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Abstract

We study classes of musical scales obtained from shift spaces from symbolic dynam-
ics through the “distinguished symbol rule”, which yields scales in any n-TET tuning
system. The modes are thought as elements of orbit equivalence classes of cyclic shift
actions on languages, and we study their orbitals and transversals. We present ex-
plicit formulations of the generating functions that allow us to deduce the orbital and
transversal dimensions of classes of musical scales generated by vertex shifts, for all n,
in particular for the 12-TET tuning system. For this, we use first return loop systems
obtained from quotients of zeta functions, and integer compositions as the combinato-
rial class representing all musical scales. We develop the following case studies: three
zero entropy symbolic systems arising from substitutions, namely the Thue-Morse, the
Fibonacci, and the Fagenbaum scales, the golden mean scales, and a shift of finite type
that is not a vertex shift.

1 Introduction

1.1 Symbolic sequential scales

A symbolic sequential scale is a musical scale obtained from a (mathematical) symbolic
sequence, according to certain (mathematical) rule. For example, the standard Thue-Morse
scales introduced in [21] and defined as certain sets of scales obtained from the renowned
Thue-Morse binary sequence, with coding rule the binary representation of scales. This
rule can be generalized to sequences over larger alphabets, for example as the distinguished
symbol rule, that likewise generates scales on every n-TET tuning system; it consists on
coupling a block that occurs in the sequence with a “symbolic chromatic scale” of the same
length, that is, a block formed with increasingly ordered elements of a set of “symbolic
notes”, and then letting the scale defined by the rule be formed with the notes carrying the
distinguished initial symbol of the corresponding block. The rule can be applied to sets of
symbolic sequences.



Our goal here is to present a general formalism to study symbolic sequential scales of
this type, with the number of notes on each scale as a parameter, together with their modes,
incorporating techniques from both symbolic dynamics [31] and analytic combinatorics [16].

1.2 Shift actions

We consider shift spaces as sets of symbolic sequences, that is, closed subsets X C AZ
of (bi)infinite sequences over an alphabet A, together with actions o: Z ~ X by trans-
lations, induced by the left shift automorphism o: A% — AZ. Shift spaces have several
characterizations, for instance, as sets of sequences that avoid the elements of a subset
F C A* of (finite) forbidden configurations. A shift space X is also characterized by its
language L(X) C A*, which is defined as the union of the admissible configurations that
occur in its sequences. Thus, they can be constructed, for example, by specifying either
its language (e.g., as the admisible blocks in a sequence, like the Thue-Morse sequence),
or a set of forbidden configurations (e.g., the distinguished symbol rule will certainly yield
admissible scales with no half tones between consecutive notes if the forbidden set is like
F D {a®:a € A}). Shifts of finite type (SFTs) are shift spaces defined by finite forbidden
sets F € A*, and they can always be conjugated to vertezx shifts, which are shift spaces de-
fined by forbidden sets like 7 C A2. Vertex shifts are well understood symbolic dynamical
systems, they posses matrix representations that provide algebraic and analytic tools to
study dynamic properties, like entropy, periodic points and their zeta functions, etc., and
some of these tools can be extrapolated through conjugacies to study dynamical properties
of SFTs and further, e.g. zeta functions of sofic shifts [I1}, 33]. SFTs are used as models
of more general dynamical systems (e.g. through Markov partitions [10] and universality
properties [24]), and they are also used in other areas, like in knot theory [38].

1.3 Cyeclic shift actions

The modes of symbolic sequential scales are thought as instances of a-orbit equivalence
classes of actions a: Z ~ §* induced by the cyclic left shift combinatorial automorphism
a: 8" — 8* on finite sequences over some countable alphabet S (e.g., a binary alphabet,
or a set of symbolic notes, or the positive integers, etc.). Orbitals are unions of a-orbit
equivalence classes, and they are the subsets upon which « acts. In general, arbitrary
subsets of 8* are not orbitals, like the language of a shift space (in fact, the language of a
shift space is an orbital if and only if the space is a full shift). Likewise, if the distinguished
symbol rule is formalized as a block function ¢: £(X) — S* valued on symbolic sequences
over some alphabet S that represent musical scales in a way that the a-orbits correspond
to the modes of the scales (for eample, see (3.1)), then ¢(£(X)) is not, in general, an
orbital. Thus we consider orbitals generated by subsets B C S&* as unions of the a-orbit
equivalence classes of their elements, and a transversal is a set of representatives of the
generated orbital.



Remark 1.1. If B is a set of musical scales, like ¢(£(X)), then the cardinality of a transver-
sal is the number of “essentially different” scales an instrumentalist would have to learn
to play any scale in B, together with all its modes, for a total number of scales that
corresponds to the cardinality of its generated orbital.

We will refer to these cardinalities as transversal and orbital dimensions. Since any
set B decomposes into a sequence (By,)p>0 with B, £ BN S™, there are transversal and
orbital generating functions dim¥(z) and dim&(z), respectively.

1.4 Main result

Thus we aim to find transversal and orbital generating functions of classes of musical scales
generated by shift spaces. We use integer compositions as the combinatorial model of the
class of all musical scales (that is, above, S will be the set N+ of positive integers), not only
because its a-orbits represent the modes of the scales (as wheels), but also because it is an
ubiquitous combinatorial class in analytic combinatorics: its elements are represented as
sequences of positive integers, and their generating functions, including bivariate versions
marking several parameters like the number of summands, are well understood [16]. With
them (see Theorem , and the interplay of the o-action on sequences and the a-action on
languages, it is possible to make the main formulation that is required to deduce transversal
and orbital generating functions of musical scales generated by vertex shifts (with reference

to Remark :

Theorem 1. Let X C A% be an irreducible vertex shift and choose a distinguished sym-
bol s € A. Then there is a set K(s) C Nsg of positive integers (see ) that yields
decompositions of the transversal and orbital generating functions of all musical scales in
¢(L(X,s)), where £L(X,s) is the language of all admissible words in X that start with s.
These decompositions are

dimﬁ(x’ﬁ)(z) = WKE) (2) + a6 (2), (1.2)
dimEX) (2) = X6 (2) 4 K6 (2), (1.3)

where the four generating functions on the right hand sides above are as follows:

1. CRG)(2) and WXG)(2) are the generating functions of integer compositions and wheels,
respectively, both with summands in K(s) (see (2.3) and (2.5) evaluated at u=1).

2. a’c(s)(z) is the generating function of aperiodic compositions, also with summands in
K(s), except for the last one that belongs to the complement K(s)¢ and is bounded

above by an element of K(s) (see (3.9)).

3. The orbital generating function ¥ (z) associated to the class represented by a/*®)(z)
18, in fact, the corresponding cumulative generating function with respect to the num-

ber of notes (see (3.12)) ).



The proof follows from the definitions and the formulations in the rest of the paper,
which is organized as follows. In section [2] we declare the class of all musical scales as
combinatorially isomorphic to the class of integer compositions, and define their modes,
orbitals, transversals, and their dimensions. In section [3| we address shift spaces and
the classes of musical scales they define through the distinguished symbol rule. We recall
periodic points and zeta functions, and then focus on shifts of finite type, vertex shifts, and
loop systems. Finally we settle the decompositions above and discuss their extrapolation to
SFTs. Our formalism is general for all n-TET tuning systems, and adapts for finite values
of m to numerical procedures for exact computations, for example when n = 12, which
is of most interest from the musical point of view. In section [4] we develop five examples
as case studies. The first three are classes of substitutive scales, that is, scales defined by
substitutive subshifts, namely the Thue-Morse, Fibonacci, and Fagenbaum scales. Then we
elaborate in detail one example of vertex shift scales to illustrate the methods in sections
and [3] that yield Theorem [1], namely the golden mean scales. Finally we sketch how to
methods can be adapted to proper SFTs (i.e. an SFT that is not a vertex shift). In the
last section [5] we make final remarks and conclusions, with respect to other works, possible
generalizations, and further applications.

2 Scales, modes, orbitals, and transversals

2.1 Musical scales and integer compositions

A musical scale in 12-TET tuning system can be coded by a sequence of integers in which
each term is the number of half tones within consecutive notes of the scale. For example,
the chromatic and major scales, that are coded with a binary alphabet B = {o, e} as
cooooo0oooo0o00 and ceceooceoeoeo, correspond to (1,1,1,1,1,1,1,1,1,1,1,1)
and (2,2,1,2,2,2,1) in the integer sequence representation, respectively. Observe that in
both cases the sums of the entries yields 12. This is a general phenomena that, though
elementary by definition, we state formally:

Theorem 2. In n-TET tuning system, the musical scales are in bijective correspondence
with the set of ordered sequences of positive integers that add up to n. In other words,
the set of all musical scales (in any tuning system) is combinatorially isomorphic to the
combinatorial class of integer compositions.

Let Nog £ {1,2,3,...} denote the set of positive integers. Let
o
C £ 8EQ(N>o) = | J N, (2.1)
k=0

denote the class of integer compositions, and henceforth think of its elements as musical
scales. For every integer n > 0, let C,, C C be the compositions of n, i.e. C, denotes the



set of scales in n-TET tuning system. Then C, £ #C, = 2"~!, which is consistent with
the binary representation of musical scales, and thus the ordinary generating function of
all musical scales is the rational function]

1—2z

C(z) = Z Cp2" = e (2.2)
n=0

More generally, for any subset K C Nxg of positive integers, the class CX C C of all integer
compositions with summands in K has generating function

o0

1
CR(z) 2Y Cken = Ty (2.3)
n=0 kek

where CX* 2 4(C* N C,). Henceforth, for any set of finite sequences Y, like C, we will be
considering the length of the sequences as a parameter, £: ) — N (for example, when coded
by integer compositions, the major and chromatic scales have lengths 7 and 12, respectively,
but on the other hand, both have length 12 in binary code). Thus, the bivariate generating
function C*(z,u) where u marks the length of the compositions is

1

:1—usz
kel

Cr(z,u) 2 Z Cﬁmz"um

n,m=>0

(2.4)

with CF,, & #{w € Cr t(w) =m}.

2.2 Modes, orbitals, transversals, and their dimensions
Let A be a countable alphabet and then let A* = Ukso AF. where
AP L2 Ax . x A
k
times

Let a: Z ~ A* be the cyclic left shift action induced by the combinatorial isomorphism
a: A* — A* defined for every w = (wy,...,wy) € A* by a(w) = (ws,...,wg,wi) € AF,
for all £ > 1. The a-orbit of w € A* is

On(w) & {ad(w) : ¥V jeZ}.

The set of a-orbits forms a partition of A* induced by the a-orbit equivalence relation
2. The representation of musical scales by integer compositions is such that the a-orbit

!Combinatorially, integer compositions are sequences of positive integers (see (2.1)), and on the right
hand side of (2.2]) we already see the form of Pélya’s quasi-inverse operator that corresponds to sequence
constructions.
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Figure 1: The diatonic wheel (2,2,1,2,2,2,1) in C: its size is 12, its length is 7, it is
aperiodic, thus it consists of 7 modes.

equivalence class of an integer composition w € C, i.e. the elements of its a-orbit O, (w),
are the modes of the corresponding scal and thus, in this case, we write MODES(w) =
On(w). For any subset B C A*, let

Oa(B) £ | J Oalw),

weB

and similarly, if B C C, then we write MODES(B) £ O4(B). Now, since A*/ < is the
combinatorial class of cycles of elements of A, the class of all musical scales, modulo their
modes, is the class W of cyclic compositions of positive integers, the so called wheels (see
Figure [1). Two musical scales are essentially different if they are different as wheels.

2This is not generally the case. For example, in the binary representation of musical scales, the a-orbits
do not always correspond to the modes of the scales.
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Figure 2: Number of notes versus number of essentially different scales for the 12-TET
tuning system. This is in general represented for every n by the coefficient [z"|W(z,u),
where W (z,u) is the bivariate version of W(z) (when K = N5g). Thus, for example,
[22)W (2, u) = u+ 6u? + 19u3 + 43u* 4 661> + 80u’ + 661" + 43ud 4+ 191 + 61 + u'! +u'2.
The limiting distribution of the number of notes is gaussian as n — oco.

Therefore, the generating function of all musical scales, modulo their modes, is

— i ¢§f) log <1 1 ikzk>1

with ¢: Nsg — Nxg the Euler totient function, that is, ¢(n) = #{k < n : ged(n, k) = 1}.
More generally, the bivariate generating function of the class WX of wheels with summands
in I, with v marking the length of the wheels (i.e. the number of notes in the scales), is

K A — K . n,m _ = ¢(k) 1
WH(z,u) = Z Wiz " u™ = ? log =5 it (2.5)
n,m=1 k=1 jex

For example, in 12-TET tuning system, there are 351 essentially different musical scales,
and their distribution according to the number of notes is illustrated in Figure

A set A C A* is independent if any pair of distinct elements of A belong to distinct
a-orbit equivalence classes, i.e. Oq(v) N Oy(w) = @ for all v,w € A with v # w. Two
subsets A, B C A* are mutually independent if On(A) N Ou(B) = @ (each set A and B
may or may not be independent). A transversal of A is a maximal independent subset
T4 C A. Any nonempty set A # @& possesses at least one transversal T4 C A, and any two
transversals of A have the same cardinality, the transversal dimension

dimy(A) 2 #T4.



Clearly, A C O4(A) = Ou(T) and Ou(T") C Oy(T) for any transversal T' C A and any
proper (independent) subset 77 C T. Hence, if A C C is a set of integer compositions, then
the transversal dimension is the number of essentially different scales an instrumentalist
would have to learn to play any scale in MODES(A). The orbital dimension of A is

dimo (A4) £ #04(A).

Again for subsets A C C of integer compositions, the orbital dimension dimg(A) =
#MODES(A) is the total number of scales that an instrumentalist can play with the el-
ements of (a transversal T C A of) A and their modes. Thus, the orbital dimension
dimg (w) £ #0,(w) of w € A* is bounded above by £(w). Moreover, the former divides the
later, i.e. dimg(w)|¢(w), thus there is an integer k = k(w) > 1 such that dimg(w)-k = £(w),
and then let the period of w be defined as per(w) £ k. If per(w) = 1, then w is aperiodic.
The orbital dimension of A is therefore computed with any a-transversal T' C A through
the equality

dimo (w)
per(w)

dimo(4) = >

weT

3 Symbolic dynamical scales

3.1 Shift spaces and their musical scales

A shift space X C A” is determined by a set of forbidden blocks F C A*, that is, X = Xr
where

Xr £ {x = (a:n)ngz S .AZ Yw € F, Vk € Z, Tk k+0(w)—1] 75 w}

(above, and henceforth, for any sequence z, let x; j £ .x; 2 (24,...,24)), and is
accompanied by the left shift Z-action o: Z ~ X induced by the automorphism

U(x)n £ Tpy1 Vo= (xn)nEZ € X, VneZ.

The language of a shift space X is £(X) = |J Ln(X) C A*, where
n>0

Ly(X) & {zpy € A"z e X3,
and also, for every symbol s € A, let £(X,s) 2 Un21 Ln(X,s), where
£n(X75) é {m[Ln] S ﬁn(X) X1 = 5}.

X is irreducible if for every u,w € L(X), there exists v € L(X) such that uvw € L(X).
The distinguished symbol rule ¢: L(X) — C is defined for each w = wy ... w, € L,(X)
as certain composition p(w) € C, of n = f(w), as follows. Let s £ w; and then let



1 =mn1 <ng <...<nyy) <n be the coordinates where s occurs in w, that is, w; = s if
and only if j = n; for some i = 1,...,r(w). Then the composition of n that w induces has
length £(p(w)) = r(w) and is defined by

(p(w) £ (nQ —N1,NZ = N2y .oy Ny () — Nop(w)—1,T — n:(rw) + 1) (31)
k1 ka k'r(w)fl kr(w)

For every s € A and n > 1, let
CX) 2 o(L,(X,5)  and  C) 2 p(L,(X))

and also let
X 2 o(L(X,9)) and  CYX) 2 p(L(X)).
Define the generating functions

CX9)(z) 2 Z C(Xos) 5m and CX) (2 Z CX) zn

n>0 n>0

where C’ (X.s) #C (X.5) and C’,S,X) £ #Cy(LX). Our foremost concern here are the transversal
and orbital (bivariate) generating functions

(X
dlm-l- %) Z dlmT C(X AP TN
n,m>0
dlmT Z dlm-r (X) 2"u™,
n,m>0
and
(X
dlmo ) Z dimg C(X5 "™,
n,m>0
dlmo z) Z dlmo 2"u™.
n,m>0

3.2 Periodic points and zeta functions

The o-orbit of x € X is O,(x) £ {0"(z) : n € Z} C X. For every n > 1, a point x € X
is n-periodic if o™ (x) = x, and if x is n-periodic, then there exists the minimal period
nz > 1 of z, namely, the cardinality of its orbit n, = #O, (), and moreover, ngz|n. Let
Po(X) 2 {z € X : 0"(z) = 2} and Qn(7) £ {z € Py(X) : n, = n} be the sets of n-
periodic points and minimal n-periodic points, respectively, and also let p,(X) £ #P,(X)



and ¢, (X) = #Q,(X). Recall that the relationship between p,(X) and ¢, (X) is through
Mobius inversion,

PuX) =D a(X)  and  qu(X) = (3 pe(X), (3:2)

where p1: Nsg — {—1,0,1} is the Mobius function defined by

(n) 0 if there exists p > 2 such that p?|n, and
pn) = (=1)" ifn=p1--p, with p1,po,...,p, > 2 distinct prime numbers.

The dynamic zeta function of X is

A = TLX n 1
<X<z)=exp(2_jlp; )z)=H(1_zn)%<x>/n-

n>1

3.3 Shifts of finite type, vertex shifts, and loop systems

A shift of finite type X C AZ is a shift space X = Xx that can be defined by a finite set
of forbidden blocks F € A*, and in this case define m = max{¢(w) : w € F} — 1 and say
that X is m-step (since it is always possible to find a set of (m 4+ 1)-blocks F/ C A™H!
such that X = Xz ). A vertex shift space is a 1-step shift of finite type. Let X = Xz C A%
be a vertex shift space defined by a set of forbidden 2-blocks F C A2. Let A be the square
{0, 1}-matrix indexed by A and defined by the rule A(7, j) = 1 if and only if ij ¢ F. Then
X = X4, where

X4 2 {z=(2p)nez € AL :Vn € Z, A(wn, ny1) # 0}.

The matrix representation of vertex shifts yields expressions that can be useful to study
transversal and orbital dimensions. For example, the dynamic zeta function is obtained
through

1

(g, (2) = dot(I — 24) (3.3)

(observe that det(I — zA) = z#Ay4(z~1), where x4(2) is the characteristic polynomial of
the matrix A). From here we can get

—log (g, (2) = trace(A")
0

and also qn()/z 4) by Moébius inversion (3.2)). The following result follows.

10



Theorem 3 (Transversal and orbital dimensions of languages of vertex shifts). The nth
transversal dimension of the language of a vertex shift is

~ X
dimr (La(Xa)) = Y AP+ q’“<kA) (3.4)
i,jEA kln
AM:O

and the corresponding nth orbital dimension is

dimo (Ln(Xa)) =n Y A+ pa(Xa). (3.5)
i,jEA

AN-:D

Now, for studying musical scales arising from languages of vertex shift spaces through
the distinguished symbol rule, consider the first return loop system to a given symbol s € A,
defined by the generating function

[e.9]
) z) A Zflgs)zk
k=1
where
2 4w = wo, ... wy, € L4 1(X) : wowy, = 5 # w; Vj#0,k}. (3.6)
The power series f(®)(z) is obtained through the equation

&, (2)
(z,(2)

where B is the square {0, 1}-matrix indexed by A\ {s} and obtained from A by removing
the row and column indexed by s.

1- 70 (z) = (3.7)

3.4 Generating functions for distinguished symbol rule on vertex shifts

Here we proof Theorem [I} Let

K(s) 2 {k>1: £ #0} (3.8)

and also denote its complement by K(s)¢ 2 Nsg \ K(s). According to and (3.6), if
w € L(X,5), then o(w) = (k1, k2, . . ., kg(p(w))) 18 @ composition of £(w), with summands in
K(s), except perhaps for the last summand Ko(o(w))- Suppose that this is the case, that is,
Eyow)) € K(s)°. Since X is irreducible, there exists v € £(X,s) such that v also ends in s
and w is a prefix of v, that is, vy,) = s and

U = WU (w)+1,0(v)]s

11



thus ky((w)) is bounded above by an element of K(s). Let

K@ (2 Z s

n>1

be the generating function of this subclass which is described in item 2] of Theorem[I} Then

k0= > o (3.9)

keK(s)c
Ik eK(s), k' >k

(for any subset K # & of positive integers, C’(’)C £ 1). If we also let

b/C(s) Z b/C 5)

n>1

be the generating function of the corresponding orbital, then, by independence, there is
a decomposition of the form and , as described in Theorem |1, we just need to
justify that b’c(ﬁ)(z) is the cumulative generating function of the subclass represented by
a®)(2), with respect to the number of notes. This follows from the fact that the elements
represented by a() (z) are aperiodic. To be explicit, write the bivariate coefficients

dimT (C(Xs)) = Wf,(fb) + aﬁ(,fl) and dimg (C( )) C’C( s 4 b’C( 5) (3.10)
Then, for every n,m > 1, we have
K(s)

n,m Z C:LC—(SIc),m—l'

keK(s)c
K€K (s), k'>k

a

By aperiodicity, the corresponding orbital dimension is
byl = m - apls).
Thus, if we define

MO (2, u) £ Z alfe) gy m (3.11)

n,m
n,m>1

and
/Cﬁ
£ Ui
n,m>1

then we observe that

b (2) = ia’c(”(z,wluﬂ, (3.12)

12



and in fact
0
V) (2, 0) = u%a’qs)(z, w). (3.13)

Hence ) (z) is the cumulative generating function of the number of summands in the
class of compositions represented by a’c(s)(z). This settles Theorem and also gives
decompositions of the bivariate transversal and orbital generating functions,

dimﬁ(X’ﬁ)(z, u) = WO (z,u) + a*®) (2, 1)

and
dimé(x’ﬁ)(z, u) = C*O (2, u) + 06O (2, ).

To determine the transversal and orbital dimensions of the whole set of vertex shift scales
cX) & go(E(X )) = UseaC9) | it is required to take into account the intersections between
each pair of symbols, otherwise multiple counting may occur. The analysis can be done
one symbol at the time, adding only new contributions to the cumulative counting.

3.5 SFT scales

Suppose that X C AZ is an irreducible M-step shift of finite type for some M > 1. The
higher block presentation X™) may be defined as the vertex shift represented by a directed
graph with vertex set L3/(X), and for every pair u,v € Ly(X), (u,v) is an edge from
u to v if and only if up pq = vy ar—1]- Therefore, studying musical scales generated by
arbitrary SF'Ts through the distinguished symbol rule is equivalent to studying musical
scales generated by vertex shifts through the distinguished set of symbols rule.

For the distinguished symbol rule on vertex shifts, once a symbol is fixed, there is
a formal power series that determines the induced musical scales (see (3.8))). For the
distinguished set of symbols rule, there is a matriz over formal power series, indexed by the
set of distinguished symbols, that determines the induced musical scales. More precisely,
let X C AZ be a vertex shift defined by a square {0, 1}-matrix A indexed by A, and let
D C A be a subset of distinguished symbols. For every pair s,t € D, let

70 £ 3 fe0
n=1

be the generating function that represents the set of paths from s to t that do not cross D
(except for the end points). The coefficients are

f’gs’t)é#{w:wo,...wk€£k+1(X)Z’LUO:5, wy =t wj € A\D Vj#0,k}
and thus

FEY(2) = Agz + Z Z Aﬁva;%fA’“v‘zn
n=2 j ke A\D

13



where B is the matrix obtained from A by removing the rows and columns indexed by
elements of D. The auxiliary matrix is

(f*V(2) ep (3.14)

There is no closed form, such as (3.7)), for f&Y(2). Nevertheless, we will see with an
example how we can make use of (3.14: in our problem.

4 Examples

First we analyze three classes of scales arising from substitutons and then we consider
vertex shift scales.

4.1 Substitutive scales

Here we analyze the Thue-Morse, Fibonacci, and Feigenbaum scales. First some notation:

The language of a sequence x in AV, or A%, is defined as £(x) £ |J L(x), where
n>0

Lo(x) &£ {w=wi...wy € A" : Ik, X psn_1] = w}
are the admissible n-blocks of x. Also, for each s € A, let
L(x,8) ={w € L(x) : w =s} and Ln(x,5) 2 L(x,5)N A"
Let B = {o, e} be a binary alphabet.

Ezample 4 (Thue-Morse scales). The iterated morphism defined by the rules o — oe and
e — o0, starting from o, yields the Thue-Morse sequence

A
m:O..O.OO..OO.O..O.OO.O..OO..O.OO.--'EBN

(see [3,130] for more on the Thue-Morse sequence and substitution systems in general). The
set of standard (or admisible) Thue-Morse scales in 12-TET tuning system reported in [21],
as integer compositions, is M £ Cg) = gp(ﬁlg(m)) C (12 and consists of the following 18
elements:

(1) A (37 2» 17 3: 17 2) (2) A (37 27 17 27 37 1) (3) A (37 17 37 27 17 2)
m Bl X RoN NoneoN N NejeN ) m Bl X RoN NonoN NeN N e m Bl RoloN N NoN NejeN J
(4) & (2, 1, 3, 1, 2, 3) ) & (2, 1, 2, 3, 1, 3) 6) & (1, 3, 2, 1, 2, 3)
m ol NohoN N NoNoN NoN N J m ol NoloN NoN N NoNoN N J m S ohoN N NoN NoNeoN NoN N J
(7) & (1, 3, 1, 2, 3, 2) 8) & (1, 2, 3, 1, 3, 2) ) & (1,3,1,2,3,1, 1)
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Figure 3: A transversal of admissible (standard) Thue-Morse scales.

Observe that
Oa(m(l)) — {m(l), m(4), m(7), m(10)7 m(14)7 m(16)}
Oa(m(2)) — {m(2)’ m(5), m(8)7 m(11)7 m(3)7 m(ﬁ)}’
and also that the set
M\ ((’)a(m(l)) U @a(m@))) = {m® m"? m3) m ml") n08Hy

is independent. Therefore, the transversals of M (contained in M) are the sets T formed
by M\ (Oa(m®) U Oq(m®)) and one element from each of the two a-orbits O,(mY)
and O,(m®). In particular,

Ty 2 {m®, m®@} U (M (0a(m) U0 (m®@)))
is a transversal of M, which is shown in music notation in Figure|3] Thus, there are only

essentially different Thue-Morse scales. Now, the elements of T, are aperiodic except for
scale TM6.3 that has length 6 and period 2. Scales TM6.1, TM6.2, and TM6.4 have all
length 6 too. All the scales with label TM7 have length 7. Hence the dimension of the
space of modes of M is

dimo(M)zlxg+3><6+4><7:49.
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Note that the set M is an example of a subset A C C with 7' C A C MODES(A) for a
(equivalently every) transversal T' of A.

<

Ezample 5 (Fibonacci scales). The substitution rule o + oce and e — o iterated over o
yields the infinite Fibonacci word

fé0.00.0.00.00.0.00.0.00.00.0.00.00.....
Definition 6. For every k > 1, let {FT(Lk)}nzo be the k-Fibonacci sequence defined by

FPe F®2p and E®,2F0 4 FW

For example, if wy = o, w; = oe, and wy+2 = wy1wy, for every n > 0, then § = li_>m Wy,
n oo
and the sequence {{(wy)}n>0 = {1,2,3,5,8,...} is 1-Fibonacci.
Again, let us focus on the 12-TET tuning system. It is well known that § is Sturmian
(i.e. it has minimal subword complexity, see e.g. [3, 30]), and thus there are 13 admisible
12-blocks. Unlike the Thue-Morse sequence, there will be two types of scales according to

the distinguished symbol s € B, and together they will form the set F' C C of admissible
Fibonacci scales. The o-admissible Fibonacci scales F,, = @(Elg(f, o)) are

f(l) L5 5317026 }3’ 02702’0%) g’olzJ f(2) L5 01;26 2.’ 01702’013 370123 f(3) £, 01;26 20’ 01702’0201 370123
AN (o2blé 207 3’025% 3’0123 £ 2 ¢ 02b16 20’ c?’ol’o% :701% £6) 2 0(27017026 QJ 01702’020 °
£7) L oe5a0bs0asce O Loesacdscesoe
and the e-admissible Fibonacci scales Fy £ ¢(Li2(m, o)) are
f(g) éoé?’oo%’)o%o%ool)o f(lo) éoo&o 0260%027001)0 f(ll)éo(()&o 02603802700223
£(12) 2 4 <(327o 036 o:é’o 3’0 02)0 £f13) 2 o 0270 036 o%o g’o 02)0

We observe that when s = o, a(f()) = £ o~ 1(£f(6)) = £(® and the set
T, 2 {£0) £ £G) £ £ £B1
is independent, and when s = e, ofl(f(“)) = £(13) and the set
T, 2 {£O) £10) (1) £(2)y

is independent. Thus, both T, and T, are transversals of Iy, and F,, respectively, and since
T, and T, are mutually independent, we obtain T £ T, UT, as an admissible transversal
of Fibonacci scales, its elements are shown in Figure [ Thus

dlmT(F) = dimT(Fo) + dlmT(F.) =6+4=10.
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Figure 4: A transversal of admissible Fibonacci scales.

Since every element of T is aperiodic, the dimension of the space of modes of the Fibonacci
scales is

dimo(F) = (4 x8+2x7)+ (4 x 5)+ = 66.

Several well known scales are Fibonacci scales, for example, a2(f(6)) is the major scale
(thus all the scales in the diatonic wheel are Fibonacci, see Figure [1)), and o3 (f(1V)) is the
pentatonic scale. Also note that M and F' are mutually independent.

<&

Ezample 7 (Feigenbaum scales). The substitution rule o +— ee and e — eo iterated over o
yields the Feigenbaum sequence

g:.OO..0.000...O...O...0.0.0...0.0....

The elements of Go £ ¢(L12(g,0)) are

M a 22 4 2 2 @) a (2, 2, 4, 4 @) & (2, 4, 2, 2, 2)

g =N NoN NoN N N NoN NoN ] g =N NoN NoN N N NoN N N ] g ol NoN N N NoN NoN NeoN J
2, 4, 4, 2 4, 2, 2, 4 4, 4, 2, 2

g(4):oo( ...O...C)). g(5)éoo(ooooooooo)o g(G)éoo(oooooooogo
4, 4, 4

g(7)éoo(oooooooo)oo
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are

(9) A (2’ 2,2,1,1, 2,1, 1)
—eO0eO0eCceeeOo00

g
12) 6 21122211
g = NoN N N NoN NeoN NoN N J
(15) A (1’ 2,22 1,1, 2 1)
g X NoN NoN Neoi N N NoN ]
1) a (11,222 1,1,2)
g — 0000000000 O0OO

)7
)

except for g(”) and g(*® that are 3-periodic. Thus

and

T. = {g(8))

,g? g™}

g(9) 7 g(14)}

A (27 27 17 17 27 27 2)

— 000000000000
A (2,1,1,2,1,1,2,2)
— 000000000000
A (19 2a 17 17 27 29 2’ 1)
— 0000000000000
A (L,1,2,1,1,2 2 2)
— 000000000000

On(gM) with £(g1)) = 5, g, g0, g0 € 0,(g?) with ¢(g?)) = 4,
O.(g®) with £(g®) = 7, gV, g12) g13) g(15) g(16) o(18) o(19) ¢
with £(g(M) = 9. All are aperiodic

are transversals of G, and G, respectively, and they are mutually independent (each scale
has a different number of notes), thus Ty £ G, UG, is a transversal of Feigenbaum sclaes,
its elements are show in Figure |5l We conclude that

and

dimgp (G) = dimp(G,) + dimp(Ge) = (3

dim7(G) = dim7(Go) + dim(Gs) =3 +3 =6

3

+4+5> + <7+8+§> =10+ 18 = 28.
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M, F, and G are mutually independent.
O

Problem 8. Find the transversal and orbital generating functions of the Thue-Morse, the
Fibonacci, and the Feigenbaum scales.

4.2 Symbolic dynamical scales of finite type

Here we use the material from sections [2] and Bl

Example 9 (Golden mean scales). Consider the golden mean shift X = Xz C BZ that
is defined as the subshift that results from the forbidden set of blocks F = {ee}. Thus

X = X4 where
11
(1)

The matrix A is the adjacency matrix of the following directed graph:

e
| g

TRANSVERSALS AND ORBITALS OF THE GOLDEN MEAN LANGUAGE. First let us illustrate
the use of Theorem [3] The counting sequence of the language of the golden mean shift is
2-Fibonacci, that is, #L,(X) = Féz) for all n > 0. On the other hand, the zeta function

o 1—z— 22

1 oo
x(e) = g = Y A
n=0

is the generating function of the 1-Fibonacci sequence, and the periodic counting sequence
{pn(X) =F, (:i)l }n>1is 3-Fibonacci. For transversal dimensions, with reference to (3.4)), we

n
first see that

> A=A
i,jEA

AjinO

represents return loops of length n that begin and end at e, but these are in fact sequences
of first return loops to e. Using (3.7 and (3.3]) we get the generating function of the system
of first return loops to e,

and deduce that

=2+ 284244222 4325+ 52" +828 41329+,
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in particular, for n > 3, Ay, = FT(LE)B is 2-Fibonacci. Next, the sequence {gn(X)}n>1,

obtained from {p,(X) = Fr(l?’_)1 }n>1 by Mébius inversion, defines a minimal periodic gener-
ating function

¢ (2) £ gu(X)2"
n>1
=2+ 22+ 28420 125 1228 14T 1528480+
that corresponds to |A006206 in [39], described as the number of aperiodic binary neck-

laces with no subsequence ee, excluding the necklace o. The coefficients of the generating
function

B N (X)) | .
q(X)@*Z Z kki 2 (4.1)

n>1 \ kln
=2+22" +22° + 32" +32° + 5%+ 527 +82° +102° + . ..
correspond to 000358 in [39], which is described as the number of necklaces with no sub-

sequence ee, excluding the necklace e. Thus the transversal generating function of the
language of X has the form

dim(TX)(z) = 12512—2,32 +7%(2).
For example, according to ,
dimr(£1(X)) =1+1=2, {o}U{e}
dimT (L2(X)) =0+2 =2, {00,0 e}
dlrn-r([,g(X)) =1+2=3 {co0o,00e}U{ece}
dimr (L£4(X)) =1+3 =4, {o000,0000 0000} U{ecoe}
dlmT(£5(X)) =2+3=5, {o0000,00008 00000} U{ec00e 00000}
000000, 000O0O®, e00o0O0e,
dimT(ﬁ6(X)):3+5:8, cooece, 0000, U ecoe0e,
ceceoce ececOe

For orbital dimensions, with reference to (3.5)), first we see that

> D d [ z2(1-2) 1—2z+222
AP 1, n-1_ = _
Zn oo ? dz <1—z—22> (1 —2z—22)2

=1+4322 4423+ 102* + 182° + 3520 + 642" + 11728 + 21027 + . . .,

n=1
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which corresponds to A006490 in [39]. We already know that p,(X) is the 3-Fibonacci
sequence 1*"753_)1 Thus

2 2 3
. L(X) 1—-22+2z 1422 2(2— 2z — 2% —22°)
d p— p—

img (=) Z(l—z—22)2+zl—z—z2 (1—2z—22)2

=22 4+322+ 72 + 1124 +212° + 3625 + 6427 + 11128 + 19327 + . ..

(the corresponding sequence of coefficients has no record in [39]).
ADMISSIBLE GOLDEN MEAN SCALES. Now we look at the image
p(L(X)) ccC

that corresponds to the admissible golden mean scales. First, using again (3.7) and (3.3)),
we get the generating functions of the loop systems, namely

fO(z2) = 2 + 22 (4.2)
2
f(')(z):lzi:22+z3+z4+.... (4.3)
—z
Then the o-admissible golden mean scales C(X°) & go(E(X , o)) are all the integer compo-
sitions with summands in (o) = {1,2} (see (4.2)), that is, all the scales with no more
than two tone measures of difference between consecutive notes, as expected (in this case
we have a(°)(z,u) = 0, and thus also () (z,u) = 0, because any element in K(0)¢ is not
bounded above by any element of I(o)). The corresponding generating function for this
class of integer compositions, according to (2.3), is
1
C(X,O) — C’C(O) - 4.4
(:) = CF) () = -, (4.4

thus C}LX’O) = ,(Ll) is 1-Fibonacci. For example, for 12-TET tuning system, the total

number of o-admissible golden mean scales is
c3?) = Fy) = 233.

The set Cg(’o) is too large to list. With the purpose of having a smaller context that helps
illustrating and verifying the claims, let us imagine, for instance, that we are doing scales
over a small set of notes, say over 5 notes (e.g. over a pentatonic scale). Combinatorially,
the model is that of a 5-TET tuning system. We thus have

CéX,o) _ F5(1) _ 8, CE()X’O) — . (45)


https://oeis.org/A006490

We also have the bivariate version of (4.4)), with v marking the number of notes, namely

1

CH(z,u) = OO (z,u) = T

For the e-admissible golden mean scales C(X:*) £ go(E(X , o)), first observe that the
class of integer compositions with summands in K(e) = {2,3,4,...} (see (4.3])) has ordinary
generating function

R 1-=2
Ve ===

The bivariate version of C*(*)(2), with the variable u marking the number of notes, is

1—2z

) = T

In addition, in this case, the last summand in the elements of C(X*) 4s allowed to be 1 ¢
K(e) (for example, in 12-TET tuning system, the binary admisible 12-block ecececececce
yields the e-admissible golden mean scale (2,2,2,2,3,1)). Therefore, the corresponding
generating function is

1—22
X0 — AK(e K(e .
and we also get its bivariate version,
X,e _ K(e K(e - (1—|—uz)(1—z)
CX®) (2, u) = CF®) (2, 1) + uzCF) (2,u) = I
Thus C'(()X") = 1 and for n > 1 the sequence of coefficients C;lX") = Frsi)l is 1-Fibonacci.

For example, for the 12-TET and 5-TET tuning systems we have
O = FlY = 144,

CéX’.) = F4(1) =5, CE()X’.) = {o o(g)o o, 0(461)0 ) 0(362)0 o, 5233)0 ) 0(0272%)0} . (4.7)

Remark 4.8. The only elements that are both o-admissible and e-admissible golden mean
scales are the compositions of even n = 2d and odd n = 2d + 1 integers of the form

(2,2,...,2) and (2,2,...,2,1). (4.9)
——— ———
d-times d-times
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Thus, combining (4.4)) and (4.6]), we conclude that the generating function of admissible
golden mean scales is

— 3
C(X)(Z) = C(X,O)(Z) + C(X,.)(Z) _ 1lj—; _ 1]__ 222_:_2’:23

=14+ 24+222+42% + 724 +122° + 2025 + 3327 + 5428 + 8829 + 143210 + . .

(the corresponding coefficients are, essentially, A000071/in [39]), and we also get its bivariate

version,
14 uz

1 —uz?’

CX)(z,u) = CF°) (z,u) + CF*) (2, u) —

Then, for every n > 1 we have C’,(lX) = F,gl) + Féi)l — 1. For example, the number of
admissible golden means scales in 12-TET and 5-TET tuning systems are (for the later see

[.5) and (7))
C\Y) =233+ 144 — 1 = 376,

O(X) — 8 + 5 _ 1 — 12’ CéX) — (2117171) (11272) (27

5 - ceo000,00

(5) (4,1)

(3,2) (2,3)
0000, 00000, 00000 .O‘OO

TRANSVERSAL AND ORBITAL DIMENSIONS OF GOLDEN MEAN SCALES. First look at the
case when 5 = o. With the ordinary form WX (z) £ W¥(2,1) of (2.5), we obtain the first
summand in the right hand side of (1.2)),

WEC (2) = 24222 4223 + 324 £ 325 + 525 4527 + 825 +102° + 15210 1921 + 31212 4.

with coefficients forming again the sequence A000358 in [39] (that is, in this case, we have
WEE) () = g (2), see [@1)). Since a*()(z) = ) (2) =0,

dim?) (2) = WEE)(2) (4.10)
and
dimE5) (2) = ¢FO)(z) (4.11)

(see (4.4)). In particular, for the 12-TET and 5-TET tuning system, the transversal di-
mensions are


https://oeis.org/A000071
https://oeis.org/A000358

and the corresponding orbital dimensions are
dimo (p(L12(X, 0))) = C(2) = 233
dimo (p(L5(X,0))) = CF(2) =8 (see again (@3)).

Now suppose that s = e and proceed similarly. For the first summand in the right hand
side of (3.10f), use (2.5 to obtain the generating function

WO (2) = 22 + 2% + 220 + 227 + 420 + 427 + 728 +92° + 14210 41821 + 30212 + ...

with coefficients forming the sequence |A032190 in [39] (modulo a shift), which is already
described as the number of cyclic compositions of n into parts > 2. For example, for the
12-TET and 5-TET tuning system, we have

Wh®) = 30,

(5) (3,2)
000,060000}.

Wéc(.) =2, Wéc(.) ={eo0
Next, from (3.9) we get
T L e

kgK(e)
ke (o), K'>k

and thus a’fm =1, a’QC(') =0 and afi's) = F,gl) is the 1-Fibonacci sequence. Hence
2
K@) ()= 2%
@ (z) 1—2—22

=24 2242442254325+ 527+ 828 41329 + 21210 4 3421 4 55212 4 L.

For instance, in 12-TET and 5-TET tuning systems, we have
K(e)

a?(') — 27 {. é4él)o o o (02%%))0}. (4-13)

Thus ([1.2)) in Theorem [I| yields the transversal generating function

dim&) (2) = WEE) (2) + o2 (4.14)
T 1—2z—22
For example, in 12-TET and 5-TET tuning system, we have
dimT (p(L12(X,e))) = 30 + 55 = 85,
dimr(p(L5(X,0))) =242 =4, T = {00000,08500,080be 0000},
4.15)
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For orbital dimensions, first we have

R ) (2) = % (4.16)
=14+224+ 23 4+224 4325+ 525+ 827 +1328+212° + 34210+ .
For example, in 12-TET and 5-TET tuning systems, we get
) = g9, (4.17)
) =3 MO = (00000,0 b0, 0 8% o). (4.18)

Next, according to item [3] in Theorem [I} we need the cumulative generating function of
the class represented by a’C(')(z), with respect to the number of notes. From (3.11]),
K(e) _ K(o)  _ ~K(e)
a ) - Z Cn—k,m - Cn—l,m’
k¢KC(e)

ke (o), K >k

thus, using (2.4)), we get
a®®) (z,u) = uzC*®) (2, u) =
Hence, from (3.13) we get

b’c(')(z, u) = u%a’c(')(z,u) =

uz — uzQ

1—2z—wuz?’

uz(1 — z)?
(1—2z—uz2)?’
and from (3.12)) we obtain

2(1 — 2)?

(1 —2—22)2

=2 4+22% 4+ 222 +52° + 820 + 1527 + 2628 + 4627 + 80210 + . ..

Yo (2) = (4.19)

(the coefficients are A006367 in [39]). For example, in the 12-TET and 5-TET tuning
system (for the later see (4.13])), we get

bh®) = 240, (4.20)
Oa((471)) Oa((27271))
b§(°) =5, {(4,1),(1,4)} u{(2,2,1),(2,1,2),(1,2,2)}. (4.21)
Hence, (1.3)) in Theorem together with (4.16]) and (4.19), yield

1—2)(1—22?)
(1 —2z—22)2

=1+z2+22 4322 +424 +82° +1325 + 232"+ 3928 + 672+ ...,

dimEE (2) = CFO) (2) + KO (2) = ( (4.22)
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which corresponds to A206268 in [39], described as the number of compositions with at
most one 1. For example, in the 12-TET and 5-TET tuning system (see (4.17)), (4.18),

[£20), and (E21)),
dimo (0 (L12(X, 8)) = 89 + 240 = 329,

dimo (¢(L5(X,0)) =3+5=8,  Oa(p(Ls5(X,e)) =

For a global transversal, according to remark with (4.10) and (4.14) we get

dimﬁ(x)(z) = dim%’i(x’o)(z) + dimﬁ(X")(z) — dimﬁ(x’o)mw(x’.) (2)

2—22 z

= WrE () + WrE®(2) 4

1—2—22 1—2
= 2422243224+ 527 +62° + 1125 + 1327 + 2228 + 3127 ...

(the corresponding sequence of coefficients has no record in [39]). For example, for the
12-TET and 5-TET tuning system, the transversal dimensions of the golden mean scales

are (for the later see (4.12)) and (4.15))

dimT (p(L12(X))) = 115

171717171 (1717172) (17272)
. (X,O (X7. OOOOO’OOOO.7OO.O.’
dimr(p(L5(X))) =6, T Uit & ) 32 (41
@00 00C,00000, 00008

((1,2,2) and (2,2,1) are equal as wheels).

Finally, for the global orbital, now we use (4.11) and (4.22), but first observe that,
according to remark in addition to the empty composition, there are two kinds of
compositions in the intersection (see ): one kind is formed by compositions of even
integers n = 2d of length d and period 1, and the other kind is formed by compositions of
odd n = 2d + 1 of length d + 1 that are aperiodic. We conclude that

dimg(x)(z) = dimg(x’o)(z) + dimé(X")(z) — dimg(x’o)mw(x") (z) =1

1 (1—2)(1 —22%) 22 > 0
= — =) (d+1)22 1
1727,22—’_ (1—2z—22)2 1— 22 §( +1)z

1—2—3224323 +42% — 525 —226 42,7
(1—22)2(1 — 2z — 22)?
=1+4+2+222+42% +824 + 1325+ 2520 + 4027 + 7228 + 11727 + .. ..
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For example, in the 12-TET and 5-TET tuning system, we get

dimo (¢ (£12(X))) = 561

(1,1,1,1,1),(1,1,1,2),(1,1,2,1),
dimo (¢(£5(X))) =13,  MODES(L5(X)) = &3:B’l()é,(i;,,1(,51)),7((31,722)7,2)7
(2,3),(4,1),(1,4)

Ezample 10. Let X = X7 where F = {e e, 000}. Then X is a 2-step SFT. Hence, X[ is
the vertex shift represented by the matrix

010
A=10 0 1
110

The corresponding directed graph is

(the labels on the edges define a 1-block code that is a conjugacy from X 2l to X, with a
2-block code inverse). Then ¢(L£(X)) coincides with the scales defined by X 2 with the
distinguished set of symbols rule for {oo, ce}. The matrix (3.14)) is

0 =z
22 22 )

Then the oo-admisible scales are compositions with summands in {1,2} such that the first
summand equals to 1, and no adjacent 1s, except perhaps the last two summands. On
the other hand, the oe-admisible scales are compositions with summands in {1,2} such
that the first summand equals to 2, and no adjacent ones, except perhaps the last two
summands. Further details are left to the reader.

<

5 Related works and discussion

We have seen a general method to deduce transversal and orbital generating functions of
classes of musical scales induced by vertex shift spaces through the distinguished symbol
rule. We have found approaches that use generating functions at least in the texts [27, [§],
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and learned that enumeration problems in music go back at least to the works of [37, [36], [1§].
Our methods can serve to complement and generalize several other works that address
characterizations and classification of musical scales like [35, 28], also octave subdivisions
[23], optimal spelling of pitches of musical scales [9], tuning systems other that 12-TET
[23], scales and constraint programming [25], modular arithmetic sequences and scales
[4], algebras of periodic rhythms and scales [6], formalisms to generate pure-tone systems
that best approximate modulation/transposition properties of equal-tempered scales [29],
tuning systems and modes [19], etc. Moreover, other combinatorial classes, such as non-
crossing configurations [15] like dissections of polygons and RNA secondary structures [22],
can be incorporated to complement works that address constructions of musical scales like
[34].

There are many references that address the theory of musical scales that are relevant to
our work, like the fundamentals [17, [40], from the point of view of mathematics inclusive
[26, 32], several of which are related to combinatorics on words [2, 14, [13], 1].

In our arguments, a key ingredient has been the use of first return loop systems, which
arise in the study of classification problems of Markov shifts [20, 12]. In fact, studying
music theory in contexts of dynamical systems has been an active area of research, for
example [5], see also [41]. Furthermore, the results presented here can serve as a basis to
adapt other related areas of mathematics in music, such as thermodynamic formalism and
random environments [7] (e.g. to compute (relative) partition functions).
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