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Abstract

We study classes of musical scales obtained from shift spaces from symbolic dynam-
ics through the “distinguished symbol rule”, which yields scales in any n-TET tuning
system. The modes are thought as elements of orbit equivalence classes of cyclic shift
actions on languages, and we study their orbitals and transversals. We present ex-
plicit formulations of the generating functions that allow us to deduce the orbital and
transversal dimensions of classes of musical scales generated by vertex shifts, for all n,
in particular for the 12-TET tuning system. For this, we use first return loop systems
obtained from quotients of zeta functions, and integer compositions as the combinato-
rial class representing all musical scales. We develop the following case studies: three
zero entropy symbolic systems arising from substitutions, namely the Thue-Morse, the
Fibonacci, and the Fagenbaum scales, the golden mean scales, and a shift of finite type
that is not a vertex shift.

1 Introduction

1.1 Symbolic sequential scales

A symbolic sequential scale is a musical scale obtained from a (mathematical) symbolic
sequence, according to certain (mathematical) rule. For example, the standard Thue-Morse
scales introduced in [21] and defined as certain sets of scales obtained from the renowned
Thue-Morse binary sequence, with coding rule the binary representation of scales. This
rule can be generalized to sequences over larger alphabets, for example as the distinguished
symbol rule, that likewise generates scales on every n-TET tuning system; it consists on
coupling a block that occurs in the sequence with a “symbolic chromatic scale” of the same
length, that is, a block formed with increasingly ordered elements of a set of “symbolic
notes”, and then letting the scale defined by the rule be formed with the notes carrying the
distinguished initial symbol of the corresponding block. The rule can be applied to sets of
symbolic sequences.
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Our goal here is to present a general formalism to study symbolic sequential scales of
this type, with the number of notes on each scale as a parameter, together with their modes,
incorporating techniques from both symbolic dynamics [31] and analytic combinatorics [16].

1.2 Shift actions

We consider shift spaces as sets of symbolic sequences, that is, closed subsets X ⊆ AZ

of (bi)infinite sequences over an alphabet A, together with actions σ : Z y X by trans-
lations, induced by the left shift automorphism σ : AZ → AZ. Shift spaces have several
characterizations, for instance, as sets of sequences that avoid the elements of a subset
F ⊆ A∗ of (finite) forbidden configurations. A shift space X is also characterized by its
language L(X) ⊆ A∗, which is defined as the union of the admissible configurations that
occur in its sequences. Thus, they can be constructed, for example, by specifying either
its language (e.g., as the admisible blocks in a sequence, like the Thue-Morse sequence),
or a set of forbidden configurations (e.g., the distinguished symbol rule will certainly yield
admissible scales with no half tones between consecutive notes if the forbidden set is like
F ⊇ {a2 : a ∈ A}). Shifts of finite type (SFTs) are shift spaces defined by finite forbidden
sets F b A∗, and they can always be conjugated to vertex shifts, which are shift spaces de-
fined by forbidden sets like F ⊆ A2. Vertex shifts are well understood symbolic dynamical
systems, they posses matrix representations that provide algebraic and analytic tools to
study dynamic properties, like entropy, periodic points and their zeta functions, etc., and
some of these tools can be extrapolated through conjugacies to study dynamical properties
of SFTs and further, e.g. zeta functions of sofic shifts [11, 33]. SFTs are used as models
of more general dynamical systems (e.g. through Markov partitions [10] and universality
properties [24]), and they are also used in other areas, like in knot theory [38].

1.3 Cyclic shift actions

The modes of symbolic sequential scales are thought as instances of α-orbit equivalence
classes of actions α : Z y S∗ induced by the cyclic left shift combinatorial automorphism
α : S∗ → S∗ on finite sequences over some countable alphabet S (e.g., a binary alphabet,
or a set of symbolic notes, or the positive integers, etc.). Orbitals are unions of α-orbit
equivalence classes, and they are the subsets upon which α acts. In general, arbitrary
subsets of S∗ are not orbitals, like the language of a shift space (in fact, the language of a
shift space is an orbital if and only if the space is a full shift). Likewise, if the distinguished
symbol rule is formalized as a block function ϕ : L(X)→ S∗ valued on symbolic sequences
over some alphabet S that represent musical scales in a way that the α-orbits correspond
to the modes of the scales (for eample, see (3.1)), then ϕ

(
L(X)

)
is not, in general, an

orbital. Thus we consider orbitals generated by subsets B ⊆ S∗ as unions of the α-orbit
equivalence classes of their elements, and a transversal is a set of representatives of the
generated orbital.
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Remark 1.1. If B is a set of musical scales, like ϕ
(
L(X)

)
, then the cardinality of a transver-

sal is the number of “essentially different” scales an instrumentalist would have to learn
to play any scale in B, together with all its modes, for a total number of scales that
corresponds to the cardinality of its generated orbital.

We will refer to these cardinalities as transversal and orbital dimensions. Since any
set B decomposes into a sequence (Bn)n≥0 with Bn , B ∩ Sn, there are transversal and
orbital generating functions dimB

T (z) and dimB
O(z), respectively.

1.4 Main result

Thus we aim to find transversal and orbital generating functions of classes of musical scales
generated by shift spaces. We use integer compositions as the combinatorial model of the
class of all musical scales (that is, above, S will be the set N>0 of positive integers), not only
because its α-orbits represent the modes of the scales (as wheels), but also because it is an
ubiquitous combinatorial class in analytic combinatorics: its elements are represented as
sequences of positive integers, and their generating functions, including bivariate versions
marking several parameters like the number of summands, are well understood [16]. With
them (see Theorem 2), and the interplay of the σ-action on sequences and the α-action on
languages, it is possible to make the main formulation that is required to deduce transversal
and orbital generating functions of musical scales generated by vertex shifts (with reference
to Remark 1.1):

Theorem 1. Let X ⊆ AZ be an irreducible vertex shift and choose a distinguished sym-
bol s ∈ A. Then there is a set K(s) ⊆ N>0 of positive integers (see (3.8)) that yields
decompositions of the transversal and orbital generating functions of all musical scales in
ϕ
(
L(X, s)

)
, where L(X, s) is the language of all admissible words in X that start with s.

These decompositions are

dim
ϕ(X,s)
T (z) = WK(s)(z) + aK(s)(z), (1.2)

dim
ϕ(X,s)
O (z) = CK(s)(z) + bK(s)(z), (1.3)

where the four generating functions on the right hand sides above are as follows:

1. CK(s)(z) and WK(s)(z) are the generating functions of integer compositions and wheels,
respectively, both with summands in K(s) (see (2.3) and (2.5) evaluated at u = 1).

2. aK(s)(z) is the generating function of aperiodic compositions, also with summands in
K(s), except for the last one that belongs to the complement K(s)c and is bounded
above by an element of K(s) (see (3.9)).

3. The orbital generating function bK(s)(z) associated to the class represented by aK(s)(z)
is, in fact, the corresponding cumulative generating function with respect to the num-
ber of notes (see (3.12)).

3



The proof follows from the definitions and the formulations in the rest of the paper,
which is organized as follows. In section 2 we declare the class of all musical scales as
combinatorially isomorphic to the class of integer compositions, and define their modes,
orbitals, transversals, and their dimensions. In section 3 we address shift spaces and
the classes of musical scales they define through the distinguished symbol rule. We recall
periodic points and zeta functions, and then focus on shifts of finite type, vertex shifts, and
loop systems. Finally we settle the decompositions above and discuss their extrapolation to
SFTs. Our formalism is general for all n-TET tuning systems, and adapts for finite values
of n to numerical procedures for exact computations, for example when n = 12, which
is of most interest from the musical point of view. In section 4 we develop five examples
as case studies. The first three are classes of substitutive scales, that is, scales defined by
substitutive subshifts, namely the Thue-Morse, Fibonacci, and Fagenbaum scales. Then we
elaborate in detail one example of vertex shift scales to illustrate the methods in sections
2 and 3 that yield Theorem 1, namely the golden mean scales. Finally we sketch how to
methods can be adapted to proper SFTs (i.e. an SFT that is not a vertex shift). In the
last section 5 we make final remarks and conclusions, with respect to other works, possible
generalizations, and further applications.

2 Scales, modes, orbitals, and transversals

2.1 Musical scales and integer compositions

A musical scale in 12-TET tuning system can be coded by a sequence of integers in which
each term is the number of half tones within consecutive notes of the scale. For example,
the chromatic and major scales, that are coded with a binary alphabet B = {◦, •} as
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ and ◦ • ◦ • ◦ ◦ • ◦ • ◦ • ◦, correspond to (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
and (2, 2, 1, 2, 2, 2, 1) in the integer sequence representation, respectively. Observe that in
both cases the sums of the entries yields 12. This is a general phenomena that, though
elementary by definition, we state formally:

Theorem 2. In n-TET tuning system, the musical scales are in bijective correspondence
with the set of ordered sequences of positive integers that add up to n. In other words,
the set of all musical scales (in any tuning system) is combinatorially isomorphic to the
combinatorial class of integer compositions.

Let N>0 , {1, 2, 3, . . .} denote the set of positive integers. Let

C , Seq(N>0) =
∞⋃
k=0

Nk>0 (2.1)

denote the class of integer compositions, and henceforth think of its elements as musical
scales. For every integer n ≥ 0, let Cn ⊂ C be the compositions of n, i.e. Cn denotes the
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set of scales in n-TET tuning system. Then Cn , #Cn = 2n−1, which is consistent with
the binary representation of musical scales, and thus the ordinary generating function of
all musical scales is the rational function1

C(z) ,
∞∑
n=0

Cnz
n =

1− z
1− 2z

. (2.2)

More generally, for any subset K ⊆ N>0 of positive integers, the class CK ⊆ C of all integer
compositions with summands in K has generating function

CK(z) ,
∞∑
n=0

CKn z
n =

1

1−
∑
k∈K

zk
, (2.3)

where CKn , #(CK ∩ Cn). Henceforth, for any set of finite sequences Y, like C, we will be
considering the length of the sequences as a parameter, ` : Y → N (for example, when coded
by integer compositions, the major and chromatic scales have lengths 7 and 12, respectively,
but on the other hand, both have length 12 in binary code). Thus, the bivariate generating
function CK(z, u) where u marks the length of the compositions is

CK(z, u) ,
∑
n,m≥0

CKn,mz
num =

1

1− u
∑
k∈K

zk
(2.4)

with CKn,m , #{w ∈ CKn : `(w) = m}.

2.2 Modes, orbitals, transversals, and their dimensions

Let A be a countable alphabet and then let A∗ ,
⋃
k≥0Ak, where

Ak , A× · · · × A︸ ︷︷ ︸
k times

.

Let α : Z y A∗ be the cyclic left shift action induced by the combinatorial isomorphism
α : A∗ → A∗ defined for every w = (w1, . . . , wk) ∈ Ak by α(w) , (w2, . . . , wk, w1) ∈ Ak,
for all k ≥ 1. The α-orbit of w ∈ A∗ is

Oα(w) , {αj(w) : ∀ j ∈ Z}.

The set of α-orbits forms a partition of A∗ induced by the α-orbit equivalence relation
α∼. The representation of musical scales by integer compositions is such that the α-orbit

1Combinatorially, integer compositions are sequences of positive integers (see (2.1)), and on the right
hand side of (2.2) we already see the form of Pólya’s quasi-inverse operator that corresponds to sequence
constructions.
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G]

<latexit sha1_base64="XQXbCQxNxVNeRTOtbaguBgqaQPw=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWakoO6KblxWsA9oh5JJM21sJhmSjFCG/oMbF4q49X/c+Tem7Sy09UDgcM695J4TJoIb63nfqLC2vrG5Vdwu7ezu7R+UD49aRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqp1TMjopN+ueJVvTnwKvFzUoEcjX75qzdQNI2ZtFQQY7q+l9ggI9pyKti01EsNSwgdkyHrOipJzEyQza+d4jOnDHCktHvS4rn6eyMjsTGTOHSTMbEjs+zNxP+8bmqjqyDjMkktk3TxUZQKbBWeRccDrhm1YuIIoZq7WzF18Qm1rqCSK8FfjrxKWhdVv1a9vq9V6jd5HUU4gVM4Bx8uoQ530IAmUHiEZ3iFN6TQC3pHH4vRAsp3juEP0OcPs+mPPA==</latexit>

A]

<latexit sha1_base64="XQXbCQxNxVNeRTOtbaguBgqaQPw=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWakoO6KblxWsA9oh5JJM21sJhmSjFCG/oMbF4q49X/c+Tem7Sy09UDgcM695J4TJoIb63nfqLC2vrG5Vdwu7ezu7R+UD49aRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqp1TMjopN+ueJVvTnwKvFzUoEcjX75qzdQNI2ZtFQQY7q+l9ggI9pyKti01EsNSwgdkyHrOipJzEyQza+d4jOnDHCktHvS4rn6eyMjsTGTOHSTMbEjs+zNxP+8bmqjqyDjMkktk3TxUZQKbBWeRccDrhm1YuIIoZq7WzF18Qm1rqCSK8FfjrxKWhdVv1a9vq9V6jd5HUU4gVM4Bx8uoQ530IAmUHiEZ3iFN6TQC3pHH4vRAsp3juEP0OcPs+mPPA==</latexit>

C

2
2

2

2
2

1

1

D
F

G
A

D]

<latexit sha1_base64="XQXbCQxNxVNeRTOtbaguBgqaQPw=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWakoO6KblxWsA9oh5JJM21sJhmSjFCG/oMbF4q49X/c+Tem7Sy09UDgcM695J4TJoIb63nfqLC2vrG5Vdwu7ezu7R+UD49aRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqp1TMjopN+ueJVvTnwKvFzUoEcjX75qzdQNI2ZtFQQY7q+l9ggI9pyKti01EsNSwgdkyHrOipJzEyQza+d4jOnDHCktHvS4rn6eyMjsTGTOHSTMbEjs+zNxP+8bmqjqyDjMkktk3TxUZQKbBWeRccDrhm1YuIIoZq7WzF18Qm1rqCSK8FfjrxKWhdVv1a9vq9V6jd5HUU4gVM4Bx8uoQ530IAmUHiEZ3iFN6TQC3pHH4vRAsp3juEP0OcPs+mPPA==</latexit>

A]

<latexit sha1_base64="XQXbCQxNxVNeRTOtbaguBgqaQPw=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWakoO6KblxWsA9oh5JJM21sJhmSjFCG/oMbF4q49X/c+Tem7Sy09UDgcM695J4TJoIb63nfqLC2vrG5Vdwu7ezu7R+UD49aRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqp1TMjopN+ueJVvTnwKvFzUoEcjX75qzdQNI2ZtFQQY7q+l9ggI9pyKti01EsNSwgdkyHrOipJzEyQza+d4jOnDHCktHvS4rn6eyMjsTGTOHSTMbEjs+zNxP+8bmqjqyDjMkktk3TxUZQKbBWeRccDrhm1YuIIoZq7WzF18Qm1rqCSK8FfjrxKWhdVv1a9vq9V6jd5HUU4gVM4Bx8uoQ530IAmUHiEZ3iFN6TQC3pHH4vRAsp3juEP0OcPs+mPPA==</latexit>

Ionian

Figure 1: The diatonic wheel (2, 2, 1, 2, 2, 2, 1) in C: its size is 12, its length is 7, it is
aperiodic, thus it consists of 7 modes.

equivalence class of an integer composition w ∈ C, i.e. the elements of its α-orbit Oα(w),
are the modes of the corresponding scale2, and thus, in this case, we write modes(w) ,
Oα(w). For any subset B ⊆ A∗, let

Oα(B) ,
⋃
w∈B
Oα(w),

and similarly, if B ⊆ C, then we write modes(B) , Oα(B). Now, since A∗/ α∼ is the
combinatorial class of cycles of elements of A, the class of all musical scales, modulo their
modes, is the class W of cyclic compositions of positive integers, the so called wheels (see
Figure 1). Two musical scales are essentially different if they are different as wheels.

2This is not generally the case. For example, in the binary representation of musical scales, the α-orbits
do not always correspond to the modes of the scales.
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Figure 2: Number of notes versus number of essentially different scales for the 12-TET
tuning system. This is in general represented for every n by the coefficient [zn]W (z, u),
where W (z, u) is the bivariate version (2.5) of W (z) (when K = N>0). Thus, for example,
[z12]W (z, u) = u+6u2 +19u3 +43u4 +66u5 +80u6 +66u7 +43u8 +19u9 +6u10 +u11 +u12.
The limiting distribution of the number of notes is gaussian as n→∞.

Therefore, the generating function of all musical scales, modulo their modes, is

W (z) ,
∞∑
k=1

Wnz
n

=
∞∑
k=1

φ(k)

k
log

(
1− zk

1− zk

)−1
= z + 2z2 + 3z3 + 5z4 + 7z5 + 13z6 + . . . ,

with φ : N>0 → N>0 the Euler totient function, that is, φ(n) , #{k ≤ n : gcd(n, k) = 1}.
More generally, the bivariate generating function of the classWK of wheels with summands
in K, with u marking the length of the wheels (i.e. the number of notes in the scales), is

WK(z, u) ,
∞∑

n,m=1

WKn,mz
num =

∞∑
k=1

φ(k)

k
log

1

1−
∑
j∈K

ukzjk
. (2.5)

For example, in 12-TET tuning system, there are 351 essentially different musical scales,
and their distribution according to the number of notes is illustrated in Figure 2.

A set A ⊆ A∗ is independent if any pair of distinct elements of A belong to distinct
α-orbit equivalence classes, i.e. Oα(v) ∩ Oα(w) = ∅ for all v, w ∈ A with v 6= w. Two
subsets A,B ⊆ A∗ are mutually independent if Oα(A) ∩ Oα(B) = ∅ (each set A and B
may or may not be independent). A transversal of A is a maximal independent subset
TA ⊆ A. Any nonempty set A 6= ∅ possesses at least one transversal TA ⊆ A, and any two
transversals of A have the same cardinality, the transversal dimension

dimT(A) , #TA.

7



Clearly, A ⊆ Oα(A) = Oα(T ) and Oα(T ′) ( Oα(T ) for any transversal T ⊆ A and any
proper (independent) subset T ′ ( T . Hence, if A ⊆ C is a set of integer compositions, then
the transversal dimension is the number of essentially different scales an instrumentalist
would have to learn to play any scale in modes(A). The orbital dimension of A is

dimO(A) , #Oα(A).

Again for subsets A ⊆ C of integer compositions, the orbital dimension dimO(A) =
#modes(A) is the total number of scales that an instrumentalist can play with the el-
ements of (a transversal T ⊆ A of) A and their modes. Thus, the orbital dimension
dimO(w) , #Oα(w) of w ∈ A∗ is bounded above by `(w). Moreover, the former divides the
later, i.e. dimO(w)|`(w), thus there is an integer k = k(w) ≥ 1 such that dimO(w)·k = `(w),
and then let the period of w be defined as per(w) , k. If per(w) = 1, then w is aperiodic.
The orbital dimension of A is therefore computed with any α-transversal T ⊆ A through
the equality

dimO(A) =
∑
w∈T

dimO(w)

per(w)
.

3 Symbolic dynamical scales

3.1 Shift spaces and their musical scales

A shift space X ⊆ AZ is determined by a set of forbidden blocks F ⊆ A∗, that is, X = XF
where

XF , {x = (xn)n∈Z ∈ AZ : ∀w ∈ F , ∀k ∈ Z, x[k,k+`(w)−1] 6= w}

(above, and henceforth, for any sequence x, let x[i,j] , xi . . . xj , (xi, . . . , xj)), and is
accompanied by the left shift Z-action σ : Z y X induced by the automorphism

σ(x)n , xn+1 ∀ x = (xn)n∈Z ∈ X, ∀n ∈ Z.

The language of a shift space X is L(X) ,
⋃
n≥0
Ln(X) ⊆ A∗, where

Ln(X) , {x[1,n] ∈ An : x ∈ X},

and also, for every symbol s ∈ A, let L(X, s) ,
⋃
n≥1 Ln(X, s), where

Ln(X, s) , {x[1,n] ∈ Ln(X) : x1 = s}.

X is irreducible if for every u,w ∈ L(X), there exists v ∈ L(X) such that uvw ∈ L(X).
The distinguished symbol rule ϕ : L(X)→ C is defined for each w = w1 . . . wn ∈ Ln(X)

as certain composition ϕ(w) ∈ Cn of n = `(w), as follows. Let s , w1 and then let

8



1 = n1 < n2 < . . . < nr(w) ≤ n be the coordinates where s occurs in w, that is, wj = s if
and only if j = ni for some i = 1, . . . , r(w). Then the composition of n that w induces has
length `

(
ϕ(w)

)
= r(w) and is defined by

ϕ(w) , (n2 − n1︸ ︷︷ ︸
k1

, n3 − n2︸ ︷︷ ︸
k2

, . . . , nr(w) − nr(w)−1︸ ︷︷ ︸
kr(w)−1

, n− nr(w) + 1︸ ︷︷ ︸
kr(w)

). (3.1)

For every s ∈ A and n ≥ 1, let

C(X,s)n , ϕ
(
Ln(X, s)

)
and C(X)

n , ϕ
(
Ln(X)

)
and also let

C(X,s) , ϕ
(
L(X, s)

)
and C(X) , ϕ

(
L(X)

)
.

Define the generating functions

C(X,s)(z) ,
∑
n≥0

C(X,s)
n zn and C(X)(z) ,

∑
n≥0

C(X)
n zn

where C
(X,s)
n , #C(X,s)n and C

(X)
n , #C(X)

n . Our foremost concern here are the transversal
and orbital (bivariate) generating functions

dim
(X,s)
T (z, u) ,

∑
n,m≥0

dimT

(
C(X,s)n,m

)
znum,

dim
(X)
T (z, u) ,

∑
n,m≥0

dimT

(
C(X)
n,m

)
znum,

and

dim
(X,s)
O (z, u) ,

∑
n,m≥0

dimO

(
C(X,s)n,m

)
znum,

dim
(X)
O (z) ,

∑
n,m≥0

dimO

(
C(X)
n,m

)
znum.

3.2 Periodic points and zeta functions

The σ-orbit of x ∈ X is Oσ(x) , {σn(x) : n ∈ Z} ⊆ X. For every n ≥ 1, a point x ∈ X
is n-periodic if σn(x) = x, and if x is n-periodic, then there exists the minimal period
nx ≥ 1 of x, namely, the cardinality of its orbit nx , #Oσ(x), and moreover, nx|n. Let
Pn(X) , {x ∈ X : σn(x) = x} and Qn(x) , {x ∈ Pn(X) : nx = n} be the sets of n-
periodic points and minimal n-periodic points, respectively, and also let pn(X) , #Pn(X)

9



and qn(X) , #Qn(X). Recall that the relationship between pn(X) and qn(X) is through
Möbius inversion,

pn(X) =
∑
k|n

qk(X) and qn(X) =
∑
k|n

µ
(n
k

)
pk(X), (3.2)

where µ : N>0 → {−1, 0, 1} is the Möbius function defined by

µ(n) ,

{
0 if there exists p ≥ 2 such that p2|n, and
(−1)r if n = p1 · · · pr with p1, p2, . . . , pr ≥ 2 distinct prime numbers.

The dynamic zeta function of X is

ζX(z) , exp

( ∞∑
n=1

pn(X)

n
zn

)
=
∏
n≥1

1

(1− zn)qn(X)/n
.

3.3 Shifts of finite type, vertex shifts, and loop systems

A shift of finite type X ⊆ AZ is a shift space X = XF that can be defined by a finite set
of forbidden blocks F b A∗, and in this case define m , max{`(w) : w ∈ F} − 1 and say
that X is m-step (since it is always possible to find a set of (m + 1)-blocks F ′ ⊆ Am+1

such that X = XF ′). A vertex shift space is a 1-step shift of finite type. Let X = XF ⊆ AZ

be a vertex shift space defined by a set of forbidden 2-blocks F ⊆ A2. Let A be the square
{0, 1}-matrix indexed by A and defined by the rule A(i, j) = 1 if and only if ij /∈ F . Then
X = X̂A, where

X̂A , {x = (xn)n∈Z ∈ AZ : ∀n ∈ Z, A(xn, xn+1) 6= 0}.

The matrix representation of vertex shifts yields expressions that can be useful to study
transversal and orbital dimensions. For example, the dynamic zeta function is obtained
through

ζ
X̂A

(z) =
1

det(I − zA)
(3.3)

(observe that det(I − zA) = z#AχA(z−1), where χA(z) is the characteristic polynomial of
the matrix A). From here we can get

pn(X̂A) =
1

(n− 1)!

dn

dzn
log ζ

X̂A
(z)

∣∣∣∣
z=0

= trace(An)

and also qn(X̂A) by Möbius inversion (3.2). The following result follows.
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Theorem 3 (Transversal and orbital dimensions of languages of vertex shifts). The nth
transversal dimension of the language of a vertex shift is

dimT

(
Ln(X̂A)

)
=
∑
i,j∈A
Aj,i=0

An−1i,j +
∑
k|n

qk(X̂A)

k
(3.4)

and the corresponding nth orbital dimension is

dimO

(
Ln(X̂A)

)
= n

∑
i,j∈A
Aj,i=0

An−1i,j + pn(X̂A). (3.5)

Now, for studying musical scales arising from languages of vertex shift spaces through
the distinguished symbol rule, consider the first return loop system to a given symbol s ∈ A,
defined by the generating function

f (s)(z) ,
∞∑
k=1

f
(s)
k zk

where

f
(s)
k , #{w = w0, . . . wk ∈ Lk+1(X) : w0wk = s 6= wj ∀ j 6= 0, k}. (3.6)

The power series f (s)(z) is obtained through the equation

1− f (s)(z) =
ζ
X̂B

(z)

ζ
X̂A

(z)
, (3.7)

where B is the square {0, 1}-matrix indexed by A \ {s} and obtained from A by removing
the row and column indexed by s.

3.4 Generating functions for distinguished symbol rule on vertex shifts

Here we proof Theorem 1. Let

K(s) , {k ≥ 1 : f
(s)
k 6= 0} (3.8)

and also denote its complement by K(s)c , N>0 \ K(s). According to (3.1) and (3.6), if
w ∈ L(X, s), then ϕ(w) = (k1, k2, . . . , k`(ϕ(w))) is a composition of `(w), with summands in
K(s), except perhaps for the last summand k`(ϕ(w)). Suppose that this is the case, that is,
k`(ϕ(w)) ∈ K(s)c. Since X is irreducible, there exists v ∈ L(X, s) such that v also ends in s
and w is a prefix of v, that is, v`(v) = s and

v = wv[`(w)+1,`(v)],
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thus k`(ϕ(w)) is bounded above by an element of K(s). Let

aK(s)(z) ,
∑
n≥1

aK(s)n zn

be the generating function of this subclass which is described in item 2 of Theorem 1. Then

aK(s)n =
∑

k∈K(s)c
∃k′∈K(s), k′>k

C
K(s)
n−k (3.9)

(for any subset K 6= ∅ of positive integers, CK0 , 1). If we also let

bK(s)(z) ,
∑
n≥1

bK(s)n zn

be the generating function of the corresponding orbital, then, by independence, there is
a decomposition of the form (1.2) and (1.3), as described in Theorem 1, we just need to
justify that bK(s)(z) is the cumulative generating function of the subclass represented by
aK(s)(z), with respect to the number of notes. This follows from the fact that the elements
represented by aK(s)(z) are aperiodic. To be explicit, write the bivariate coefficients

dimT

(
C(X,s)n,m

)
= WK(s)n,m + aK(s)n,m and dimO

(
C(X,s)n,m

)
= CK(s)n,m + bK(s)n,m . (3.10)

Then, for every n,m ≥ 1, we have

aK(s)n,m =
∑

k∈K(s)c
∃k′∈K(s), k′>k

C
K(s)
n−k,m−1.

By aperiodicity, the corresponding orbital dimension is

bK(s)n,m = m · aK(s)n,m .

Thus, if we define

aK(s)(z, u) ,
∑
n,m≥1

aK(s)n,m z
num (3.11)

and

bK(s)(z, u) ,
∑
n,m≥1

bK(s)n,m z
num,

then we observe that

bK(s)(z) =
∂

∂u
aK(s)(z, u)|u=1, (3.12)
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and in fact

bK(s)(z, u) = u
∂

∂u
aK(s)(z, u). (3.13)

Hence bK(s)(z) is the cumulative generating function of the number of summands in the
class of compositions represented by aK(s)(z). This settles Theorem 1, and also gives
decompositions of the bivariate transversal and orbital generating functions,

dim
ϕ(X,s)
T (z, u) = WK(s)(z, u) + aK(s)(z, u)

and
dim

ϕ(X,s)
O (z, u) = CK(s)(z, u) + bK(s)(z, u).

To determine the transversal and orbital dimensions of the whole set of vertex shift scales
C(X) , ϕ

(
L(X)

)
= ∪s∈AC(X,s), it is required to take into account the intersections between

each pair of symbols, otherwise multiple counting may occur. The analysis can be done
one symbol at the time, adding only new contributions to the cumulative counting.

3.5 SFT scales

Suppose that X ⊆ AZ is an irreducible M -step shift of finite type for some M > 1. The
higher block presentation X [M ] may be defined as the vertex shift represented by a directed
graph with vertex set LM (X), and for every pair u, v ∈ LM (X), (u, v) is an edge from
u to v if and only if u[2,M ] = v[1,M−1]. Therefore, studying musical scales generated by
arbitrary SFTs through the distinguished symbol rule is equivalent to studying musical
scales generated by vertex shifts through the distinguished set of symbols rule.

For the distinguished symbol rule on vertex shifts, once a symbol is fixed, there is
a formal power series that determines the induced musical scales (see (3.8)). For the
distinguished set of symbols rule, there is a matrix over formal power series, indexed by the
set of distinguished symbols, that determines the induced musical scales. More precisely,
let X ⊆ AZ be a vertex shift defined by a square {0, 1}-matrix A indexed by A, and let
D ⊂ A be a subset of distinguished symbols. For every pair s, t ∈ D, let

f (s,t)(z) ,
∞∑
n=1

f (s,t)n zn

be the generating function that represents the set of paths from s to t that do not cross D
(except for the end points). The coefficients are

f
(s,t)
k , #{w = w0, . . . wk ∈ Lk+1(X) : w0 = s, wk = t, wj ∈ A \ D ∀ j 6= 0, k}

and thus

f (s,t)(z) = As,tz +

∞∑
n=2

∑
j,k∈A\D

As,jB
n−2
j,k Ak,tz

n
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where B is the matrix obtained from A by removing the rows and columns indexed by
elements of D. The auxiliary matrix is(

f (s,t)(z)
)
s,t∈D. (3.14)

There is no closed form, such as (3.7), for f (s,t)(z). Nevertheless, we will see with an
example how we can make use of (3.14) in our problem.

4 Examples

First we analyze three classes of scales arising from substitutons and then we consider
vertex shift scales.

4.1 Substitutive scales

Here we analyze the Thue-Morse, Fibonacci, and Feigenbaum scales. First some notation:
The language of a sequence x in AN, or AZ, is defined as L(x) ,

⋃
n≥0
Ln(x), where

Ln(x) , {w = w1 . . . wn ∈ An : ∃k, x[k,k+n−1] = w}

are the admissible n-blocks of x. Also, for each s ∈ A, let

L(x, s) = {w ∈ L(x) : w1 = s} and Ln(x, s) , L(x, s) ∩ An.

Let B , {◦, •} be a binary alphabet.

Example 4 (Thue-Morse scales). The iterated morphism defined by the rules ◦ 7→ ◦• and
• 7→ •◦, starting from ◦, yields the Thue-Morse sequence

m , ◦ • • ◦ • ◦ ◦ • • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ • • ◦ ◦ • • ◦ • ◦ ◦ • · · · ∈ BN

(see [3, 30] for more on the Thue-Morse sequence and substitution systems in general). The
set of standard (or admisible) Thue-Morse scales in 12-TET tuning system reported in [21],

as integer compositions, is M , C(m)
12 = ϕ

(
L12(m)

)
⊂ C12 and consists of the following 18

elements:

m(1) ,
(3, 2, 1, 3, 1, 2)
◦ • • ◦ • ◦ ◦ • • ◦ ◦ • m(2) ,

(3, 2, 1, 2, 3, 1)
◦ • • ◦ • ◦ ◦ • ◦ • • ◦ m(3) ,

(3, 1, 3, 2, 1, 2)
◦ • • ◦ ◦ • • ◦ • ◦ ◦ •

m(4) ,
(2, 1, 3, 1, 2, 3)
◦ • ◦ ◦ • • ◦ ◦ • ◦ • • m(5) ,

(2, 1, 2, 3, 1, 3)
◦ • ◦ ◦ • ◦ • • ◦ ◦ • • m(6) ,

(1, 3, 2, 1, 2, 3)
◦ ◦ • • ◦ • ◦ ◦ • ◦ • •

m(7) ,
(1, 3, 1, 2, 3, 2)
◦ ◦ • • ◦ ◦ • ◦ • • ◦ • m(8) ,

(1, 2, 3, 1, 3, 2)
◦ ◦ • ◦ • • ◦ ◦ • • ◦ • m(9) ,

(1, 3, 1, 2, 3, 1, 1)
◦ ◦ • • ◦ ◦ • ◦ • • ◦ ◦

m(10) ,
(3, 1, 2, 3, 2, 1)
◦ • • ◦ ◦ • ◦ • • ◦ • ◦ m(11) ,

(2, 3, 1, 3, 2, 1)
◦ • ◦ • • ◦ ◦ • • ◦ • ◦ m(12) ,

(3, 1, 2, 3, 1, 2)
◦ • • ◦ ◦ • ◦ • • ◦ ◦ •

m(13) ,
(1, 2, 3, 2, 1, 2, 1)
◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ m(14) ,

(1, 2, 3, 2, 1, 3)
◦ ◦ • ◦ • • ◦ • ◦ ◦ • • m(15) ,

(2, 3, 2, 1, 2, 2)
◦ • ◦ • • ◦ • ◦ ◦ • ◦ •

m(16) ,
(2, 3, 2, 1, 3, 1)
◦ • ◦ • • ◦ • ◦ ◦ • • ◦ m(17) ,

(1, 3, 2, 1, 3, 1, 1)
◦ ◦ • • ◦ • ◦ ◦ • • ◦ ◦ m(18) ,

(2, 1, 2, 3, 2, 1, 1)
◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦
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TM6.1

3 2 1 3 1 2

TM6.2

3 2 1 2 3 1

TM6.3

3 1 3 2 1 2

TM6.4

3 1 2 3 1 2

TM7.1

1 3 1 2 3 1 1

TM7.2

1 2 3 2 1 2 1

TM7.3

1 3 2 1 3 1 1

2 1 2 3 2 1

TM7.4

1

Figure 3: A transversal of admissible (standard) Thue-Morse scales.

Observe that

Oα(m(1)) = {m(1),m(4),m(7),m(10),m(14),m(16)}
Oα(m(2)) = {m(2),m(5),m(8),m(11),m(3),m(6)},

and also that the set

M \
(
Oα(m(1)) ∪ Oα(m(2))

)
= {m(9),m(12),m(13),m(15),m(17),m(18)}

is independent. Therefore, the transversals of M (contained in M) are the sets T formed
by M \

(
Oα(m(1)) ∪ Oα(m(2))

)
and one element from each of the two α-orbits Oα(m(1))

and Oα(m(2)). In particular,

TM , {m(1),m(2)} ∪
(
M \

(
Oα(m(1)) ∪ Oα(m(2))

))
is a transversal of M , which is shown in music notation in Figure 3. Thus, there are only

dimT(M) = 8

essentially different Thue-Morse scales. Now, the elements of TM are aperiodic except for
scale TM6.3 that has length 6 and period 2. Scales TM6.1, TM6.2, and TM6.4 have all
length 6 too. All the scales with label TM7 have length 7. Hence the dimension of the
space of modes of M is

dimO(M) = 1× 6

2
+ 3× 6 + 4× 7 = 49.
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Note that the set M is an example of a subset A ⊂ C with T ( A ( modes(A) for a
(equivalently every) transversal T of A.

3

Example 5 (Fibonacci scales). The substitution rule ◦ 7→ ◦• and • 7→ ◦ iterated over ◦
yields the infinite Fibonacci word

f , ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • . . . .

Definition 6. For every k ≥ 1, let {F (k)
n }n≥0 be the k-Fibonacci sequence defined by

F
(k)
0 , 1, F

(k)
1 , k, and F

(k)
n+2 , F (k)

n + F
(k)
n+1.

For example, if w0 = ◦, w1 = ◦•, and wn+2 = wn+1wn for every n ≥ 0, then f = lim
n→∞

wn

and the sequence {`(wn)}n≥0 = {1, 2, 3, 5, 8, . . .} is 1-Fibonacci.
Again, let us focus on the 12-TET tuning system. It is well known that f is Sturmian

(i.e. it has minimal subword complexity, see e.g. [3, 30]), and thus there are 13 admisible
12-blocks. Unlike the Thue-Morse sequence, there will be two types of scales according to
the distinguished symbol s ∈ B, and together they will form the set F ⊂ C of admissible
Fibonacci scales. The ◦-admissible Fibonacci scales F◦ , ϕ

(
L12(f, ◦)

)
are

f (1) ,
(1, 2, 1, 2, 2, 1, 2, 1)
◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ f (2) ,

(1, 2, 2, 1, 2, 1, 2, 1)
◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ f (3) ,

(1, 2, 2, 1, 2, 2, 1, 1)
◦ ◦ • ◦ • ◦ ◦ • ◦ • ◦ ◦

f (4) ,
(2, 1, 2, 1, 2, 2, 1, 1)
◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ f (5) ,

(2, 1, 2, 2, 1, 2, 1, 1)
◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ f (6) ,

(2, 1, 2, 2, 1, 2, 2)
◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ •

f (7) ,
(2, 2, 1, 2, 1, 2, 2)

◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ • f (8) ,
(2, 2, 1, 2, 2, 1, 2)

◦ • ◦ • ◦ ◦ • ◦ • ◦ ◦ •

and the •-admissible Fibonacci scales F• , ϕ
(
L12(m, •)

)
are

f (9) ,
(3, 3, 2, 3, 1)
• ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • f (10) ,

(3, 2, 3, 3, 1)
• ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • f (11) ,

(3, 2, 3, 2, 2)
• ◦ ◦ • ◦ • ◦ ◦ • ◦ • ◦

f (12) ,
(2, 3, 3, 2, 2)
• ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ f (13) ,

(2, 3, 2, 3, 2)
• ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ .

We observe that when s = ◦, α(f (1)) = f (5), α−1(f (6)) = f (8), and the set

T◦ , {f (1), f (2), f (3), f (4), f (7), f (8)}

is independent, and when s = •, α−1(f (11)) = f (13) and the set

T• , {f (9), f (10), f (11), f (12)}

is independent. Thus, both T◦ and T• are transversals of F◦ and F•, respectively, and since
T◦ and T• are mutually independent, we obtain TF , T◦ ∪ T• as an admissible transversal
of Fibonacci scales, its elements are shown in Figure 4. Thus

dimT(F ) = dimT(F◦) + dimT(F•) = 6 + 4 = 10.
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F8.2

F8.3

F8.4

1 2 2 1 2 1 2 1

1 2 2 1 2 2 1 1

2 1 2 1 2 2 1 1

F7.1 F7.2

F5.2

F5.3

F5.4

3 2 3 3 1

3 2 3 2 2

2 3 3 2 2

F8.1

1 2 1 2 2 1 2 1

F5.1

3 3 2 3 1

2 2 1 2 2 1 22 2 1 2 1 2 2

Figure 4: A transversal of admissible Fibonacci scales.

Since every element of TF is aperiodic, the dimension of the space of modes of the Fibonacci
scales is

dimO(F ) = (4× 8 + 2× 7) + (4× 5)+ = 66.

Several well known scales are Fibonacci scales, for example, α2(f (6)) is the major scale
(thus all the scales in the diatonic wheel are Fibonacci, see Figure 1), and α3(f (11)) is the
pentatonic scale. Also note that M and F are mutually independent.

3

Example 7 (Feigenbaum scales). The substitution rule ◦ 7→ •• and • 7→ •◦ iterated over •
yields the Feigenbaum sequence

g = • ◦ • • • ◦ • ◦ • ◦ • • • ◦ • • • ◦ • • • ◦ • ◦ • ◦ • • • ◦ • ◦ . . . .

The elements of G◦ , ϕ
(
L12(g, ◦)

)
are

g(1) ,
(2, 2, 4, 2, 2)

◦ • ◦ • ◦ • • • ◦ • ◦ • g(2) ,
(2, 2, 4, 4)

◦ • ◦ • ◦ • • • ◦ • • • g(3) ,
(2, 4, 2, 2, 2)

◦ • ◦ • • • ◦ • ◦ • ◦ •

g(4) ,
(2, 4, 4, 2)
◦ • ◦ • • • ◦ • • • ◦ • g(5) ,

(4, 2, 2, 4)
◦ • • • ◦ • ◦ • ◦ • • • g(6) ,

(4, 4, 2, 2)
◦ • • • ◦ • • • ◦ • ◦ •

g(7) ,
(4, 4, 4)

◦ • • • ◦ • • • ◦ • • •
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G5

G4

G3 G9

G8

G7

2 4 2 2

2 2

22 1 2

2 2 2

2 2

2

44

4 44

2 21

1 21 1 1

1 1 1 1 2 1 1

Figure 5: A transversal of admissible Feigenbaum scales.

and then the elements of G• , ϕ
(
L12(g, •)

)
are

g(8) ,
(2, 2, 2, 1, 1, 2, 2)
• ◦ • ◦ • ◦ • • • ◦ • ◦ g(9) ,

(2, 2, 2, 1, 1, 2, 1, 1)
• ◦ • ◦ • ◦ • • • ◦ • • g(10) ,

(2, 2, 1, 1, 2, 2, 2)
• ◦ • ◦ • • • ◦ • ◦ • ◦

g(11) ,
(2, 2, 1, 1, 2, 1, 1, 2)
• ◦ • ◦ • • • ◦ • • • ◦ g(12) ,

(2, 1, 1, 2, 2, 2, 1, 1)
• ◦ • • • ◦ • ◦ • ◦ • • g(13) ,

(2, 1, 1, 2, 1, 1, 2, 2)
• ◦ • • • ◦ • • • ◦ • ◦

g(14) ,
(2, 1, 1, 2, 1, 1, 2, 1, 1)
• ◦ • • • ◦ • • • ◦ • • g(15) ,

(1, 2, 2, 2, 1, 1, 2, 1)
• • ◦ • ◦ • ◦ • • • ◦ • g(16) ,

(1, 2, 1, 1, 2, 2, 2, 1)
• • ◦ • • • ◦ • ◦ • ◦ •

g(17) ,
(1, 2, 1, 1, 2, 1, 1, 2, 1)
• • ◦ • • • ◦ • • • ◦ • g(18) ,

(1, 1, 2, 2, 2, 1, 1, 2)
• • • ◦ • ◦ • ◦ • • • ◦ g(19) ,

(1, 1, 2, 1, 1, 2, 2, 2)
• • • ◦ • • • ◦ • ◦ • ◦

g(20) ,
(1, 1, 2, 1, 1, 2, 1, 1, 2)
• • • ◦ • • • ◦ • • • ◦

Observe that g(3) ∈ Oα(g(1)) with `(g(1)) = 5, g(4),g(5),g(6) ∈ Oα(g(2)) with `(g(2)) = 4,
`(g(7)) = 3, g(10) ∈ Oα(g(8)) with `(g(8)) = 7, g(11),g(12),g(13),g(15),g(16),g(18),g(19) ∈
Oα(g(9)) with `(g(9)) = 8, and g(17),g(20) ∈ Oα(g(14)) with `(g(14)) = 9. All are aperiodic
except for g(7) and g(14) that are 3-periodic. Thus

T◦ = {g(1),g(2),g(7)}

and
T• = {g(8),g(9),g(14)}

are transversals of G◦ and G•, respectively, and they are mutually independent (each scale
has a different number of notes), thus TG , G◦ ∪G• is a transversal of Feigenbaum sclaes,
its elements are show in Figure 5. We conclude that

dimT(G) = dimT(G◦) + dimT(G•) = 3 + 3 = 6

and

dimO(G) = dimO(G◦) + dimO(G•) =

(
3

3
+ 4 + 5

)
+

(
7 + 8 +

9

3

)
= 10 + 18 = 28.

18



M , F , and G are mutually independent.

3

Problem 8. Find the transversal and orbital generating functions of the Thue-Morse, the
Fibonacci, and the Feigenbaum scales.

4.2 Symbolic dynamical scales of finite type

Here we use the material from sections 2 and 3.

Example 9 (Golden mean scales). Consider the golden mean shift X , XF ⊆ BZ that
is defined as the subshift that results from the forbidden set of blocks F = {••}. Thus
X = X̂A where

A =

(
1 1
1 0

)
.

The matrix A is the adjacency matrix of the following directed graph:

Transversals and orbitals of the golden mean language. First let us illustrate
the use of Theorem 3. The counting sequence of the language of the golden mean shift is

2-Fibonacci, that is, #Ln(X) = F
(2)
n for all n ≥ 0. On the other hand, the zeta function

ζX(z) =
1

1− z − z2
=
∞∑
n=0

F (1)
n zn

is the generating function of the 1-Fibonacci sequence, and the periodic counting sequence

{pn(X) = F
(3)
n−1}n≥1 is 3-Fibonacci. For transversal dimensions, with reference to (3.4), we

first see that ∑
i,j∈A
Aj,i=0

An−1i,j = An−1•,•

represents return loops of length n that begin and end at •, but these are in fact sequences
of first return loops to •. Using (3.7) and (3.3) we get the generating function of the system
of first return loops to •,

f (•)(z) =
z2

1− z
,

and deduce that

∞∑
n=1

An−1•,• z
n = z + z

f (•)(z)

1− f (•)(z)
=

z(1− z)
1− z − z2

= z + z3 + z4 + 2z5 + 3z6 + 5z7 + 8z8 + 13z9 + . . . ,
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in particular, for n ≥ 3, An•,• = F
(2)
n−3 is 2-Fibonacci. Next, the sequence {qn(X)}n≥1,

obtained from {pn(X) = F
(3)
n−1}n≥1 by Möbius inversion, defines a minimal periodic gener-

ating function

q(X)(z) ,
∑
n≥1

qn(X)zn

= z + z2 + z3 + z4 + 2z5 + 2z6 + 4z7 + 5z8 + 8z9 + . . .

that corresponds to A006206 in [39], described as the number of aperiodic binary neck-
laces with no subsequence ••, excluding the necklace •. The coefficients of the generating
function

q(X)(z) ,
∑
n≥1

∑
k|n

qk(X)

k

 zn (4.1)

= z + 2z2 + 2z3 + 3z4 + 3z5 + 5z6 + 5z7 + 8z8 + 10z9 + . . .

correspond to 000358 in [39], which is described as the number of necklaces with no sub-
sequence ••, excluding the necklace •. Thus the transversal generating function of the
language of X has the form

dim
(X)
T (z) =

z(1− z)
1− z − z2

+ q(X)(z).

For example, according to (3.4),

dimT

(
L1(X)

)
= 1 + 1 = 2, {◦} ∪ {•}

dimT

(
L2(X)

)
= 0 + 2 = 2, {◦ ◦, ◦ •}

dimT

(
L3(X)

)
= 1 + 2 = 3, {◦ ◦ ◦, ◦ ◦ •} ∪ {• ◦ •}

dimT

(
L4(X)

)
= 1 + 3 = 4, {◦ ◦ ◦ ◦, ◦ ◦ ◦ •, ◦ • ◦ •} ∪ {• ◦ ◦ •}

dimT

(
L5(X)

)
= 2 + 3 = 5, {◦ ◦ ◦ ◦ ◦, ◦ ◦ ◦ ◦ •, ◦ ◦ • ◦ •} ∪ {• ◦ ◦ ◦ •, • ◦ • ◦ •}

dimT

(
L6(X)

)
= 3 + 5 = 8,


◦ ◦ ◦ ◦ ◦ ◦, ◦ ◦ ◦ ◦ ◦ •,
◦ ◦ ◦ • ◦ •, ◦ ◦ • ◦ ◦ •,
◦ • ◦ • ◦ •

 ∪

• ◦ ◦ ◦ ◦ •,
• ◦ ◦ • ◦ •,
• ◦ • ◦ ◦ •


....

For orbital dimensions, with reference to (3.5), first we see that

∞∑
n=1

nAn−1•,• z
n−1 =

d

dz

(
z(1− z)

1− z − z2

)
=

1− 2z + 2z2

(1− z − z2)2

= 1 + 3z2 + 4z3 + 10z4 + 18z5 + 35z6 + 64z7 + 117z8 + 210z9 + . . . ,
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which corresponds to A006490 in [39]. We already know that pn(X) is the 3-Fibonacci

sequence F
(3)
n−1. Thus

dim
L(X)
O (z) = z

1− 2z + 2z2

(1− z − z2)2
+ z

1 + 2z

1− z − z2
=
z(2− z − z2 − 2z3)

(1− z − z2)2

= 2z + 3z2 + 7z3 + 11z4 + 21z5 + 36z6 + 64z7 + 111z8 + 193z9 + . . .

(the corresponding sequence of coefficients has no record in [39]).

Admissible golden mean scales. Now we look at the image

ϕ
(
L(X)

)
⊂ C

that corresponds to the admissible golden mean scales. First, using again (3.7) and (3.3),
we get the generating functions of the loop systems, namely

f (◦)(z) = z + z2 (4.2)

f (•)(z) =
z2

1− z
= z2 + z3 + z4 + . . . . (4.3)

Then the ◦-admissible golden mean scales C(X,◦) , ϕ
(
L(X, ◦)

)
are all the integer compo-

sitions with summands in K(◦) = {1, 2} (see (4.2)), that is, all the scales with no more
than two tone measures of difference between consecutive notes, as expected (in this case
we have aK(◦)(z, u) = 0, and thus also bK(◦)(z, u) = 0, because any element in K(◦)c is not
bounded above by any element of K(◦)). The corresponding generating function for this
class of integer compositions, according to (2.3), is

C(X,◦)(z) = CK(◦)(z) =
1

1− z − z2
, (4.4)

thus C
(X,◦)
n = F

(1)
n is 1-Fibonacci. For example, for 12-TET tuning system, the total

number of ◦-admissible golden mean scales is

C
(X,◦)
12 = F

(1)
12 = 233.

The set C(X,◦)12 is too large to list. With the purpose of having a smaller context that helps
illustrating and verifying the claims, let us imagine, for instance, that we are doing scales
over a small set of notes, say over 5 notes (e.g. over a pentatonic scale). Combinatorially,
the model is that of a 5-TET tuning system. We thus have

C
(X,◦)
5 = F

(1)
5 = 8, C(X,◦)5 =


(1,1,1,1,1)
◦ ◦ ◦ ◦ ◦,

(1,1,1,2)
◦ ◦ ◦ ◦ •,

(1,1,2,1)
◦ ◦ ◦ • ◦,

(1,2,1,1)
◦ ◦ • ◦ ◦,

(2,1,1,1)
◦ • ◦ ◦ ◦,

(1,2,2)
◦ ◦ • ◦ •,

(2,1,2)
◦ • ◦ ◦ •,

(2,2,1)
◦ • ◦ • ◦

 . (4.5)
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We also have the bivariate version of (4.4), with u marking the number of notes, namely

C(X,◦)(z, u) = CK(◦)(z, u) =
1

1− uz − uz2
.

For the •-admissible golden mean scales C(X,•) , ϕ
(
L(X, •)

)
, first observe that the

class of integer compositions with summands in K(•) = {2, 3, 4, . . .} (see (4.3)) has ordinary
generating function

CK(•)(z) =
1− z

1− z − z2
.

The bivariate version of CK(•)(z), with the variable u marking the number of notes, is

CK(•)(z, u) =
1− z

1− z − uz2
.

In addition, in this case, the last summand in the elements of C(X,•) is allowed to be 1 /∈
K(•) (for example, in 12-TET tuning system, the binary admisible 12-block •◦•◦•◦•◦•◦◦•
yields the •-admissible golden mean scale (2, 2, 2, 2, 3, 1)). Therefore, the corresponding
generating function is

C(X,•)(z) = CK(•)(z) + zCK(•)(z) =
1− z2

1− z − z2
, (4.6)

and we also get its bivariate version,

C(X,•)(z, u) = CK(•)(z, u) + uzCK(•)(z, u) =
(1 + uz)(1− z)

1− z − uz2
.

Thus C
(X,•)
0 = 1 and for n ≥ 1 the sequence of coefficients C

(X,•)
n = F

(1)
n−1 is 1-Fibonacci.

For example, for the 12-TET and 5-TET tuning systems we have

C
(X,•)
12 = F

(1)
11 = 144,

C
(X,•)
5 = F

(1)
4 = 5, C(X,•)5 =

{
(5)

• ◦ ◦ ◦ ◦,
(4,1)
• ◦ ◦ ◦ •,

(3,2)
• ◦ ◦ • ◦,

(2,3)
• ◦ • ◦ ◦,

(2,2,1)
• ◦ • ◦ •

}
. (4.7)

Remark 4.8. The only elements that are both ◦-admissible and •-admissible golden mean
scales are the compositions of even n = 2d and odd n = 2d+ 1 integers of the form

(2, 2, . . . , 2︸ ︷︷ ︸
d-times

) and (2, 2, . . . , 2︸ ︷︷ ︸
d-times

, 1). (4.9)
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Thus, combining (4.4) and (4.6), we conclude that the generating function of admissible
golden mean scales is

C(X)(z) = C(X,◦)(z) + C(X,•)(z)− 1 + z

1− z2
=

1− z + z3

1− 2z + z3

= 1 + z + 2z2 + 4z3 + 7z4 + 12z5 + 20z6 + 33z7 + 54z8 + 88z9 + 143z10 + . . .

(the corresponding coefficients are, essentially, A000071 in [39]), and we also get its bivariate
version,

C(X)(z, u) = C(X,◦)(z, u) + C(X,•)(z, u)− 1 + uz

1− uz2
.

Then, for every n ≥ 1 we have C
(X)
n = F

(1)
n + F

(1)
n−1 − 1. For example, the number of

admissible golden means scales in 12-TET and 5-TET tuning systems are (for the later see
(4.5) and (4.7))

C
(X)
12 = 233 + 144− 1 = 376,

C
(X)
5 = 8 + 5− 1 = 12, C(X)

5 =



(1,1,1,1,1)
◦ ◦ ◦ ◦ ◦,

(1,1,1,2)
◦ ◦ ◦ ◦ •,

(1,1,2,1)
◦ ◦ ◦ • ◦,

(1,2,1,1)
◦ ◦ • ◦ ◦,

(2,1,1,1)
◦ • ◦ ◦ ◦,

(1,2,2)
◦ ◦ • ◦ •,

(2,1,2)
◦ • ◦ ◦ •,

(2,2,1)
◦ • ◦ • ◦,

(5)
• ◦ ◦ ◦ ◦,

(4,1)
• ◦ ◦ ◦ •,

(3,2)
• ◦ ◦ • ◦,

(2,3)
• ◦ • ◦ ◦


.

Transversal and orbital dimensions of golden mean scales. First look at the
case when s = ◦. With the ordinary form WK(z) , WK(z, 1) of (2.5), we obtain the first
summand in the right hand side of (1.2),

WK(◦)(z) = z+ 2z2 + 2z3 + 3z4 + 3z5 + 5z6 + 5z7 + 8z8 + 10z9 + 15z10 + 19z11 + 31z12 + . . .

with coefficients forming again the sequence A000358 in [39] (that is, in this case, we have
WK(◦)(z) = q(X)(z), see (4.1)). Since aK(◦)(z) = bK(◦)(z) = 0,

dim
ϕ(X,◦)
T (z) = WK(◦)(z) (4.10)

and

dim
ϕ(X,◦)
O (z) = CK(◦)(z) (4.11)

(see (4.4)). In particular, for the 12-TET and 5-TET tuning system, the transversal di-
mensions are

dimT

(
ϕ
(
L12(X, ◦)

))
= W

K(◦)
12 (z) = 31

dimT

(
ϕ
(
L5(X, ◦)

))
= W

K(◦)
5 (z) = 3, T

(X,◦)
5 ,

{
(1,1,1,1,1)
◦ ◦ ◦ ◦ ◦,

(1,1,1,2)
◦ ◦ ◦ ◦ •,

(1,2,2)
◦ ◦ • ◦ •

}
(4.12)
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and the corresponding orbital dimensions are

dimO

(
ϕ
(
L12(X, ◦)

))
= C

K(◦)
12 (z) = 233

dimO

(
ϕ
(
L5(X, ◦)

))
= C

K(◦)
5 (z) = 8 (see again (4.5)).

Now suppose that s = • and proceed similarly. For the first summand in the right hand
side of (3.10), use (2.5) to obtain the generating function

WK(•)(z) = z2 + z3 + 2z4 + 2z5 + 4z6 + 4z7 + 7z8 + 9z9 + 14z10 + 18z11 + 30z12 + . . .

with coefficients forming the sequence A032190 in [39] (modulo a shift), which is already
described as the number of cyclic compositions of n into parts ≥ 2. For example, for the
12-TET and 5-TET tuning system, we have

W
K(•)
12 = 30,

W
K(•)
5 = 2, WK(•)5 = {

(5)
• ◦ ◦ ◦ ◦,

(3,2)
• ◦ ◦ • ◦}.

Next, from (3.9) we get

aK(•)n ,
∑

k/∈K(•)
∃k′∈K(•), k′>k

C
K(•)
n−k = C

K(•)
n−1

and thus a
K(•)
1 = 1, a

K(•)
2 = 0 and a

K(•)
n+3 = F

(1)
n is the 1-Fibonacci sequence. Hence

aK(•)(z) =
z − z2

1− z − z2
= z + z3 + z4 + 2z5 + 3z6 + 5z7 + 8z8 + 13z9 + 21z10 + 34z11 + 55z12 + . . . .

For instance, in 12-TET and 5-TET tuning systems, we have

a
K(•)
12 = 55

a
K(•)
5 = 2, {

(4,1)
• ◦ ◦ ◦ •,

(2,2,1)
• ◦ • ◦ •}. (4.13)

Thus (1.2) in Theorem 1 yields the transversal generating function

dim
ϕ(X,•)
T (z) = WK(•)(z) +

z − z2

1− z − z2
. (4.14)

For example, in 12-TET and 5-TET tuning system, we have

dimT

(
ϕ
(
L12(X, •)

))
= 30 + 55 = 85,

dimT

(
ϕ
(
L5(X, •)

))
= 2 + 2 = 4, T

(X,•)
5 = {

(5)
• ◦ ◦ ◦ ◦,

(3,2)
• ◦ ◦ • ◦,

(4,1)
• ◦ ◦ ◦ •,

(2,2,1)
• ◦ • ◦ •}.

(4.15)
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For orbital dimensions, first we have

CK(•)(z) =
1− z

1− z − z2
(4.16)

= 1 + z2 + z3 + 2z4 + 3z5 + 5z6 + 8z7 + 13z8 + 21z9 + 34z10 + . . . .

For example, in 12-TET and 5-TET tuning systems, we get

C
K(•)
12 = 89, (4.17)

C
K(•)
5 = 3, CK(•)5 = {

(5)
• ◦ ◦ ◦ ◦,

(3,2)
• ◦ ◦ • ◦,

(2,3)
• ◦ • ◦ ◦}. (4.18)

Next, according to item 3 in Theorem 1, we need the cumulative generating function of
the class represented by aK(•)(z), with respect to the number of notes. From (3.11),

aK(•)n,m =
∑

k/∈K(•)
∃k′∈K(•), k′>k

C
K(•)
n−k,m = C

K(•)
n−1,m,

thus, using (2.4), we get

aK(•)(z, u) = uzCK(•)(z, u) =
uz − uz2

1− z − uz2
.

Hence, from (3.13) we get

bK(•)(z, u) = u
∂

∂u
aK(•)(z, u) =

uz(1− z)2

(1− z − uz2)2
,

and from (3.12) we obtain

bK(•)(z) =
z(1− z)2

(1− z − z2)2
(4.19)

= z + 2z3 + 2z4 + 5z5 + 8z6 + 15z7 + 26z8 + 46z9 + 80z10 + . . .

(the coefficients are A006367 in [39]). For example, in the 12-TET and 5-TET tuning
system (for the later see (4.13)), we get

b
K(•)
12 = 240, (4.20)

b
K(•)
5 = 5,

Oα((4,1))︷ ︸︸ ︷
{(4, 1), (1, 4)} ∪

Oα((2,2,1))︷ ︸︸ ︷
{(2, 2, 1), (2, 1, 2), (1, 2, 2)}. (4.21)

Hence, (1.3) in Theorem 1, together with (4.16) and (4.19), yield

dim
ϕ(X,•)
O (z) = CK(•)(z) + bK(•)(z) =

(1− z)(1− 2z2)

(1− z − z2)2
(4.22)

= 1 + z + z2 + 3z3 + 4z4 + 8z5 + 13z6 + 23z7 + 39z8 + 67z9 + . . . ,
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which corresponds to A206268 in [39], described as the number of compositions with at
most one 1. For example, in the 12-TET and 5-TET tuning system (see (4.17), (4.18),
(4.20), and (4.21)),

dimO

(
ϕ
(
L12(X, •

))
= 89 + 240 = 329,

dimO

(
ϕ
(
L5(X, •

))
= 3 + 5 = 8, Oα

(
ϕ
(
L5(X, •

))
=


(5), (3, 2), (2, 3),

(4, 1), (1, 4),
(2, 2, 1), (2, 1, 2), (1, 2, 2)

 .

For a global transversal, according to remark 4.8, with (4.10) and (4.14) we get

dim
ϕ(X)
T (z) = dim

ϕ(X,◦)
T (z) + dim

ϕ(X,•)
T (z)− dim

ϕ(X,◦)∩ϕ(X,•)
T (z)

= WK(◦)(z) +WK(•)(z) +
z − z2

1− z − z2
− z

1− z
= z + 2z2 + 3z3 + 5z4 + 6z5 + 11z6 + 13z7 + 22z8 + 31z9 . . .

(the corresponding sequence of coefficients has no record in [39]). For example, for the
12-TET and 5-TET tuning system, the transversal dimensions of the golden mean scales
are (for the later see (4.12) and (4.15))

dimT

(
ϕ
(
L12(X)

))
= 115

dimT

(
ϕ
(
L5(X)

))
= 6, T

(X,◦)
5 ∪ T (X,•)

5 ,


(1,1,1,1,1)
◦ ◦ ◦ ◦ ◦,

(1,1,1,2)
◦ ◦ ◦ ◦ •,

(1,2,2)
◦ ◦ • ◦ •,

(5)
• ◦ ◦ ◦ ◦,

(3,2)
• ◦ ◦ • ◦,

(4,1)
• ◦ ◦ ◦ •


((1, 2, 2) and (2, 2, 1) are equal as wheels).

Finally, for the global orbital, now we use (4.11) and (4.22), but first observe that,
according to remark 4.8, in addition to the empty composition, there are two kinds of
compositions in the intersection (see (4.9)): one kind is formed by compositions of even
integers n = 2d of length d and period 1, and the other kind is formed by compositions of
odd n = 2d+ 1 of length d+ 1 that are aperiodic. We conclude that

dim
ϕ(X)
O (z) = dim

ϕ(X,◦)
O (z) + dim

ϕ(X,•)
O (z)− dim

ϕ(X,◦)∩ϕ(X,•)
O (z)− 1

=
1

1− z − z2
+

(1− z)(1− 2z2)

(1− z − z2)2
− z2

1− z2
−
∞∑
d=0

(d+ 1)z2d+1 − 1

=
1− z − 3z2 + 3z3 + 4z4 − 5z5 − 2z6 + 2z7

(1− z2)2(1− z − z2)2

= 1 + z + 2z2 + 4z3 + 8z4 + 13z5 + 25z6 + 40z7 + 72z8 + 117z9 + . . . .
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For example, in the 12-TET and 5-TET tuning system, we get

dimO

(
ϕ
(
L12(X)

))
= 561

dimO

(
ϕ
(
L5(X)

))
= 13, modes

(
L5(X)

)
=


(1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1),
(1, 2, 1, 1), (2, 1, 1, 1), (1, 2, 2),
(2, 2, 1), (2, 1, 2), (5), (3, 2),
(2, 3), (4, 1), (1, 4)

 .

3

Example 10. Let X = XF where F = {• • , ◦ ◦ ◦}. Then X is a 2-step SFT. Hence, X [2] is
the vertex shift represented by the matrix

A =

 0 1 0
0 0 1
1 1 0

 .

The corresponding directed graph is

(the labels on the edges define a 1-block code that is a conjugacy from X [2] to X, with a
2-block code inverse). Then ϕ

(
L(X)

)
coincides with the scales defined by X [2] with the

distinguished set of symbols rule for {◦◦, ◦•}. The matrix (3.14) is(
0 z
z2 z2

)
.

Then the ◦◦-admisible scales are compositions with summands in {1, 2} such that the first
summand equals to 1, and no adjacent 1s, except perhaps the last two summands. On
the other hand, the ◦•-admisible scales are compositions with summands in {1, 2} such
that the first summand equals to 2, and no adjacent ones, except perhaps the last two
summands. Further details are left to the reader.

3

5 Related works and discussion

We have seen a general method to deduce transversal and orbital generating functions of
classes of musical scales induced by vertex shift spaces through the distinguished symbol
rule. We have found approaches that use generating functions at least in the texts [27, 8],
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and learned that enumeration problems in music go back at least to the works of [37, 36, 18].
Our methods can serve to complement and generalize several other works that address
characterizations and classification of musical scales like [35, 28], also octave subdivisions
[23], optimal spelling of pitches of musical scales [9], tuning systems other that 12-TET
[23], scales and constraint programming [25], modular arithmetic sequences and scales
[4], algebras of periodic rhythms and scales [6], formalisms to generate pure-tone systems
that best approximate modulation/transposition properties of equal-tempered scales [29],
tuning systems and modes [19], etc. Moreover, other combinatorial classes, such as non-
crossing configurations [15] like dissections of polygons and RNA secondary structures [22],
can be incorporated to complement works that address constructions of musical scales like
[34].

There are many references that address the theory of musical scales that are relevant to
our work, like the fundamentals [17, 40], from the point of view of mathematics inclusive
[26, 32], several of which are related to combinatorics on words [2, 14, 13, 1].

In our arguments, a key ingredient has been the use of first return loop systems, which
arise in the study of classification problems of Markov shifts [20, 12]. In fact, studying
music theory in contexts of dynamical systems has been an active area of research, for
example [5], see also [41]. Furthermore, the results presented here can serve as a basis to
adapt other related areas of mathematics in music, such as thermodynamic formalism and
random environments [7] (e.g. to compute (relative) partition functions).
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Irish Math. Soc. Bull., (35):24–41, 1995.
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