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Abstract

We address the problem of computing the distribution of induced connected subgraphs,
aka graphlets or motifs, in large graphs. The current state-of-the-art algorithms estimate
the motif counts via uniform sampling, by leveraging the color coding technique by Alon,
Yuster and Zwick. In this work we extend the applicability of this approach, by introducing
a set of algorithmic optimizations and techniques that reduce the running time and space
usage of color coding and improve the accuracy of the counts. To this end, we first show how
to optimize color coding to efficiently build a compact table of a representative subsample
of all graphlets in the input graph. For 8-node motifs, we can build such a table in one
hour for a graph with 65M nodes and 1.8B edges, which is 2000 times larger than the state
of the art. We then introduce a novel adaptive sampling scheme that breaks the “additive
error barrier” of uniform sampling, guaranteeing multiplicative approximations instead of
just additive ones. This allows us to count not only the most frequent motifs, but also
extremely rare ones. For instance, on one graph we accurately count nearly 10.000 distinct
8-node motifs whose relative frequency is so small that uniform sampling would literally
take centuries to find them. Our results show that color coding is still the most promising
approach to scalable motif counting.

1 Introduction

Counting the number of copies of a given pattern graph in a host graph is one of the basic graph
mining primitives, with applications in network analysis [1], graph classification [36], graph
clustering [38], and biology [37]. Of particular interest are the subgraphs that are induced and
connected, commonly known as graphlets or motifs. Indeed, motifs are often seen as “high-order
edges” that are the true building blocks of real-world networks and give fundamental insights
into the nature of a graph [22, 31, 36, 38]. The problem of counting the number of copies of
a given motif in a graph has a long and rich history, which started with triangle counting and
evolved towards larger and more complex motifs [2, 7, 11, 14, 18, 22, 27, 29, 33, 34, 35, 39]. Entire
frameworks have been designed to make motif mining easy, including systems based on graph
databases such as Arabesque [30] and GraphSig [28], or standalone systems such as Fractal [15]
and AutoMine [23].

Unfortunately, motif counting becomes quickly intractable with the size k of the motif. For
this reason exact counting is practically feasible only for k ≤ 5, save for special cases such as
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counting cliques in sparse graphs. This hardness is not surprising, since the problem is widely
believed to require time nΩ(k) [12] where n is the number of nodes in the input graph. The natural
approach to overcome this barrier is to abandon exact counting in favor of approximate counting.
Approximate counting can replace exact counting in many cases, such as in hypothesis testing
(deciding if a graph comes from a certain distribution or not) or in estimating the clustering
coefficient of a graph (the fraction of triangles among 3-node motifs). In this work we focus on
approximate motif counting, with a special attention on guarantees. More precisely, we aim at
estimating, as accurately as possible, the number of occurrences of every possible distinct motif
on k nodes (the star, the clique, the path, etc.) in a graph. Formally, suppose we are given a
simple graph G (e.g., a social network), an integer k > 2, and two approximation parameters
ε, δ ∈ (0, 1). For each motif H on k nodes (the star, the clique, the path, etc.), we want an
estimate of the number of induced copies of H in G, so that with probability at least 1 − δ
all estimates are within a factor (1 ± ε) of the actual values. Our goal is to develop practical
algorithms that solve this problem for G and k significantly larger than the state of the art. This
means we aim at graphs G with billions of edges and motifs on more than 5 nodes. Note that
we are looking at induced copies; counting non-induced copies can be significantly easier (think
of the stars). We also remark that, following all previous literature, graphlets are defined as
connected.

The most natural approach to motif counting is combinatorial counting. Unfortunately, this
approach requires to enumerate and/or count a number of subgraphs that can grow as nΩ(k),
and therefore does not scale to large G and k. Indeed, even state-of-the-art exact counting
algorithms such as [27] or [23] are reported to work only for k ≤ 5. We note that combinatorial
explosion affects also approximation algorithms as long as one wants to estimate the counts of
all motifs at once, as we do. Consider indeed Nk, the number of distinct graphlets on k nodes
(that is, the number of non-isomorphic connected simple k-node graphs). Obviously, estimating
all k-graphlet counts takes time Nk since we might need to output one count for each graphlet.
One can show that Nk grows extremely fast, as Nk = exp(Ω(k2)); for example, N20 > 1030, so
already for k = 20 the task is hopeless in practice.1 However, N8 ' 11 000 and N10 ' 12 000 000,
so for these values of k the task could still be feasible even on large graphs such as real-world
social networks.

With combinatorial algorithms ruled out, the most appealing approach left is sampling. The
idea is just to sample graphlet copies uniformly at random from G and estimate their frequencies
and counts consequently. The difficulty lies in implementing the graphlet sampling primitive
in an efficient way, which is trickier than it may appear. The first general graphlet sampling
technique was based on Markov chains and was introduced in [7]. The approach is elegant
and works in principle for every G and k, but in practice it is efficient only for k = 4, 5 on
medium-sized graphs. It was later proved that this approach needs nΩ(k) steps in the worst
case to produce just a single unbiased graphlet sample [8], making it comparable to brute-force
enumeration. On the other hand, [8] showed one can efficiently sample subgraphs using the color
coding technique of Alon, Yuster and Zwick [5]. The idea of color coding is to assign to each
node of G one of k colors independently and uniformly at random. Afterwards, via dynamic
programming, in time O(EG) one can count the number of subtrees of G that span k distinct
colors (we say they are colorful), which gives an estimate of the actual number of subtrees in G.
While [5] used color coding for counting trees, [8] showed how to use it to implement graphlet
sampling. This sampling framework has two components. The first component is an enriched
version of the aforementioned dynamic programming, which builds an abstract “urn” containing
a representative sub-population of all the trees of G on up to k nodes (henceforth “k-treelets”).
The second component is a recursive algorithm that uses the urn to sample a random k-treelet

1See sequence A001349 in the OEIS, https://oeis.org/A001349.
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from G and, thus, obtain a random connected subset of k nodes (that is, a motif). One can thus
estimate graphlet counts in two steps: the build-up phase, where one builds the urn from G, and
the sampling phase, where one samples k-treelets from the urn. The build-up phase takes time
O(akm) and space O(akn) for some a > 0, where n and m are the number of nodes and edges of
G, while sampling takes a variable but typically small amount of time. This algorithm, named
CC by the authors (after color coding), can reliably and accurately count motifs on k > 5 nodes
on medium-large graphs and is the current state of the art in motif counting [9].

While CC was the first algorithm consistently able to count motifs on more than 5 nodes on
large graphs, the hardness of the problem still imposed some limitations on it. First, the build-up
phase of CC is resource-demanding, especially concerning memory (recall that the build-up phase
takes time and space growing exponentially in k). This limits its scalability; for example, even
using a machine with 72GB of main memory, CC runs out of resources when estimating 7-graphlet
counts on graphs with more than 2M nodes, as shown in our experiments. Second, since CC
samples graphlets uniformly at random, its approximation guarantees are only of additive type.
That is, using s samples, CC can only detect graphlets whose relative frequency is at least 1/s —
all other graphlets will be undetected or heavily misestimated. Unfortunately, in many graphs
nearly all graphlets have extremely low frequencies, so CC would need an unbearable number
of samples (this is true not only for CC but for any algorithm based on uniform sampling). In
this work we overcome these two bottlenecks, pushing the color-coding approach in the realm of
massive graphs.

1.1 Our results

We present two motif counting algorithms. The first is GM (for General-purpose M otif counter),
which is designed to count motifs on k ≤ 16 nodes. The second is L8Motif (pronounced
“leitmotif”, for Large-graph 8-node M otif counter), which is optimized for motifs on k ≤ 8 nodes.
These optimizations allow us to scale to graphs larger than GM and significantly improve on the
state of the art. Thanks to these algorithms we can count motifs on up to 8 nodes on graphs
with billions of edges with excellent accuracy, using just ordinary hardware. To convey the idea,
in one hour we can accurately count 8-node motifs in a graph with 65M nodes and 1.8B edges
(Friendster); this is 200 and 2000 times larger, in terms of n and m, than the prior art.2 Unlike
all previous algorithms, GM and L8Motif compute accurate counts for nearly all graphlets at
once, even extremely rare ones. Consider for instance the Yelp graph (one of our datasets). On
this graph, the state-of-the-art algorithm CC finds only the top two most frequent 8-graphlets
and literally misses all the others. In the same amount of time, L8Motif produces counts within
a multiplicative error of ε ≤ 0.25 for ' 10.000 distinct graphlets simultaneously. Many of these
graphlets have frequency ≤ 10−21, and many previous algorithms based on uniform sampling, like
CC or random walks, would need 103 years to find them even by sampling 106 graphlets/second.
Figure 1 gives a pictorial summary of our results.

Technical contributions. Our algorithms GM and L8Motif rely on two technical con-
tributions of different nature. The first contribution is a set of efficient algorithms and data
structures for the dynamic programming of the build-up phase, which reduce the running time
and especially the space usage (one of the main bottlenecks of CC). In particular, for L8Motif
we design data structures and algorithms that use an optimal amount of bits in an information-
theoretical sense, by adopting a compact integer representation of rooted colored treelets, and
a variable-length encoding of the treelet counts. In addition, we show one can entirely skip the
heaviest round of the dynamic program via a balanced treelet decomposition trick, saving addi-
tional time and space. Thanks to these ingredients, although theoretically we inherit the O(akm)

2All measurements are obtained on a workstation with 36 cores and 72GB of main memory — see Section 5.

3



facebook

dblp
amazon

berkstan yelp

ljournal

orkut
twitter

friendster

●

●
●

1M

10M

100M

1G

10G

100K 1M 10M 100M
nodes

ed
ge

s ● LM

GM

CC

●

●

●

●

1e+00

1e−03

1e−06

1e−09

1e−12

1e−15

1e−18

1e−21

1e−24

m
otif frequency

Figure 1: Our performance in a picture for motifs on k = 8 nodes. Left: the size of the graphs
managed by the state-of-the-art CC and by our algorithms GM and L8Motif (abbreviated
as LM). Right: the dense green band has one point for each distinct graphlet that we count
accurately on the Yelp graph (' 10.000 in total) while the two red circles show the only two
graphlets detected by CC.

running time and O(ckn) space usage of CC, we can scale the build-up phase from millions to
billions of edges and from k = 5 to k = 8. Our other algorithm, GM, can be used to handle
graphlets on up to k = 16 nodes (with some loss of efficiency compared to L8Motif).

The second technical contribution, common to both GM and L8Motif, is for the sampling
phase and is of a fundamentally different nature. To convey the idea, imagine having an urn
with 1000 balls — 990 red, 9 green, and 1 blue. With uniform sampling, we will quickly obtain
a good estimate of the fraction of red balls, but we will need many samples to observe green
or blue balls. This is the uniform sampling barrier mentioned above. Now imagine to remove
∼99% of all red balls from the urn. We would be left with 10 red, 9 green, and 1 blue ball,
and we would then quickly get a good estimate of the fraction of green balls. Then imagine to
delete ∼99%of the red and green balls; after this, we could quickly estimate the fraction of blue
balls. We show that our treelet database supports a similar “deletion trick”: we can ignore some
treelets (say, stars) and focus on other ones (say, paths). In this way we can estimate the most
frequent graphlet, delete it and proceed to the second most frequent one, and so on. We name
this algorithm Adaptive Graphlet Sampling, or AGS. Technically speaking, AGS is based on an
online greedy algorithm for a fractional set cover problem (we want to “cover” all graphlets with
their spanning treelets). We provide theoretical guarantees on the accuracy and efficiency of
AGS via competitive analysis and martingale concentration bounds. We note that AGS is the
first algorithm to ensure accuracy for all graphlets at once.

Remark. We first described GM in [10], a preliminary version of this work. The main
contribution of this extended version is L8Motif and all the associated technical ideas (integer
treelet encoding, round skipping, and variable-length counts). Thanks to these ideas we can
reduce the running time and space usage of GM by almost an order of magnitude, which allows
us to scale k = 7 to k = 8 on the largest graphs (we recall that the time and space requirements
grow exponentially with k, which makes moving from k to (k + 1) a considerable challenge). To
give an idea, to count 6-node motifs on our largest graph Friendster (∼ 2B nodes), GM needs
130 GB of space and 3 hours of time, while L8Motif needs only 25GB and 30 minutes.

Manuscript organization. Subsections 1.2 and 1.3 respectively discuss related work and in-
troduce notation and conventions. Section 2 reviews color coding and CC, the starting points
of our work. Section 3 describe the build-up phase of our algorithms, comparing them to CC.
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Section 4 describes our adaptive graphlet sampling technique and other graphlet sampling opti-
mizations. Finally, Section 5 provides experimental results on a set of publicly available graphs.

1.2 Related work

The traditional approach to subgraph counting is based on combinatorial counting. These tech-
niques work fine for k = 4 and 5, but become unusable for k > 5, even for approximate counting.
This limitation affects many subgraph mining tools such as Arabesque [30], ESCAPE [27], Frac-
tal [15], Pangolin [13] and AutoMine [23]. Indeed, none of them is reported to scale beyond
k = 5. The only algorithms that potentially scale to k > 5 are, as anticipated, based on random
walks or on color coding.

The algorithms based on random walks are based on the following idea. We define a graph Gk
whose nodes are the graphlets of G and where two graphlets are adjacent if they share k−1 nodes.
Then, the lazy random walk on Gk can be shown to be ergodic and converge towards a unique
limit distribution on the set of all graphlets ofG. Moreover, each step of the walk can be efficiently
simulated using only local information from G. Thus one just simulates enough steps, draw a
graphlet from the limit distribution, compute an unbiased estimator its frequency [7, 33, 14, 18].
The drawback of this technique is its inefficiency: even if G is fast-mixing, the random walk on
Gk may need Ω(nk−1) steps to reach the limit distribution, or even just to find the most frequent
graphlet of G [8, 9]. This is close to O(nk), the running time of the naive exhaustive enumeration
algorithm. One can mitigate this mixing time explosion by walking on subgraphs on less than
k nodes [14] or by sampling a spanning tree directly in G [26]. Unfortunately, this gives biased
samples that needs to be reweighted, increasing the estimator variance so that Ω(nk−1) samples
might again be necessary. Note also that most of these algorithms can estimate only the relative
frequencies of graphlets, but not their counts.

There are several algorithms based on color coding. Most of them can only count special
motifs, such as trees and subgraphs of small treewidth, often only in their non-induced copies [19,
3, 39, 40, 29, 17, 11], and therefore cannot be applied to our setting. The only algorithm that
can count all induced motifs on k nodes without any further assumption, which is the goal of
our work, is the CC algorithm of [8, 9]. The only two limitations of CC are that (1) for k = 8,
it can only manage graphs on less than 0.5M nodes, and (2) it gives accurate counts only for
the few most frequent graphlets. In contrast, thanks to our optimization of the build-up phase
and the introduction of adaptive sampling, we manage graphs with tens of millions of nodes
and billions of edges while giving guarantees for nearly all k-graphlets at once. Finally, we note
that specialized algorithms such as [23] or [20] can efficiently compute or estimate the number of
cliques on 8 or 10 nodes, on graphs with tens of millions of edges. Again, these algorithms work
only for a particular motif (the clique) while we can count all motifs at once.

1.3 Preliminaries and notation.

We denote the host graph by G = (V,E), and we let n = |V | and m = |E|. A graphlet is a
connected graph H = (VH , EH). An occurrence or copy of H in G is a subgraph of G isomorphic
to H. Unless otherwise specified, a copy of H in G is meant as induced. We let k = |VH |; in
this work we are interested in k ≤ 16 and especially in k ≤ 8. A treelet T is a graphlet that
is a tree. When using treelets as spanning trees, their copies in G are meant as not necessarily
induced. We denote by H = Hk the set of all k-node graphlets, i.e., all non-isomorphic connected
graphs on k nodes. When needed we denote by Hi the i-th graphlet of H. A colored graphlet
has a color cu ∈ [k] associated to each one of its nodes u. A graphlet is colorful if its nodes have
pairwise distinct colors. We denote by C ⊆ [k] a subset of colors. We denote by (T,C) or TC a
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colored treelet whose nodes span the set of colors C; we only consider colorful treelets, i.e., the
case |T |=|C|. We often consider treelets and colored treelets rooted at a node r ∈ T (different
rootings can give different treelets). Finally, by dv we denote the degree of v in G, and by u ∼ v
we indicate that u is a neighbor u of v.

2 Color coding and the CC algorithm

Our algorithms, like the CC algorithm of [8, 9], are based on the color coding technique by Alon,
Yuster and Zwick [5], which works as follows. First, we assign to each node v ∈ G a color chosen
uniformly and independently in {0, . . . , k−1}. Now consider any k-node treelet in G: the random
coloring makes it colorful with probability pk = k!

kk
≈ e−k. Therefore a constant fraction of all

treelets of G will become colorful. The crucial observation of color coding is that the number of
colorful k-treelets can be counted in time O(m · ak), with a bottom-up dynamic program. Note
that the running time is exponential in k, but linear in m.

While color coding was introduced to detect and count noninduced trees, the authors of [8, 9]
showed how to extend it to sampling graphlets from G. The idea is to run a modified dynamic
program that collects information about the “colorful structure” of G. Once this is done, it is
easy to sample colorful k-treelets from G and, so, to sample colorful graphlets (just take the
graphlet spanned by the treelet). This is the essence of the CC algorithm [8, 9]. We now detail
the two phases of CC, the build-up phase and the sampling phase, which form our algorithm as
well.

2.1 The build-up phase

The goal of this phase is to build a count table holding the counts of colorful treelets of G. The
phase starts by coloring G: for each node v, we draw a color cv uniformly at random in [k]. Now,
for every v ∈ G and every rooted colored treelet TC on up to k nodes, we want to compute the
following quantity:

c(TC , v) = the number of copies of TC in G that are rooted in v (1)

We compute c(TC , v) by dynamic programming. For each v we initialize c(TC , v) = 1, where T
is the trivial treelet on 1 node and C = {cv}; all other counts are implicitly 0. Now suppose we
have computed the counts of all treelets on h − 1 nodes for some h ≤ k. To compute c(TC , v)
for some TC = (T,C) on h nodes, we decompose T in two smaller subtrees T ′ and T ′′, rooted
respectively at the root r of T and at a child of r, and combine their counts. It is easy to see
that c(TC , v) is given by (see [9]):

c(TC , v) =
1

βT

∑
u∼v

∑
C′⊂C
|C′|=|T ′|

c(T ′C′ , v) · c(T ′′C′′ , u) (2)

where βT is the number of subtrees of T isomorphic to T ′′ rooted in a child of r. In practice,
one uses a canonical decomposition which defines the pair (T ′, T ′′) uniquely as a function of T .
A simple analysis of the entire dynamic program shows that:

Theorem 1. ([9], Theorem 5.1) The build-up phase of CC takes time O(akm) and space O(akn),
for some constant a > 0.

In practice, the table size grows quickly. For k = 6 on a graph with 5M nodes, CC already
needs 50GB of main memory [9].

6



2.2 The sampling phase

The goal of this phase is to estimate the graphlet counts by sampling graphlets from G. We do
this by sampling colorful treelet copies from the treelet count table, as follows. First, draw a pair
(TC , v) with probability proportional to c(TC , v). This is possible since we know all the counts
c(TC , v). Now we want to sample a copy of TC = (T,C) rooted at v. To this end we take again the
canonical decomposition of T into T ′ and T ′′. We then sample a pair (v, C ′′), where v ∼ u and
C ′′ ⊂ C contains |T ′′| colors, with probability proportional to β−1

T c((T ′, C \C ′′)) · c((T ′′, C ′′), v).
We then recursively sample a copy of T ′C′ = (T ′, C\C ′′) rooted at v, and a copy of T ′′C′′ = (T ′′, C ′′)
rooted at v. Once we have the copies of T ′C′ and T ′′C′′ , we just combine them into a copy of TC .
One can verify that the resulting copy is drawn uniformly at random from the set of all colorful
treelets of G [9].

Using this k-treelet sampling primitive, one can estimate the copies of any given k-graphlet
Hi (e.g., the clique). First, we estimate the number ci of colorful copies of Hi. To this end we
sample a treelet copy as described above; being connected, the treelet necessarily spans some
induced k-node subgraph x of G. Let χi be the indicator random variable of the event that x
is a copy of Hi. It is easy to see that E[χi] = ciσi/t, where σi is the number of spanning trees
in Hi and t is the total number of colorful k-treelets of G. Now, t is known from the treelet
count table, and σi can be computed e.g. via Kirchhoff’s theorem (see below). Therefore we can
compute ĉi = t σ−1

i χi, which is an unbiased estimator of ci. By standard concentration bounds,
ĉi concentrates around ci if enough samples are taken.

Finally, to estimate the total number gi of copies of Hi, we simply divide ĉi by the probability
pk = k!/kk that a fixed set of k nodes in G becomes colorful. Indeed, if G contains gi copies of
Hi, then by linearity of expectation the expected number of copies of Hi that become colorful is
E[ci] = pkgi. Therefore ĝi = ĉi/pk is an unbiased estimator for gi.

2.3 Statistical guarantees of the estimates

With the algorithm pinned down, the next crucial point is the accuracy of the graphlet estimates
ĝi. Note that there are two distinct sources of error: the coloring, which distorts the true graphlet
distribution into the colorful one, and the sampling.

For what concerns the coloring, one can prove that the colorful graphlet distribution is very
close to the original one in a statistical sense. First, we report a bound from [9], slightly rephrased.
Let g =

∑
i gi be the total number of induced k-graphlet copies in G. Then:

Theorem 2 ([9] Thm 5.3). For all ε > 0, a random coloring of G with k colors gives:

Pr
[∣∣∣ ci
pk
− gi

∣∣∣ > 2εg

1− ε

]
= exp

(
− Ω

(
ε2g1/k

))
.

Since this bound is additive, we complement it by proving a multiplicative one, which is
tighter if the maximum degree ∆ of G is small. Formally:

Theorem 3. For all ε > 0, a random coloring of G with k colors gives:

Pr
[∣∣∣ ci
pk
− gi

∣∣∣ > ε gi

]
< 2 exp

(
− 2ε2p2

k gi
(k − 1)!∆k−2

)
. (3)

Proof. We use a concentration bound for dependent random variables from [16]. Let Vi be the
set of copies of Hi in G. For any h ∈ Vi let Xh be the indicator random variable of the event
that h becomes colorful. Let ci =

∑
h∈Vi Xh; clearly E[ci] = pkgi. Note that for any h1, h2 ∈ Vi,

Xh1
, Xh2

are independent if and only if |V (h1)∩V (h2)| ≤ 1, i.e., if h1, h2 share at most one node.
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For any u, v ∈ G let then g(u, v) = |{h ∈ Vi : u, v ∈ h}|, and define χk = 1 + maxu,v∈G g(u, v).
By a standard counting argument one can see that maxu,v∈G g(u, v) ≤ (k−1)!∆k−2−1 and thus
χk ≤ (k − 1)!∆k−2. The bound then follows immediately from Theorem 3.2 of [16] by setting
t = εE[ci] = εpkgi, (bα − aα) = 1 for all α = h ∈ Vi, and χ∗(Γ) ≤ χk ≤ (k − 1)!∆k−2.

These two bounds suggest that the random coloring does not introduce a significant distortion.
This is confirmed by our experiments, where the ĝi appear concentrated around the mean. Hence,
one may avoid averaging over Θ(exp(k)) independent colorings, as suggested in the original color
coding paper [5]; one run is enough. Thus, in a sense, the treelet count table is w.h.p. a database
that holds (implicitly) a representative sample of all k-graphlets in G.

For what concerns sampling, standard concentration bounds apply to the error of uniform
sampling (see above). For AGS, we show concentration bounds for all graphlets in Section 4.1.

3 Fast construction of a compact treelet database

In this section we describe the internals of the build-up phase of our algorithms GM and
L8Motif. Recall that, at a high level, the goal of the build-up phase is to compute a com-
pact database of colorful treelet counts (Section 2). This database to provide the following
operations:

• occ(v): get the total number of colorful treelet copies rooted at v

• sample(v): get a uniform random colored treelet rooted at v

Note indeed that using these two operations we can realize our sampling, by first selecting a
node v proportionally to its number of treelets and then sampling one such treelet uniformly at
random. For our adapting sampling scheme, we must also be able to specify the treelet shape
and coloring:

• occ(TC , v): get the total number of copies of TC rooted at v

• sample(T, v): get a uniform random colored treelet rooted at v with shape T

To give a detailed account of the performance of GM and L8Motif, we describe the algo-
rithms in an incremental way: we start from the state of the art algorithm CC, and we then
introduce step by step our algorithmic ingredients, measuring their (positive) impact on the
overall performance. Thus, the baseline for GM is a C++ version of CC (which is originally in
Java), that we wrote by porting all algorithms and data structures carefully. The baseline for
L8Motif is instead GM itself. Before starting, in Subsection 3.1 we recall the main bottlenecks
of CC. Finally, in Subsection 3.4 and Subsection 3.5 we describe additional optimizations that
apply to both GM and L8Motif.

3.1 Treelets and counts

In this subsection we discuss the crucial aspects of the build-up phase of CC. In a nutshell,
the build-up phase spends virtually all its time manipulating rooted (un)colored treelets and
reading/writing their counts – see Section 2. Therefore, it is essential to make these objects as
efficient as possible.

The first computationally intensive task is merging the counts. Consider a single count
c(TC , v). To compute c(TC , v), we process all the neighbors u of v as follows. First, define a total
order over all the TC (this order is described below). For every pair of non-zero counts c(T ′C′ , v)

8



and c(T ′′C′′ , u), check that C ′ ∩ C ′′ = ∅, and that T ′′C′′ comes not later (w.r.t. the total order)
than the smallest subtree rooted in a child of the root of T ′C′ . If these conditions hold, then T ′C′
and T ′′C′′ can be merged into a treelet TC whose unique decomposition yields precisely T ′C′ and
T ′′C′′ . Then, the value of c(TC , v) is incremented by β−1

T c(T ′C′ , v) · c(T ′′C′′ , u); see Equation 2. In
this process, the computationally intensive part is the check-and-merge operation, which can be
formalized as the primitive:

• merge(T ′C′,T
′′
C′′): if possible, merge T ′C′ , T

′′
C′′ by appending T ′′C′′ to the root of T ′C′ , else

FAIL

In CC, this primitive is implemented as a recursive algorithm, which can be rather expensive.
Here we use a different implementation that makes it much faster.

The second computationally expensive task is storing and accessing the counts. CC does
it as follows: for each node v ∈ G, it keeps a dedicated hash table in main memory which
maps each colored treelet TC > 0 to its count c(TC , v). The hash table key is a pointer to a
unique representative instance of TC : a classic pointer-based tree data structure equipped with
a satellite set data structure for storing the colors. Each entry of CC’s table thus uses 128 bits:
64 for the key, and 64 for the integer count. Already for k = 6 on a graph with a few million
nodes, storing the hash table can require a dozen GB of main memory, so this approach becomes
quickly impractical. Here, we show how to reduce the overall space requirements of the count
table by almost an order of magnitude.

Before moving on, we note that a perfectly fair porting of CC is not possible. This is because
CC makes heavy use of fast specialized integer hash tables provided by the fastutil3 library,
which exists only in Java and seems to be crucial to its performance. Indeed, for the porting we
tested three popular libraries – google::sparse hash map and google::dense hash map of the
sparsehash library4, and std::unordered map from the C++ containers library. With the first
two, the porting is up to 17× slower than CC, and with the latter one it is up to 7× slower.
Nonetheless, after all optimizations are in place, we are always faster than CC.

3.2 GM: a general-purpose motif counter for k ≤ 16 nodes

We describe our first toolbox, GM, introduced in our preliminary work [10], for graphlets on up
to 16 nodes. Starting from the C++ porting of CC (see above), we improve the performance by
introducing succinct treelets and the succinct count table — see the comparison in Figure 2.

3.2.1 Succinct treelets and count table

Treelet representation For the first optimization, we drop CC’s recursive pointer-based
structures, and switch to a representation of treelets as bitstrings. This representation makes the
merge(T,T ′) operation much faster, up to 150× for k = 5 and up to 1000× for k = 7. Given an
uncolored treelet T rooted at r, its bitstring sT is defined as follows. Perform a DFS traversal of
T starting from r. Then the i-th bit of sT is 1 (resp. 0) if the i-th edge is traversed moving away
from (resp. towards) r. For all k ≤ 16, this encoding takes at most 30 bits, which fits nicely in
a 4-byte integer type. The lexicographic ordering over the sT ’s gives a total ordering over the
T ’s that is exactly the one used by CC. This ordering is also a tie-breaking rule for the DFS
traversal: the children of a node are visited in the order given by their rooted subtrees. This
implies that every T has a well-defined unique encoding sT . Moreover, merging T ′ and T ′′ into
T requires just concatenating 1, sT ′′ , sT ′ in this order.

3http://fastutil.di.unimi.it/
4https://github.com/sparsehash/sparsehash
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Figure 2: Cumulative impact of our optimizations on the build-up phase of CC, for Amazon with
k = 6.

A colored rooted treelet TC is encoded as the concatenation sTC
of sT and of the characteristic

vector sC of C.5 For all k ≤ 16, sTC
fits in 46 bits. Set-theoretical operations on C become

bitwise operations over sC (or for union, and for intersection). Finally, the lexicographical order
of the sTC

’s induce a total order over the TC ’s, which we use in the count table (see below). An
example of a colored rooted treelet and its encoding is given in Figure 3 (each node labelled with
its color).

3

1

2 7

5 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0

sT sC

Figure 3: A colored rooted treelet and its encoding, shown for simplicity on just 8 + 8 = 16 bits.

Count tables Recall that, in CC, treelet counts are stored in n hash tables, one for each node
v ∈ G, and that retrieving the actual structure of TC requires dereferencing a pointer before each
check-and-merge operation. Instead of using a hash table, GM maintains the key-value pairs
(TC , c(TC , v)) such that c(TC , v) > 0 in a set of arrays, one for each v ∈ G and for each treelet

v1

v2 v4

v3

v5

v6

, 2 , 3 , 4 , 5 , 6

, 2 , 3

, 3, 2 , 4 , 5

, 1 , 2 , 3

, 2 , 3

, 2 , 4 , 6 , 8 , 9

v1

v2

v3

v4

v5

v6

Figure 4: Left: a graph G whose vertices have been colored using k = 4 colors. Right: a graphical
representation of the count table (implicitly) storing the number c(TC , v) of all colored treelets
TC of size 3 in G. Notice how we actually store η(TC , v) instead of c(TC , v).

5Given an universe U , the characteristic vector 〈x1, x2, . . . 〉 of a subset S ⊆ U contains one bit xi for each
element i ∈ U , which is 1 if i ∈ S and 0 otherwise.
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size h ∈ [k]. These arrays are sorted lexicographically w.r.t. the order of the keys described
above. This makes iterating over the counts extremely fast and, since each key TC is explicitly
stored using its representation sTC

, eliminates the need for dereferencing. The price to pay is
that searching for a given TC in the count table requires a binary search. However, this still
takes only O(k) time, since the whole record has length O(6k).6 Note that, while CC uses 64-bit
counts, which causes overflows (just the number of 6-stars centered in a node of degree 216 is
≈ 1022), GM uses 128-bit counts, which adds a small overhead7. However, we save 16 bits by
packing sTC

into 48 bits. In the end, we use 176 bits per each pair (TC , c(TC , v)). Finally, in
place of c(TC , v), GM actually stores the cumulative count η(TC , v) =

∑
T ′
C′≤TC

c(T ′C′ , v). In

this way each c(TC , v) can be recovered with negligible overhead, the total count ηv for v is at
the end of the record, and a random treelet rooted in v can be sampled by binary searching for
a random value in [1, ηv] over η(·, v). See Figure 4 for an example on a small graph.

3.3 L8Motif: counting 8-graphlets in large graphs

In this subsection we describe L8Motif, a version of GM specialized for k ≤ 8. We start with
GM as the default baseline and then plug in three new ingredients, each of which improves the
performance – see Figure 5. We also compare against the state of the art (CC) in Section 5.

3.3.1 Integer treelet encoding (ITE)

Our first ingredient is an extremely compact representation of treelets as unsigned integers. The
idea is simple: we observe that there are exactly 1991 rooted colored treelets on at most 8 nodes.
Therefore, we can encode each treelet TC as a unique 11-bit integer. This is 4× less than the
bistring encoding of Section 3.2.1, which uses 46 bits per treelet. From a theoretical point of
view, we are using the optimal amount of bits, up to a multiplicative factor 1 + o(1). In this
sense, one cannot use fewer bits per treelet, which is exactly what we want.

To ensure treelets are memory-aligned, we pad the 11-bit representation into a 16-bit integer.
This leaves 5 spare bits to encode the length of the count, that is, the number of bytes used by
c(TC , v) — see Section 3.3.3. In this way we can support counts on up to 25 = 32 bytes i.e.
256 bits, twice the count size of our previous branch. In the end, for each count we use only
16 bits rather than 48 bits. In practice, we observe a deterministic space saving of ' 20% on
all instances (see Figure 5 for an example). Regarding time, on large graphs ITE can already
make the difference by drastically reducing the time spent in I/O operations, as a consequence
of saving space.

While ITE optimizes space, it makes manipulations harder. Indeed, unlike the bitstring
representation of Section 3.2.1, which encodes the treelet structure, in ITE the index of a treelet
is just a number. Recall for example the merge(T ′C′ , T

′′
C′′) operation: we must check if T ′C′ and

T ′′C′′ can be merged into a treelet TC whose unique decomposition yields precisely T ′C′ and T ′′C′′ .
To do this, we precompute the results of merge(T ′C′ , T

′′
C′′) on all inputs (again on up to 8 nodes)

and store all such results in a bidimensional array. In this array, entry [i][j] is the index of the
treelet resulting from merging i and j (or −1 for FAIL). Another array tells for every treelet
the indices i, j associated to the treelets of its canonical decomposition. Other arrays tell us the
index of the treelet T and the set of colors C associated to a colored treelet TC = (T,C), and
so on. In this way we can perform every treelet operations quickly, with a sequence of array

6By Cayley’s formula: there are O(3kk−3/2) rooted treelets on k vertices [25], and 2k subsets of k colors.
7Tests on our machine show that summing 500k unsigned integers is 1.5× slower with 128-bit than with 64-bit

integers.
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lookups. The total size of all arrays is less than 3 megabytes, which fits in the CPU cache. The
time for a single operation is similar to the bitstring encoding of Section 3.2.1.

0

1000
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3000

default +ITE +skip +vlc

build−up time (s)

0

25

50

75

default +ITE +skip +vlc

space usage (GB)

0

20000

40000

60000

80000

default +ITE +skip +vlc

sampling speed (motifs/s)

Figure 5: Twitter graph, k = 6. Cumulative impact of using ITE, skipping the heaviest round
of the dynamic program, and using variable-length counts.

3.3.2 Round skipping via balanced treelet decomposition

Our second ingredient is somewhat trickier. Recall again that, in the build-up phase, we repeat-
edly merge the counts of smaller treelets. In particular, in round k − 1 we produce the counts
for all treelets on k − 1 nodes. For k ≤ 8, round k − 1 is consistently the most expensive one,
and consumes roughly 40% of the time and space of the entire phase — see Figure 7. It would
be useful to cut down the time and space of this round.

Our observation is the following: a (k− 1)-treelet count is used only to compute the counts of
k-treelets whose smallest subtree in the canonical decomposition is a single node. For example,
a k-star is certainly decomposed into a single node and a treelet on k − 1 nodes and therefore
to count k-stars we need the (k − 1)-treelet counts. It turns out that stars are the only treelets
whose decomposition necessarily contains a treelet on a single node. However, we can avoid
counting stars, as it is superfluous — at sampling time, stars can be sampled very efficiently in
the naive way.

Let us now describe our round skipping technique in more detail. We rely on the following
simple fact:

Lemma 1. Any k-treelet T that is not a star contains an edge uv that, when cut, produces two
trees on at most k − 2 nodes each.

Proof. If T is not a star then it contains a path on 3 edges; let it be xuvy. Cutting uv yields
two trees each one having at least 2 nodes or, equivalently, at most (k − 2) nodes.

Therefore, for any non-star k-treelet T , we can find a root u and a child v of u that give a
balanced decomposition of T . That is, a decomposition of T into T ′ and T ′′ such that both T ′

and T ′′ have size at most ≤ k − 2, but none of them has size k − 1; see Figure 6. We therefore
replace the canonical decomposition of Subsection 3.2.1 with this balanced decomposition, and
we exclude k-stars from the set of treelets that we count in the k-th round. Then, we can
completely skip round (k − 1) of the dynamic program. This yields a reduction in both space
and time, consistently across all instances, of up to 40% (Figure 7).

This round skipping has a positive side-effect at sampling time, too. Since we do not have
counts of colorful k-stars anymore, we cannot sample k-stars from the database. However, we
can simply draw a root node v from G with probability proportional to

(
dv
k−1

)
and then choose

k − 1 neighbors of v u.a.r. without replacement. This gives an uncolored k-star u.a.r. from G,
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Figure 6: A rooted colored 5-treelet (left) with its original decomposition in two subtrees on 4
and 1 nodes (middle) and its balanced decomposition in two subtrees on 3 and 2 nodes (right).
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Figure 7: Build-up phase on Twitter for k = 6: space and time usage of single rounds, before
and after adopting balanced treelet decompositions and round skipping.

which for our purposes is obviously even better since we avoid the error introduced by coloring.
Sampling in this fashion is much faster than using the database; and since often most treelets of
G are stars, this boosts the sampling rate of uniform sampling by orders of magnitude (Figure 5).

3.3.3 Variable-length counts

Our third and final ingredient is again aimed at saving space by encoding efficiently the counts
stored in the database. Specifically, we encode each treelet count c(TC , v) as a variable-length
count. In practice, when we need to store c(TC , v) on disk, we allocate b = dlog2(c(TC , v))/8e
bytes for c(TC , v) and we encode b in the padding of the encoding of TC (Subsection 3.3.1). The
rationale is that, heuristically, most of the counts that we compute fit in much less than 128 bits,
see Figure 8. Summarizing, we encode each treelet count record as shown in Figure 9, that is:

• 11 bits for TC ,

• 5 bits for the length of c(TC , v) in bytes, ` ∈ {1, . . . , 32}

• ` bytes for c(TC , v)

We remark that we are using an amount of space that is almost optimal, that is, we are only a
factor 1 + o(1) away from the optimum. In this sense, no color coding algorithm can outperform
ours if not by a very small margin.

With variable-length counts, we observe an additional space reduction of ≥ 60% on all graphs
for all k ≥ 6. Note that with variable-length counts we cannot find counts via binary search,
as the counts are not aligned in memory anymore. Moreover, we pay the obvious overhead of
encoding and decoding the counts. In the worst case we witness an increase in the building
time by 50%, and only on small instances. On our largest graphs (Twitter and Friendster),
variable-length counts are crucial to reduce the space footprint enough to manage graphlets on
k = 8 nodes.
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TC ` c(TC , v)

11 bits 5 bits 8` bits

Figure 9: Variable-length encoding of a treelet count.

3.4 Lower-level optimizations and architectural details

For completeness and reproducibility, we provide some additional optimizations and features of
GM, some with a significant impact.

3.4.1 Zero-rooting

This optimization applies only to GM (k ≤ 16). Consider a colorful treelet copy in G formed by
the nodes v1, . . . , vh. This treelet appears in the records of v1, . . . , vh, since it counts as a rooted
treelet for each of them. Therefore, the treelet is counted h times. This redundancy is necessary
when h < k, since we need all rootings for the next round of the dynamic program, see (2).
However, for h = k this is useless. Thus, we store k-treelet counts only at nodes of color 0. This
cuts the running time by 30%− 40%, while reducing the size of the k-treelets records by a factor
of k, and the total space usage by ≈ 10%. Notice that the second branch (k ≤ 8) already counts
each k-treelet only once, due to the balanced treelet decomposition described above (but these
treelets are not necessarily stored at nodes of color 0).

3.4.2 Greedy flushing

To reduce the main memory footprint, we use a greedy flushing strategy. Suppose we are building
the count table of the h-treelets. We temporarily store the record of v in a hash table, which
allows for efficient insertions and lookups; when the record is complete, we immediately flush it
on disk and release the hash table memory. In this way we end up with the set of records for all
nodes of G. When all records have been flushed, a second I/O pass sorts them w.r.t. their node
in G, so that we can access them efficiently in the next round. In all our runs, the sorting took
at most 10% of the total time.

3.4.3 Multi-threading

We make heavy use of thread-level parallelism in both the build-up and sampling phases. For
the build-up phase, for any v the counts c(·, v) can be computed independently from each other,
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which we do using a pool of threads. As long as the number of remaining vertices is sufficiently
large, each thread is assigned a (yet unprocessed) vertex v and will compute all the counts
c(TC , v) for all pairs TC . Obviously, when the number of remaining vertices drops below the
number of available threads, some threads become idle. When this happens, we partition the
edges of a single vertex v across different threads and make them compute different summands of
the outermost sum of Equation (2). The partial sums are then summed together into c(·, v). For
the sampling phase, samples are by definition independent and are taken by different threads.

3.4.4 Memory-mapped reads

Recall that the treelet count database is stored in external memory. This entails I/O access,
since computing the count table for treelets of size h requires accessing the count tables of each
size j < h. We delegate the task to the operating system by using memory-mapped I/O. This
means that we see all tables as if they resided in main memory, and the operating system takes
care of loading and storing them to disk. With enough memory this gives virtually no overhead;
otherwise, the OS will reclaim memory by unloading part of the tables, and future requests to
those parts will incur a page fault and prompt a reload from the disk. The actual overhead
in terms of additional I/O turns out to be at most 100MB, except for k = 8 on LiveJournal

(34GB) and Yelp (8GB) and for k = 6 on Friendster (15GB). Tn those cases the overhead
is inevitable since the total size of the tables is close to or even larger than the main memory
available.

3.5 Biased coloring

Finally, we describe a simple trick that reduces space significantly (in exchange for accuracy) and
can thus be useful to manage very large graphs. The idea is to skew the distribution of colors in
the coloring phase, so that fewer treelets become colorful and we have to process and store less
counts.

Suppose then we have probability λ � 1
k to pick color i ∈ {1, . . . , k − 1}, and probability

1−λ(k−1) to pick color 0. The probability that a given j-treelet copy is colored with C becomes:

pk,j(C) =

{
j!λj if k /∈ C

∼ j!λj−1 if k ∈ C (4)

If λ is sufficiently small, then, for most T we will have a zero count at v; and most nonzero counts
will be for a restricted set of colorings – those containing k. This reduces the number of pairs
stored in the treelet count table, and consequently the running time of the algorithm. The price
to pay is a loss in accuracy, since a lower pk increases the variance of the number ci of colorful
copies of Hi. However, if n is large enough and most nodes v belong to even a small number of
copies of Hi, then the total number of copies gi of Hi is large enough to ensure concentration.
In particular, by Theorem 3 the accuracy loss remains negligible as long as λk−1n/∆k−2 is large.
We can thus trade a Θ(1) factor in the exponent of the bound for a Θ(1) factor in both time and
space. On large graphs this makes a difference, and indeed it allows us to manage our largest
instances (see Section 5). Note that one could find a good value for λ by setting λ� 1/kn and
then growing λ until a small but non-negligible fraction of counts are positive. At this point
Theorem 3 ensures concentration, and we proceed to the sampling phase. In our experiments,
we use biased coloring for Twitter and Friendster for k = 8, setting λ = 0.001.
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4 Sampling treelets from the database

This section describes in detail the algorithms for sampling graphlets from the treelet count
table. Recall that we support two sampling algorithms: uniform sampling, which is the native
sampling algorithm of CC, and our novel adaptive graphlet sampling strategy (AGS). Uniform
sampling is exactly the one described in Section 2. Hence we directly move on to AGS in the next
section; we then conclude by describing lower-level optimizations that apply to both sampling
algorithms and in many cases increment the sampling rate substantially.

4.1 Adaptive Graphlet Sampling (AGS)

This section describes AGS, our adaptive graphlet sampling algorithm. Recall that the main
idea of CC is to build a compact database for sampling k-treelets from G. In particular, we can
choose the kind of treelet to sample (a star, a path, etc.). That is, for every k-treelet T our
database supports the following primitive:

• sample(T ): return a colorful copy of T u.a.r. from G

With this primitive, we can selectively sample any desired treelet shape, and virtually “delete”
graphlets from the urn.

Let us explain the idea with an example. Suppose G contains just two types of colorful
graphlets, H1 and H2, of which H2 represents a tiny fraction, say 10−10. With uniform sampling,
we will need approximately 1010 samples before finding H2. Suppose however H1 and H2 are
spanned by treelets of different shape, say T1 and T2. We can then start calling sample(T1),
until we estimate accurately H1. At this point we call sample(T2), thus ignoring H1 completely
(since it is not spanned T2), until we estimate accurately H2, too. Using sample(T ) we can thus
estimate both graphlets with O(1) samples. Clearly, things are in general more complex, since
we have thousands of graphlets, many of them with common spanning trees. Still, the idea works
strikingly well.

Let us describe AGS in more detail. We start by invoking sample(T ) on the most frequent
k-treelet T in G (which we know from the database). Eventually, some graphlet Hi spanned by T
will appear enough times, say Θ(ε−2 ln(1/δ)), so that we can estimate its occurrences accurately.
We then say Hi is covered. Now we do not need any additional sample of Hi, so we would like
to “delete” it. That is, we want to sample using a T ′ that does not span Hi. Such a T ′ may
not exist, but we can use the T ′ that minimizes the probability of returning a copy of Hi. The
crucial observation of AGS is that we can find T ′ as follows. First, as said, we have a good
estimate ĉi of the number of colorful copies of Hi. Then, for each k-treelet Tj we can estimate
the number of colorful copies of Tj that span a colorful copy of Hi in G as ĉiσij , where σij is the
number of spanning trees of Hi isomorphic to Tj . Finally, dividing this estimate by the number
tj of colorful copies of Tj in G yields an estimate of the probability that sample(Tj) spans a copy
of Hi. That is,

Pr(sample(Tj) yields a copy of Hi) =
# of colorful copies of Tj in G spanning Hi

# of colorful copies of Tj in G
=
ĉiσij
tj

(5)

More in general, we need the probability that sample(Tj) spans a copy of some covered graphlet:

Pr(sample(Tj) yields a covered graphlet) =
1

tj

∑
Hi covered

ĉiσij (6)

We switch to the treelet Tj∗ that minimizes this probability, and continue our sampling until a
new graphlet becomes covered.
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The pseudocode of AGS is listed below. A graphlet is marked as covered when it has appeared
in at least c̄ samples. For a union bound over all k-graphlets one would set c̄ = O(ε−2 ln(s/δ))
where s = sk is the number of distinct k-graphlets. In our experiments we set c̄ = 1000, which
gives good accuracy on most graphlets. We denote by H1, . . . ,Hs the distinct k-node graphlets
and by T1, . . . , Tς the distinct k-node treelets.

Algorithm AGS(ε, δ)

1: (c1, . . . , cs)← (0, . . . , 0) . graphlet counts
2: (w1, . . . , ws)← (0, . . . , 0) . graphlet weights
3: c̄← d 4

ε2
ln( 2s

δ
)e . covering threshold

4: C ← ∅ . graphlets covered
5: Tj ← an arbitrary treelet type
6: while |C| < s do
7: for each i′ in 1, . . . , s do
8: wi′ ← wi′ + σi′j/tj

9: TG ← an occurrence of Tj drawn u.a.r. in G
10: Hi ← the graphlet type spanned by TG
11: ci ← ci + 1
12: if ci ≥ c̄ then . switch to a new treelet Tj
13: C ← C ∪ {i}
14: j∗ ← arg minj′=1,...,ς

1
tj′

∑
i′∈C σi′j′ ci′/wi′

15: Tj ← Tj∗

16: return ( c1
w1
, . . . , cs

ws
)

4.2 Approximation guarantees of AGS

This section is entirely dedicated to prove formal statistical guarantees on the estimates returned
by AGS. Specifically, we prove that if AGS chooses the “right” treelet Tj∗ , then we obtain
multiplicative error guarantees for all graphlets at once, as desired. Formally:

Theorem 4. If the tree Tj∗ chosen by AGS at line 14 minimizes Pr[sample(Tj) spans a copy of
some Hi ∈ C] then, with probability (1 − δ), when AGS stops ci/wi is a multiplicative (1 ± ε)-
approximation of gi for all i = 1, . . . , s.

The proof requires a martingale analysis, since the distribution from which we draw the
graphlets changes over time. In what follows we fix a graphlet Hi and analyse the concentration
of its estimate. Unless necessary, we drop the index i from the notation. We start by recalling
the following martingale tail inequality [4, p. 1476]:

Theorem 5 ([4], Theorem 2.2). Let (Z0, Z1, . . .) be a martingale with respect to the filter (Fτ )t≥0.

Suppose that Zτ+1−Zτ ≤M for all τ , and write Vt =
∑t
τ=1 Var[Zτ |Fτ−1]. Then for any z, v > 0

we have:

Pr [∃ t : Zt ≥ Z0 + z, Vt ≤ v] ≤ exp

[
− z2

2(v +Mz)

]
(7)

We now plug into Theorem 5 the appropriate quantities from our algorithm.
A. For t ≥ 1 let Xt be the indicator random variable of the event that Hi is the graphlet sampled
at step t (line 10 of AGS).
B. For t ≥ 0 let Y tj be the indicator random variable of the event, at the end of step t, the treelet
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to be sampled at the next step is Tj .
C. For t ≥ 0 let Ft be the event space generated by the random variables Y τj : j ∈ [ς], τ = 0, . . . , t.
For any random variable Z, then, E[Z | Ft] = E[Z |Y τj : j ∈ [ς], τ = 0, . . . , t], and Var[Z | Ft] is
defined analogously.
D. For t ≥ 1 let Pt = E[Xt|Ft−1] be the probability that the graphlet sampled at the t-th
invocation of line 10 is Hi, as a function of the events up to time t − 1. It is immediate to see
that Pt =

∑ς
j=1 Y

t−1
j aji.

E. Let Z0 = 0, and for t ≥ 1 let Zt =
∑t
τ=1(Xt−Pt). Now, (Zt)t≥0 is a martingale with respect

to the filter (Ft)t≥0, since Zt is obtained from Zt−1 by adding Xt and subtracting Pt which is
precisely the expectation of Xt w.r.t. Ft−1. F. Let M = 1, since |Zt+1 − Zt| = |Xt+1 − Pt| ≤ 1
for all t.

Finally, notice that Var[Zt|Ft−1] = Var[Xt|Ft−1], since again Zt = Zt−1 +Xt −Pt, and both
Zt−1 and Pt are a function of Ft−1, so their variance w.r.t. Ft−1 is 0. Now, Var[Xt|Ft−1] = Pt(1−
Pt) ≤ Pt; and therefore we have Vt =

∑t
τ=1 Var[Zτ | Fτ−1] ≤

∑t
τ=1 Pτ . Then by Theorem 5:

Pr

[
∃ t : Zt ≥ z,

t∑
τ=1

Pτ ≤ v

]
≤ exp

[
− z2

2(v + z)

]
∀ z, v > 0 (8)

Consider now AGS(ε, δ). Recall that we are looking at a fixed graphlet Hi (which here does not
denote the graphlet sampled at line 10). Note that

∑t
τ=1Xτ is exactly the value of ci after t

executions of the main cycle (see line 11). Similarly, note that
∑t
τ=1 Pτ is the value of gi · wi

after t executions of the main cycle: indeed, if Y t−1
j = 1, then at step τ we add to wi the value

σij

tj
(line 8), while the probability that a sample of Tj yields Hi is exactly

giσij

tj
. Therefore, after

the main cycle has been executed t times, Zt =
∑t
τ=1(Xt − Pt) is the value of ci − giwi.

Now to the bounds. Suppose that, when AGS(ε, δ) returns, ci
wi
≥ gi(1 + ε), i.e., ci(1− ε

1+ε ) ≥
giwi. On the one hand this implies that ci − giwi ≥ ci

ε
1+ε , i.e., Zt ≥ ci

ε
1+ε ; and since upon

termination ci = c̄, this means Zt ≥ c̄ ε
1+ε . On the other hand it implies giwi ≤ ci(1− ε

1+ε ), i.e.,∑t
τ=1 Pτ ≤ ci(1−

ε
1+ε ); again since upon termination ci = c̄, this means

∑t
τ=1 Pτ ≤ c̄(1−

ε
1+ε ).

We can then apply (8) with z = c̄ ε
1+ε and v = c̄(1− ε

1+ε ), and since v + z = c̄ we get:

Pr
[ ci
wi
≥ gi(1 + ε)

]
≤ exp

[
−

(c̄ ε
1+ε )

2

2c̄

]
= exp

[
− ε2c̄

2(1 + ε)2

]
(9)

but ε2c̄
2(1+ε)2 ≥

ε2

2(1+ε)2
4
ε2 ln

(
2s
δ

)
≥ ln

(
2s
δ

)
and thus the probability above is bounded by δ

2s .

Suppose instead that, when AGS(ε, δ) returns, ci
wi
≤ gi(1 − ε), i.e., ci(1 + ε

1−ε ) ≤ giwi. On
the one hand this implies that ci− giwi ≥ ε

1−εci, that is, upon termination we have −Zt ≥ ε
1−ε c̄.

Obviously (−Zt)t≥0 is a martingale too with respect to the filter (Ft)t≥0, hence (8) holds if we
replace Zt with −Zt. Let then t0 ≤ t be the first step where −Zt0 ≥ ε

1−ε c̄; since |Zt−Zt−1| ≤ 1,

it must be −Zt0 < ε
1−ε c̄ + 1. Moreover

∑t
τ=1Xτ is nondecreasing in t, so

∑t0
τ=1Xτ ≤ c̄. It

follows that
∑t0
τ=1 Pτ = −Zt0 +

∑t0
τ=1Xτ <

ε
1−ε c̄ + 1 + c̄ = 1

1−ε c̄ + 1. Applying again (8) with

z = ε
1−ε c̄ and v = 1

1−ε c̄+ 1, we obtain:

Pr
[ ci
wi
≤ gi(1− ε)

]
≤ exp

[
−

(c̄ ε
1−ε )

2

2( 1+ε
1−ε c̄+ 1)

]
≤ exp

[
− ε2c̄2

2(1 + c̄)

]
(10)

but since c̄ ≥ 4 then c̄
1+c̄ ≥

4
5 and so ε2c̄2

2(1+c̄) ≥
2ε2c̄

5 . By replacing c̄ we get 2ε2c̄
5 ≥ 2ε2

5
4
ε2 ln

(
2s
δ

)
>

ln
(

2s
δ

)
and thus once again the probability of deviation is bounded by δ

2s .

By a union bound, the probability that ci
wi

is not within a factor (1 ± ε) of gi is at most δ
s .

Theorem 4 follows by a union bound on all i ∈ [s].
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4.3 Sampling efficiency of AGS

4.3.1 Near-optimality of AGS

We start by showing that, under a certain assumption, AGS is essentially optimal in the sense of
drawing the minimal number of samples necessary to see every graphlet sufficiently often. This
can be thought of as comparing against a clairvoyant algorithm, i.e. an algorithm that knows
in advance how many sample(Tj) calls to make for every treelet Tj in order to get the desired
bounds with the minimum total number of calls. Formally, we prove:

Theorem 6. If the treelet Tj∗ chosen by AGS at line 14 minimizes Pr[sample(Tj) spans a copy
of some Hi ∈ C], then AGS makes a number of calls to sample() that is at most O(ln(s)) = O(k2)
times the minimum needed to ensure that every graphlet Hi appears in c̄ samples in expectation.

The rest of this section is devoted to prove Theorem 6. For each i ∈ [s] and each j ∈ [ς]
let aji be the probability that sample(Tj) returns a copy of Hi. Note that aji = giσij/tj , the
fraction of colorful copies of Tj that span a copy of Hi. Our goal is to allocate, for each Tj , the
number xj of calls to sample(Tj), so that (1) the total number of calls

∑
j xj is minimised and

(2) each Hi appears at least c̄ times in expectation. Formally, let A = (aji)
ᵀ, so that columns

correspond to treelets Tj and rows to graphlets Hi, and let x = (x1, . . . , xς) ∈ Nς . We obtain
the following integer program:  min 1ᵀx

s.t. Ax ≥ c̄1
x ∈ Nς

We now describe the natural greedy algorithm for this problem; it turns out that this is
precisely AGS. The algorithm proceeds in discrete time steps. Let x0 = 0, and for all t ≥ 1
denote by xt the partial solution after t steps. The vector Axt is an s-entry column whose i-th
entry is the expected number of occurrences of Hi drawn using the sample allocation given by
xt. We define the vector of residuals at time t as ct = max(0, c−Axt), and for compactness we
let ct = 1ᵀct. Note that c0 = c̄1 and c0 = sc̄. Finally, we let U t = {i : cti > 0}; this is the set of
graphlets not yet covered at time t, and clearly U0 = [s].

At the t-th step the algorithm chooses the Tj∗ such that sample(Tj∗) spans an uncovered
graphlet with the highest probability, by computing:

j∗ := arg max
j=1,...,ς

∑
i∈Ut

aji (11)

It then lets xt+1 = xt+ej∗ , where ej∗ is the indicator vector of j∗, and updates ct+1 accordingly.
The algorithm stops when U t = ∅, since then xt is a feasible solution. We prove:

Lemma 2. Let z be the cost of the optimal solution. Then the greedy algorithm returns a solution
of cost O(z ln(s)).

Proof. Let wtj =
∑
i∈Ut

aji (note that this is a treelet weight). For any j ∈ [ς] denote by

∆t
j = ct − ct+1 the decrease in overall residual weight we would obtain if j∗ = j. Note that

∆t
j ≤ wtj . We consider two cases.

Case 1: ∆t
j∗ < wtj∗ . This means for some i ∈ Ut we have ct+1

i = 0, implying i /∈ Ut+1. In
other terms, Hi becomes covered at time t+ 1. Since the algorithm stops when Ut = ∅, this case
occurs at most |U0| = s times.
Case 2: ∆t

j∗ = wtj∗ . Suppose then that the original problem admits a solution with cost z.
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Obviously, the “residual” problem where c is replaced by ct admits a solution of cost z, too.
This implies the existence of j ∈ [ς] with ∆t

j ≥ 1
z c
t, for otherwise any solution for the residual

problem would have cost > z. But by the choice of j∗ it holds ∆j∗ = wtj∗ ≥ wtj ≥ ∆t
j for any j,

hence ∆t
j∗ ≥ 1

z c
t. Thus by choosing j∗ we get ct+1 ≤ (1 − 1

z )ct. After running into this case `

times, the residual cost is then at most c0(1− 1
z )`.

Note that ` + s ≥ c0 = s · c̄ since at any step the overall residual weight can decrease by at
most 1. Therefore the algorithm performs ` + s = O(`) steps overall. Furthermore, after ` + s

steps we have c`+s ≤ sc̄e− `
z , and by picking ` = z ln(2s) we obtain c`+s ≤ c̄

s , and therefore each
one of the s graphlets receives weight at least c̄

2 . Now, if we replace c̄1 with 2c̄1 in the original
problem, the cost of the optimal solution is at most 2z, and in O(z ln(s)) steps the algorithm
finds a cover where each graphlet has weight at least c̄.

Now, note that the treelet index j∗ given by (11) remains unchanged as long as Ut remains
unchanged. Therefore we need to recompute j∗ only when some new graphlet exits Ut, i.e.,
becomes covered. In addition, we do not need each value aji, but only their sum

∑
i∈Ut

aji. This
is precisely the quantity that AGS estimates at line 14. Theorem 6 follows immediately as a
corollary.

4.3.2 A general lower bound

We conclude by showing a lower bound for all algorithms based solely on the primitive sample(T ).
This is a natural class, which includes many graphlet sampling algorithms [22, 34, 35]. Formally,
we prove:

Theorem 7. For any constant k ≥ 2, there are graphs G in which some graphlet H represents
a fraction pH = 1/poly(n) = Ω(n1−k) of all graphlet copies, and any algorithm needs Ω(1/pH)
calls to sample(T ) in expectation to just find one copy of H.

Proof. Let T and H be the path on k nodes. Let G be the (n−k+2, k−2) lollipop graph; so G is
formed by a clique on n−k+2 nodes and a dangling path on k−2 nodes, connected by an arc. G
contains Θ(nk) non-induced occurrences of T in G, but only Θ(n) induced occurrences of H (all
those formed by the k − 2 nodes of the dangling path, the adjacent node of the clique, and any
other node in the clique). Since there are at most Θ(nk) graphlets in G, then H forms a fraction
pH = Θ(n1−k) of these. Obviously T is the only spanning tree of H; however, an invocation of
sample(G,T ) returns H with probability Θ(n1−k) and thus we need Θ(nk−1) = Θ(1/pH) samples
in expectation before obtaining H. One can make pH larger by considering the (n′, n−n′) lollipop
graph for larger values of n′.

4.4 Lower-level optimizations and architectural details

As we did for for the build-up phase, for completeness and reproducibility we describe lower-level
details that apply to uniform sampling and AGS.

4.4.1 Alias method sampling

Recall that sampling starts by drawing a node v with probability proportional to c(TC , v). We
do this in time O(1) by using the alias method [32], which requires building an auxiliary lookup
table in time and space linear in n. For uniform sampling, the alias table is built in the second
stage of the build-up phase. For AGS, the alias table is rebuilt upon a change of treelet. In
practice, building the alias table takes negligible amounts of time.
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4.4.2 Neighbor buffering

We experimentally observe that, if G has a node v with degree dv = ∆ much higher than all
other degrees, then the sampling rate is very low. The reason is the following. First, if ∆ is
large then c(TC , v) is large; hence, v will be often the root for sampling. In addition, drawing a
neighbor of u will take time Θ(∆). Summarizing, if ∆ is large, the sampling phase will spend
most of the time listing v’s neighbors. To avoid this problem, we perform buffered sampling: if
dv is at least some parameter ∆0, then we use reservoir sampling to sample B neighbors of v.
This can be done at essentially the same cost of sampling one neighbor, but we can cache the
remaining B− 1 for the future. In this way we list the neighbors of large-degree nodes only once
in a while. As Figure 10 shows, this increases the sampling speed of GM significantly (we note
that L8Motif already achieves those sampling rates and buffering does not increase it further).
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Figure 10: impact of neighbor buffering on sampling.

4.4.3 Graphlet manipulations

Once we have sampled a graphlet copy from G, we have to perform isomorphism tests (to identify
its class H) and compute its spanning trees (in order to weight the sample properly). Since a
graphlet is a simple graph, the k× k adjacency matrix is symmetric with diagonal 0 and can be
packed in a (k − 1) × k

2 matrix if k is even and in a k × k−1
2 matrix if k is odd (see e.g. [6]).

The resulting matrix can then be reshaped into a 1 × k2−k
2 vector, which fits into 128 bits for

all k ≤ 16. Before encoding a graphlet, GM replaces it with a canonical representative from
its isomorphism class, computed using the Nauty library [24]. The isomorphism test then boils
down to comparing the encodings. To compute the number of spanning trees σi of Hi, GM
employs Kirchhoff’s matrix-tree theorem which relates σi to the determinant of a submatrix of
the Laplacian Hi. The running time is O(k3). To compute the number σij of occurrences of a
specific treelet Ti in Hj (needed for our sampling algorithm AGS, see Section 4.1), we use an
in-memory implementation of the build-up phase where each vertex Hj is assigned a distinct
color in {0, . . . , k − 1}.

5 Experimental results

In this section we measure the performance of GM and L8Motif in terms of running time, space
usage, and accuracy of the counts, with a special attention towards L8Motif. We recall that,
as shown in [9], CC is the current state of the art, and in particular it outperforms algorithms
based on random walks. Therefore we limit our comparison against CC (whenever possible, since
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on many instances CC dies by memory exhaustion or integer overflow). All our experiments are
performed on an Amazon EC2 c5d.9xlarge instance, with 36 virtual CPUs, 72GB of main
memory, and a 900GB solid-state disk drive (we recall that we store the count tables in external
memory).

To begin, we tested GM and L8Motif on all our graphs for increasing values of k, stopping
when witnessing a slow-down due to excessive I/O (recall that our algorithms must repeatedly
read and store the count tables in main memory). The sampling phase took 5 million samples
(as we show, this appeared sufficient to guarantee high accuracy on most graphlets). Table 1
summarizes the results. Using L8Motif we reached k = 8 on all our graphs, and using GM we
reached k > 8 on half of them. The table does not show the YeastProtein graph [21], a small
graph on which we tested GM for k = 16 in less than three hours (we recall that there are 6 ·1022

distinct motifs on 16 nodes). For comparison, [3] on YeastProtein reached k = 10 and only on
treelets and tree-like subgraphs.

Table 1: Summary of our results. For each graph we report the maximum reached value of k
and the total wall time (∗ = with biased coloring). The wall time includes sampling.

graph nodes (millions) edges (millions) source k wall time algorithm
Facebook 0.1 0.8 MPI-SWS 11 1h GM
Dblp 0.9 3.4 SNAP 9 7m GM
Amazon 0.7 3.5 SNAP 9 8m GM
BerkStan 0.7 6.6 SNAP 9 55m GM
Yelp 7.2 26.1 YLP 8 13m L8Motif
LiveJournal 5.4 49.5 LAW 8 24m L8Motif
Orkut 3.1 117.2 MPI-SWS 8 1h11m L8Motif
Twitter 41.7 1202.5 LAW 8∗ 2h45m L8Motif
Friendster 65.6 1806.1 SNAP 8∗ 1h10m L8Motif

5.1 Computational efficiency

Figure 11 shows the running time (seconds) and total space usage of the build-up phase (GB),
and the speed of the sampling phase (graphlets per second) using uniform sampling. We used
biased coloring to keep the build-up time below 3 hours for both Twitter and Friendster, while
on all the other graphs, the build-up phase already took less than 1 hour. Thus, in a matter of
hours, L8Motif yields accurate counts for k = 8 on graphs of size significantly larger than the
state of the art.
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Figure 11: L8Motif’s computational performance for k = 8.
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We also measured the build-up performance of L8Motif as a function of G and k, by
computing the average time spent per million edges and the average space used per node —
see Figure 12. We do so because, typically, motif counting algorithms have a running time
that depends chaotically on G. For instance, ESCAPE takes 5 seconds on a graph with 1.2M
edges and 11 days on a graph with 3.6M edges, a blow-up of 175.000 times [27]. A very similar
behaviour is exhibited by random walks [8]. In contrast, L8Motif appears to be reasonably
predictable as a function of G and k.
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Figure 12: Build-up time in seconds per million edge, and space usage in bits per input node, on
all our graphs.

Comparison against CC. We compare GM and L8Motif against CC in Table 2 and 3.
For each graph we report the largest k for which CC ran, without dying by memory exhaustion
or integer overflow. For the space usage we compare the main memory used by CC to the total
external memory usage of our algorithm (recall that CC works in main memory and therefore it
is not easily comparable). The sampling rate of our algorithms refers again to uniform sampling,
which is the only one supported by CC. The sampling speed of AGS is typically similar, and never
more than 40% slower than uniform sampling (recall that AGS has the overhead of repeatedly
solving an online problem, computing spanning tree counts, and switching treelets). The only
exception is the Yelp graph, on which AGS for k = 8 is 20× slower than uniform sampling; but,
as we show below, it is also dramatically more accurate (and still 10 000× faster than CC).

Table 2: Computational performance of GM versus CC.
graph k build-up time (seconds) build-up space (GB) sampling rate (motifs/sec)

CC GM speedup CC GM reduction CC GM speedup

Facebook 9 860 86 10× 33 5 7× 5 95k 18 400×
Dblp 9 1245 320 3.9× 43 44 1× 72 140k 1 900×
Amazon 9 376 84 2.2× 51 49 1× 226 116k 512×
BerkStan 5 14 7 2× 18 0.5 36× 160 5300 33×
Yelp 5 167 71 2.4× 36 4.5 8× 20 470 24×
LiveJournal 6 306 99 3× 36 9.5 4× 295 16k 54×
Orkut 5 225 40 5.6× 27 3.2 8× 295 17k 58×

5.2 Accuracy of the estimates and performance of AGS

We evaluate the accuracy of the estimates produced by our algorithm L8Motif. The accuracy
of GM is the same, as the output of the two algorithms is identical (but L8Motif is faster). To
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Table 3: Computational performance of L8Motif versus CC.
graph k build-up time (seconds) build-up space (GB) sampling rate (motifs/sec)

CC LM speedup CC LM reduction CC LM speedup

Facebook 8 95 22 4.3× 24 0.2 114× 420 23k 55×
Dblp 8 182 77 2.4× 30 1.7 1.8× 680 41k 60×
Amazon 8 140 84 1.7× 31 1.8 17× 1550 120k 77×
BerkStan 5 14 7 2× 18 0.2 130× 160 1.2M 7 700×
Yelp 5 167 69 2.4× 36 1.3 27× 20 4.1M 200 000×
LiveJournal 6 306 79 3.9× 36 1.8 20× 295 112k 380×
Orkut 5 225 38 6× 27 0.7 40× 295 162k 550×

begin, for each graph we compute a ground-truth count of the number of copies of each possible
k-graphlet. For k = 5 we used the exact algorithm ESCAPE [27] which works well on small
graphs (Facebook, Dblp, Amazon, LiveJournal, Orkut). On all other graphs and/or for k > 6,
we used as ground truth the average of the counts returned by 20 independent runs of L8Motif,
of which 10 used uniform sampling and 10 used AGS. We then measured the average accuracy
of L8Motif against the ground truth, over 10 runs. In each run we took 10M samples, or in
any case stopped the sampling after 600s (ten minutes). To quantify the accuracy, we compute
the per-graphlet multiplicative count error. Denote by cH the ground-truth count of a specific
graphlet H, and let ĉH be the estimate returned by the algorithm. Then we define the relative
error of H as:

errH =
ĉH − cH
cH

. (12)

Therefore a value errH ' 0 means cH has been accurately estimated; whereas errH � 0 means
cH is overestimated, and errH � 0 means cH is underestimated (and the extreme case errH = −1
means no copy of H was found).

Figure 13 shows the distribution of the relative error errH for uniform sampling, for k = 7,
on three representative graphs (all other graphs behave similarly). The x-axis shows the value
of errH , and the y-axis the number of H for which that value is achieved. Note that for Yelp

and Amazon almost all graphlets have errH = −1, as can be seen by the straight segments
leaving from the left part of the plot. This means uniform sampling misses almost all graphlets
on Amazon and Yelp.

Figure 14 gives the same plot, but for AGS. One can see that the distribution of the relative
error is now concentrated around 0: AGS gives an accurate estimate of nearly all graphlets, in
line with our theoretical predictions.

To complete the evaluation of AGS, we computed the number of graphlets with relative error
below 0.25. This number is shown in Figure 15, where the shaded area represents the maximum
achievable, i.e., N8 = 11 117 (the number of non-isomorphic simple connected graphs on 8 nodes).
The plot is particularly telling if we look at the Yelp graph. According to our ground truth,
in this graph over 99.9996% of all 8-graphlets are stars. Thus, we can expect uniform sampling
to waste essentially all of its samples by drawing stars. The figure shows this is exactly the
case, and indeed uniform sampling achieves a relative error ≤ 25% only for the 4 most frequent
graphlets (as a fraction, 0.04% of the total). AGS instead achieves a relative error ≤ 0.25 for
9 860 graphlets (as a fraction, 89% of the total). This includes many graphlets with frequency
below 10−21 which are well-estimated in all the 10 independent runs (and thus are not just noise).
To find those graphlets, uniform sampling would need more than 103 years even if running at
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Figure 13: Relative error distribution of uniform sampling for k = 7. On Yelp and Amazon

almost all graphlets have a relative error of −1, i.e., they are completely missed.
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Figure 14: Relative error distribution of AGS for k = 7. Unlike the case of uniform sampling,
here almost all graphlets are accurately estimated and thus have error ' 0.

109 samples per second. Thus, AGS can count extremely rare graphlets, which uniform sampling
simply cannot.
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Figure 15: Number of 8-graphlets for which L8Motif achieved relative error below 25%. Left:
uniform sampling. Right: AGS. The shaded area shows for reference the total number of 8-
graphlets, N8 = 11 117.
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6 Conclusions

In this work we confirm that color coding is an effective technique for sampling and counting
motifs in large graphs. Although this was already suggested by existing work, here we refine the
approach and push the color coding motif mining paradigm forward. It would be interesting to
investigate how this color coding approach could be extended to richer and more challenging sce-
narios. Two of these scenarios that fit well with the assumption of large graphs are a distributed
computing setting and graphs that evolve in time.
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jmirovic, and N. Pržulj. Revealing the hidden language of complex networks. Scientific
Reports, 4:4547 EP –, 04 2014.

[37] E. Yeger-Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo, R. Y. Pinter, U. Alon, and
H. Margalit. Network motifs in integrated cellular networks of transcription–regulation and
protein–protein interaction. Proceedings of the National Academy of Sciences, 101(16):5934–
5939, 2004.

[38] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph clustering.
In Proc. of ACM KDD, pages 555–564, 2017.

[39] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe. Subgraph enumeration in large
social contact networks using parallel color coding and streaming. In Proc. of ICPP, pages
594–603, 2010.

[40] Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. S. A. Kumar, and M. V. Marathe. SAHAD:
Subgraph analysis in massive networks using Hadoop. In Proc. of IEEE IPDPS, pages
390–401, 2012.

28


	1 Introduction
	1.1 Our results
	1.2 Related work
	1.3 Preliminaries and notation.

	2 Color coding and the CC algorithm
	2.1 The build-up phase
	2.2 The sampling phase
	2.3 Statistical guarantees of the estimates

	3 Fast construction of a compact treelet database
	3.1 Treelets and counts
	3.2 GM: a general-purpose motif counter for k <= 16 nodes
	3.2.1 Succinct treelets and count table

	3.3 L8Motif: counting 8-graphlets in large graphs
	3.3.1 Integer treelet encoding (ITE)
	3.3.2 Round skipping via balanced treelet decomposition
	3.3.3 Variable-length counts

	3.4 Lower-level optimizations and architectural details
	3.4.1 Zero-rooting
	3.4.2 Greedy flushing
	3.4.3 Multi-threading
	3.4.4 Memory-mapped reads

	3.5 Biased coloring

	4 Sampling treelets from the database
	4.1 Adaptive Graphlet Sampling (AGS)
	4.2 Approximation guarantees of AGS
	4.3 Sampling efficiency of AGS
	4.3.1 Near-optimality of AGS
	4.3.2 A general lower bound

	4.4 Lower-level optimizations and architectural details
	4.4.1 Alias method sampling
	4.4.2 Neighbor buffering
	4.4.3 Graphlet manipulations


	5 Experimental results
	5.1 Computational efficiency
	5.2 Accuracy of the estimates and performance of AGS

	6 Conclusions

