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SOME NEW SERIES FOR 1/π MOTIVATED BY

CONGRUENCES

ZHI-WEI SUN

Abstract. In this paper, via symbolic computation we deduce a family
of six new series for 1/π, for example,

∞
∑

n=0

41673840n + 4777111

5780k
Wn

(

1444

1445

)

=
147758475
√

95 π

where Wn(x) =
∑

n

k=0

(

n

k

)(

n+k

k

)(

2k
k

)(

2(n−k)
n−k

)

xk. In addition, we pose 17

new series for 1/π motivated by congruences; for example, we conjecture
that

∞
∑

k=0

4290k + 367

3136k

(

2k

k

)

Tk(14, 1)Tk(17, 16) =
5390

π
,

where Tk(b, c) is the coefficient of xk in the expansion of (x2 + bx+ c)k.

1. Introduction

Let n ∈ N = {0, 1, 2, . . .}. In 1894 J. Franel [8] introduced the usual

Franel numbers fn =
∑n

k=0

(n
i

)3
(n ∈ N) and the Franel numbers f

(4)
n =

∑n
k=0

(n
k

)4
(n ∈ N) of order four. By the Zeilberger algorithm (cf. [9]), the

sequence (f
(4)
n )n≥0 satisfies the following recurrence first claimed by Franel:

(n+ 2)3f
(4)
n+2 = 4(1 + n)(3 + 4n)(5 + 4n)f (4)

n + 2(3 + 2n)(7 + 9n+ 3n2)f
(4)
n+1.

M. Rogers and A. Straub [11] confirmed the suthor’s conjectural series for
1/π involving Franel polynomials.

In 2005 Y. Yang used mofular forms of level 10 to discover the following
curious identity relating Franel numbers of order four to Ramanujan-type
series for 1/π:

∞
∑

k=0

4k + 1

36k
f
(4)
k =

18√
15 π

.

More this kind of identities were deduced by S. Cooper [4] in 2012 via modu-
lar forms. For the classical Ramanujan-type series for 1/π, one may consult
[1, 2, 10] and the nice survey given by Cooper [5, Chapter 14].

Key words and phrases. Ramanujan-type series for 1/π, congruences, binomial coeffi-
cients, symbolic computation.
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For n ∈ N the polynomial

Wn(x) =

n
∑

k=0

(

n

k

)(

n+ k

k

)(

2k

k

)(

2(n− k)

n− k

)

xk

=

n
∑

k=0

(

n+ k

2k

)(

2k

k

)2(2(n− k)

n− k

)

xk

at x = −1 coincides with (−1)nf
(4)
n , this can be easily verified since the

sequence ((−1)nWn(−1))n≥0 satisfies the same recurrence as (f
(4)
n )n≥0. In

2011 the author [12, (3.1)-(3.10)] proposed ten identities of the form

∞
∑

k=0

ak + b

mk
Wk

(

1

m

)

=
C

π
,

where a, b,m are integers with am 6= 0, and C2 is rational. They were later
confirmed in [6].

In this paper we establish six new series for 1/π involving Wn(x).

Theorem 1.1. We have the following identities:

∞
∑

k=0

45k + 8

40k
Wk

(

9

10

)

=
215

√
15

12π
, (1.1)

∞
∑

k=0

1360k + 389

(−60)k
Wk

(

16

15

)

=
205

√
15

π
, (1.2)

∞
∑

k=0

735k + 124

200k
Wk

(

49

50

)

=
10125

√
7

56π
, (1.3)

∞
∑

k=0

376380k + 69727

(−320)k
Wk

(

81

80

)

=
260480

√
5

3π
, (1.4)

∞
∑

k=0

348840k + 47461

1300k
Wk

(

324

325

)

=
1314625

√
2

12π
, (1.5)

∞
∑

k=0

41673840k + 4777111

5780k
Wk

(

1444

1445

)

=
147758475√

95 π
. (1.6)

We also have 9 conjectural series for 1/π involving Wn(x) as listed in the
following conjecture.
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Conjecture 1.1. We have the following identities:

∞
∑

k=0

4k + 1

6k
Wk

(

−1

8

)

=

√

72 + 42
√
3

π
, (1.7)

∞
∑

k=0

392k + 65

(−108)k
Wk

(

−49

12

)

=
387

√
3

π
, (1.8)

∞
∑

k=0

168k + 23

112k
Wk

(

63

16

)

=
1652

√
3

9π
, (1.9)

∞
∑

k=0

1512k + 257

(−320)k
Wk

(

−405

64

)

=
1184

√
35

5π
, (1.10)

∞
∑

k=0

56k + 9

324k
Wk

(

25

4

)

=
1134

√
35

125π
, (1.11)

∞
∑

k=0

13000k − 1811

(−1296)k
Wk

(

−625

9

)

=
49356

√
39

5π
, (1.12)

∞
∑

k=0

9360k − 1343

1300k
Wk

(

900

13

)

=
21515

√
39

3π
, (1.13)

∞
∑

k=0

56355k + 2443

(−5776)k
Wk

(

−83521

361

)

=
4669535

√
2

68π
, (1.14)

∞
∑

k=0

5928k + 253

5780k
Wk

(

1156

5

)

=
28951

√
2

4π
. (1.15)

Remark 1.1. Note that the left-hand sides of (1.1)-(1.15) have the form
∑∞

k=0(ak + b)Wk(x)/m
k with mx an integer square. Motivated by congru-

ences, the author found (1.1)-(1.15) during August 23-29, 2020.

van Hamme [20] thought that classical Ramanujan-type series for 1/π
should have their p-adic analogues involving the p-adic Gamma function.
This does not hold in general for generalized Ramanujan-type series, for
example, the author [13, Conjecture 1.5] discovered the identity

∞
∑

n=0

6n− 1

256n

(

2n

n

) n
∑

k=0

(

2k

k

)2(2(n− k)

n− k

)

12n−k =
8
√
3

π

(which was later confirmed in [6]) and conjectured its related p-adic congru-
ence

p−1
∑

n=0

6n− 1

256n

(

2n

n

) n
∑

k=0

(

2k

k

)2(2(n − k)

n− k

)

12n−k ≡ −p (mod p2)

(with p any prime greater than 3) which has noting to do with the Legendre
symbol (−3

p ).
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For the author’s philosophy to generate series for 1/π via congruences,
one may consult the survey [13] and the recent paper [18, Section 1].

We will prove Theorem 1.1 in the next section, and present related con-
jectural congruences in Section 3. In Section 4-6, we will pose 8 other new
conjectural series for 1/π motivated by congruences.

2. Proof of Theorem 1.1

Lemma 2.1. For |z| ≤ 1/30, we have

∞
∑

k=0

zk

(1 + 4z)k+1
Wk

(

1

1 + 4z

)

=

∞
∑

n=0

f (4)
n zn (2.1)

and

∞
∑

k=0

kzk

(1 + 4z)k+1
Wk

(

1

1 + 4z

)

=
∞
∑

n=0

n(f (4)
n + 4sn)z

n, (2.2)

where

sn :=
∑

0≤j<n

(−1)n−1−j

(

n− 1

j

)(

n+ j

j

)(

2j

j

)(

2(n − 1− j)

n− 1− j

)

. (2.3)

Proof. Let N be any nonnegative integer. Then

N
∑

k=0

zk

(1 + 4z)k+1
Wk

(

1

4z + 1

)

=

N
∑

k=0

zk
k

∑

j=0

(

k + j

2j

)(

2j

j

)2(2(k − j)

k − j

)

(1 + 4z)−j−k−1

=

N
∑

k=0

zk
k

∑

j=0

(

k + j

2j

)(

2j

j

)2(2(k − j)

k − j

) ∞
∑

r=0

(−j − k − 1

r

)

(4z)r

=
∞
∑

n=0

zn
min{n,N}

∑

k=0

k
∑

j=0

(

k + j

2j

)(

2j

j

)2(2(k − j)

k − j

)(−j − k − 1

n− k

)

4n−k

=

∞
∑

n=0

zn
min{n,N}

∑

j=0

(

2j

j

)2 min{n,N}
∑

k=j

(

k + j

2j

)(

2(k − j)

k − j

)(

n+ j

k + j

)

(−4)n−k

=
∞
∑

n=0

zn
min{n,N}

∑

j=0

(−4)n−j

(

2j

j

)2(n+ j

2j

)min{n,N}
∑

k=j

(

n− j

k − j

)

(2(k−j)
k−j

)

(−4)k−j
.
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Similarly,

N
∑

k=0

kzk

(1 + 4z)k+1
Wk

(

1

4z + 1

)

=

∞
∑

n=0

zn
min{n,N}

∑

j=0

(−4)n−j

(

2j

j

)2(n+ j

2j

)min{n,N}
∑

k=j

k

(

n− j

n− k

)

(2(k−j)
k−j

)

(−4)k−j
.

Clearly
(

2m
m

)

≤ (1 + 1)2m = 4m for all m ∈ N. Thus

∣

∣

∣

∣

min{n,N}
∑

k=j

(

n− j

k − j

)

(2(k−j)
k−j

)

(−4)k−j

∣

∣

∣

∣

≤
∑

k≥j

(

n− j

k − j

)

= 2n−j

and hence

∣

∣

∣

∣

min{n,N}
∑

j=0

(−4)n−j

(

2j

j

)2(n+ j

2j

)min{n,N}
∑

k=j

(

n− j

k − j

)

(2(k−j)
k−j

)

(−4)k−j

∣

∣

∣

∣

≤
min{n,N}

∑

j=0

4n
(

n+ j

2j

)(

2j

j

)

2n−j ≤ 8n
n
∑

j=0

(

n

j

)(

n+ j

j

)(

2− 1

2

)j

= 8nPn(2),

where

Pn(x) =
n
∑

k=0

(

n

k

)(

n+ k

k

)(

x− 1

2

)k

is the Legendre polyomial of degree n. Similarly,

∣

∣

∣

∣

min{n,N}
∑

j=0

(−4)n−j

(

2j

j

)2(n+ j

2j

)min{n,N}
∑

k=j

k

(

n− j

n− k

)

(2(k−j)
k−j

)

(−4)k−j

∣

∣

∣

∣

≤
min{n,N}

∑

j=0

4n
(

n+ j

2j

)(

2j

j

)

min{n,N}2n−j ≤ n8nPn(2).

By the Laplace-Heine formula (cf. [19, p. 194]),

Pn(2) ∼
(2 +

√
3)n+1/2

√
2nπ 4

√
3

as n → +∞.

As 8(2 +
√
3) < 29.86, we have n8nPn(2) < 30n if n is sufficiently. Recall

that |z| < 1/30.
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In view of the above,

lim
N→+∞

N
∑

k=0

zk

(1 + 4z)k
Wk

(

1

1 + 4z

)

= lim
N→+∞

N
∑

n=0

zn
n
∑

j=0

(−4)n−j

(

2j

j

)2(n+ j

2j

) n
∑

k=j

(

n− j

n− k

)(−1/2

k − j

)

=

∞
∑

n=0

zn
n
∑

j=0

(−4)n−j

(

2j

j

)2(n+ j

2j

)(

n− j − 1/2

n− j

)

=

∞
∑

n=0

zn
n
∑

j=0

(

n+ j

2j

)(

2j

j

)2(2(n − j)

n− j

)

(−1)n−j

=
∞
∑

n=0

zn(−1)nWn(−1) =
∞
∑

n=0

f (4)
n zn.

Similarly,

lim
N→+∞

N
∑

k=0

kzk

(1 + 4z)k
Wk

(

1

1 + 4z

)

−
∞
∑

n=0

nf (4)
n zn

= lim
N→+∞

N
∑

n=0

zn
n
∑

j=0

(−4)n−j

(

2j

j

)2(n+ j

2j

) n
∑

k=j

(k − n)

(

n− j

n− k

)(−1/2

k − j

)

=−
∞
∑

n=0

zn
n
∑

j=0

(−4)n−j

(

2j

j

)2(n+ j

2j

)

(n− j)
∑

j≤k<n

(

n− j − 1

n− k − 1

)(−1/2

k − j

)

=−
∞
∑

n=0

zn
n
∑

j=0

(−4)n−j(n− j)

(

n

j

)(

n+ j

j

)(

2j

j

)(

n− j − 3/2

n− j − 1

)

=

∞
∑

n=0

nzn
∑

0≤j<n

4n−j

(

n− 1

j

)(

n+ j

j

)(

2j

j

)( −1/2

n− j − 1

)

=
∞
∑

n=0

nzn
∑

0≤j<n

(−1)n−j−14

(

n− 1

j

)(

n+ j

j

)(

2j

j

)(

2(n − j − 1)

n− j − 1

)

.

So we have the desired result. �

Lemma 2.2. For any n ∈ N we have

5n(4n + 1)((n + 2)sn+2 − 16nsn)

=(30n3 + 54n2 + 7n − 2)f
(4)
n+1 + 2(60n3 + 58n2 + 17n + 2)f (4)

n .
(2.4)
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Proof. Let un denote the left-hand side or the right-hand side of (2.4). Via
the Zeilberger algorithm, we find that

(1 + n)(3 + n)3(5 + 4n)un+2

× (344 + 2572n + 8198n2 + 13329n3 + 10875n4 + 4190n5 + 600n6)

=2(2 + n)(9 + 4n)P (n)un+1 + 4(1 + n)(2 + n)(3 + 4n)(5 + 4n)(9 + 4n)Q(n)un

for all n = 0, 1, 2, . . ., where

P (n) =62208 + 506208n + 1799416n2 + 3578972n3 + 4250502n4

+ 3104119n5 + 1401609n6 + 380700n7 + 56940n8 + 3600n9

and

Q(n) = 40108+127005n+164335n2+110729n3+40825n4+7790n5+600n6.

Note also that u0 = 0, u1 = 2150 and u2 = 103680. As both sides of (2.4)
give the same integer sequence (un)n≥0, we have (2.4) as desired. �

Now we are able to present an auxiliary theorem.

Theorem 2.3. Let a, b and x be complex numbers with |x− 1| ≥ 7.5. Then

10

x
(x− 1)2(x− 2)

∞
∑

n=0

an+ b

(4x)n
Wn

(

1− 1

x

)

=

∞
∑

k=0

(2ax(5x − 7)k + a(10x − 13) + 10b(x− 1)(x − 2))
f
(4)
k

(4x − 4)k
.

(2.5)

Proof. Note that |1/(4x − 4)| ≤ 1/30. Applying (2.1) with z = 1/(4x − 4),
we get

∞
∑

n=0

1

(4x)n
Wn

(

1− 1

x

)

=
x

x− 1

∞
∑

k=0

f
(4)
k

(4x− 4)k
. (2.6)

If we have
∞
∑

n=0

n

(4x)n
Wn

(

1− 1

x

)

=
x

10(x − 1)2(x− 2)

∞
∑

k=0

(10x− 14)(kx + 1) + 1

(4x− 4)k
fk,

(2.7)
then combining (2.6) with (2.7) we immediately get (2.5). The identity (2.7)
is equivalent to the following one with z = 1/(4x− 4):

5(1 − 4z)

∞
∑

k=0

kzk

(1 + 4z)k+1
Wk

(

1

1 + 4z

)

=

∞
∑

k=0

((5− 8z)(1 + 4z)k + 4z(5 − 6z))fkz
k.

(2.8)

Below we prove (2.8) for |z| ≤ 1/30. For convenience, we write [zm]f(z)
with m ∈ N to denote the coefficient of zm in the power series expansion of
f(z).
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By Lemmas 2.1, for any n ∈ N we have

[zn+1](1− 16z2)

∞
∑

k=1

kzk−1

(1 + 4z)k+1
Wk

(

1

1 + 4z

)

=[zn+2](1− 16z2)

∞
∑

m=0

m(f (4)
m + 4sm)zm

=(n+ 2)(f
(4)
n+2 + 4sn+2)− 16n(f (4)

n + 4sn)

=(n+ 2)f
(4)
n+2 − 16nf (4)

n + 4((n + 2)sn+2 − nsn).

Now let n ∈ Z+. By the recurrence of (f
(4)
m )m≥0, we have

4n(4n + 1)(4n − 1)f
(4)
n−1 = (n+ 1)3f

(4)
n+1 − 2(2n + 1)(3n2 + 3n + 1)f (4)

n

and hence

n(4n+ 1)((32n + 52)f
(4)
n+1 + (96n + 56)f (4)

n − 32(4n − 1)f
(4)
n−1)

=4n(4n + 1)(8n + 13)f
(4)
n+1 + 8n(4n + 1)(12n + 7)f (4)

n

− 8(n + 1)3f
(4)
n+1 + 16(2n + 1)(3n2 + 3n+ 1)f (4)

n

=4(30n3 + 54n2 + 7n− 2)f
(4)
n+1 + 8(60n3 + 58n2 + 17n+ 2)f (4)

n

=20n(4n + 1)((n + 2)sn+2 − nsn)

with the aid of Lemma 2.2. Combining this with the last paragraph, we get

[zn+1]5(16z2 − 1)

∞
∑

k=1

kzk−1

(1 + 4z)k+1
Wk

(

1

1 + 4z

)

=− 5(n + 2)f
(4)
n+2 + 80nf

(4)
n+1 − 20((n + 2)sn+2 − nsn)

=− 5(n + 2)f
(4)
n+2 + 80nf

(4)
n+1 − (32n + 52)f

(4)
n+1

− (96n + 56)f (4)
n + 32(4n − 1)f

(4)
n−1

=[zn+1](32z2 − 12z − 5)

(

4
∞
∑

k=0

(k + 1)fkz
k +

∞
∑

k=1

kfkz
k−1

)

− [zn+1](32z2 + 8z)
∞
∑

k=0

fkz
k

In view of (2.2),

5(16z2 − 1)

∞
∑

k=1

kzk−1

(1 + 4z)k+1
Wk

(

1

1 + 4z

)

=5(16z2 − 1)

∞
∑

m=1

m(f (4)
m + 4sm)zm−1

=5(16z2 − 1)(6 + 68z + 900z2 + . . .) = −30− 340z − 4020z2 − . . .
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Combining this with the final result in the last paragraph, we find that

5(16z2 − 1)
∞
∑

k=1

kzk−1

(1 + 4z)k+1
Wk

(

1

1 + 4z

)

=(4z + 1)(8z − 5)

(

4
∞
∑

k=0

(k + 1)fkz
k ++

∞
∑

k=1

kfkz
k−1

)

− 8z(4z + 1)
∞
∑

k=0

fkz
k

and hence

5(4z − 1)

∞
∑

k=1

kzk−1

(1 + 4z)k+1
Wk

(

1

1 + 4z

)

=(8z − 5)

(

4

∞
∑

k=0

(k + 1)fkz
k +

∞
∑

k=1

kfkz
k−1

)

− 8z

∞
∑

k=0

fkz
k.

This yields the desired (2.8).
The proof of Theorem 2.3 is now complete. �

Proof of Theorem 1.1. In light of Theorem 2.3, we have
∞
∑

k=0

45k + 8

40k
Wk

(

9

10

)

=
1075

72

∞
∑

k=0

4k + 1

36k
f
(4)
k ,

∞
∑

k=0

1360k + 389

(−60)k
Wk

(

16

15

)

=
9225

32

∞
∑

k=0

4k + 1

(−64)k
f
(4)
k ,

∞
∑

k=0

735k + 124

200k
Wk

(

49

50

)

=
10125

784

∞
∑

k=0

60k + 11

196k
f
(4)
k ,

∞
∑

k=0

376380k + 69727

(−320)k
Wk

(

81

80

)

=
5209600

243

∞
∑

k=0

17k + 3

(−324)k
fk,

∞
∑

k=0

348840k + 47461

1300k
Wk

(

324

325

)

=
1314625

243

∞
∑

k=0

65k + 9

1296k
f
(4)
k ,

∞
∑

k=0

41673840k + 4777111

5780k
Wk

(

1444

1445

)

=
147758475

1444

∞
∑

k=0

408k + 47

5776k
f
(4)
k .

By S. Cooper [4],
∞
∑

k=0

4k + 1

36k
f
(4)
k =

6
√
15

5π
,

∞
∑

k=0

4k + 1

(−64)k
f
(4)
k =

32
√
15

45π
,

∞
∑

k=0

60k + 11

196k
f
(4)
k =

14
√
7

π
,

∞
∑

k=0

17k + 3

(−324)k
fk =

81
√
5

20π
,

∞
∑

k=0

65k + 9

1296k
f
(4)
k =

81
√
2

4π
,

∞
∑

k=0

408k + 47

5776k
f
(4)
k =

76
√
95

5π
.

So we have the desired (1.1)-(1.6). This concludes the proof. �
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3. Congruences related to the identities (1.1)-(1.15)

In [13, Section 3] the author introduced the polynomials

Sn(x) =

n
∑

k=0

(

n

k

)4

xk (n = 0, 1, 2, . . .) (3.1)

and made conjectures on
∑p−1

k=0 Sk(x) modulo p2 (with p an odd prime) for
each integer x among the numbers

1, −2, ±4, −9, 12, 16, −20, 36, −64, 196, −324, 1296, 5776.

See also [17, Conjectures 49-51].
Theorem 1.1 and its proof are actually motivated by our following conjec-

ture.

Conjecture 3.1. Let p be an odd prime. Then, for any p-adic integer

x 6≡ 0 (mod p) we have

p−1
∑

k=0

1

(4x)k
Wk

(

1− 1

x

)

≡
p−1
∑

k=0

Sk(4x− 4) (mod p). (3.2)

When

x ∈
{

2, ±5

4
, ±4, 5, 10, −15, 50, −80, 325, 1445

}

,

we have the further congruence

p−1
∑

k=0

1

(4x)k
Wk

(

1− 1

x

)

≡
p−1
∑

k=0

Sk(4x− 4) (mod p2). (3.3)

The identity (1.1) is motivated by the following conjecture on related
congruences.

Conjecture 3.2. (i) For any n ∈ Z+ we have

10n−1

4n

n−1
∑

k=0

(45k + 8)40n−1−kWk

(

9

10

)

∈ Z+.

(ii) Let p 6 2, 5 be a prime. Then

p−1
∑

k=0

45k + 8

40k
Wk

(

9

10

)

≡ p

16

(

129

(−15

p

)

− 1

)

(mod p2).

When (−15
p ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

45k + 8

40k
Wk

(

9

10

)

− p

p−1
∑

k=0

45k + 8

40k
Wk

(

9

10

)

divided by (pn)2 is a p-adic integer.

The identity (1.2) is motivated by the following conjecture on related
congruences.
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Conjecture 3.3. (i) For any n ∈ Z+ we have

15n−1

n

n−1
∑

k=0

(1360k + 389)(−60)n−1−kWk

(

16

15

)

∈ Z+.

(ii) Let p > 5 be a prime. Then

p−1
∑

k=0

1360k + 389

(−60)k
Wk

(

16

15

)

≡ p

2

(

779

(−15

p

)

− 1

)

(mod p2).

When (−15
p ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

1360k + 389

(−60)k
Wk

(

9

10

)

− p

p−1
∑

k=0

1360k + 389

(−60)k
Wk

(

9

10

)

divided by (pn)2 is a p-adic integer.

The identity (1.3) is motivated by the following conjecture on related
congruences.

Conjecture 3.4. (i) For any n ∈ Z+ we have

50n−1

4n

n−1
∑

k=0

(735k + 124)200n−1−kWk

(

49

50

)

∈ Z+.

(ii) Let p 6= 2, 5 be a prime. Then

p−1
∑

k=0

735k + 124

200k
Wk

(

49

50

)

≡ p

32

(

3969

(−7

p

)

− 1

)

(mod p2).

When (p7 ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

735k + 124

200k
Wk

(

49

50

)

− p

p−1
∑

k=0

735k + 124

200k
Wk

(

49

50

)

divided by (pn)2 is a p-adic integer.

The identity (1.4) is motivated by the following conjecture on related
congruences.

Conjecture 3.5. (i) For any n ∈ Z+ we have

80n−1

n

n−1
∑

k=0

(376380k + 69727)(−1)k320n−1−kWk

(

81

80

)

∈ Z+.

(ii) Let p 6= 2, 5 be a prime. Then

p−1
∑

k=0

376380k + 69727

(−320)k
Wk

(

81

80

)

≡ p

3

(

209198

(−5

p

)

− 17

)

(mod p2).
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When (−5
p ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

376380k + 69727

(−320)k
Wk

(

81

80

)

− p

p−1
∑

k=0

376380k + 69727

(−320)k
Wk

(

81

80

)

divided by (pn)2 is a p-adic integer.

The identity (1.5) is motivated by the following conjecture on related
congruences.

Conjecture 3.6. (i) For any n ∈ Z+ we have

325n−1

n

n−1
∑

k=0

(348840k + 47461)1300n−1−kWk

(

324

325

)

∈ Z+,

and this number is odd if and only if n ∈ {2a : a ∈ N}.
(ii) Let p 6= 2, 5, 13 be a prime. Then

p−1
∑

k=0

348840k + 47461

1300k
Wk

(

324

325

)

≡ p

3

(

142384

(−2

p

)

− 1

)

(mod p2).

When p ≡ 1, 3 (mod 8), for any n ∈ Z+ the number

pn−1
∑

k=0

348840k + 47461

1300k
Wk

(

324

325

)

− p

p−1
∑

k=0

348840k + 47461

1300k
Wk

(

324

325

)

divided by (pn)2 is a p-adic integer.

The identity (1.6) is motivated by the following conjecture on related
congruences.

Conjecture 3.7. (i) For any n ∈ Z+ we have

1445n−1

n

n−1
∑

k=0

(41673840k + 4777111)5780n−1−kWk

(

1444

1445

)

∈ Z+,

and this number is odd if and only if n ∈ {2a : a ∈ N}.
(ii) Let p 6= 2, 5, 17 be a prime. Then

p−1
∑

k=0

41673840k + 4777111

5780k
Wk

(

1444

1445

)

≡ p

(

4777113

(−95

p

)

− 2

)

(mod p2).

When (−95
p ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

5928k + 253

5780k
Wk

(

1156

5

)

− p

p−1
∑

k=0

5928k + 253

5780k
Wk

(

1156

5

)

divided by (pn)2 is a p-adic integer.

The identity (1.7) is motivated by our following conjecture on related
congruences (see also [16, A337332]).
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Conjecture 3.8. (i) For any integer n > 1, we have

8n−1

6n

n−1
∑

k=0

(4k + 1)6n−1−kWk

(

−1

8

)

∈ Z+.

(ii) For any prime p > 5, we have

1

p

p−1
∑

k=0

4k + 1

6k
Wk

(

−1

8

)

≡



















(−3)(p−1)/4 (mod p) if p ≡ 1 (mod 12),

−5(−3)(p−1)/4 (mod p) if p ≡ 5 (mod 12),

−(−3)(p+5)/4 (mod p) if p ≡ 7 (mod 12),

−(−3)(p+1)/4 (mod p) if p ≡ 11 (mod 12).

(iii) For any prime p > 3, we have

p−1
∑

k=0

1

6k
Wk

(

−1

8

)

≡
{

4x2 − 2p (mod p2) if p ≡ 1 (mod 4) & p = x2 + 4y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4).

Remark 3.1. Sun [18, Identity (I5)] asserts that

∞
∑

k=0

6k + 1

256k

(

2k

k

)2

Tk(8,−2) =
2

π

√

8 + 6
√
2,

which is similar to (3.1). Similar to Conjecture 3.8, we conjecture that for
any integer n > 1 we have

1

4n
(

2n
n

)

n−1
∑

k=0

(6k + 1)256n−1−k

(

2k

k

)2

Tk(8,−2) ∈ Z+,

and that for any odd prime p we have

p−1
∑

k=0

6k + 1

256k

(

2k

k

)2

Tk(8,−2) ≡
{

2(p−1)/4p (mod p2) if p ≡ 1 (mod 4),

−2(p+1)/4p (mod p2) if p ≡ 3 (mod 4).

The identity (1.8) is motivated by the following conjecture on related
congruences.

Conjecture 3.9. (i) For any n ∈ Z+ we have

12n−1

n

n−1
∑

k=0

(392k + 65)(−1)k108n−1−kWk

(

−49

12

)

∈ Z+.

(ii) Let p > 3 be a prime. Then

p−1
∑

k=0

392k + 65

(−108)k
Wk

(

−49

12

)

≡ p

(

86

(−3

p

)

− 21

(

21

p

))

(mod p2).



14 ZHI-WEI SUN

When (p7 ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

392k + 65

(−108)k
Wk

(

−49

12

)

− p
(p

3

)

p−1
∑

k=0

392k + 65

(−108)k
Wk

(

−49

12

)

divided by (pn)2 is a p-adic integer.

(iii) For any prime p > 5, we have

p−1
∑

k=0

1

(−108)k
Wk

(

−49

12

)

≡































4x2 − 2p (mod p2) if (−2
p ) = (p3 ) = (p7 ) = 1 & p = x2 + 42y2,

2p− 8x2 (mod p2) if (p7 ) = 1, (−2
p ) = (p3 ) = −1 & p = 2x2 + 21y2,

12x2 − 2p (mod p2) if (−2
p ) = 1, (p3 ) = (p7 ) = −1 & p = 3x2 + 14y2,

2p− 24x2 (mod p2) if (p3 ) = 1, (−2
p ) = (p7 ) = −1 & p = 6x2 + 7y2,

0 (mod p2) if (−42
p ) = −1,

where x and y are integers.

Remark 3.2. Note that the imaginary quadratic field Q(
√
−42) has class

number four. For primes in the form x2 + dy2 with x, y ∈ Z, one my consult
the book [7].

The identity (1.9) is motivated by the following conjecture on related
congruences.

Conjecture 3.10. (i) For any n ∈ Z+ we have

16n−1

n

n−1
∑

k=0

(168k + 23)112n−1−kWk

(

63

16

)

∈ Z+.

(ii) Let p 6= 2, 7 be a prime. Then

p−1
∑

k=0

168k + 23

112k
Wk

(

63

16

)

≡ p

2

(

59

(−3

p

)

− 13

(

21

p

))

(mod p2).

When (p7 ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

168k + 23

112k
Wk

(

63

16

)

− p
(p

3

)

p−1
∑

k=0

168k + 23

112k
Wk

(

63

16

)

divided by (pn)2 is a p-adic integer.
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(iii) For any prime p > 3 with p 6= 7, we have

p−1
∑

k=0

1

112k
Wk

(

63

16

)

≡































4x2 − 2p (mod p2) if (−2
p ) = (p3 ) = (p7 ) = 1 & p = x2 + 42y2,

2p− 8x2 (mod p2) if (p7 ) = 1, (−2
p ) = (p3 ) = −1 & p = 2x2 + 21y2,

12x2 − 2p (mod p2) if (−2
p ) = 1, (p3 ) = (p7 ) = −1 & p = 3x2 + 14y2,

2p− 24x2 (mod p2) if (p3 ) = 1, (−2
p ) = (p7 ) = −1 & p = 6x2 + 7y2,

0 (mod p2) if (−42
p ) = −1,

where x and y are integers.

The identity (1.10) is motivated by the following conjecture on related
congruences.

Conjecture 3.11. (i) For any n ∈ Z+ we have

64n−1

n

n−1
∑

k=0

(1512k + 257)(−1)k320n−1−kWk

(

−405

64

)

∈ Z+.

(ii) Let p 6= 2, 5 be a prime. Then

p−1
∑

k=0

1512k + 257

(−320)k
Wk

(

−405

64

)

≡ p

10

(

2849

(−35

p

)

− 279

(

5

p

))

(mod p2).

When (p7 ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

1512k + 257

(−320)k
Wk

(

−405

64

)

− p
(p

5

)

p−1
∑

k=0

1512k + 257

(−320)k
Wk

(

−405

64

)

divided by (pn)2 is a p-adic integer.

(iii) For any prime p > 5, we have

p−1
∑

k=0

1

(−320)k
Wk

(

−405

64

)

≡































4x2 − 2p (mod p2) if (2p) = (p5 ) = (p7 ) = 1 & p = x2 + 70y2,

2p− 8x2 (mod p2) if (p7 ) = 1, (2p) = (p5 ) = −1 & p = 2x2 + 35y2,

20x2 − 2p (mod p2) if (p5 ) = 1, (2p) = (p7 ) = −1 & p = 5x2 + 14y2,

28x2 − 2p (mod p2) if (2p) = 1, (p5 ) = (p7 ) = −1 & p = 7x2 + 10y2,

0 (mod p2) if (−70
p ) = −1,

where x and y are integers.

Remark 3.3. Note that the imaginary quadratic field Q(
√
−70) has class

number four.

The identity (1.11) is motivated by the following conjecture on related
congruences.
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Conjecture 3.12. (i) For any n ∈ Z+ we have

4n−1

n

n−1
∑

k=0

(56k + 9)324n−1−kWk

(

25

4

)

∈ Z+.

(ii) Let p > 3 be a prime. Then

p−1
∑

k=0

56k + 9

324k
Wk

(

25

4

)

≡ p

5

(

49

(−35

p

)

− 4

(

5

p

))

(mod p2).

When (p7 ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

56k + 9

324k
Wk

(

25

4

)

− p
(p

5

)

p−1
∑

k=0

56k + 9

324k
Wk

(

25

4

)

divided by (pn)2 is a p-adic integer.

(iii) For any prime p > 5, we have

p−1
∑

k=0

1

324k
Wk

(

25

4

)

≡































4x2 − 2p (mod p2) if (2p) = (p5 ) = (p7 ) = 1 & p = x2 + 70y2,

2p− 8x2 (mod p2) if (p7 ) = 1, (2p) = (p5 ) = −1 & p = 2x2 + 35y2,

20x2 − 2p (mod p2) if (p5 ) = 1, (2p) = (p7 ) = −1 & p = 5x2 + 14y2,

28x2 − 2p (mod p2) if (2p) = 1, (p5 ) = (p7 ) = −1 & p = 7x2 + 10y2,

0 (mod p2) if (−70
p ) = −1,

where x and y are integers.

The identity (1.12) is motivated by the following conjecture on related
congruences.

Conjecture 3.13. (i) For any n > 1 we have

9n−1

n

n−1
∑

k=0

(13000k − 1811)(−1)k1296n−1−kWk

(

−625

9

)

∈ Z+,

and this number is odd if and only if n is a power of two.

(ii) Let p > 3 be a prime. Then

p−1
∑

k=0

13000k − 1811

(−1296)k
Wk

(

−625

9

)

≡ p

5

(

11882

(−39

p

)

− 20937

)

(mod p2).

When (−39
p ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

13000k − 1811

(−1296)k
Wk

(

−625

9

)

− p

p−1
∑

k=0

13000k − 1811

(−1296)k
Wk

(

−625

9

)

divided by (pn)2 is a p-adic integer.
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(iii) For any prime p > 5, we have

p−1
∑

k=0

1

(−1296)k
Wk

(

−625

9

)

≡































4x2 − 2p (mod p2) if (2p) = (p3 ) = ( p
13) = 1 & p = x2 + 78y2,

8x2 − 2p (mod p2) if (2p) = 1, (p3) = ( p
13 ) = −1 & p = 2x2 + 39y2,

12x2 − 2p (mod p2) if ( p
13 ) = 1, (2p) = (p3 ) = −1 & p = 3x2 + 26y2,

24x2 − 2p (mod p2) if (p3 ) = 1, (2p) = ( p
13 ) = −1 & p = 6x2 + 13y2,

0 (mod p2) if (−78
p ) = −1,

where x and y are integers.

Remark 3.4. Note that the imaginary quadratic field Q(
√
−78) has class

number four.

The identity (1.13) is motivated by the following conjecture on related
congruences.

Conjecture 3.14. (i) For any n > 1 we have

13n−1

n

n−1
∑

k=0

(9360k − 1343)1300n−1−kWk

(

900

13

)

∈ Z+,

and this number is odd if and only if n is a power of two.

(ii) Let p 6= 2, 5, 13 be a prime. Then

p−1
∑

k=0

9360k − 1343

1300k
Wk

(

900

13

)

≡ p

5

(

7944

(−39

p

)

− 14659

)

(mod p2).

When (−39
p ) = 1, for any n ∈ Z+ the number

pn−1
∑

k=0

9360k − 1343

1300k
Wk

(

900

13

)

− p

p−1
∑

k=0

9360k − 1343

1300k
Wk

(

900

13

)

divided by (pn)2 is a p-adic integer.

(iii) For any prime p > 5, we have

p−1
∑

k=0

1

1300k
Wk

(

900

13

)

≡































4x2 − 2p (mod p2) if (2p) = (p3 ) = ( p
13) = 1 & p = x2 + 78y2,

8x2 − 2p (mod p2) if (2p) = 1, (p3) = ( p
13 ) = −1 & p = 2x2 + 39y2,

12x2 − 2p (mod p2) if ( p
13 ) = 1, (2p) = (p3 ) = −1 & p = 3x2 + 26y2,

24x2 − 2p (mod p2) if (p3 ) = 1, (2p) = ( p
13 ) = −1 & p = 6x2 + 13y2,

0 (mod p2) if (−78
p ) = −1,

where x and y are integers.
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The identity (1.14) is motivated by the following conjecture on related
congruences.

Conjecture 3.15. (i) For any n ∈ Z+ we have

361n−1

n

n−1
∑

k=0

(56355k + 2443)(−1)k5776n−1−kWk

(

−83521

361

)

∈ Z+.

(ii) Let p 6= 2, 19 be a prime. Then

p−1
∑

k=0

56355k + 2443

(−5776)k
Wk

(

−83521

361

)

≡ 7p

323

(

426855

(−2

p

)

− 314128

)

(mod p2).

When p ≡ 1, 3 (mod 8), for any n ∈ Z+ the number

pn−1
∑

k=0

56355k + 2443

(−5776)k
Wk

(

−83521

361

)

− p

p−1
∑

k=0

56355k + 2443

(−5776)k
Wk

(

−83521

361

)

divided by (pn)2 is a p-adic integer.

(iii) For any prime p 6= 2, 19, we have

p−1
∑

k=0

1

(−5776)k
Wk

(

−83521

361

)

≡































4x2 − 2p (mod p2) if (−2
p ) = (p5 ) = ( p

13 ) = 1 & p = x2 + 130y2,

8x2 − 2p (mod p2) if (−2
p ) = 1, (p5 ) = ( p

13) = −1 & p = 2x2 + 65y2,

20x2 − 2p (mod p2) if (p5 ) = 1, (−2
p ) = ( p

13) = −1 & p = 5x2 + 26y2,

40x2 − 2p (mod p2) if ( p
13 ) = 1, (−2

p ) = (p5) = −1 & p = 10x2 + 13y2,

pδp,17 (mod p2) if (−130
p ) = −1,

where x and y are integers.

Remark 3.5. Note that the imaginary quadratic field Q(
√
−130) has class

number four.

The identity (1.15) is motivated by the following conjecture on related
congruences.

Conjecture 3.16. (i) For any n ∈ Z+ we have

5n−1

n

n−1
∑

k=0

(5928k + 253)5780n−1−kWk

(

1156

5

)

∈ Z+,

and this number is odd if and only if n ∈ {2a : a ∈ N}.
(ii) Let p 6= 2, 5, 17 be a prime. Then

p−1
∑

k=0

5928k + 253

5780k
Wk

(

1156

5

)

≡ p

85

(

81744

(−2

p

)

− 60239

)

(mod p2).
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When p ≡ 1, 3 (mod 8), for any n ∈ Z+ the number

pn−1
∑

k=0

5928k + 253

5780k
Wk

(

1156

5

)

− p

p−1
∑

k=0

5928k + 253

5780k
Wk

(

1156

5

)

divided by (pn)2 is a p-adic integer.

(iii) For any prime p 6= 2, 5, 17, we have

p−1
∑

k=0

1

5780k
Wk

(

1156

5

)

≡































4x2 − 2p (mod p2) if (−2
p ) = (p5 ) = ( p

13 ) = 1 & p = x2 + 130y2,

8x2 − 2p (mod p2) if (−2
p ) = 1, (p5 ) = ( p

13) = −1 & p = 2x2 + 65y2,

20x2 − 2p (mod p2) if (p5 ) = 1, (−2
p ) = ( p

13) = −1 & p = 5x2 + 26y2,

40x2 − 2p (mod p2) if ( p
13 ) = 1, (−2

p ) = (p5) = −1 & p = 10x2 + 13y2,

0 (mod p2) if (−130
p ) = −1,

where x and y are integers.

4. A new type series for 1/π involving generalized central

trinomial coefficients

For b, c ∈ Z and n ∈ N the generalized trinomial coefficient Tn(b, c) denotes
the coefficient of xn in the expansion of (x2 + bx+ c)n.

In 2011, the author [12, 14] posed over 60 conjectural series for 1/π of the
following seven types with a, b, c, d,m integers and mbcd(b2 − 4c) nonzero.

Type I.
∑∞

k=0
a+dk
mk

(2k
k

)2
Tk(b, c).

Type II.
∑∞

k=0
a+dk
mk

(2k
k

)(3k
k

)

Tk(b, c).

Type III.
∑∞

k=0
a+dk
mk

(4k
2k

)(2k
k

)

Tk(b, c).

Type IV.
∑∞

k=0
a+dk
mk

(

2k
k

)2
T2k(b, c).

Type V.
∑∞

k=0
a+dk
mk

(

2k
k

)(

3k
k

)

T3k(b, c).

Type VI.
∑∞

k=0
a+dk
mk

Tk(b, c)
3,

Type VII.
∑∞

k=0
a+dk
mk

(2k
k

)

Tk(b, c)
2,

Though some of these new families of conjectural series for 1/π have been
proved (see, e.g., [3]), the three conjectual series for 1/π of type VI and two
of type VII remain open.

In a recent published paper [18] the author proposed four conjectural
series for 1/π of a new type:

Type VIII.
∑∞

k=0
a+dk
mk Tk(b, c)Tk(b∗, c∗)

2,

where a, b, b∗, c, c∗, d,m are integers with mbb∗cc∗d(b
2 − 4c)(b2∗ − 4c∗)(b

2c∗ −
b2∗c) 6= 0.

Here we introduce series for 1/π involving generalized central trinomial
coefficients of the following novel type:

Type IX.
∑∞

k=0
a+dk
mk

(2k
k

)

Tk(b, c)Tk(b∗, c∗),
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where a, b, b∗, c, c∗, d,m are integers with mbb∗cc∗d(b
2 − 4c)(b2∗ − 4c∗)(b

2c∗ −
b2∗c) 6= 0.

Conjecture 4.1. We have the following identities:

∞
∑

k=0

4290k + 367

3136k

(

2k

k

)

Tk(14, 1)Tk(17, 16) =
5390

π
(IX1)

and
∞
∑

k=0

540k + 137

3136k

(

2k

k

)

Tk(2, 81)Tk(14, 81) =
98

3π
(10 + 7

√
5). (IX2)

The conjectural identity (IX1) is motivated by the author’s following con-
jecture on congruences.

Conjecture 4.2. (i) For any integer n > 1, we have

n

(

2n

n

)
∣

∣

∣

∣

n−1
∑

k=0

(4290k + 367)3136n−1−k

(

2k

k

)

Tk(14, 1)Tk(17, 16).

(ii) Let p be an odd prime with p 6= 7. Then

p−1
∑

k=0

4290k + 367

3136k

(

2k

k

)

Tk(14, 1)Tk(17, 16)

≡p

2

(

1430

(−1

p

)

+ 39

(

3

p

)

− 735

)

(mod p2).

Moreover, when p ≡ 1 (mod 12), for any n ∈ Z+ the number

pn−1
∑

k=0

4290k + 367

3136k

(

2k

k

)

Tk(14, 1)Tk(17, 16)

− p

n−1
∑

k=0

4290k + 367

3136k

(

2k

k

)

Tk(14, 1)Tk(17, 16)

divided by (pn)2
(

2n
n

)

is a p-adic integer.

(iii) For any prime p > 7, we have

(−1

p

) p−1
∑

k=0

(

2k
k

)

3136k
Tk(14, 1)Tk(17, 16)

≡











4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2 (x, y ∈ Z),

2p − 12x2 (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if (−15
p ) = −1.

Remark 4.1. Note that the imaginary quadratic field Q(
√
−15) has class

number two.
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The conjectural identity (IX2) is motivated by the following conjecture
on congruences.

Conjecture 4.3. (i) For any integer n > 1, we have

2n

(

2n

n

) ∣

∣

∣

∣

n−1
∑

k=0

(540k + 137)3136n−1−k

(

2k

k

)

Tk(2, 81)Tk(14, 81).

(ii) Let p be an odd prime with p 6= 7. Then

p−1
∑

k=0

540k + 137

3136k

(

2k

k

)

Tk(2, 81)Tk(14, 81)

≡p

3

(

270

(−1

p

)

− 104

(−2

p

)

+ 245

(−5

p

))

(mod p2).

Moreover, when p ≡ ±1,±9 (mod 40), for any n ∈ Z+ the number

pn−1
∑

k=0

540k + 137

3136k

(

2k

k

)

Tk(2, 81)Tk(14, 81)

− p

(−1

p

) n−1
∑

k=0

540k + 137

3136k

(

2k

k

)

Tk(2, 81)Tk(14, 81)

divided by (pn)2
(

2n
n

)

is a p-adic integer.

(iii) For any prime p > 7, we have

(−1

p

) p−1
∑

k=0

(

2k
k

)

3136k
Tk(2, 81)Tk(14, 81)

≡































4x2 − 2p (mod p2) if (2p) = (p3 ) = (p5 ) = 1 & p = x2 + 15y2,

8x2 − 2p (mod p2) if (2p) = 1, (p3 ) = (p5 ) = −1 & p = 2x2 + 15y2,

20x2 − 2p (mod p2) if (p5 ) = 1, (2p) = (p3 ) = −1 & p = 5x2 + 6y2,

2p− 12x2 (mod p2) if (p3 ) = 1, (2p) = (p5 ) = −1 & p = 3x2 + 10y2,

0 (mod p2) if (−30
p ) = −1,

where x and y are integers.

5. Series for 1/π involving Fn(x) :=
∑n

k=0

(

n
k

)(

n+2k
2k

)(

2k
k

)

xn−k

As mentioned in [15, Remark 4.4], an identity of MacMahon implies that
the polynomial

Fn(x) =
n
∑

k=0

(

n

k

)(

n+ 2k

2k

)(

2k

k

)

xn−k

at x = −4 coincides with the Franel number fn =
∑n

k=0

(n
k

)3
. Conjecture 4.4

of Sun [15] lists ten conjectural series for 1/π involving Fn(x) with x 6= −4;
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eight of them were later confirmed in [6], but the following two remain open:

∞
∑

k=0

357k + 103

2160k

(

2k

k

)

Fk(−324) =
90

π
, (5.1)

∞
∑

k=0

k

3645k

(

2k

k

)

Fk(486) =
10

3π
. (5.2)

Here we pose the following new conjecture.

Conjecture 5.1. We have the following identities:

∞
∑

k=0

6k + 1

(−1728)k

(

2k

k

)

Fk(−324) =
24

25π

√

375 + 120
√
10, (5.3)

∞
∑

k=0

4k + 1

(−160)k

(

2k

k

)

Fk(−20) =

√
30

5π
· 5 +

3
√

145 + 30
√
6

6
√

145 + 30
√
6

, (5.4)

∞
∑

k=0

1290k + 289

27648k

(

2k

k

)

Fk(−2160) =
96
√
15

π
, (5.5)

∞
∑

k=0

804k + 49

276480k

(

2k

k

)

Fk(12096) =
120

√
15

π
, (5.6)

∞
∑

k=0

(24k + 5)

(

2

135

)k

Fk

(

−27

8

)

=
3

2π
(5
√
6 + 4

√
15). (5.7)

Remark 5.1. The author found (5.3)-(5.7) during August 19-27, 2020. As
all of them converge quickly, one can easily check them via Mathematica or
Maple.

The identity (5.3) is motivated by [15, Conjecture 4.6] and the following
conjecture.

Conjecture 5.2. Let n > 1 be an integer. Then

1

n
(2n
n

)

n−1
∑

k=0

(−1)k(6k + 1)1728n−1−k

(

2k

k

)

Fk(−324) ∈ Z+,

and this number is odd if and only if n ∈ {2a + 1 : a ∈ N}.

Remark 5.2. The reader might wonder how we found the right-hand side
of the identity (5.3). We thought that the left-hand side of (5.3) times π
is an algebraic number and found the form of this algebraic number via
calculating its first 100 digits and using the Maple command identify.

The identity (5.4) is motivated by the following conjecture on related
congruences.
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Conjecture 5.3. (i) Let n > 1 be an integer. Then

1

n
(

2n
n

)

n−1
∑

k=0

(−1)k(4k + 1)160n−1−k

(

2k

k

)

Fk(−20) ∈ Z+,

and this number is odd if and only if n ∈ {2a + 1 : a ∈ N}.
(ii) For any odd prime p, we have

(p

5

)

p−1
∑

k=0

(2k
k

)

(−160)k
Fk(−20)

≡
{

4x2 − 2p (mod p2) if p ≡ 1, 3 (mod 8) & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).

Remark 5.3. See [16, A337247] for a sequence related to the first part.
Part (i) of this conjecture implies that for any odd prime p 6= 5 we have

p−1
∑

k=0

4k + 1

(−160)k

(

2k

k

)

Fk(−20) ≡ 0 (mod p),

which was observed by the author on Jan. 18, 2012.

The identity (5.5) is motivated by the following conjecture on congruences.

Conjecture 5.4. (i) Let n > 1 be an integer. Then

1

n
(2n
n

)

n−1
∑

k=0

(1290k + 289)27648n−1−k

(

2k

k

)

Fk(−2160) ∈ Z+,

and this number is odd if and only if n ∈ {2a + 1 : a ∈ N}.
(ii) Let p > 3 be a prime. Then

p−1
∑

k=0

1290k + 289

27648k

(

2k

k

)

Fk(−2160) ≡ p

(

104

(

3

p

)

+ 185

(−15

p

))

(mod p2).

Moreover, if (−5
p ) = 1 then for any n ∈ Z+ the number

pn−1
∑

k=0

1290k + 289

27648k

(

2k

k

)

Fk(−2160)−p

(

3

p

) n−1
∑

k=0

1290k + 289

27648k

(

2k

k

)

Fk(−2160)

divided by (pn)2
(2n
n

)

is a p-adic integer.
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(iii) Let p > 3 be a prime. Then

p−1
∑

k=0

(2k
k

)

27648k
Fk(−2160)

≡







































































4x2 − 2p (mod p2) if (−1
p ) = (p3 ) = (p5 ) = ( p

11) = 1, p = x2 + 165y2,

2x2 − 2p (mod p2) if (−1
p ) = (p3 ) = (p5 ) = ( p

11) = −1, 2p = x2 + 165y2,

2p − 12x2 (mod p2) if (−1
p ) = (p5 ) = −1, (p3 ) = ( p

11) = 1, p = 3x2 + 55y2,

2p − 6x2 (mod p2) if (−1
p ) = (p5 ) = 1, (p3) = ( p

11 ) = −1, 2p = 3x2 + 55y2,

20x2 − 2p (mod p2) if (−1
p ) = ( p

11 ) = 1, (p3) = (p5 ) = −1, p = 5x2 + 33y2,

10x2 − 2p (mod p2) if (−1
p ) = ( p

11 ) = −1, (p3 ) = (p5) = 1, 2p = 5x2 + 33y2,

44x2 − 2p (mod p2) if (−1
p ) = (p3 ) = −1, (p5 ) = ( p

11) = 1, p = 11x2 + 15y2,

22x2 − 2p (mod p2) if (−1
p ) = (p3 ) = 1, (p5) = ( p

11 ) = −1, 2p = 11x2 + 15y2,

0 (mod p2) if (−165
p ) = −1,

where x and y are integers.

Remark 5.4. Note that the imaginary quadratic field Q(
√
−165) has class

number eight.

The identity (5.6) is motivated by the following conjecture on related
congruences.

Conjecture 5.5. (i) Let n > 1 be an integer. Then

1

n
(2n
n

)

n−1
∑

k=0

(804k + 49)276480n−1−k

(

2k

k

)

Fk(12096) ∈ Z+,

and this number is odd if and only if n ∈ {2a + 1 : a ∈ N}.
(ii) Let p > 5 be a prime. Then

p−1
∑

k=0

804k + 49

276480k

(

2k

k

)

Fk(12096) ≡ p

(

95

(−15

p

)

− 46

(

30

p

))

(mod p2).

Moreover, if p ≡ 1, 3 (mod 8) then for any n ∈ Z+ the number

pn−1
∑

k=0

804k + 49

276480k

(

2k

k

)

Fk(12096) − p

(−15

p

) n−1
∑

k=0

804k + 49

276480k

(

2k

k

)

Fk(12096)

divided by (pn)2
(2n
n

)

is a p-adic integer.
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(iii) Let p > 5 be a prime. Then

p−1
∑

k=0

(2k
k

)

276480k
Fk(12096)

≡







































































4x2 − 2p (mod p2) if (−2
p ) = (p3 ) = (p5 ) = (p7) = 1 & p = x2 + 210y2,

8x2 − 2p (mod p2) if (−2
p ) = (p7 ) = 1, (p3) = (p5 ) = −1 & p = 2x2 + 105y2,

2p − 12x2 (mod p2) if (−2
p ) = (p3 ) = 1, (p5) = (p7 ) = −1 & p = 3x2 + 70y2,

20x2 − 2p (mod p2) if (−2
p ) = (p3 ) = (p5 ) = (p7) = −1 & p = 5x2 + 42y2,

2p − 24x2 (mod p2) if (−2
p ) = (p5 ) = 1, (p3) = (p7 ) = −1 & p = 6x2 + 35y2,

28x2 − 2p (mod p2) if (−2
p ) = (p5 ) = −1, (p3 ) = (p7) = 1 & p = 7x2 + 30y2,

40x2 − 2p (mod p2) if (−2
p ) = (p7 ) = −1, (p3 ) = (p5) = 1 & p = 10x2 + 21y2,

56x2 − 2p (mod p2) if (−2
p ) = (p3 ) = −1, (p5 ) = (p7) = 1 & p = 14x2 + 15y2,

0 (mod p2) if (−210
p ) = −1,

where x and y are integers.

Remark 5.5. Note that the imaginary quadratic field Q(
√
−210) has class

number eight.

The identity (5.7) is motivated by the following conjecture on related
congruences.

Conjecture 5.6. (i) Let n be any positive integer. Then

4n−1

n
(

2n−1
n−1

)

n−1
∑

k=0

(24k + 5)135n−1−k2k
(

2k

k

)

Fk

(

−27

8

)

∈ Z+,

and this number is congruent to 5 modulo 8.
(ii) Let p > 5 be a prime. Then

p−1
∑

k=0

(24k + 5)2k

135k

(

2k

k

)

Fk

(

−27

8

)

≡ p

(

95

(

4
−6

p

)

+

(−15

p

))

(mod p2).

Moreover, if (10p ) = 1 then for any n ∈ Z+ the number

pn−1
∑

k=0

(24k + 5)2k

135k

(

2k

k

)

Fk

(

−27

8

)

−p

(−6

p

) n−1
∑

k=0

(24k + 5)2k

135k

(

2k

k

)

Fk

(

−27

8

)

divided by (pn)2
(2n
n

)

is a p-adic integer.
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(iii) Let p > 5 be a prime. Then

p−1
∑

k=0

2k
(2k
k

)

135k
Fk

(

−27

8

)

≡































4x2 − 2p (mod p2) if (2p) = (p3 ) = (p5 ) = 1 & p = x2 + 30y2,

8x2 − 2p (mod p2) if (2p) = 1, (p3 ) = (p5 ) = −1 & p = 2x2 + 15y2,

2p− 12x2 (mod p2) if (p3 ) = 1, (2p) = (p5 ) = −1 & p = 3x2 + 10y2,

20x2 − 2p (mod p2) if (p5 ) = 1, (2p) = (p3 ) = −1 & p = 5x2 + 6y2,

0 (mod p2) if (−30
p ) = −1,

where x and y are integers.

Remark 5.6. Note that the imaginary quadratic field Q(
√
−30) has class

number four.

6. One more conjectural series for 1/π and related

congruences

In Jan. 2012 the author (cf. [14, (8)]) conjectured that

∞
∑

n=0

28n+ 5

576n

(

2n

n

) n
∑

k=0

5k
(

2k
k

)2(2(n−k)
n−k

)2

(

n
k

) =
9

π
(2 +

√
2), (6.1)

which remains open up to now. Here we pose a similar conjecture.

Conjecture 6.1. We have the following identity:

∞
∑

n=0

182n + 31

576n

(

2n

n

) n
∑

k=0

(2k
k

)2(2(n−k)
n−k

)2

(

n
k

)

(

−25

16

)k

=
189

2π
. (6.2)

This is motivated by the author’s following conjecture on related congru-
ences.

Conjecture 6.2. Let p > 3 be a prime. Then

p−1
∑

n=0

182n + 31

576n

(

2n

n

) n
∑

k=0

(2k
k

)2(2n−2k
n−k

)2

(n
k

)

(

−25

16

)k

≡ p

2

(

63

(−1

p

)

− 1

)

(mod p2).

Also,

p−1
∑

n=0

(2n
n

)

576n

n
∑

k=0

(2k
k

)2(2n−2k
n−k

)2

(n
k

)

(

−25

16

)k

≡
{

4x2 − 2p (mod p2) if (p7 ) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if (p7 ) = −1, i.e., p ≡ 3, 5, 6 (mod 7).
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