (2) use Lemma 3 Part (1).
The Proofs of Parts (3)–(5) use Lemma 3 Part (2).
The Proofs of Parts (6)–(9) use Lemma 3 Part (3).
The Proofs of Parts (10)–(13) use Lemma 3 Part (4).
The Proofs of Parts (14)–(17) use Lemma 3 Part (5).
The Proofs of Parts (18) and (19) use Lemma 3 Part (6).
The Proofs of Parts (20)–(23) use Lemma 3 Part (7).
The Proofs of Parts (24) and (25) use Lemma 3 Part (2).
The Proofs of Parts (26)–(28) use Lemma 3 Part (8).
The Proofs of Parts (29)–(31) use Lemma 3 Part (9). �

8. Appendix. Mathematica programing

In this section, we share our programs that we made in Mathematica. Where Mc[A ,n ] is An

given in Theorem 2,
Input. An integer n and a matrix

A =

[

a b
c d

]

.

Output. Matrix with sequences associated to A.

8.1. Construction of Mc Laughlin Matrix from Theorem 2. Here Y[A ,n ] is yn and
Mc[A ,n ] is An as given in Theorem 2.

Y[A ,n ] :=
∑Floor[n

2
]

i=0 Binomial[n− i, i]Tr[A]n−2i(−Det[A])i;

Mc[A ,n ] := {{Y[A,n]−A[[2]][[2]] ∗Y[A,n− 1], A[[1]][[2]] ∗Y[A,n − 1]},
{A[[2]][[1]] ∗Y[A,n − 1],Y[A,n]−A[[1]][[1]] ∗Y[A,n− 1]}};
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8.2. Construction of Mc Laughlin Matrix using (12) and (13). Here Z[A ,n ] is as in (12)
and McIden[A ,n ] is as in (13).

α[A ] = (1/2)(Tr[A] +
√

Tr[A]2 − 4Det[A]);

β[A ] = (1/2)(Tr[A]−
√

Tr[A]2 − 4Det[A]);

Z[A ,n ] := Simplify
[

α[A]n−β[A]n

α[A]−β[A]

]

;

McIden[A ,n ] := {{Z[A,n] ∗ A[[1]][[1]] − Z[A,n− 1] ∗Det[A],Z[A,n] ∗ A[[1]][[2]]},
{Z[A,n] ∗A[[2]][[1]],Z[A,n] ∗ A[[2]][[2]] − Z[A,n − 1] ∗Det[A]}};

8.3. Using Jordan Identities. In this section, we give functions to evaluate the Jordan product
and the ternary Jordan product and one of the identities from Section 5 (we give only one identity,
in a similar way the other identities can be defined). Here JordanP[A ,B ] is the Jordan product
and TernaryP[A ,B ,C ] is the ternary product.

Input. An integer n and 2× 2 matrices A, B, C.
Output. An identity of matrices.
JordanP[A ,B ] := (1/2)(A.B +B.A);
TernaryP[A ,B ,C ] := (1/2)((A.B).C + (C.B).A);

Identity1[An ,Am ,Bn ,AmSn ] := Print[MatrixForm[TernaryP [An,Am,Bn]],

“ = ”,MatrixForm[JordanP[AmSn,Bn]]];

This function can be used with any matrices associated to a recurrence relation. For example, if
A = {{1, 1}, {1, 0}}, we can take An = McIden[A,n], Am = McIden[A,m], Bn = {{1, 0}, {0, 1}},
and AmSn = McIden[A,m+ n] into Identity1[An,Am,Bn,AmSn] to obtain fibonacci numer-
ical values n and m. (If we want a symbolic identity it is possible to do some manipulation on
Binomial[n− i, i] such that it provides symbolic results).

Note 1. The coding in Mathematica for the identities and some matrices will be available on the
webpage http://macs.citadel.edu/florez/research.html .

Note 2. Again, there are still many things, on how this connection works, that we would like to
understand better. For example, we are wondering under what conditions the identities given by
Glennie [8] can be used to obtain new identities –under the context of this paper. We only know
that some identities associated to powers have good behavior.
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[7] R. Flórez, N. McAnally, and A. Mukherjee, Identities for the generalized Fibonacci polynomial, Integers, 18B

(2018), Paper No. A2.

17

http://macs.citadel.edu/florez/research.html


[8] M. C. Glennie, Some identities valid in special Jordan algebras but not valid in all Jordan algebras, Pacific J.
Math. 16 (1966), 47–59.

[9] H. W. Gould, A history of the Fibonacci Q-matrix and a higher-dimensional problem, Fibonacci Quart. 19

(1981), 250–257.
[10] M. Jr. Hall, An identity in Jordan rings, Proc. Amer. Math. Soc. 7 (1956), 990–998.
[11] N. Jacobson, MacDonald’s theorem on Jordan algebras, Arch. Math. (Basel), 13 (1962), 241–250.
[12] N. Jacobson, A coordinatization theorem for Jordan algebras, Proc. Nat. Acad. Sci. 48 (1962), 1154–1160.
[13] N. Jacobson and L. J. Paige, On Jordan algebras with two generators, J. Math. Mech. 6 (1957), 895–906.
[14] R. C. Johnson, Fibonacci numbers and matrices, http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf, 2009.
[15] I. G. Macdonald, Jordan algebras with three generators, Proc. London Math. Soc. 3 (1960), 395–408.
[16] R. S. Melham and A. G. Shannon, Some summation identities using generalized Q-matrices, Fibonacci Quart.

33 (1995), 64–73.
[17] J. Mc Laughlin, Combinatorial identities deriving from the n-th power of a 2×2 matrix, Integers, 4 (2004), A19,

15 pp.
[18] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 2001.
[19] S. Moore, Fibonacci Matrices, The Mathematical Gazette, 67.439 (1983), 56–57.
[20] I. D. Ruggles and V. E. Hoggatt, Jr. A Primer on the Fibonacci Sequence, Part III, Fibonacci Quart. 1 (1963),

61–65.
[21] K. S. Williams, The nth Power of a 2× 2 Matrix (in Notes), Mathematics Magazine, 65.5 (1992), 336.
[22] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
[23] M. E. Waddill, Using matrix techniques to establish properties of a generalized Tribonacci sequence. Applications

of Fibonacci numbers, 4 (Winston-Salem, NC, 1990), 299–308, Kluwer Acad. Publ., Dordrecht, 1991.
[24] S. Vajda, Fibonacci and Lucas numbers, and the golden section. Theory and applications, Halsted Press (John

Wiley), 1989.
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