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REFINED WILF-EQUIVALENCES BY COMTET STATISTICS

SHISHUO FU, ZHICONG LIN, AND YALING WANG

Abstract. We launch a systematic study of the refined Wilf-equivalences by the statistics
comp and iar, where comppπq and iarpπq are the number of components and the length of
the initial ascending run of a permutation π, respectively. As Comtet was the first one to
consider the statistic comp in his book Analyse combinatoire, any statistic equidistributed
with comp over a class of permutations is called by us a Comtet statistic over such class.
This work is motivated by a triple equidistribution result of Rubey on 321-avoiding per-
mutations, and a recent result of the first and third authors that iar is a Comtet statistic
over separable permutations. Some highlights of our results are:

‚ Bijective proofs of the symmetry of the double Comtet distribution pcomp, iarq over
several Catalan and Schröder classes, preserving the values of the left-to-right max-
ima.

‚ A complete classification of comp- and iar-Wilf-equivalences for length 3 patterns and
pairs of length 3 patterns. Calculations of the pdes, iar, compq generating functions
over these pattern avoiding classes and separable permutations.

‚ A further refinement by the Comtet statistic iar, of Wang’s recent descent-double
descent-Wilf equivalence between separable permutations and p2413, 4213q-avoiding
permutations.

1. Introduction

A permutation π “ πp1q ¨ ¨ ¨πpnq P Sn, the symmetric group on rns :“ t1, 2, . . . , nu, is
said to avoid the permutation (or pattern) σ “ σp1q ¨ ¨ ¨σpkq P Sk, k ď n, if and only if
there is no subsequence πpj1qπpj2q ¨ ¨ ¨πpjkq with j1 ă j2 ă ¨ ¨ ¨ ă jk, such that πpjaq ă πpjbq
if and only if σpaq ă σpbq for all 1 ď a ă b ď k. Otherwise, we say that the permutation π
contains the pattern σ.

The notion of permutation pattern was introduced by Knuth [21, pp. 242-243] in 1968,
but studied intensively and systematically for the first time by Simion and Schmidt [28] in
1985. Ever since then, it has become an active and prosperous research subject. The reader
is referred to two book expositions, [5, Chapters 4 and 5] and [20], on this topic, as well
as the numerous references therein. In the early 1980s, Herbert Wilf posed the problem
of identifying equirestrictive sets of forbidden patterns. Let P be a (finite) collection of
patterns and W a set of permutations, we write WpP q for the set of all permutations in
W that avoid simultaneously every pattern contained in P . We will say, as it has become
a standard terminology, that two sets of patterns, P and Q, are Wilf-equivalent, denoted
by P „ Q, if |SnpP q| “ |SnpQq| for all positive integers n.
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In this paper, we will restrict ourselves to the case where |P | “ |Q| ď 2, and the lengths
of the patterns in P and Q are no greater than 4. Once two sets of patterns P and Q are
known to be Wilf-equivalent, a natural direction to go deeper, is to make further restrictions
on these P - or Q-avoiding permutations, and to see if the equinumerosity still holds. One
such restriction is to consider the enumeration refined by various permutation statistics. In
general, a statistic on a set of objects S is simply a function from S to N :“ t0, 1, 2, . . .u.
A set-valued statistic on S is a function from S to the set of finite subsets of N. Given a
permutation π P Sn, we mainly consider the set-valued statistic

DESpπq :“ ti P rn´ 1s : πpiq ă πpi` 1qu,
called the descent set of π, and two statistics

despπq :“ |DESpπq| and iarpπq :“ minpDESpπq Y tnuq,
called the descent number and the initial ascending run of π, respectively. Clearly, iarpπq
can also be interpreted as the position of the leftmost descent of π, which indicates that
iar is determined by DES. It should be noted that iar was also called lir, meaning “leftmost
increasing run”, in the literature (see e.g. [7]). The statistic des is known as an Eulerian
statistic since its distribution over Sn is the n-th Eulerian polynomial

Anptq :“
ÿ

πPSn

tdespπq.

Another statistic highlighted in our study is comppπq, which can be introduced as

comppπq :“ |ti : @j ď i, πpjq ď iu|.
It is equal to the maximum number of components (see [1, 7, 8]) in an expression of π as a
direct sum of permutations. For instance, compp312465q “ 3, the three components being
312, 4, and 65 and 312465 “ 312 ‘ 1 ‘ 21 (see Sec. 2.2 for the definition of direct sum
‘). The statistic comp dates back at least to Comtet [9, 3, Ex. VI.14], who proved the
generating function for the number fpnq of permutations of length n with one component,
also known as indecomposable permutations, to be

ÿ

ně1

fpnqzn “ 1 ´ 1
ř

ně0
n!zn

.

Thus, any statistic equidistributed with comp over a class of restricted permutations will
be called by us a Comtet statistic over such class. The enumeration of pattern avoiding
indecomposable permutations was carried out by Gao, Kitaev and Zhang [19]. It should
be noted that iar and comp are not equidistributed over S4. Nonetheless, two of the
authors [18] proved that iar is a Comtet statistic over separable permutations, the class
of p2413, 3142q-avoiding permutations. It is this result that motivates us to investigate
systematically the refined Wilf-equivalences by these two Comtet statistics, and sometimes
jointly with other statistics.

For a (possibly set-valued) statistic st on Sn, we say two sets of patterns P and Q are
st-Wilf-equivalent, denoted as P „st Q, if for all positive integers n, we have

|SnpP qst| “ |SnpQqst|,
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meaning that for a fixed value of st, there are as many preimages in SnpP q as those in
SnpQq. Note that by their definitions, P „DES Q immediately implies P „iar Q and
P „des Q, but not conversely. The above refined Wilf-equivalence by one statistic can be
naturally extended to the joint distribution of several permutation statistics, regardless of
numerical or set-valued types. So expression like P „pDES,compq Q and |SnpP qDES,comp| “
|SnpQqDES,comp| should be understood well. It should be noted that refined Wilf-equivalences
have already been extensively studied during the last two decades (see e.g. [7,11,13,20,24]).
Especially, the focus of Dokos, Dwyer, Johnson, Sagan and Selsor [11] was on the refined
Wilf-equivalences by Eulerian and Mahonian statistics. Hopefully with the results we
present in this paper, one is convinced that considering the refinements by Comtet statis-
tics is equally meaningful.

Some highlights of our results will be outlined below. Before stating them, we need to
recall some classical permutation statistics. For a permutation π P Sn, we introduce

LMAXpπq :“ tπpiq P rns : πpjq ă πpiq, @1 ď j ă iu and

LMAXPpπq :“ ti P rns : πpjq ă πpiq, @1 ď j ă iu,
the set of values and positions of the left-to-right maxima of π, respectively. The sets of
values/positions of the left-to-right minima, the right-to-left maxima and the right-to-left
minima of π can be defined and denoted similarly if needed. We use lowercase letters to
denote the cardinality of these sets, so for example, LMINpπq is the set of values of the
left-to-right minima of π and lminpπq is the corresponding numerical statistic. We will also
consider the set of descent bottoms of π

DESBpπq :“ tπpi ` 1q P rn´ 1s : i P DESpπqu,
which is another set-valued extension of des different from DES.

The first one of our main results concerns a single pattern of length 3.

Theorem 1.1. For every n ě 1,

(i) the two triples pLMAX, iar, compq and pLMAX, comp, iarq have the same distribution
over Snp321q;

(ii) the two quadruples pLMAX,DESB, iar, compq and pLMAX,DESB, comp, iarq have
the same distribution over Snp312q;

(iii) the quadruples pLMAX,LMIN, iar, compq and pLMAX,LMIN, comp, iarq have the
same distribution over Snp132q.

The result on the symmetry of pcomp, iarq was inspired by several works in the literature.
First of all, Theorem 1.1 (i) is essentially equivalent to a result of Rubey [27] up to some
elementary transformations on permutations. Details will be given in Sec. 3.1. Furthermore,
Rubey’s result is a symmetric generalization of an equidistribution due to Adin, Bagno and
Roichman [1], which implies the Schur-positivity of the class of 321-avoiding permutations
with a prescribed number of components.

Next, Claesson, Kitaev and Steingrímsson [20, Thm 2.2.48] constructed a bijection be-
tween separable permutations of length n ` 1 with k ` 1 components and Schröder paths
of order n with k horizontals at x-axis. Combining this bijection with the work in [18]
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justifies iar being a Comtet statistic on separable permutations. It then follows from our
Lemma 2.6, a general lemma proved in Sec. 2.2, that we have the following symmetric
double Comtet distribution.

Corollary 1.2. The double Comtet statistics pcomp, iarq is symmetric on separable permu-
tations.

Our second main result announced below is a far reaching refinement of Corollary 1.2.

Theorem 1.3. There exists an involution on Snp2413, 3142q that preserves the pair of
set-valued statistics pLMAX,DESBq but exchanges the pair pcomp, iarq. Consequently,

ÿ

πPSnp2413,3142q

scomppπqtiarpπqxLMAXpπqyDESBpπq “
ÿ

πPSnp2413,3142q

siarpπqtcomppπqxLMAXpπqyDESBpπq

where xS :“ ś
iPS xi and yS :“ ś

iPS yi for any subset S Ď rns.
The proof of Theorem 1.1 provided in Sec. 3 is via two involutions on permutations

that actually imply the even stronger symmetric phenomenon, namely the corresponding
distribution matrices are Hankel; see Theorems 3.14 and 4.2. The proof of Theorem 1.3
is based on a combinatorial bijection on the so-called di-sk trees introduced in [17]. This
bijection will also provide an alternative approach to Theorem 1.1(ii). The details will be
given in [16].

Remark 1.4. Rubey’s bijective proof of a slight modification (see Theorem 3.1) of Theo-
rem 1.1(i) is via Dyck paths and the proof of Theorem 1.3 that will appear in [16] is based
on di-sk trees. Our bijective and unified proof of Theorem 1.1(i)(ii), constructed directly
on permutations, gets more insights into the symmetry of the double Comtet statistics,
and therefore, it seems more likely to be extended to deal with such equidistributions over
other bigger classes of pattern-avoiding permutations.

Our third main result shows how iar, combined with des and the number of double de-
scents would refine known results and imply new ones concerning separable and p2413, 4213q-
avoiding permutations. Interestingly, it does refine a nice γ-positivity interpretation for
separable permutations [17,23] due to Zeng and the first two authors that we review below.

Recall that a polynomial in Rrts of degree n is said to be γ-positive if it can be written
as a linear combination of

ttkp1 ` tqn´2ku0ďkďn{2

with non-negative coefficients. Many polynomials arising from combinatorics and discrete
geometry have been shown to be γ-positive; see the comprehensive survey by Athanasiadis [2].
One typical example is the Eulerian polynomials

Anptq “
ÿ

πPSn

tdespπq “
tn´1

2
uÿ

k“0

|Γn,k|tkp1 ` tqn´1´2k,

where Γn,k is the set of permutations in Sn with k descents and without double descents.
Here an index i P rns is called a double descent of a permutation π P Sn if πpi ´ 1q ą
πpiq ą πpi ` 1q, where we use the convention πp0q “ πpn ` 1q “ 0. The number of
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double descents of π will be denoted as ddpπq. This classical result is due to Foata and
Schützenberger [14, Theorem 5.6] and has been extended in several different directions
(cf. [2]) in recent years. In particular, the first two authors together with Zeng [17, 23]
proved an analog for the descent polynomial over separable permutations

(1.1) Snptq :“
ÿ

πPSnp2413,3142q

tdespπq “
tn´1

2
uÿ

k“0

|Γn,kp2413, 3142q|tkp1 ` tqn´1´2k.

In a recent work [24] of the second author and Kim, they proved that p2413, 3142q „des

p2413, 4213q (see [24, Thm. 5.1]), and that the γ-coefficient of the descent polynomial
over p2413, 4213q-avoiding permutations is analogously given by |Γn,kp2413, 4213q| (see [24,
Eq. (4.10)]). In view of (1.1), we see the number of separable permutations of rns with k

descents and without double descents, is the same as that of p2413, 4213q-avoiding permu-
tations of rns with k descents and without double descents. With this in mind, our third
main result given below can be viewed as a refinement.

Theorem 1.5. For n ě 1,

(1.2)
ÿ

πPSnp2413,3142q

tdespπqxddpπqyiarpπq “
ÿ

πPSnp2413,4213q

tdespπqxddpπqyiarpπq.

Theorem 1.5 refines Wang’s equidistribution [30, Thm. 1.5] by the Comtet statistic iar

and has many interesting consequences as can be found in Sections 5 and 6. More detailed
motivation that leads us to discover Theorem 1.5 will also be provided in Sec. 6. Our proof
of Theorem 1.5 in Sec. 6 is purely algebraic and finding a bijective proof remains open.

Besides the above three main results, we will also calculate the joint distribution of
pdes, iar, compq over permutations avoiding a set P of patterns, where P is taken to be
a single pattern of length 3, a pair of patterns of length 3, as well as the three pairs
p2413, 3142q, p2413, 4213q, and p3412, 4312q, respectively. All the generating functions for
these patterns turn out to be either algebraic or rational (see Tables 1 and 2), and as
applications, complete classification of the iar- or comp-Wilf equivalences for these patterns
is given. Moreover, our attempt to characterize the pattern pairs of length 4 which are
piar, compq-Wilf-equivalent to p2413, 3142q leads to Conjecture 5.7, which we have verified
in some important cases.

The rest of this paper is organized as follows. In Section 2, we review some notations
and terminology and prove two general lemmas concerning the direct sum operation of
permutations. The classification of refined Wilf-equivalences for a single pattern of length
3 is carried out in Section 3, where the proof of Theorem 1.1 is provided as well. Section 4 is
devoted to the investigation of pattern pairs of length 3, while Section 5 aims to characterize
the pattern pairs of length 4 that are piar, compq-Wilf-equivalent to p2413, 3142q. The proof
of Theorem 1.5 is given in Section 6, where a new recurrence for the 021-avoiding inversion
sequences is also proved.
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2. Notations and preliminaries

2.1. Elementary operations. For a given permutation π P Sn, there are three funda-
mental symmetry operations on π:

‚ its reversal πr P Sn is given by πrpiq “ πpn ` 1 ´ iq;
‚ its complement πc P Sn is given by πcpiq “ n ` 1 ´ πpiq;
‚ its inverse π´1 P Sn, is the usual group theoretic inverse permutation.

One thing we would like to point out, before we barge into classifying iar-Wilf-equivalences
for various patterns, is that by taking iar into consideration, we can no longer utilize
the above three standard symmetries for permutations, since none of them preserves the
length of the initial ascending run of π, when n ě 2. For the classical Wilf-equivalence,
these symmetries reduce the number of possible equivalence classes considerably, since for
example, π avoids 213 if and only if πr avoids 312. This fact about the statistic iar explains,
at least partially, the following observations.

Observation 2.1.

(1) The iar-Wilf-equivalence is much less likely to be found than the Wilf-equivalence.
(2) When iar-Wilf-equivalence does hold, we cannot prove it using the three standard

symmetries or their combinations. Usually we need to use new ideas in constructing
bijective proofs, or prove the equivalence recursively using recurrence relations.

On the other hand, the statistic comp behaves better under these three elementary op-
erations.

Observation 2.2. The two mappings π ÞÑ pπrqc and π ÞÑ π´1 both preserve the statistic
comp.

Let P be a collection of patterns. The following trivariate generating function will be
the focal point of our study.

SpP qdes,iar,comppt, r, p; zq :“
ÿ

ně0

ÿ

πPSnpP q

tdespπqriarpπqpcomppπqzn.(2.1)

Most of the time we suppress the superindices des, iar, comp, and variable z, and when the
pattern set P is clear from the context, we also suppress P to write Spt, r, pq. In most cases,

we simply calculate the variant S̃pt, r, pq :“ pSpt, r, pq´1q{rpz, so that the final expressions
of the generating functions are more compact to be collected and displayed in a table (see
Tables 1 and 2). Let MnpP q be the nˆn matrix, whose entry at the k-th row and the ℓ-th
column is the number of permutations π in SnpP q with iarpπq “ k and comppπq “ ℓ. Let st
be a permutation statistic, we can then refine MnpP q as MnpP q “ ř

iM
st“i
n pP q, so that the

pk, ℓq-entry of M st“i
n pP q counts permutations π such that stpπq “ i for certain fixed integer

i. This definition extends to set-valued statistics and multiple statistics in a natural way.
So for instance, MLMAX“S,des“i

n pP q is the nˆ n matrix, whose pk, ℓq-entry is the number of
permutations π in SnpP q with LMAXpπq “ S, despπq “ i, iarpπq “ k and comppπq “ ℓ.

We also need the following operations on permutations.
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Definition 2.3. For a word w over Z, denote redpwq the reduction of w, which is obtained
from w by replacing the j-th smallest positive letter by j. For a given permutation π P Sn,
the deletion of i, for each i P rns, is the map that deletes i from π, and reduces the derived
word to a permutation, denoted as delipπq P Sn´1. Similarly, the insertion of i at place k,
for each i, k P rn`1s, is defined to be the map that increases all letters j ě i in π by 1, and
inserts i between πpk´ 1q and πpkq to get a new permutation, denoted as insi,kpπq P Sn`1.

2.2. The direct/skew sum operation and fundamental lemmas. There are two fun-
damental operations, called direct sum and skew sum, to construct a bigger permutation
from two smaller ones. The direct sum π ‘ σ and the skew sum π a σ, of π P Sk and
σ P Sl, are permutations in Sk`l defined respectively as

pπ ‘ σqi “
#
πi, for i P r1, ks;
σi´k ` k, for i P rk ` 1, k ` ls

and

pπ a σqi “
#
πi ` l, for i P r1, ks;
σi´k, for i P rk ` 1, k ` ls.

For instance, we have 123‘21 “ 12354 and 123a21 “ 34521. The following characterization
of separable permutations is folkloric (see [20, pp. 57]) in pattern avoidance.

Proposition 2.4. A permutation is separable if and only if it can be built from the permu-
tation 1 by applying the operations ‘ and a repeatedly.

A nonempty permutation which is not the direct sum of two nonempty permutations is
called indecomposable. Any permutation π with comppπq “ k can be written uniquely as
π “ τ1‘τ2‘¨ ¨ ¨‘τk, where each τi is indecomposable. We call such decomposition the direct
sum decomposition of π. Let idn denote the identity permutation of length n. A statistic
st is called totally ‘-compatible if stpπq “ řk

i“1
stpτiq and is called partially ‘-compatible

if stpπq “ řl

i“1
stpτiq, where l “ minpti : τi ‰ id1u Y tkuq. For instance, des and comp are

totally ‘-compatible, while iar is partially ‘-compatible. We emphasize here that totally
‘-compatibility does not imply partially ‘-compatibility.

Let P be a collection of patterns and pst1, st2, . . .q be a sequence of permutation statistics.
Let us introduce two generating functions with respect to pst1, st2, . . .q as

FP pt1, t2, . . . ; zq :“ 1 `
ÿ

ně1

zn
ÿ

πPSnpP q

ź

i

t
stipπq
i

and

IP pt1, t2, . . . ; zq :“
ÿ

ně1

zn
ÿ

πPInpP q

ź

i

t
stipπq
i ,

where In denotes the set of all indecomposable permutations of length n. We have the
following general lemma regarding the direct sum decomposition of permutations, which is
useful when considering the refinement of Wilf-equivalence by comp.
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Lemma 2.5. Let pst1, st2, . . . , st1
1, st

1
2, . . .q be a sequence of statistics such that sti is totally

‘-compatible and st1
i is partially ‘-compatible for each i. Let P and Q be two collections

of indecomposable patterns. We claim

(1) We have the following functional equation:

(2.2) FP pqq “ 1

1 ´ qw
` qpIP pt, t1q ´ wq

p1 ´ qIP pt, 1qqp1 ´ qwq ,

where w “ zt
st1pid1q
1

t
st2pid1q
2

¨ ¨ ¨ t1
1

st1
1

pid1q
t1
2

st1
2

pid1q ¨ ¨ ¨ , and

FP pqq :“ FP pq, t1, t2, . . . , t11, t12, . . . ; zq and IP pt, t1q :“ IP pt1, t2, . . . , t11, t12, . . . ; zq

are the generating functions with respect to pcomp, st1, st2, . . . , st
1
1
, st1

2
. . .q and

pst1, st2, . . . , st1
1
, st1

2
. . .q, respectively. In particular, IP pt, 1q :“ IP pt1, . . . , 1, . . . ; zq.

(2) If P „pst1,st2,...,st1
1
,st1

2
,...q Q, then P „pcomp,st1,st2,...,st

1
1
,st1

2
,...q Q holds as well. In particular,

if P „ Q, then P „comp Q.

Proof. Note that if σ is an indecomposable pattern and π “ τ1 ‘ τ2 ‘ ¨ ¨ ¨ ‘ τk, then

π is σ-avoiding ðñ τi is σ-avoiding for each i.

By general principles, the weight of π that contributes to the generating function FP pqq is
the product of the weights of τ1, τ2, . . . , τk. Among these k indecomposable components,
suppose the first i are trivial (i.e., id1) with weight w, the pi`1q-th component is nontrivial
thus generated by IP pt, t1q ´w, and the remaining k´ i´1 components do not affect those
partially ‘-compatible statistics t1, thus each is generated by IP pt, 1q. The discussions
above amount to give us

FP pqq “ 1 `
ÿ

ně1

qnpwn `
n´1ÿ

i“0

wipIP pt, t1q ´ wqIP pt, 1qn´1´iq

“ 1

1 ´ qw
` IP pt, t1q ´ w

IP pt, 1q ´ w

ˆ
qIP pt, 1q

1 ´ qIP pt, 1q ´ qw

1 ´ qw

˙
,

which becomes (2.2) after simplification.
In view of (2.2), the following three statements are equivalent:

(i) FP p1q “ FQp1q, namely P „pst1,st2,...,st1
1
,st1

2
,...q Q.

(ii) IP pt, t1q “ IQpt, t1q.
(iii) FP pqq “ FQpqq.

Thus, statement (i) is equivalent to its seemingly stronger form (iii), as desired. �

The following general lemma indicates that for a collection of indecomposable patterns,
say P , the equidistribution of certain statistic st with comp over SnpP q, implies the seem-
ingly stronger result that the joint distribution pst, compq is symmetric over SnpP q. This
result is somewhat surprising.
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Lemma 2.6. Let P be a collection of indecomposable patterns. Let st be a partially ‘-
compatible statistic such that stpid1q “ 1 and pst1, st2, . . .q be a sequence of totally ‘-
compatible statistics. If |SnpP qst,st1,st2,...| “ |SnpP qcomp,st1,st2,...|, then

|SnpP qst,comp,st1,st2,...| “ |SnpP qcomp,st,st1,st2,...|.
In particular, if st is a Comtet statistic over SnpP q, then pst, compq is a symmetric pair of
Comtet statistics over SnpP q.
Proof. Let FP pr, sq :“ FP pr, s, t1, t2, . . . ; zq and IP psq :“ IP ps, t1, t2, . . . ; zq be the generating
functions with respect to pcomp, st, st1, st2, . . .q and pst, st1, st2, . . .q, respectively. By the
realationship (2.2), we have

(2.3) FP pr, sq “ 1

1 ´ rsz
` rpIP psq ´ szq

p1 ´ rIP p1qqp1 ´ rszq .

Since FP p1, sq “ FP ps, 1q, it follows from the above identity that

1

1 ´ sz
` IP psq ´ sz

p1 ´ IP p1qqp1 ´ szq “ 1

1 ´ sz
` sIP p1q ´ z

p1 ´ sIP p1qqp1 ´ zq .

Solving this equation gives

IP psq “ sIP p1qpsz ´ z ´ 1 ` IP p1qq
1 ´ sIP p1q .

Plugging this into (2.3) results in

(2.4) FP pr, sq “ 1 ´ rsz ` prsz ` rs ´ r ´ sqIP p1q
p1 ´ rIP p1qqp1 ´ sIP p1qqp1 ´ rszq ,

which is symmetric in r and s. This completes the proof of the lemma. �

3. A single pattern of length 3

In this section, we deal with all patterns τ of length 3 and complete two tasks:

1) Show symmetry of the Comtet pair piar, compq, jointly with some other (set-valued)
statistics, over certain class of pattern-avoiding permutations or admissible words
(see Theorem 3.7). In all cases the proofs are combinatorial. We collect all the
bijections here for easy reference: ξ (Theorem 3.2), α and β (Theorem 3.4), ψ
(Theorem 3.7), ϕ (Theorem 3.13), and θ (Theorem 3.15).

2) Compute the trivariate generating function Spτqdes,iar,comppt, r, pq, which leads to
full iar- and comp-Wilf-equivalence classification. A snapshot of these results is
presented in Table 1. Putting t “ 1, and p “ 1 (or r “ 1) in the generating
functions listed in Table 1 and comparing the results, we can conclude that there
are three iar-Wilf-equivalence classes:

t213, 312, 321u, t132, 231u, and t123u.
While the comp-Wilf-equivalence classes are:

t231, 312, 321u, t132, 213u, and t123u.
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P S̃pt, r, pq MnpP q proved in

312
1 ´ pr ` p ` tNqz ` prp ` pr ` p ´ 1qtNqz2

p1 ´ rpzqp1 ´ rz ´ tNzqp1 ´ pz ´ tNzq
Symmetric Thm. 3.10

321
prpz ´ rz ` tzqC2 ´ prpz ` p ´ 1qC ` p

p1 ´ rpzqp1 ´ rzCqpp ` C ´ pCq
Equals Mnp312q Thm. 3.11

132
1

1 ´ rpz
`

p1 ´ zqpN ´ 1qt

p1 ´ rzqp1 ´ pzqp1 ´ z ´ pN ´ 1qtzq
Hankel Thm. 3.14

213
p1 ´ rzqptN ´ t ` 1q

p1 ´ rpzqp1 ´ rzptN ´ t ` 1qq
Lower triangular Thm. 3.16

231
p1 ´ pzqptN ´ t ` 1q

p1 ´ rpzqp1 ´ pzptN ´ t ` 1qq
Conjugate to Mnp213q Thm. 3.16

123
p1 ´ pqzptrz ´ tz ´ rq

p1 ´ tzq2
`

p1 ` rz ´ tzqC˚

zp1 ` z ´ tzq
2 ˆ 2 nonzero Thm. 3.17

Table 1. One pattern of length 3 (definitions of N , C and C˚ are given in
equations (3.6), (3.12) and (3.22), respectively)

3.1. Symmetric classes. For the three patterns 312, 321 and 132, the distributions of iar
and comp are not only identical, but also jointly symmetric. For the two indecomposable
patterns 312 and 321, this stronger property can be deduced from Lemma 2.6. But for the
pattern 132 “ 1 ‘ 21, we need to construct an involution ϕ on Snp132q, which actually
enables us to derive a more refined equidistribution (see Theorem 3.13). We begin with the
patterns the 321 and 312.

Patterns 312 and 321

Pattern 321 seems to always attract more attention than the rest of patterns in S3,
perhaps because of its role in Deodhar’s combinatorial framework for determining the
Kazhdan-Lusztig polynomials (see for instance [4]). Rubey [27] obtained an equidistri-
bution result over Snp321q by first mapping each 321-avoiding permutation, along with the
statistics involved, to a Dyck path via Krattenthaler’s bijection [22], and then constructing
an involution on Dyck paths. We restate his result here using 321-avoiding permutations
rather than Dyck paths. For each π P Sn, let

ldespπq :“ maxpt0u Y DESpπqq
be the position of the last descent of π. Recall the boldface notation xS defined in Theo-
rem 1.3.



REFINED WILF-EQUIVALENCES 11

Theorem 3.1 (Rubey [27]). There exists an involution on Snp321q which proves the
equidistribution

(3.1)
ÿ

πPSnp321q

scomppπqtn´ldespπ´1qxLMAXPpπq “
ÿ

πPSnp321q

sn´ldespπ´1qtcomppπqxLMAXPpπq.

We explain here why Theorem 3.1 is equivalent to our Theorem 1.1 (i) up to the elemen-
tary transformation π ÞÑ pπ´1qrc. Notice that for each π P Sn, we have the relationships

n´ ldespπrcq “ iarpπq and

LMAXPpπq “ LMINpπ´1q “ LMAXppπ´1qrcq,
where S̄ :“ tn ` 1 ´ i : i P Su for any subset S Ď rns. In view of these relationships and
Observation 2.2, we have

ÿ

πPSnp321q

scomppπqtn´ldespπ´1qxLMAXPpπq “
ÿ

pπ´1qrcPSnp321q

scompppπ´1qrcqtn´ldespπrcqxLMAXPppπ´1qrcq

“
ÿ

pπ´1qrcPSnp321q

scomppπqtiarpπqxLMAXpπq

“
ÿ

πPSnp321q

scomppπqtiarpπqxLMAXpπq.

Therefore, equidistribution (3.1) is equivalent to Theorem 1.1 (i).
In view of Lemma 2.5 (2), 321 „comp 312 since 321 „ 312. We have the following

refinement.

Theorem 3.2. For each n ě 1, there exists a bijection ξ, mapping each π P Snp321q onto
σ :“ ξpπq P Snp312q, such that

pLMAX,LMAXP, iar, compq π “ pLMAX,LMAXP, iar, compq σ.(3.2)

Sitting in the heart of our proof of Theorem 3.2, is a certain word composed of positive
integers and a symbol ˛ that stands for an empty slot, which we introduce now.

Definition 3.3. Given a nonempty set S “ ts1, . . . , sku Ď Zą0 with s1 ă ¨ ¨ ¨ ă sk, and a
weak composition c “ pc1, . . . , ckq of sk ´ k, we form a word

wS,c :“ s1 ˛ ¨ ¨ ¨ ˛loomoon
c1

s2 ˛ ¨ ¨ ¨ ˛loomoon
c2

s3 ¨ ¨ ¨ sk ˛ ¨ ¨ ¨ ˛loomoon
ck

.

It is said to be an admissible word with respect to S and c, if for 1 ď i ď k,

iÿ

j“1

cj ď si ´ i.(˚)

Let AWn denote the set of all admissible words of length n.

We also need to introduce the counterparts on AWn of the quadruple statistics in (3.2).
For each w :“ wS,c P AWn, let icspwq denote the number of initial consecutive letters
from S in w, equpwq denote the number of times the condition (˚) is satisfied with an
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equal sign, and SPpwq denote the set of positions (in w) of letters from S. For example, if
w “ 2 3 5 ˛ 7 ˛ ˛10 12 ˛ 13 ˛ ˛ with S “ t2, 3, 5, 7, 10, 12, 13u, then icspwq “ 3, equpwq “ 2,
SPpwq “ t1, 2, 3, 5, 8, 9, 11u.
Theorem 3.4. There exist two bijections α : Snp321q Ñ AWn and β : Snp312q Ñ AWn,
such that for any π P Snp321q and σ P Snp312q, we have

pLMAX,LMAXP, iar, compq π “ pS, SP, ics, equq wS,c,(3.3)

pLMAX,LMAXP, iar, compq σ “ pT, SP, ics, equq wT,d,(3.4)

where wS,c “ αpπq and wT,d “ βpσq.
Proof. Since the constructions for the two bijections α and β are almost the same (the only
difference lies in their inverses), we will give details mainly for α. For each π P Snp321q,
suppose

S :“ LMAXpπq “ tπpi1q “ πp1q, πpi2q, . . . , πpikqu.
Let c “ pc1, . . . , ckq, with ch “ ih`1 ´ ih ´ 1, for 1 ď h ď k ´ 1, ck “ n ´ ik. In other
words, each part of the composition c records the number of letters between two left-to-right
maxima, after having appended n ` 1 to the permutation π. Now we define αpπq :“ wS,c.

Note that πpi1q, . . . , πpikq are the left-to-right maxima of π, so we can verify the condition
(˚) holds for S and c, therefore α is a well-defined map from Snp321q to AWn. The map β is
defined analogously, only that now the preimage is a 312-avoiding, rather than 321-avoiding
permutation. Now we show both α and β are bijections by constructing their inverses. Take
a word wS,c P AWn, we replace all the ˛’s from left to right with the smallest unused letter
in rnszS. This results in a 321-avoiding permutation, say π̂. On the other hand, if we
replace all the ˛’s from left to right with the largest unused letter in rnszS, keeping letters
from S the left-to-right maxima, we will end up with a 312-avoiding permutation, say σ̂.

It should be clear that

LMAXpπ̂q “ S “ LMAXpσ̂q,
LMAXPpπ̂q “ SPpwS,cq “ LMAXPpσ̂q,
iarpπ̂q “ icspwS,cq “ iarpσ̂q,
comppπ̂q “ equpwS,cq “ comppσ̂q.

Now set α´1pwS,cq “ π̂ (resp. β´1pwS,cq “ σ̂). Evidently,

α´1pαpπqq “ π, β´1pβpσqq “ σ,

so α and β are indeed bijections that transform the quadruple statistics as shown in (3.3)
and (3.4). �

Proof of Theorem 3.2. Simply set ξ “ β´1 ˝α, and (3.2) follows immediately from (3.3)
and (3.4). �

Remark 3.5. When composed with the complement map, our bijection ξ is equivalent to
Simion and Schmidt’s [28] bijection from Snp123q to Snp132q. This bijection is also called
the Knuth–Richards bijection by Claesson and Kitaev [7], see also [12].
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In view of (3.3), the pair pics, equq on admissible words corresponds to the pair piar, compq
on 321-avoiding permutations, so Rubey’s Theorem 3.1 tells us that their distributions are
jointly symmetric over AWn. Note that Rubey’s proof was via an involution on Dyck
paths. We are able to construct an invertible map ψ over the set of admissible words. To
facilitate the description of ψ, we need the following definition.

Definition 3.6. Given an admissible word wS,c with S “ ts1, . . . , sku and c “ pc1, . . . , ckq,
the index i, 1 ď i ă k is said to be critical for w, if

iÿ

j“1

cj ă si ´ i ď
i`1ÿ

j“1

cj .

For the previous example w “ 2 3 5 ˛ 7 ˛ ˛10 12 ˛ 13 ˛ ˛, we see the indices 2, 3 and 6 are
critical for w. Let AWn,a,b denote the set of admissible words w :“ wS,c P AWn such that
icspwq “ a, equpwq “ b and s1 ą 1, where s1 is the smallest letter in S.

Theorem 3.7. For 1 ă a ď n and 1 ď b ă n, there exists a bijection ψ from AWn,a,b to
AWn,a´1,b`1, such that for each wS,c P AWn,a,b, if ψpwS,cq “ vT,d, then we have S “ T .

Proof. Take any w :“ wS,c P AWn,a,b with S “ ts1, . . . , sku and c “ pc1, . . . , ckq, we
explain how to produce an admissible word v :“ vS,d such that icspvq “ icspwq ´ 1 and
equpvq “ equpwq ` 1. Since icspwq “ a ě 2, we see c1 “ c2 “ ¨ ¨ ¨ “ ca´1 “ 0 and ca ą 0.
Find the smallest ℓ ě a ´ 1 such that the index ℓ is critical for w. Note that s1 ą 1

guarantees the existence of such an ℓ. Let d “ pd1, ¨ ¨ ¨ , dkq be defined as

di “

$
’’’&

’’’%

ci`1 if a ´ 1 ď i ď ℓ ´ 1,

si ´ i´ ři

h“1
ch if i “ ℓ,

ři

h“1
ch ´ ři´1

h“1
dh if i “ ℓ ` 1,

ci otherwise.

We denote v :“ vS,d the admissible word with respect to S and d, and set ψpwq “ v. It can

be checked that
řk

i“1
ci “ řk

i“1
di “ sk ´k and

řℓ

i“1
di “ sℓ ´ ℓ, hence equpvq “ equpwq ` 1

as desired. Also icspvq “ icspwq´1 “ a´1 since now d1 “ ¨ ¨ ¨ “ da´2 “ 0 and da´1 “ ca ą 0.
All it remains is to show that ψ is invertible. To this end, for each v :“ vS,d P AWn,a´1,b`1,

find the smallest integer ℓ such that
řℓ

i“1
di “ sℓ ´ ℓ. Note that since equpvq “ b ` 1 ě 2,

s1 ą 1 and d1 “ ¨ ¨ ¨ “ da´2 “ 0, we must have a ´ 1 ď ℓ ă k, and ℓ being the smallest
means dℓ ą 0. Now let c “ pc1, . . . , ckq be defined as

ci “

$
’’’&

’’’%

di´1 if a ď i ď ℓ,

0 if i “ a´ 1,

di´1 ` di if i “ ℓ ` 1,

di otherwise.

It is routine to check that w :“ wS,c is the desired preimage so that ψpwq “ v, icspwq “
icspvq ` 1, and equpwq “ equpvq ´ 1. �

The following result is the restatement of Theorem 1.1 (i) and (ii).
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Corollary 3.8. For every n ě 1, the two triples pLMAX, iar, compq and pLMAX, comp, iarq
have the same distribution over Snp321q; the two quadruples pLMAX,DESB, iar, compq and
pLMAX,DESB, comp, iarq have the same distribution over Snp312q.
Proof. For each permutation π P Snp321q with πp1q ą 1, we find a unique permutation
ρ P Snp321q such that

pLMAX, iar, compq π “ pLMAX, comp, iarq ρ.
If iarpπq “ comppπq, then simply take ρ “ π. Otherwise we assume iarpπq “ comppπq ` k

for some k ‰ 0, let

ρ “ α´1pψkpαpπqqq.
Combining Theorem 3.7 with (3.3), we verify that

LMAXpρq “ LMAXpπq,
iarpρq “ icspψkpαpπqqq “ icspαpπqq ´ k “ iarpπq ´ k “ comppπq, and

comppρq “ equpψkpαpπqqq “ equpαpπqq ` k “ comppπq ` k “ iarpπq,
as desired. Now both α and ψ are bijections, so π and ρ are in one-to-one correspondence.
On the other hand, for each π P Snp321q with πp1q “ 1, we see ν :“ del1pπq P Sn´1p321q
satisfies iarpνq “ iarpπq ´1, comppνq “ comppπq ´1, and LMAXpνq is the set obtained from
decreasing each number in LMAXpπqzt1u by 1. This means we can use induction to finish
the proof of the result for Snp321q.

Finally, applying the bijection β instead of α gives us the result for Snp312q. To see
why we can include DESB to have a quadruple in this case, simply observe that for each
permutation σ P Snp312q, LMAXpσq Y DESBpσq “ rns. �

For most of our calculations of the generating function SpP qpt, r, pq in this and later
sections, we use some kind of decomposition by considering the largest (resp. smallest)
letter n (resp. 1) in a permutation σ P Sn. A maximal consecutive subset of rns, all of
whose elements appear on the same side of n (resp. 1) in σ, is called a block with respect to
n (resp. 1). For example, the blocks with respect to 9 in 251986743 are t1, 2u, t3, 4u, t5u
and t6, 7, 8u. For two blocks (or sets) A and B, we write A ă B if the maximal element of
A is smaller than the minimal element of B. As usual, we use χpSq “ 1 if the statement S

is true, and χpSq “ 0 otherwise.
A square matrix is said to be Hankel if it has constant skew-diagonals. For the next

theorem and Theorems 3.14 and 4.2, a key fact utilized by us is that MnpP q or M st“i
n pP q is

a Hankel matrix. This not only implies that piar, compq is symmetric over SnpP q, but also
facilitates our calculation of the generating function SpP qdes,iar,comppt, r, p; zq. We elaborate
on the latter point with the next lemma.

Lemma 3.9. Suppose M “ pmijq1ďi,jďn is a Hankel matrix such that mij “ 0 when
i` j ě n` 2. Let Mpx, yq :“ ř

1ďi,jďnmijx
iyj and N pxq :“ BM

By
|y“0 “ ř

1ďiďnmi1x
i be the

generating functions of M and its first column, respectively. It holds that

Mpx, yq “ xy

x´ y
pN pxq ´ N pyqq.(3.5)
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Proof. The Hankel condition enables us to group together terms along the same skew-
diagonal. Noting that xiy ` xi´1y2 ` ¨ ¨ ¨ ` xyi “ xypxi ´ yiq{px´ yq for each 1 ď i ď n, we
have

Mpx, yq “
nÿ

i“1

pmi1x
iy ` mi´1 2x

i´2y2 ` ¨ ¨ ¨ ` m1ixy
iq “

nÿ

i“1

mi1pxiy ` ¨ ¨ ¨ ` xyiq

“ xy

x ´ y

nÿ

i“1

mi1pxi ´ yiq “ xy

x ´ y
pN pxq ´ N pyqq,

as desired. �

Recall the Narayana polynomial Nnptq :“ ř
πPSnpτq t

despπq (τ “ 312, 213, 132 or 231) and

its generating function (see e.g. [26, Eq. 2.6])

N :“ Npt; zq :“
ÿ

ně0

Nnptqzn “ 1 ` pt´ 1qz ´
a
1 ´ 2pt` 1qz ` pt´ 1q2z2

2tz
.(3.6)

Theorem 3.10. The generating function of the triple statistic pdes, iar, compq over Snp312q
is given by

S̃p312qdes,iar,comppt, r, pq “ 1 ´ pr ` p ` tNqz ` prp` pr ` p ´ 1qtNqz2
p1 ´ rpzqp1 ´ rz ´ tNzqp1 ´ pz ´ tNzq .(3.7)

Proof. Conditioning on the first letter πp1q, we claim that (the pattern “312” have all been
suppressed for brevity)

Spt, r, pq “ 1 ` rpzSpt, r, pq ` rp

r ´ p
pĨpt, rq ´ Ĩpt, pqq,(3.8)

where

Ĩpt, rq :“
ÿ

ně1

zn
ÿ

πPSnp312q
πp1qą1, comppπq“1

tdespπqriarpπq “ Spt, r, pq ´ 1 ´ rpzSpt, r, pq
p

ˇ̌
ˇ̌
p“0

(3.9)

“ rzpS̃pt, r, 0q ´ 1q.
Indeed, the first summand 1 in (3.8) corresponds to the empty permutation, and the second
to those with πp1q “ 1. As for the third summand, we consider permutations π with
πp1q ą 1. Now Eq. (3.4) and Theorem 3.7 tell us that for a given 1 R S Ď rns, the matrix
MLMAX“S

n p312q is Hankel. Moreover, Lemma 3.9 is applicable since the only permutation
with iarpπq “ n is π “ idn but we require that πp1q ą 1. Lastly, as we have already noted in
the proof of Corollary 3.8, each permutation σ P Snp312q satisfies LMAXpσq YDESBpσq “
rns. This means in particular that the statistic des takes the same value for all permutations
enumerated by MLMAX“S

n p312q, justifying the variable t in (3.9).
Next, plugging (3.9) into (3.8) yields

pr ´ pqp1 ´ rpzqS̃pt, r, pq “ rS̃pt, r, 0q ´ pS̃pt, p, 0q.(3.10)
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Setting p “ 1 in (3.10), solving for S̃pt, r, 0q and then plugging back into (3.10) gives us

pr ´ pqp1 ´ rpzqS̃pt, r, pq “ pr ´ 1qp1 ´ rzqS̃pt, r, 1q ´ pp ´ 1qp1 ´ pzqS̃pt, p, 1q.(3.11)

It remains to calculate S̃pt, r, 1q. Every nonempty 312-avoiding permutation π has the
block decomposition π “ A 1 B such that A and B are both 312-avoiding blocks with
A ă B. We consider the following two cases:

‚ A “ H, i.e. πp1q “ 1. This case contributes the generating function rzSpt, r, 1q.
‚ A ‰ H. This case contributes the generating function pSpt, r, 1q ´ 1qtzSpt, 1, 1q.

Summing up these two cases and noting that Spt, 1, 1q “ N , we deduce that

rzS̃pt, r, 1q “ rzSpt, r, 1q ` pSpt, r, 1q ´ 1qtzN.
Solving for S̃pt, r, 1q we get

S̃pt, r, 1q “ 1

1 ´ rz ´ tNz
.

Plugging this back into (3.11), we establish (3.7) after simplification. �

Recall that

(3.12) C :“ Sp321qdes,iar,comppt, 1, 1q “ 1 ´
?
1 ´ 4tz2 ` 4z2 ´ 4z

2zptz ´ z ` 1q ,

which is the generating function of the descent polynomials on 321-avoiding permutations,
first derived by Barnabei, Bonetti and Silimbani [3].

Theorem 3.11. The generating function of the triple statistic pdes, iar, compq over Snp321q
is given by

S̃p321qdes,iar,comppt, r, pq “ prpz ´ rz ` tzqC2 ´ prpz ` p ´ 1qC ` p

p1 ´ rpzqp1 ´ rzCqpp ` C ´ pCq .(3.13)

Proof. Recently, Fu, Han and Lin [15, Lemma 4.5] generalized (3.12) to

H :“ Sp321qdes,iar,comppt, r, 1q “ 1 ´ rzC ` trz2C2

p1 ´ rzqp1 ´ rzCq .

For convenience, let Iprq :“ I321pt, rq be the generating function over Inp321q with respect
to pdes, iarq. Since 321 is indecomposable, des is totally ‘-compatible and iar is partially
‘-compatible, Eq. (2.2) gives
(3.14)

Sp321qdes,iar,comppt, r, pq “ 1

1 ´ rpz
` ppIprq ´ rzq

p1 ´ pIp1qqp1 ´ rpzq “ 1 ´ ppIp1q ´ Iprqq ´ rpz

p1 ´ pIp1qqp1 ´ rpzq .

It follows that

Ip1q “ 1 ´ 1{C and Iprq ´ Ip1q “ pH{C ´ 1qp1 ´ rzq.
Substituting these back to (3.14) yields (3.13). �
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Pattern 132

Now we move onto the class of 132-avoiding permutations, on which the joint distribution
of piar, compq is symmetric as well. We collect in the following proposition some nice features
of 132-avoiding permutations. All of the statements should be clear from the 132-avoiding
restriction, thus the proof is omitted.

Proposition 3.12. For any permutation π P Snp132q, we have

(1) For 2 ď i ď n, πpiq is a descent bottom of π if and only if it is a left-to-right
minimum of π, i.e., LMINpπq “ DESBpπq Y tπp1qu.

(2) When read from left to right, the values of the left-to-right maxima of π form a
sequence of consecutive integers πp1q, πp1q ` 1, πp1q ` 2, . . . , n.

(3) The first k “ iarpπq letters of π equal πp1q, πp1q ` 1, . . . , πp1q ` k ´ 1.

(4) Provided k “ comppπq ě 2, the last k ´ 1 letters of π equal n´ k ` 2, . . . , n.

The next theorem strengthens Theorem 1.1 (iii).

Theorem 3.13. For all positive integers n, given any two subsets S, T Ď rns, the ma-
trix MLMAX“S,LMIN“T

n p132q is Hankel. Consequently, the distribution of the quadruple
pLMAX,LMIN, iar, compq is equal to that of pLMAX,LMIN, comp, iarq over Snp132q. In
terms of generating function, we have

ÿ

πPSnp132q

xLMAXpπqyLMINpπqriarpπqpcomppπq “
ÿ

πPSnp132q

xLMAXpπqyLMINpπqrcomppπqpiarpπq.(3.15)

In particular, we have
ÿ

πPSnp132q

tdespπqriarpπqpcomppπq “
ÿ

πPSnp132q

tdespπqrcomppπqpiarpπq.(3.16)

Proof. We begin by noting that if iarpπq “ comppπq “ 1, i.e., π is an indecomposable
132-avoiding permutation with πp1q ą πp2q, then it is counted by the top-left entry of
MLMAX“S,LMIN“T

n p132q for certain S and T . Similarly, if iarpπq “ comppπq “ n, then we

must have π “ idn and it corresponds to the bottom-right entry 1 ofM
LMAX“rns,LMIN“t1u
n p132q.

Otherwise, for the given subsets S, T Ď rns, take any permutation π P Snp132q such that
LMAXpπq “ S, LMINpπq “ T , 2 ď iarpπq ď n´ 1, and 1 ď comppπq ď n´ 2, we are going
to pair with it a unique permutation σ P Snp132q via a bijective map ϕ, such that

i. πpiq “ σpiq for 1 ď i ď iarpπq ´ 1.
ii. LMAXpσq “ LMAXpπq “ S, and LMINpσq “ LMINpπq “ T .
iii. iarpσq “ iarpπq ´ 1, and comppσq “ comppπq ` 1.

In terms of the two operations deletion and insertion that we introduce in Definition 2.3,
we let

σ “ ϕpπq :“ insn,npdelπp1qpπqq,
with

π “ ϕ´1pσq :“ insσp1q,1pdelnpσqq
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being the inverse map. We illustrate this definition by giving an example, where the letters
affected by this map have been overlined.

π “ 5̄ 6̄ 7̄ 3 4 8̄ 2 9̄ s10 1 s11
σ “ 5̄ 6̄ 3 4 7̄ 2 8̄ 9̄ 1 s10 s11

Applying Proposition 3.12, it is rountine to verify i, ii, and iii, and we leave the details to
the reader. Items ii and iii ensure that MLMAX“S,LMIN“T

n p132q is Hankel as claimed. Now
for any permutation π P Snp132q with iarpπq “ j ą comppπq “ k, we see τ :“ ϕj´kpπq is a
permutation in Snp132q with

pLMAX,LMIN, iar, compq τ “ pLMAX,LMIN, comp, iarq π.
Pairing permutations in this way leads to (3.15).

Finally, by Proposition 3.12 (1) we have LMINpπqztπp1qu “ DESBpπq. Furthermore,
item i above implies in particular that πp1q “ σp1q, combining this with LMINpπq “
LMINpσq we obtain (3.16). �

Theorem 3.14. We have

S̃p132qdes,iar,comppt, r, pq “ 1

1 ´ rpz
` p1 ´ zqpN ´ 1qt

p1 ´ rzqp1 ´ pzqp1 ´ z ´ pN ´ 1qtzq .(3.17)

Proof. The proof is analogous to that of Theorem 3.10. Noting that Mdes“k
n p132q is Hankel

for any fixed integer 0 ď k ď n ´ 1 by Theorem 3.13, we begin by interpreting this in
terms of generating function. Empty permutation and identity permutations of all lengths
contribute 1{p1 ´ rpzq, while the remaining permutations are taken care of by Lemma 3.9,
yielding

Spt, r, pq “ 1

1 ´ rpz
` rp

r ´ p

ÿ

ně2

zn
ÿ

πPInp132q

tdespπqpriarpπq ´ piarpπqq

“ 1 ` prpzq2
1 ´ rpz

` rp

r ´ p

ÿ

ně1

zn
ÿ

πPInp132q

tdespπqpriarpπq ´ piarpπqq.

Converting to S̃pt, r, pq we have

S̃pt, r, pq “ rpz

1 ´ rpz
` rS̃pt, r, 0q ´ pS̃pt, p, 0q

r ´ p
.(3.18)

Plugging in p “ 1 we have

S̃pt, r, 1q “ rz

1 ´ rz
` rS̃pt, r, 0q ´ S̃pt, 1, 0q

r ´ 1
.

Now solve for S̃pt, r, 0q and substitute the result back in (3.18) we get

S̃pt, r, pq “ rpz

1 ´ rpz
`

pr ´ 1qpS̃pt, r, 1q ´ rz
1´rz

q ´ pp ´ 1qpS̃pt, p, 1q ´ pz

1´pz
q

r ´ p
.(3.19)
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Next, we decompose each 132-avoiding permutation π as π “ A n B, where A and B are
blocks with A ą B. In the same vein as with 312-avoiding class, the discussion by two
cases leads us to

S̃pt, r, 1q “ p1 ´ zqp1 ` tpN ´ 1qq
p1 ´ rzqp1 ´ z ´ tzpN ´ 1qq .

We plug this back into (3.19) and simplify to arrive at (3.17). �

3.2. Asymmetric classes. We deal with the three remaining classes, namely, 213-, 231-,
and 123-avoiding permutations. The distributions of iar and comp on each of these classes
are different. We are content with deriving their joint generating functions with des, and
addressing a conjugate relation between Mnp213q and Mnp231q.
Patterns 213 and 231

Theorem 3.15. For every n ě 0, there exists a bijection θ : Snp213q Ñ Snp231q, such
that for π P Snp213q and σ :“ θpπq P Snp231q, we have πp1q “ σp1q and

pdes, iar, compq π “ pdes, comp, iarq σ.
In particular, the matrices Mnp213q and Mnp231q are conjugation of each other.

Proof. Recall the direct sum, the skew sum, and the two operations deletion and insertion
that we introduce in section 2. We define θ recursively. For n “ 0, 1, 2, θ : Snp213q Ñ
Snp231q is taken to be the identity map. Now suppose θ has been defined for all k ă
n pn ě 3q, then take any π P Snp213q, we can uniquely decompose π “ πp1q A B with
A ą πp1q ą B. Now suppose redpAq “ µ and B “ ν, then we see delπp1qpπq “ µa ν, where
both µ and ν are 213-avoiding, possibly empty permutations. Let

σ :“ θpπq :“ insπp1q,1pθpνq ‘ θpµqq.
The following facts can be readily verified.

(1) σ P Snp231q;
(2) σp1q “ πp1q;
(3) despσq “ χpν ‰ Hq ` despθpνqq ` despθpµqq “ despπq;
(4) comppσq “ 1 ` comppθpµqq “ 1 ` iarpµq “ iarpπq;
(5) iarpσq “ 1 ` χpν “ Hq ¨ iarpθpµqq “ 1 ` χpν “ Hq ¨ comppµq “ comppπq.

So we see σ is the desired image of π, and the proof is now completed by induction. �

The equidistribution between pdes, iar, compq over Snp213q and pdes, comp, iarq over Snp231q
could also be drawn from comparing the following generating functions.

Theorem 3.16. We have

S̃p213qdes,iar,comppt, r, pq “ p1 ´ rzqptN ´ t` 1q
p1 ´ rpzqp1 ´ rzptN ´ t ` 1qq and(3.20)

S̃p231qdes,iar,comppt, r, pq “ p1 ´ pzqptN ´ t ` 1q
p1 ´ rpzqp1 ´ pzptN ´ t ` 1qq .(3.21)
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Proof. We begin with the calculation of S̃p213qdes,iar,comppt, r, pq. Each π P Snp213q can be
decomposed as π “ πp1qAB, where A ą πp1q ą B are 213-avoiding blocks, possibly empty.
For n ě 2, we consider the following three cases:

‚ A “ H, B ‰ H. This case contributes the generating function trpzpSpt, 1, 1q ´ 1q.
‚ A ‰ H, B “ H. This case contributes the generating function rpzpSpt, r, pq ´ 1q.
‚ A ‰ H, B ‰ H. This case contributes trpzpSpt, r, 1q ´ 1qpSpt, 1, 1q ´ 1q.

Summing up these three cases and noting that Spt, 1, 1q “ N , we deduce that

Spt, r, pq “ 1 ` rpz ` trpzpN ´ 1q ` rpzpSpt, r, pq ´ 1q ` trpzpSpt, r, 1q ´ 1qpN ´ 1q.
Now we plug in p “ 1 and solve for Spt, r, 1q, then plug it back to deduce (3.20) after
simplification.

Decomposing each π P Snp231q as π “ πp1q A B with A ă πp1q ă B, and calculating
along the same line, we can establish (3.21) as well. �

Pattern 123

For π P Snp123q, clearly iarpπq ď 2 and comppπq ď 2. We aim to calculate

S̃p123qdes,iar,comppt, r, pq “ Apt, pq ` rBpt, pq,
where

pzApt, pq :“
ÿ

ně1

zn
ÿ

πPSnp123q, iarpπq“1

tdespπqpcomppπq “ pz ` tpz2 ` ptp ` t2p ` tp2qz3 ` ¨ ¨ ¨ ,

pzBpt, pq :“
ÿ

ně2

zn
ÿ

πPSnp123q, iarpπq“2

tdespπqpcomppπq “ p2z2 ` ptp ` tp2qz3 ` ¨ ¨ ¨ .

By (3.12), the generating function for the descent polynomials on 123-avoiding permu-
tations is

C˚ :“ Sp123qdes,iar,comppt, 1, 1q ´ 1 “ Sp321qdes,iar,comppt´1, 1, 1; tzq ´ 1

t
(3.22)

“ ´1 ` 2tz ` 2tz2 ´ 2t2z2 `
?
1 ´ 4tz ´ 4tz2 ` 4t2z2

2t2zptz ´ z ´ 1q .

Theorem 3.17. We have

Apt, pq “ pp ´ 1qtz2
p1 ´ tzq2 ` p1 ´ tzqC˚

p1 ´ tz ` zqz ,(3.23)

Bpt, pq “ pp ´ 1qz
1 ´ tz

` C˚

1 ´ tz ` z
.(3.24)

Thus,

S̃p123qdes,iar,comppt, r, pq “ p1 ´ pqzptrz ´ tz ´ rq
p1 ´ tzq2 ` p1 ` rz ´ tzqC˚

zp1 ` z ´ tzq .

Proof. For π P Snp123q with iarpπq “ 1 and comppπq “ 2, we can decompose it as π “ AB,
where A ă B are both decreasing subsequences with |A| ě 2 and |B| ě 1. On the other
hand, if π P Snp123q and iarpπq “ 2, then we must have πp2q “ n, and we calculate the two
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cases πp1q ą πp3q and πp1q ă πp3q separately. All these amount to give us the functional
equations:

#
Apt, pq “ tpz2

p1´tzq2
` C˚

z
´ Bpt, 1q ´ tz2

p1´tzq2
,

Bpt, pq “ pz ` zpApt, 1q ´ 1q ` tzBpt, pq.
Solving this system of equations gives rise to (3.23) and (3.24). �

The following corollary can be proved combinatorially from analyzing the designated
123-avoiding permutations. But we prove it here algebraically relying on the generating
function derived in Theorem 3.17.

Corollary 3.18. For n ě 2, let S˚
np123q :“ tπ P Snp123q : despπq “ n ´ 2u, then we have

ÿ

ně2

zn
ÿ

πPS˚
np123q

riarpπqpcomppπq “ r2p2z2

1 ´ z
` pr ` pqrpz3

p1 ´ zq2 ` pz3 ` 2z4qrp
p1 ´ zq2p1 ´ 2zq .(3.25)

In particular, the distribution of piar, compq is symmetric over S
˚
np123q, and the number of

permutations π P S˚
np123q with iarpπq “ comppπq “ 1 is the sequence A095264 in [25].

Proof. To calculate the generating function in (3.25), we need to extract the coefficients of

tn´2zn in Sp123qdes,iar,comppt, r, pq for each n ě 2. For rpzApt, pq, the term pp´1qtrpz3

p1´tzq2
expands

to terms all of the form tn´2zn, so we simply set t “ 1 to get pp´1qrpz3

p1´zq2
, while for the term

rpp1´tzqpSpt,1,1q´1q
1´tz`z

, we substitute tz for z, and 1{t for t in

rptp1 ´ tzqC˚

1 ´ tz ` z
,

then take partial derivative B{Bt and let t “ 0 to obtain 2rpz3

p1´zq2p1´2zq
. Similar approach yields

the coefficients from r2pzBpt, pq and establishes (3.25). The claim about the symmetric
distribution is evident from checking the variables r and p in (3.25). �

4. Two patterns of length 3

In this section, we let P “ pτ1, τ2q be a pair of patterns of length 3, so there are
`
6

2

˘
“ 15

different pairs to consider. Once again, we accomplish two tasks as in Section 3 and
assemble our results in Table 2.

The Wilf-classification of pairs of length 3 patterns was done by Simion and Schmidt [28].
There are three Wilf-equivalent classes, which further split into eleven iar-Wilf-equivalent
subclasses: the class enumerated by 2n´1 splits into 6 classes

tp132, 213q, p132, 312q, p213, 231q, p231, 312q, p231, 321qu,
tp132, 231qu, tp213, 312qu, tp312, 321qu, tp123, 132qu, tp123, 213qu;

the class enumerated by 1 `
`
n

2

˘
splits into 4 classes

tp132, 321qu, tp123, 231qu, tp213, 321qu, tp123, 312qu;
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P “ pτ1, τ2q S̃pt, r, pq MnpP q proved in

p132, 312q
1

1 ´ rpz
`

p1 ´ zqtz

p1 ´ rzqp1 ´ pzqp1 ´ z ´ tzq
Hankel Thm. 4.2

p132, 321q
1

1 ´ rpz
`

tz

p1 ´ rzqp1 ´ pzqp1 ´ zq
0-1 Hankel Thm. 4.2

p213, 231q
1 ´ z

p1 ´ rpzqp1 ´ z ´ tzq
Diagonal Thm. 4.3

p123, 312q
1 ` rpz

1 ´ tz
`

pr ` pqtz2

p1 ´ tzq2
`

t2z3

p1 ´ tzq3
2 ˆ 2 Hankel Thm. 4.4

p213, 312q
1 ´ rz

p1 ´ rpzqp1 ´ pr ` tqzq
Lower triangular Thm. 4.6

p231, 312q
1 ´ pz

p1 ´ rpzqp1 ´ pp ` tqzq
Conjugate to Mnp213, 312q Thm. 4.6

p231, 321q
1 ´ p1 ` p ´ tqz ` p1 ´ tqpz2

p1 ´ rpzqp1 ´ pp ` 1qz ` p1 ´ tqpz2q
Upper triangular Thm. 4.6

p132, 213q
1

1 ´ rpz
`

tz

p1 ´ rzqp1 ´ z ´ tzq
Lower triangular Thm. 4.8

p132, 231q
1

1 ´ rpz
`

tz

p1 ´ pzqp1 ´ z ´ tzq
Conjugate to Mnp132, 213q Thm. 4.8

p213, 321q
1

1 ´ rpz
`

tz

p1 ´ zqp1 ´ rzqp1 ´ rpzq
Lower triangular Thm. 4.9

p312, 321q 1

1´rpz
` p1´zqtz

p1´rpzqp1´rzqp1´p1`pqz`p1´tqpz2q No pattern Thm. 4.10

p123, 132q 1 ` rpz ` tpz2

1´tz
` tzp1`z´tzqp1`pr´tqz`p1´rqtz2q

p1´tzqpp1´tzq2´tz2q
2 ˆ 2 nonzero Thm. 4.11

p123, 213q 1 `
rpz

1 ´ tz
`

tzp1 ´ tz ` rzqp1 ´ tz ` zq

p1 ´ tzqpp1 ´ tzq2 ´ tz2q
2 ˆ 2 nonzero Thm. 4.11

p123, 231q
1 ` rpz

1 ´ tz
`

p1 ` p ´ tpzqtz2

p1 ´ tzq3
2 ˆ 2 nonzero Thm. 4.11

p123, 321q
1 ` pt ` rpqz ` p1 ` rqp1 ` pqtz2

`p2r ` t ` ptqtz3
Ultimately zero Thm. 4.11

Table 2. Two patterns of length 3
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and the terminating (i.e., enumerated by 0 when n ě 5) class tp123, 321qu stays as a single
class. For comp-Wilf-equivalences, the class enumerated by 2n´1 splits into 4 classes

tp132, 231q, p132, 312q, p213, 231q, p213, 312qu, tp132, 213qu
tp123, 132q, p123, 213qu, tp231, 312q, p231, 321q, p312, 321qu

and the class enumerated by 1 `
`
n

2

˘
splits into 2 classes

tp132, 321q, p213, 321qu, tp123, 231q, p123, 312qu.

All the above refined Wilf-equivalences can be easily proven by setting t “ 1, and p “ 1

(or r “ 1) in the generating functions listed in Table 2.

4.1. Symmetric classes. For P P tp132, 312q, p132, 321q, p213, 231q, p123, 312qu, the joint
distribution of pdes, iar, compq is symmetric for iar and comp over SnpP q. We consider these
four classes in this subsection.

Pattern pairs p132, 312q and p132, 321q

First note that if the pattern 312 (resp. 321) occurs in a permutation π, then we can
always find an occurrence of 312 (resp. 321) in π with the role of “3” played by a left-to-right
maximum of π. Now recall the bijection ϕ we construct in the proof of Theorem 3.13. For
each π P Snp132q, observe that π P Snp132, 312q (resp. π P Snp132, 321q) if and only if
ϕpπq P Snp132, 312q (resp. ϕpπq P Snp132, 321q). This fact, combined with Theorem 3.13,
immediately give us the following theorem.

Theorem 4.1. For all positive integers n, given any two subsets S, T Ď rns, the matrix
MLMAX“S,LMIN“T

n pP q is Hankel, for P P tp132, 312q, p132, 321qu. Consequently, the distribu-
tion of the quadruple pLMAX,LMIN, iar, compq is equal to that of pLMAX,LMIN, comp, iarq
over SnpP q. In terms of generating function, we have

ÿ

πPSnpP q

xLMAXpπqyLMINpπqriarpπqpcomppπq “
ÿ

πPSnpP q

xLMAXpπqyLMINpπqrcomppπqpiarpπq.

In particular, we have
ÿ

πPSnpP q

tdespπqriarpπqpcomppπq “
ÿ

πPSnpP q

tdespπqrcomppπqpiarpπq.

This symmetry can also be seen directly from the following generating functions.

Theorem 4.2. We have

S̃p132, 312qdes,iar,comppt, r, pq “ 1

1 ´ rpz
` p1 ´ zqtz

p1 ´ rzqp1 ´ pzqp1 ´ z ´ tzq ,(4.1)

S̃p132, 321qdes,iar,comppt, r, pq “ 1

1 ´ rpz
` tz

p1 ´ rzqp1 ´ pzqp1 ´ zq .(4.2)
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Proof. The proof is quite analogous to that of Theorem 3.14. First for (4.1), Theorem 4.1
tells us that MLMAX“S,LMIN“T

n p132, 312q is Hankel. Relying on Lemma 3.9 again, we rein-
terpret this in terms of generating function (details left to the readers):

S̃pt, r, pq “ rpz

1 ´ rpz
`

pr ´ 1qpS̃pt, r, 1q ´ rz
1´rz

q ´ pp ´ 1qpS̃pt, p, 1q ´ pz

1´pz
q

r ´ p
.(4.3)

Next, note that all idn :“ 12 ¨ ¨ ¨n with n ě 0 contribute collectively 1{p1 ´ rpzq to
Sp132, 312qdes,iar,comppt, r, pq. On the other hand, every π P Snp132, 312q with despπq ą 0

can be uniquely decomposed as π “ A n B, where A ą B are two (possibly empty) blocks
such that B is decreasing and A is 132- and 312-avoiding. We consider the following two
cases.

‚ B “ H. This case contributes the generating function pzpSpt, r, pq ´ 1

1´rpz
q.

‚ B ‰ H. This case contributes tz
1´tz

¨ rpz

1´rz
` tpz2

1´tz
pSpt, r, 1q ´ 1

1´rz
q.

Summing up all cases gives us

Spt, r, pq “ 1

1 ´ rpz
`pzpSpt, r, pq´ 1

1 ´ rpz
q` trpz2

p1 ´ tzqp1 ´ rzq ` tpz2

1 ´ tz
pSpt, r, 1q´ 1

1 ´ rz
q.

Set p “ 1 and solve to get

S̃p132, 312qdes,iar,comppt, r, 1q “ 1 ´ z

p1 ´ rzqp1 ´ z ´ tzq ,

then plug this back into (4.3) and simplify, we get (4.1). The proof of (4.2) is simpler
noting that for π P Snp132, 321q with the decomposition π “ A n B, both A and B are
increasing if B ‰ H. The details are omitted. �

Pattern pair p213, 231q
The first thing to notice is that for every π P Snp213, 231q, we must have πp1q “ 1 or

n, and iarpπq “ comppπq. The latter can be proved by induction relying on the former. In
terms of generating function, this means

Spt, r, pq “ Spt, rp, 1q, and

Spt, r, pq “ 1 ` rpzSpt, r, pq ` trpzpSpt, 1, 1q ´ 1q.
Solving these two functional equations gives us

Theorem 4.3.

S̃p213, 231qdes,iar,comppt, r, pq “ 1 ´ z

p1 ´ rpzqp1 ´ z ´ tzq .

Pattern pair p123, 312q
For every permutation π P Snp123, 312q, there are only five possible values for the triple

pdespπq, iarpπq, comppπqq, since 123-avoiding implies iarpπq ď 2 and comppπq ď 2, while
both 312- and 123-avoiding forces despπq ě n ´ 2. Now it suffices to enumerate each case
separately.
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‚ pdespπq, iarpπq, comppπqq “ pn´1, 1, 1q. There is a unique permutation idr

n “ n ¨ ¨ ¨ 21
for this case, which contributes rpz

1´tz
to the generating function.

‚ pdespπq, iarpπq, comppπqq “ pn´2, 2, 2q. There is a unique permutation 1‘ idr

n´1 for

this case, which contributes r2p2z2

1´tz
to the generating function.

‚ pdespπq, iarpπq, comppπqq “ pn ´ 2, 1, 1q. Permutations in this case are of the form
π “ a a ´ 1 ¨ ¨ ¨ b n ¨ ¨ ¨ a ` 1 b ´ 1 ¨ ¨ ¨ 1, where 1 ă b ă a ă n. Therefore this case

contributes t2rpz4

p1´tzq3
to the generating function.

‚ pdespπq, iarpπq, comppπqq “ pn ´ 2, 2, 1q or pn ´ 2, 1, 2q. These two cases can be

discussed similarly as the last case, and the contributions are tr2pz3

p1´tzq2
and trp2z3

p1´tzq2
.

Summing up all cases above gives rise to

Theorem 4.4.

S̃p123, 312qdes,iar,comppt, r, pq “ 1 ` rpz

1 ´ tz
` pr ` pqtz2

p1 ´ tzq2 ` t2z3

p1 ´ tzq3 .

4.2. Asymmetric classes. For the remaining choices of P , the distribution of piar, compq
over SnpP q is not symmetric. However, we still observe some conjugative pairs as in
Section 3.

Pattern pairs p213, 312q, p231, 312q and p231, 321q
Recall the two bijections, ξ from Theorem 3.2, and θ from Theorem 3.15. Observe that

‚ π P Snp231, 321q if and only if ξpπq P Snp231, 312q.
‚ π P Snp213, 312q if and only if θpπq P Snp231, 312q.

Then the following theorem is a quick corollary of Theorems 3.2 and 3.15.

Theorem 4.5. For each n ě 1, the quadruple pLMAX,LMAXP, iar, compq has the same
distribution over Snp231, 321q and Snp231, 312q; the distribution of the triple pdes, iar, compq
over Snp213, 312q is equal to that of pdes, comp, iarq over Snp231, 312q.

Next, we compute the generating functions for these three pairs.

Theorem 4.6. We have

S̃p213, 312qdes,iar,comppt, r, pq “ 1 ´ rz

p1 ´ rpzqp1 ´ pr ` tqzq ,(4.4)

S̃p231, 312qdes,iar,comppt, r, pq “ 1 ´ pz

p1 ´ rpzqp1 ´ pp ` tqzq ,(4.5)

S̃p231, 321qdes,iar,comppt, r, pq “ 1 ´ p1 ` p ´ tqz ` p1 ´ tqpz2
p1 ´ rpzqp1 ´ pp ` 1qz ` p1 ´ tqpz2q .(4.6)

Proof. In view of Theorem 4.5, (4.4) follows from (4.5) by switching variables r and p.
To prove (4.5), note that both patterns 231 and 312 are indecomposable, thus we can
apply Lemma 2.5 to reduce the calculation to that of the generating function of pdes, iarq
over Inp231, 312q. But the indecomposable permutations in Snp231, 312q are precisely
idr

n “ n n ´ 1 ¨ ¨ ¨ 1, thus I231,312pt, rq “ rz
1´tz

. Plugging this back into (2.2) gives us (4.5).
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Finally, every permutation in Inp231, 321q must be of the form 1 a idn´1 “ n 1 2 ¨ ¨ ¨n´ 1,

yeilding the generating function I231,321pr, tq “ rz ` trz2

1´z
. Applying (2.2) from Lemma 2.5

again, we derive (4.6) and complete the proof. �

Pattern pairs p132, 213q and p132, 231q
For the same reason that the bijection θ from Theorem 3.15 preserves the 132-avoidance,

we have the following conjugate relation.

Theorem 4.7. For each n ě 1, the distribution of the triple pdes, iar, compq over Snp132, 213q
is equal to that of pdes, comp, iarq over Snp132, 231q.

Next, note that each permutation π P Snp132, 231q either begins with πp1q “ n, or ends
with πpnq “ n. Calculating these two cases separately we have

Spt, r, pq “ 1

1 ´ rpz
` pzpSpt, r, pq ´ 1

1 ´ rpz
q ` trpzpSpt, 1, 1q ´ 1q.

Solving this and applying Theorem 4.7, we can deduce the following theorem.

Theorem 4.8. We have

S̃p132, 213qdes,iar,comppt, r, pq “ 1

1 ´ rpz
` tz

p1 ´ rzqp1 ´ z ´ tzq ,

S̃p132, 231qdes,iar,comppt, r, pq “ 1

1 ´ rpz
` tz

p1 ´ pzqp1 ´ z ´ tzq .

Pattern pair p213, 321q
Note that each permutation π P Snp213, 321q can be decomposed as π “ AnB, where A

and B are both increasing blocks, and B is consisted of consecutive integers. Calculating
the two cases 1 P A and 1 P B separately, we obtain the following theorem.

Theorem 4.9. We have

S̃p213, 321qdes,iar,comppt, r, pq “ 1

1 ´ rpz
` tz

p1 ´ zqp1 ´ rzqp1 ´ rpzq .

Pattern pair p312, 321q
Noting that both 312 and 321 are indecomposable patterns, we apply (2.2)

FP pqq “ 1

1 ´ qw
` qpIP pt, t1q ´ wq

p1 ´ qIP pt, 1qqp1 ´ qwq
from Lemma 2.5 (1) to reduce the calculation to

I312,321pt, rq :“
ÿ

ně1

zn
ÿ

πPSnp312,321q
comppπq“1

tdespπqriarpπq.
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Now any indecomposable π P Snp312, 321q must be of the form π “ 2 3 ¨ ¨ ¨n 1. Hence

I312,321pt, rq “ rz ` trz2

1 ´ rz
,

with which we can deduce

Theorem 4.10.

S̃p312, 321qdes,iar,comppt, r, pq “ 1

1 ´ rpz
` p1 ´ zqtz

p1 ´ rpzqp1 ´ rzqp1 ´ p1 ` pqz ` p1 ´ tqpz2q .

Pattern pairs p123, 132q, p123, 213q, p123, 231q and p123, 321q
These four pattern sets all contain the pattern 123, hence iarpπq ď 2 and comppπq ď 2

for each permutation π in SnpP q. We take similar approach as Theorem 3.17, or analyze
the position of 1 or n in π, to calculate their generating functions. We collect the results
in the following theorem but omit the proof.

Theorem 4.11. We have

S̃p123, 132qdes,iar,comppt, r, pq “ 1 ` rpz ` tpz2

1 ´ tz
` tzp1 ` z ´ tzqp1 ` pr ´ tqz ` p1 ´ rqtz2q

p1 ´ tzqpp1 ´ tzq2 ´ tz2q ,

S̃p123, 213qdes,iar,comppt, r, pq “ 1 ` rpz

1 ´ tz
` tzp1 ´ tz ` rzqp1 ´ tz ` zq

p1 ´ tzqpp1 ´ tzq2 ´ tz2q ,

S̃p123, 231qdes,iar,comppt, r, pq “ 1 ` rpz

1 ´ tz
` p1 ` p ´ tpzqtz2

p1 ´ tzq3 ,

S̃p123, 321qdes,iar,comppt, r, pq “ 1 ` pt ` rpqz ` p1 ` rqp1 ` pqtz2 ` p2r ` t ` ptqtz3.

5. Schröder classes: two patterns of length 4

This section aims to characterize the pattern pair P of length 4 whose distribution
matrix MnpP q equals Mnp2413, 3142q. The first few values of the symmetric matrices
Mnp2413, 3142q are:

„
1 0

0 1


,

»

–
2 1 0

1 1 0

0 0 1

fi

fl ,

»

——
–

7 3 1 0

3 3 1 0

1 1 1 0

0 0 0 1

fi

ffiffi
fl ,

»

————
–

28 12 4 1 0

12 11 4 1 0

4 4 3 1 0

1 1 1 1 0

0 0 0 0 1

fi

ffiffiffiffi
fl
,

»

—————
–

121 52 18 5 1 0

52 46 17 5 1 0

18 17 12 4 1 0

5 5 4 3 1 0

1 1 1 1 1 0

0 0 0 0 0 1

fi

ffiffiffiffiffi
fl
.

The integer sequence formed by the entries in the upper-left corner ofMnp2413, 3142q begins
with

1, 1, 2, 7, 28, 121, 550, 2591, . . . .

This sequence appears to match A010683 in the OEIS [25], a sequence that counts, among
many combinatorial objects, dissections of a convex polygon with n ` 3 sides having a
triangle over a fixed side (the base) of the polygon. This coincidence can be proved by
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comparing S̃pSqp1, 0, 0q from the expression (5.4) with the generating function supplied in
the entry A010683.

The first result in this section is a consequence of Theorems 1.3 and 1.5.

Corollary 5.1. For n ě 1,

(5.1)
ÿ

πPSnp2413,3142q

tdespπqxcomppπqyiarpπq “
ÿ

πPSnp2413,4213q

tdespπqxcomppπqyiarpπq.

Consequently,

(5.2)
ÿ

πPSnp2413,4213q

tdespπqxcomppπqyiarpπq “
ÿ

πPSnp2413,4213q

tdespπqxiarpπqycomppπq

Proof. Since the patterns 2413, 4213 and 3142 are indecomposable, the equidistribution (5.1)
is a consequence of Theorem 1.5 (with x “ 1) and Lemma 2.5.

The identity (5.2) follows directly from (5.1) and Theorem 1.3. �

Remark 5.2. In view of Corollary 5.1, one may wonder that if (1.2) can be further refined
by comp. This is not true and it turns out that even pdd, compq is not equidistributed over
S5p2413, 3142q and S5p2413, 4213q. Can Theorem 1.5 be further refined by other classical
permutation statistics (cf. [20])?

Lin and Kim [24] showed that, among all permutation classes avoiding two patterns of
length 4, the three classes below are the only nontrivial classes which are des-Wilf equivalent
to the class of separable permutations.

Theorem 5.3 (Lin and Kim [24, Theorem 5.1]). We have the refined Wilf-equivalences:

p2413, 3142q „des p2413, 4213q „DES p2314, 3214q „DES p3412, 4312q.
It should be noted that iar is not a Comtet statistic over Snp2314, 3214q. Computer

program indicates that, among all permutation classes avoiding two patterns of length 4,
the classes of p2413, 4213q and p3412, 4312q are the only two that are pdes, iar, compq-Wilf
equivalent to the class of separable permutations.

Theorem 5.4. We have the refined Wilf-equivalence p2413, 4213q „pDES,compq p3412, 4312q.
In particular,

p2413, 3142q „pdes,iar,compq p2413, 4213q „pdes,iar,compq p3412, 4312q.
Consequently,

(5.3)
ÿ

πPSnp3412,4312q

tdespπqxcomppπqyiarpπq “
ÿ

πPSnp3412,4312q

tdespπqxiarpπqycomppπq.

In order to prove Theorem 5.4, we need a set-valued version of Lemma 2.5. For an integer
ℓ and a set S “ ts1, s2, . . .u, let ℓ ‘ S :“ tℓ ` s1, ℓ ` s2, . . .u. A set-valued statistic ST is
called totally ‘-compatible if for each π “ τ1 ‘ τ2 ‘ ¨ ¨ ¨ ‘ τk with each τi an indecomposable
permutation of length ℓi,

STpπq “
kď

i“1

ci ‘ STpτiq,
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where ci “ ři´1

j“1
ℓj. Note that the set-valued statistics DES, DESB, LMAX and LMAXP

are all totally ‘-compatible.

Lemma 5.5. Let pST1, ST2, . . .q be a sequence of totally ‘-compatible set-valued statistics.
Let P and Q be two collections of indecomposable patterns. If pST1, ST2, . . .q has the same
distribution over SnpP q and SnpQq for n ě 1, then so does pcomp, ST1, ST2, . . .q.
Proof. Since P {Q is a collection of indecomposable patterns, each P {Q-avoiding permu-
tation is a direct sum of some smaller P {Q-avoiding permutations. Thus, it is sufficient
to show that if pST1, ST2, . . .q is equidistributed over SnpP q and SnpQq for n ě 1, then
pST1, ST2, . . .q is equidistributed over InpP q and InpQq. We aim to prove this by induction
on n.

Obviously, the assertion is true for n “ 1. Suppose that pST1, ST2, . . .q is equidis-
tributed over InpP q and InpQq for n ď m. It follows that pST1, ST2, . . .q is equidistributed
over Sm`1zIm`1pP q and Sm`1zIm`1pQq, as pST1, ST2, . . .q is a sequence of totally ‘-
compatible set-valued statistics. Now pST1, ST2, . . .q is also equidistributed over Sm`1pP q
and Sm`1pQq and so pST1, ST2, . . .q is equidistributed over Im`1pP q and Im`1pQq. This
completes the proof by induction. �

Proof of Theorem 5.4. The refined Wilf-equivalence p2413, 4213q „pDES,compq p3412, 4312q
is a direct consequence of Theorem 5.3 and Lemma 5.5, as the set-valued statistic DES

is totally ‘-compatible. The other two statements then follow immediately from Corol-
lary 5.1. �

Next we compute the generating function S̃pSqpt, r, pq “ pSpSqpt, r, p; zq´1q{rpz with re-
spect to pdes, iar, compq, where S is a pattern pair in tp2413, 3142q, p2413, 4213q, p3412, 4312qu.
Theorem 5.6. Let Sptq :“ SpSqpt, 1, 1; zq ´ 1. Then,

S̃pSqpt, r, pq “ p1{z ` 1 ´ r ´ pqSptq ` p1 ´ rqp1 ´ pqSptq2
p1 ´ rpzqp1 ` p1 ´ pqSptqqp1 ` p1 ´ rqSptqq ,(5.4)

where Sptq satisfies the algebraic functional equation

(5.5) Sptq “ z ` p1 ` tqzSptq ` tzSptq2 ` tSptq3.
Proof. The functional equation (5.5) for the generating function Sptq of the descent poly-
nomials over separable permutations was proved in [17]. Since the patterns 2413 and 3142

are indecomposable, des is totally ‘-compatible and iar is partially ‘-compatible, Eq. (2.4)
gives

(5.6) SpSqpt, r, p; zq “ 1 ´ rpz ` prpz ` rp´ r ´ pqIS
p1 ´ rISqp1 ´ pISqp1 ´ rpzq ,

where IS :“ ISpt; zq is the generating function with respect to des. Since Sptq “ IS
1´IS

, we
have

IS “ Sptq
1 ` Sptq .

Substitute this into (5.6) and simplify, we get (5.4). �
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Aided by the computer program, we make the following conjecture, whose validity will
complete the characterization of pattern pairs of length 4 that are iar-Wilf equivalent to
the class of separable permutations.

Conjecture 5.7. Let P R tp2413, 3142q, p2413, 4213q, p3412, 4312qu be a pair of patterns
of length 4. Then, P is iar-Wilf equivalent to p2413, 4213q if and only if P is one of the
following eleven pairs:

p1324, 2134q, p1324, 3124q, p1423, 4123q, p1432, 4132q, p2134, 2314q, p2314, 3124q
p2431, 4231q, p2431, 3241q, p3241, 3421q, p3421, 4231q, p3421, 4321q.

Moreover, if P is one of the last five pairs (i.e., those in the second line above), then P is
piar, compq-Wilf equivalent to p2413, 4213q.
Remark 5.8. In view of Lemma 2.5, the second assertion for the piar, compq-Wilf equiva-
lences in Conjecture 5.7 follows automatically from the first assertion, as all the patterns
appear in the last five pairs are indecomposable.

In the rest of this section, we aim to confirm Conjecture 5.7 for the pattern pair P “
p2431, 4231q using the technique of generating trees, which was originally employed to study
the Baxter permutations by Chung, Graham, Hoggatt and Kleiman [6], see also [28, 31].

Theorem 5.9. We have the refined Wilf equivalence

p2413, 4213q „pLMAXP,compq p2431, 4231q.
In particular, p2413, 4213q „plmax,iar,compq p2431, 4231q and Conjecture 5.7 is true for P “
p2431, 4231q.

In view of Lemma 5.5, to prove Theorem 5.9, it is sufficient to prove the refined Wilf-
equivalence p2413, 4213q „LMAXP p2431, 4231q. We will prove this by showing a growth rule
for p2431, 4231q-avoiding permutations and then comparing it with that of p2413, 4213q-
avoiding permutations.

For π P Sn´1 and i P rns, let insipπq :“ insi,npπq P Sn. For example, ins3p14532q “
156423. If π P Sn´1p2431, 4231q, then introduce the set of available inserting values of π
as

AVApπq :“ tk P rns : inskpπq P Snp2431, 4231qu “ tk1 ą k2 ą ¨ ¨ ¨ u.
Clearly, if i P AVApπq, then k P AVApπq for any i ď k ď n, since the newly inserted letter,
which appears at the end, can only play the role of ‘1’ in a pattern 2431 or 4231. Thus,
AVApπq “ rm,ns :“ tm,m` 1, . . . , nu for some m ă n. We will call m the critical value of
π in the sequel. For example, we have AVAp14523q “ r3, 6s.

We have the following growth rule for p2431, 4231q-avoiding permutations.

Lemma 5.10. Suppose π P Sn´1p2431, 4231q with AVApπq “ rm,ns. Then,

AVApinsjpπqq “
#

rj, n` 1s, if m ď j ď n´ 1;

rm,n` 1s, if j “ n.
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p2q˚

p3q˚ p3q

p4q˚ p4q p3q p4q˚ p4q p3q

Figure 1. First three levels of the generating tree for Yně1Snp2431, 4231q.

Proof. For m ď j ď n ´ 1, the letters j ´ 1 (if j ě 2) and j ` 1 appear before j in insjpπq
and these three letters form a pattern 132 or 312. Thus, j´1 R AVApinsjpπqq. On the other
hand, suppose π̂ :“ insjpinsjpπqq “ π̂p1q ¨ ¨ ¨ π̂pnqπ̂pn ` 1q, then we see π̂paq, π̂pbq, π̂pcq and
π̂pnq “ j ` 1 form a pattern 2431 or 4231, if and only if π̂paq, π̂pbq, π̂pcq and π̂pn ` 1q “ j

do. This means we have j P AVApinsjpπqq. Therefore j is the critical value of insjpπq and
AVApinsjpπqq “ rj, n` 1s. Clearly, AVApinsnpπqq “ rm,n` 1s. This completes the proof of
the lemma. �

The definition of AVApπq for a p2413, 4213q-avoiding permutation π was introduced
similarly in [24], where they proved the following growth rule. Note that for any π P
Sn´1p2413, 4213q, AVApπq always contains 1 and n.

Lemma 5.11 (Lin and Kim [24, Lemma 5.3]). Suppose π P Sn´1p2413, 4213q with

AVApπq “ tn “ k1 ą k2 ą ¨ ¨ ¨ ą km “ 1u.
Then, for 1 ď j ď m,

AVApinskjpπqq “ tn ` 1 ě kj ` 1 ą kj ą kj`1 ą ¨ ¨ ¨ ą km “ 1u.
We are ready to prove Theorem 5.9 by constructing the generating trees for both classes.

Proof of Theorem 5.9. Label each π P Snp2431, 4231q by |AVApπq|, then Lemma 5.10
produces the rewriting rule:

ΩSch “
#

p2q
pkq pk ` 1q, pk ` 1q, pkq, pk ´ 1q, . . . , p3q.(5.7)

This means that the initial permutation id1 has label p2q and all the p2431, 4231q-avoiding
permutations derived from inserting a letter at the end of a p2431, 4231q-avoiding permu-
tation labeled by pkq, are exactly those with labels pk ` 1q, pk ` 1q, pkq, pk ´ 1q, . . . , p3q.

We can construct a generating tree (an infinite rooted and labeled tree) for p2431, 4231q-
avoiding permutations by representing each permutation as a node on the tree using its
label. More precisely, the root is labeled p2q, and the children of a node labeled pkq are
those generated according to the rewriting rule ΩSch in (5.7). In addition, the labels for
those permutations ending with their greatest letter will have an extra ‘˚’, and we will call
the corresponding nodes the star nodes. So in this generating tree, every node has precisely
one child being a star node. See Fig. 1 for the first few levels of this generating tree. Note
that the nodes at the n-th level of this tree are in one-to-one correspondence with elements
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of Snp2431, 4231q. Moreover, if a permutation π P Snp2431, 4231q is labeled by ℓpπq, and
the unique path from the root p2q˚ to ℓpπq goes through p1 “ p2q˚, p2, . . . , pn “ ℓpπq, then

LMAXPpπq “ ti : pi is a star nodeu.
For instance, the second p4q˚ appearing in level 3 corresponds to 213 and LMAXPp213q “
t1, 3u. In other words, the distribution of LMAXP over p2431, 4231q-avoiding permutations
is completely determined by this generating tree.

It can be readily checked that Lemma 5.11 gives the same rewriting rule ΩSch for
p2413, 4213q-avoiding permutations, which in turn, produces for p2413, 4213q-avoiding per-
mutations the identical generating tree as p2431, 4231q-avoiding permutations. This proves
p2413, 4213q „LMAXP p2431, 4231q, as desired. �

6. Revisiting separable and (2413,4213)-avoiding permutations

The main purpose of this section is to prove Theorem 1.5. We begin with the motivation
that leads to the discovery of Theorem 1.5.

Recall that a sequence e “ pe1, e2, . . . , enq P N
n is an inversion sequence of length n if

ei ă i for each i P rns. An inversion sequence is 021-avoiding if its positive entries are
weakly increasing. Denote by Inp021q the set of 021-avoiding inversion sequences of length
n. Kim and Lin [24]

‚ constructed a bijection Ψ : Inp021q Ñ Snp2413, 4213q which transforms the set-
valued statistic ASC to DES, where ASCpeq :“ ti P rn´ 1s : ei ă ei`1u is the set of
ascents of e. In particular, together with the works in [10, 17, 23] we know

(6.1) Snptq “
ÿ

ePInp021q

tascpeq “
ÿ

πPSnp2413,4213q

tdespπq,

where ascpeq :“ |ASCpeq|;
‚ proved combinatorially via the so-called modified Foata–Strehl action that

(6.2)
ÿ

πPSnp2413,4213q

tdespπq “
tn´1

2
uÿ

k“0

|Γn,kp2413, 4213q|tkp1 ` tqn´1´2k.

Recall that Γn,kp2413, 4213q is the set of permutations in Snp2413, 4213q with k descents
and without double descents. Combining (1.1), (6.1) and (6.2) yields

(6.3) |Γn,kp2413, 3142q| “ |Γn,kp2413, 4213q|
for all 0 ď k ď n ´ 1. This identity was refined recently by Wang [30] as

(6.4)
ÿ

πPSnp2413,3142q

tdespπqxddpπq “
ÿ

πPSnp2413,4213q

tdespπqxddpπq,

where ddpπq denotes the number of double descents of π. Setting x “ 0 in (6.4) we
recover (6.3).

Theorem 1.5 is a refinement of Wang’s equidistribution (6.4) by the Comtet statistic iar.
The three numerical statistics des, dd and iar are all determined by the set-valued statistic
DES, but unfortunately p2413, 4213q is not DES-Wilf equivalent to p2413, 3142q. In spite of
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that, we still have the refined Wilf-equivalence p2413, 4213q „pdes,dd,iarq p2413, 3142q, to our
surprise. Our proof of Theorem 1.5 is purely algebraic, basing on Kim–Lin’s bijection Ψ, a
decomposition of 021-avoiding inversion sequences and Stankova’s block decomposition of
separable permutations [29]. It would be interesting to construct a bijective proof of this
equidistribution.

As we will see, some easy combinatorial arguments on 021-avoiding inversion sequences
(see Theorem 6.1) together with Theorem 1.5 provide an alternative approach to a recent
result of the first and third authors [18, Theorem 3.2].

6.1. A recurrence for 021-avoiding inversion sequences. For each inversion sequence
e “ pe1, . . . , enq, let izeropeq :“ minpASCpeq Y tnuq be the number of initial zeros of e. It
follows from the aforementioned bijection Ψ that for 1 ď k ď n,

(6.5) In,k :“ |te P Inp021q : izeropeq “ ku| “ |tπ P Snp2413, 4213q : iarpπq “ ku|.
Thus,

In,k “ |tπ P Snp2413, 3142q : iarpπq “ ku|
by Theorem 1.5. We have the following recurrence relation for In,k.

Theorem 6.1. We have I1,1 “ 1 and

In,1 “
n´1ÿ

k“1

2k´1In´1,k for n ě 2,(6.6)

In,i “ In´1,i´1 `
n´1ÿ

k“i

2k´iIn´1,k for 2 ď i ď n.(6.7)

Proof. Let In,k :“ te P Inp021q : izeropeq “ ku. For each inversion sequence e P Inp021q,
let δpeq “ pē2, ē3, . . . , ēnq P In´1p021q with ēi “ ei ´ χpei ą 0q for 2 ď i ď n. The mapping
δ : Inp021q Ñ In´1p021q is surjective. To see (6.6), for any e P In´1p021q with izeropeq “ k,
there are exactly 2k´1 preimages of e in In,1 under δ, because

‚ each of the k initial zeros of e, except for the first zero, can be either 0 or 1 in its
preimages;

‚ but all zeros after the first positive entry of e, must remain zeros in its preimages,
to guarantee that they are 021-avoiding.

Recursion (6.7) follows from similar reasoning. �

6.2. Proof of Theorem 1.5. We will prove Theorem 1.5 by showing that the generating
functions for both sides of (1.2) satisfy the same algebraic functional equation. We begin
with the calculation of the generating function for the right-hand side of (1.2):

Gpt, x, y; zq :“
ÿ

ně1

zn
ÿ

πPSnp2413,4213q

tdespπqxddpπqyiarpπq

“ yz ` py2 ` txyqz2 ` py3 ` 2txy2 ` 2ty ` t2x2yqz3 ` ¨ ¨ ¨ .
For any e “ pe1, e2, . . . , enq P Inp021q, we always attach en`1 “ n to the end of e. Let
dapeq :“ |t1 ă i ď n : ei´1 ă ei ă ei`1u| be the number of double ascents of e. Since the
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bijection Ψ : Inp021q Ñ Snp2413, 4213q transforms the set-valued statistics ASC to DES,
we have

Gpt, x, y; zq “
ÿ

ně1

zn
ÿ

ePInp021q

tascpeqxdapeqyizeropeq.

Lemma 6.2. We have the algebraic functional equation for G :“ Gpt, x, y; zq:
(6.8) y3z ` ptxy2z ` 3y3z ´ 2y2z ´ y2qG ` c2G

2 ` c3G
3 “ 0,

where

c2 :“ 2txy2z ´ 2txyz ` 3y3z ` tyz ´ 4y2z ´ 2y2 ` yz ` 2y and

c3 :“ txy2z ´ 2txyz ` y3z ` txz ` tyz ´ 2y2z ´ tz ´ y2 ` yz ` t ` 2y ´ 1.

Proof. Let Ĩnp021q be the set of pairs a “ pe, φq, where e P Inp021q and φ is an arbitrary

function from rrs to t0, 1u when izeropeq “ r. So Ĩnp021q can be viewed as 021-avoiding
inversion sequences of length n whose initial zeros are 2-colored. Let

Ĩ
p0q
n p021q :“ tpe, φq P Ĩnp021q : φp1q “ 0u and Ĩ

p1q
n p021q :“ Ĩnp021qzĨp0q

n p021q.
For each a “ pe, φq P Ĩnp021q with izeropeq “ r, if a P Ĩ

p0q
n p021q, then define

ascpaq :“ ascpeq ` |ti P rr ´ 1s : φpiq ă φpi ` 1qu|
and

dapaq :“ dapeq ` χpφpr ´ 1q ă φprqq;
otherwise, a P Ĩ

p1q
n p021q and we define

ascpaq :“ ascpeq ` |ti P rr ´ 1s : φpiq ă φpi` 1qu| ` 1

and
dapaq :“ dapeq ` χpφpr ´ 1q ă φprqq ` χpe2 “ 1q.

The reason of defining these two statistics in this way will become transparent when we
decompose 021-avoiding inversion sequences. Let us introduce two generating functions

G̃0pt, x; zq :“
ÿ

ně1

zn
ÿ

aPĨ
p0q
n p021q

tascpaqxdapaq and G̃1pt, x; zq :“
ÿ

ně1

zn
ÿ

aPĨ
p1q
n p021q

tascpaqxdapaq.

For convenience, we use the convention that Ĩ
p0q
0

p021q, Ĩp1q
0

p021q and I0p021q contain only
the empty inversion sequence.

Each e “ pe1, . . . , enq P Inp021q with k “ minti P rns : ei`1 “ iu can be decomposed into

a pair pê, aq, where ê :“ pe2, e3, . . . , ekq P Ik´1p021q and a :“ pẽ, φq P Ĩ
p1q
n´kp021q such that

‚ ẽ “ pẽ1, ẽ2, . . . ẽn´kq with ẽℓ “ ek`ℓ ´ k ¨ χpek`ℓ ą 0q for 1 ď ℓ ď n´ k;
‚ and φpiq “ χpek`i ą 0q for 1 ď i ď izeropẽq.

This decomposition is reversible and satisfies

ascpeq “ ascpêq ` ascpaq,
dapeq “ dapêq ` dapaq, and

izeropeq “ izeropêq ` 1.
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A1

A2

¨ ¨ ¨

Ak

n

B1

B2

¨ ¨ ¨

Bl

Figure 2. The block decomposition of separable permutations

Turning the above decomposition into generating function yields

(6.9) G “ yzp1 ` Gqp1 ` G̃1q.
Similar decomposition as above for 2-colored 021-avoiding inversion sequences gives the

system of functional equations
#
G̃0 “ zp1 ` G̃0 ` G̃1qp1 ` G̃1q,
G̃1 “ zptx ` tG̃0 ` tzp1 ´ xqp1 ` G̃1q ` G̃1qp1 ` G̃1q.

Eliminating G̃0 gives the functional equation for Ḡ1 :“ 1 ` G̃1:

Ḡ1 “ 1 ` ptxz ´ 2zqḠ1 ` ptz2 ´ 2txz2 ` z2 ` 2zqḠ2

1 ` ptxz3 ´ tz3 ` tz2 ´ z2qḠ3

1.

On the other hand, solving (6.9) gives Ḡ1 “ G
yzp1`Gq

. Substituting this expression into the

above equation for Ḡ1 results in (6.8). �

Next, we continue to compute the generating function for the left-hand side of (1.2):

S “ Spt, x, y; zq :“
ÿ

ně1

zn
ÿ

πPSnp2413,3142q

tdespπqxddpπqyiarpπq

“ yz ` py2 ` txyqz2 ` py3 ` 2txy2 ` 2ty ` t2x2yqz3 ` ¨ ¨ ¨ .
This will be accomplished by applying Stankova’s block decomposition [29] (see also [23])
of separable permutations that we now recall.

Lemma 6.3 (Stankova [29]). A permutation σ P Sn is a separable permutation (i.e. avoids
2413 and 3142) if and only if:

(i) σ is of the form (positions of the blocks)

A1, A2, . . . , Ak, n, B1, B2, . . . , Bl, p|k ´ l| ď 1q,
where A1 ă A2 ă ¨ ¨ ¨ ă Ak and B1 ą B2 ą ¨ ¨ ¨ ą Bl are blocks with respect to n.

(ii) The elements in any block form a permutation that avoids both 2413 and 3142.

See Fig. 2 for a transparent illustration of this lemma. Condition (ii) is clear, while
condition (i) is equivalent to saying that n is not an element of any subsequence of σ that
is order isomorphic to 2413 or 3142. Note that in the block decomposition, the minimal
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block can appear on either side of n. For example, compare the block decompositions of
259867431 and 143867952.

For convenience, we need to introduce two variants of the double descents. Let

dd0pπq :“ |ti P rns : πpi´ 1q ą πpiq ą πpi` 1qu|,
where πp0q “ 0 and πpn` 1q “ `8, and

dd8pπq :“ |ti P rns : πpi ´ 1q ą πpiq ą πpi` 1qu|,
where πp0q “ `8 and πpn` 1q “ 0. Let us introduce

L “ Lpt, x, y; zq :“
ÿ

ně1

zn
ÿ

πPSnp2413,3142q

tdespπqxdd0pπqyiarpπq “ yz ` pty ` y2qz2 ` ¨ ¨ ¨

and

R “ Rpt, x; zq :“
ÿ

ně1

zn
ÿ

πPSnp2413,3142q

tdespπqxdd8pπq “ xz ` p1 ` tx2qz2 ` ¨ ¨ ¨ .

Set B “ Bpy; zq :“ yz

1´yz
and L̃ :“ L´ B, where Bpy; zq enumerates identity permutations

by length and iar.

Lemma 6.4. Let S1 “ S|y“1 and L1 “ L|y“1. We have the system of functional equations

(6.10)

$
’’’’’’&

’’’’’’%

L1 “ S1p1`tS1q
1`txS1

,

R “ S1pS1`xq
1`S1

,

S1 “ tS3
1

` tzS2
1

` pz ` txzqS1 ` z,

p1 ´ zqL̃ “ tS1Bp1`Bq
1´tRB

` tzS1L̃p2`L1`B`tR´tRL1Bq
p1´tRBqp1´tRL1 q

,

S “ Bp1`tRq
1´tRB

` zL̃p1`tRq2

p1´tRBqp1´tRL1 q
.

Proof. The first three equations of (6.10) were proved by Wang [30]. We begin with the
proof of the fifth equation in (6.10) by writing S as an expression in L and R. By Lemma 6.3,
every permutation π P Snp2413, 3142q has block decomposition

A1, A2, . . . , Ak, n, B1, B2, . . . , Bl, p|k ´ l| ď 1q,
where A1 ă A2 ă ¨ ¨ ¨ ă Ak and B1 ą B2 ą ¨ ¨ ¨ ą Bl are blocks with respect to n. We
distinguish three cases according to the pair pk, lq:

1) pk, lq “ pj, jq (j ě 1). Permutations in this case contribute to S the generating
function

2yzBjptRqj ` 2

jÿ

i“1

zBi´1L̃L
j´i
1 ptRqj.

2) pk, lq “ pj ` 1, jq (j ě 0), and thus 1 P A1. Permutations in this case contribute to
S the generating function

yzBj`1ptRqj `
j`1ÿ

i“1

zBi´1L̃L
j`1´i
1 ptRqj.
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3) pk, lq “ pj, j ` 1q (j ě 0), and thus 1 P Bl. Permutations in this case contribute to
S the generating function

yzBjptRqj`1 `
jÿ

i“1

zBi´1L̃L
j´i
1

ptRqj`1.

Summing over all the above cases gives the fifth equation of (6.10). The fourth equation
of (6.10) is obtained by writing L as an expression of L, R and S1 via the same block
decomposition, the details of which are omitted due to the similarity. �

We are ready to verify Theorem 1.5.

Proof of Theorem 1.5. We aim to verify that S satisfies the same functional equation
as G in (6.8). From the first two equations of (6.10) we see that L1 and R are rational

fractions in S1. Thus, in view of the fourth equation of (6.10), L̃ is also a rational fraction
in S1. Consequently, by the fifth equation of (6.10), S is a rational fraction in S1 as well.

Plugging the expressions for L1, R and L̃ into the fifth equation of (6.10) for S and factoring
out (using Maple) the rational fraction

y3z ` ptxy2z ` 3y3z ´ 2y2z ´ y2qS ` c2S
2 ` c3S

3,

where c2 and c3 are defined in Lemma 6.2, we see the factor tS3
1

` tzS2
1

` pz` txz´1qS1 `z

appears in the denominator (the resulting rational fraction is too long to be included here).
This factor is zero due to the third equation of (6.10), which proves that S satisfies the
same functional equation as G in (6.8). This completes the proof of Theorem 1.5. �

7. Conclusion

In this paper, we launch a systematic study of the Wilf-equivalence refined by two
permutation statistics, namely comp, the number of components, and iar, the length of
the initial ascending run, for all patterns (resp. pairs of patterns) of length 3. The re-
sults are summarized in Table 1 (resp. Table 2), where the trivariate generating functions
SpP qdes,iar,comppt, r, p; zq are supplied as well. In the cases where the pair piar, compq, to-
gether with other set-valued statistics, is symmetric over certain class of pattern-avoiding
permutations, we construct various bijections to prove them (see e.g. Theorems 3.2, 3.13,
3.15, and 4.1). On the other hand, our proof of the result concerning separable permuta-
tions (see Theorem 1.5) is algebraic, and can hardly be called simple. Therefore, a direct
bijection from Snp2413, 3142q to Snp2413, 4213q that preserves the statistics des, dd and
iar is much desired.

In view of Lemmas 2.6 and 5.5, we pose the following open problem about a set-valued
extension of Lemma 2.6 for further investigation.

Problem 7.1. Let ST be a totally ‘-compatible set-valued statistic. Let P be a set of
indecomposable patterns. Is it true that

|SnpP qST,iar| “ |SnpP qST,comp| ðñ |SnpP qST,iar,comp| “ |SnpP qST,comp,iar|?
In particular, we suspect that Problem 7.1 is true when ST is the statistic LMAX.
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Conjecture 7.2. Let P be a set of indecomposable patterns. Then

|SnpP qLMAX,iar| “ |SnpP qLMAX,comp| ðñ |SnpP qLMAX,iar,comp| “ |SnpP qLMAX,comp,iar|.
It is our hope, that the results presented and conceived (see also Conjecture 5.7) here,

would attract more people to work on Wilf-equivalences refined by Comtet statistics, or to
unearth and study new Comtet statistics in general.
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