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NEW RESULTS ON PATTERN-REPLACEMENT EQUIVALENCES: GENERALIZING

A CLASSICAL THEOREM AND REVISING A RECENT CONJECTURE

MICHAEL MA

ABSTRACT. In this paper we study pattern-replacement equivalence relations on the set Sn of per-

mutations of length n. Each equivalence relation is determined by a set of patterns, and equivalent

permutations are connected by pattern-replacements in a manner similar to that of the Knuth relation.

One of our main results generalizes the celebrated Erdos-Szekeres Theorem for permutation

pattern-avoidance to a new result for permutation pattern-replacement. In particular, we show that

under the {123 · · ·k,k · · ·321}-equivalence, all permutations in Sn are equivalent up to parity when

n ≥ Ω(k2).
Additionally, we extend the work of Kuszmaul and Zhou on an infinite family of pattern-replacement

equivalences known as the rotational equivalences. Kuszmaul and Zhou proved that the rotational

equivalences always yield either one or two nontrivial equivalence classes in Sn, and conjectured

that the number of nontrivial classes depended only on the patterns involved in the rotational equiv-

alence (rather than on n). We present a counterexample to their conjecture, and prove a new theorem

fully classifying (for large n) when there is one nontrivial equivalence class and when there are two

nontrivial equivalence classes.

Finally, we computationally analyze the pattern-replacement equivalences given by sets of pairs

of patterns of length four. We then focus on three cases, in which the number of nontrivial equiva-

lence classes matches an OEIS sequence. For two of these we present full proofs of the enumeration

and for the third we suggest a potential future method of proof.

Date: February 25, 2018.
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1. INTRODUCTION

Over the past thirty years, permutation patterns have become one of the most widely studied

areas in enumerative combinatorics.

A permutation w is said to contain a pattern π if some subsequence of w’s letters appear in the

same relative order as do the letters in π. For example, the permutation w = 21354 contains the

pattern π = 132, since it contains several three letter subsequences, including 2,5,4, for which the

first letter is smallest, the second is largest, and the third is middle-valued.

Permutation patterns first appeared in Donald Knuth’s Art of Computer Program in 1968 [5],

in which Knuth characterized the permutations avoiding the pattern 231 as precisely those which

are stack sortable, and further showed that the number of such permutations of length n is the n-th

Catalan number Cn. Motivated by the elegance of Knuth’s result, in 1985, Simion and Schmidt ini-

tiated the systematic study of permutation pattern avoidance [11]. Since then permutation patterns

have found applications throughout combinatorics, as well as in computer science, computational

biology, and statistical mechanics [3].

In this paper, we study what are known as pattern-replacement equivalences [2,6–8,13,14]. Con-

sider a set of patterns such as {123,231}. Given a permutation w which contains a 123 pattern,

rearrange the letters within that pattern so that they form a 231 pattern. The resulting permutation

w′ is said to be equivalent to w under {123,231}-equivalence. For example, the permutation 13524

contains the pattern 123 in the letters 1,2,4; rearranging those letters into the order 2,4,1 which

forms a 231-pattern, we obtain the permutation 23541. Hence 13524 is equivalent to 23541. More

generally, we say that two permutations a and b are equivalent under the {123,231}-equivalence if

b can be reached from a through a series of pattern-replacements in which either a 123 pattern is re-

arranged to a 231 pattern, or a 231 pattern is rearranged to a 123 pattern. For example, 1342≡ 2431

because rearranging 3,4,2 to form a 123 pattern transforms 1342 into 1234, and then rearranging

1,3,4 to form a 231 pattern results in 2431. The {123,231}-equivalence forms an equivalence

relation over Sn, the set of length-n permutations, and thus partitions Sn into equivalence classes.

The equivalence relation described above is special example of a more general type of equiva-

lence relation.

Definition 1.1. Let Π ⊆ Sc be a set of patterns. Two permutations a and b in Sn are equivalent

under the Π-equivalence if a can be reached from b through a series of pattern-replacements in

which one pattern from Π is being replaced with another. Π-equivalence induces an equivalence

relation on the permutations of Sn.

One can also study a variant of the Π-equivalence in which adjacency constraints are imposed

on the patterns. In order for a pattern to be eligible for rearrangement, all of its letters must

appear adjacently. For example, although any three letters in the permutation 1234 from a 123

pattern, only two of those patterns, 123 and 234 satisfy the adjacency constraint. Formally, the

Π-equivalence with adjacency constraints is defined as follows.

Definition 1.2. Let Π ⊆ Sc be a set of patterns. Two permutations a and b in Sn are equivalent

under the Π-equivalence with adjacency constraints if a can be reached from b through a series of

pattern-replacements in which one pattern from Π is being replaced with another, and in which the

letters in the pattern being rearranged appear adjacently in a.

The earliest studied permutation pattern-replacement equivalences are the Knuth equivalence [4]

and the Forgotten equivalence [9]. The Knuth relation, also known as the plactic equivalence, has

found applications in both combinatorics and algebra. It played an important role in one of the first

proofs of the Littlewood-Richardson rule, a rule which can be used as a identity for multiplying
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Schur polynomials. The Forgotten equivalence has also found numerous applications in abstract

algebra [9, 12].

The first systematic study of permutation pattern-replacement equivalences was initiated by

[13] and [14] who made substantial progress characterizing the equivalence classes for pattern-

replacement equivalences involving patterns of length three. Subsequent research [6, 7] continued

to focus on the case of patterns of length 3. Then, in 2013, [8] presented the first results on infinite

families of permutation patterns. They showed that for any set Π consisting of some pattern and

its cyclic shifts, the number of nontrivial equivalence classes in Sn under Π-equivalence with ad-

jacency constraints is at most two. Note that a nontrivial equivalence class is one containing more

than a single permutation.

In this paper, we continue the study of infinite families of equivalence relations, and initi-

ate the systematic study of pattern-replacement equivalences involving patterns of length four.

Our main result is a generalization of the celebrated Erdös-Szekeres Theorem [1] for permu-

tation pattern avoidance to the setting of pattern-replacement equivalences. We show that the

{123 · · ·k,k · · ·321}-equivalence partitions Sn into at most two equivalence classes for k ∈ Ω(n2).
In particular, there is a single equivalence class when k (mod 4) ∈ {2,3}, and there are two equiv-

alence classes determined by permutation parity otherwise. Note that this implies a weak version

of the traditional Erdös-Szekeres Theorem, since it prohibits sufficiently long permutations from

simultaneously avoiding the 123 · · ·k and k · · ·321 patterns.

Our second main result extends the work of [6] on rotational equivalences. Kuszmaul and Zhou

proved that the rotational equivalences always yield either one or two nontrivial equivalence classes

in Sn, and conjectured that the number of nontrivial classes depended only on the patterns in-

volved in the rotational equivalence (rather than on n) [8]. We present a counterexample to their

conjecture, and prove a new theorem fully classifying (for large n) when there is one nontrivial

equivalence class and when there are two nontrivial equivalence classes.

Finally, we collect computational data on the number of nontrivial equivalences classes induced

by the Π-equivalence for Π containing two patterns of length four. In order to identify particularly

interesting selections of Π, we focus on three cases where the number of nontrivial equivalence

classes induced by Π-equivalence appears to be enumerated by an OEIS sequence. For two of

these cases, we are able to prove the enumeration, and we pose the third as a conjecture.

The rest of the paper proceeds as follows. In Section 2 we present our generalization of the

Erdös-Szekeres Theorem. In Section 3 we disprove a conjecture of [8] and prove a refined version

of the conjecture. In Section 4 we consider three OEIS sequences dictated by pairs of patterns of

length 4. Finally, we concluded in Section 5 with directions of future work.

2. GENERALIZING ERDÖS-SZEKERES

The Erdös-Szekeres Theorem is one of the oldest and most celebrated results in the area of

permutation pattern avoidance [1]. The result was originally introduced in order to obtain an alter-

native proof of Ramsey’s Theorem, and has since been cited more than 1,300 times [1]. Previous

research on permutation pattern replacement equivalences has yielded several relationships be-

tween permutation pattern avoidance and permutation pattern replacement; in particular, several

cases are known where the set of permutations avoiding a set of patterns is also a set of repre-

sentatives for the equivalence classes under a particular equivalence relation [6]. In this section,

we present a generalization of the Erdös-Szekeres Theorem for permutation pattern-replacement

equivalences, further strengthening the connection between the two areas of research.
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The classical Erdös-Szekeres Theorem can be formulated as follows: Within any sequence of

(r−1)(k−1)+1 distinct numbers there always exists either an increasing subsequence of length

r or a decreasing subsequence of length k. If we let r = k then it becomes the following: Within

any sequence of (k−1)2+1 distinct numbers there always exists either an increasing subsequence

or a decreasing subsequence of length k. In terms of pattern avoidance, this means no permutation

of length greater than (k−1)2 +1 can avoid both 12 · · ·k and k · · ·21. The natural generalization

to pattern replacement equivalences arises from studying the number of equivalence classes of Sn

under {12 · · ·k,k · · ·21}-equivalence when n > (k−1)2. The Erdös-Szekeres Theorem tells us that

there are no singleton equivalences, meaning that every permutation is in a nontrivial class. A

natural generalization of the theorem would be to prove that there is only a single equivalence

class, which in turn would also imply the original result. It turns out that when k is zero or one

modulo four, parity is an invariant under {12 · · ·k,k · · ·21}-equivalence, meaning that odd and even

permutations cannot be equivalent. Thus the most natural generalization of the Erdös-Szekeres

Theorem to pattern replacement would be to prove that there is a single equivalence class when

k (mod 4) ∈ {2,3} and that there are two classes consisting of the even permutations and odd

permutations when k (mod 4) ∈ {0,1}. This, in turn, would imply the original theorem since it

would prohibit the existence of avoiders.

One might hope that the generalization would hold for all n ≥ (k−1)2 +1, just as does Erdös-

Szekeres. One can verify, however, that for k = 3 and n = 5, the generalization does not hold,

and there are instead three equivalence classes. Nonetheless, we will prove the generalization for

sufficiently large n ∈ Ω(k2). Specifically, in this section we prove that for n ≥ 3k2 − 4k + 3 the

number of equivalence classes in Sn under {12 · · ·k,k · · ·21}-equivalence is always either one or

two, depending on whether parity is an invariant.

As a convention, for each equivalence class A⊆ Sn under an equivalence relation, we will use pA

to denote the lexicographically smallest element in the equivalence class. Our first lemma proves

a property of pA under {12 · · ·k,k · · ·21}-equivalence.

Lemma 2.1. Let pA = a1a2 · · ·an be the lexicographically smallest element in some equivalence

class A ⊆ Sn under {12 · · ·k,k · · ·21}-equivalence. Then for any i between 1 and n we have i−(k−
1)2 ≤ ai ≤ i+(k−1)2

.

Proof. Assume for the sake of contradiction that ai < i− (k − 1)2. Then look at all the letters

appearing prior to ai in the permutation pA. There are i−1 such letters and at most i−(k−1)2 −2

of them have value less than ai. Therefore at least (k−1)2+1 of the letters preceding ai are greater

in value than ai. By Erdös-Szekeres, we know that there is either an increasing or decreasing sub-

sequence of length k within these letters. Suppose the subsequence is given by ai1,ai2, . . . ,aik .

Because pA is lexicographically minimal within the class A, the subsequence of length k must be

increasing. Using the equivalence relation, we can first reverse the sequence to be in the order

aik , . . . ,ai1 . Because each of ai1, . . . ,aik appear prior to ai and are of value greater than ai, in

the new permutation, the subsequence aik , . . . ,ai3,ai2,ai is in decreasing order, and can thus be

reversed to place ai in the position originally occupied by ai1 . Because ai < ai1, it follows that

pA is equivalent to a permutation which is lexicographically smaller than it, a contradiction. By a

symmetric argument we can get the other side of the inequality by considering the letters appearing

after ai and numerically smaller in value. �

Corollary 2.2. Let pA = a1a2 · · ·an be defined as in the preceding lemma. Then i appears in pA

within the subword ai−(k−1)2 · · ·ai+(k−1)2 .
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Proof. This follows from the fact that Lemma 2.1 prohibits i from appearing anywhere outside the

subword ai−(k−1)2 · · ·ai+(k−1)2 . �

We can now use the preceding lemma and corollary to prove another, more powerful lemma.

Lemma 2.3. If n ≥ 3k2 − 6k + 6 then each permutation in Sn is equivalent to some permutation

beginning with 1 under the {12 · · ·k,k · · ·21}-equivalence.

Proof. Take a permutation in Sn. Within its equivalence class, A, look at pA = a1a2 · · ·an as defined

previously. Assume for the sake of contradiction pA doesn’t begin with a 1. Then by Lemma 2.1

the first letter in the permutation must be at most (k−1)2 +1 in value. By Corollary 2.2 we know

that there are at most (k−1)2 letters in the permutation to the right of n. So the number of letters

which are strictly between a1 and n in both value and position is at least

n−2−2(k−1)2 ≥ k2 −2k+2 = (k−1)2+1

. Thus we can find either an increasing or decreasing sequence of k letters within the letters

which are between a1 and n in both position and value. Since pA is the lexicographically smallest

representative in the class A, we know this subsequence is increasing. Denote the first k−2 letters

in the increasing subsequence by ai1ai2, . . . ,aik−2
. Then use the equivalence relation to reverse the

sub-sequence a1,ai1,ai2, . . . ,aik−2
,n, giving a new permutation p′A. Notice that n is the first letter in

p′A. Also the number 1 is in the same position as in pA since it is less than a1 and thus cannot have

been any of the ail ’s.

By Corollary 2.2 in our new permutation p′A we know there are at most (k−1)2 letters to the left

of 1. Thus there are least

n− (k−1)2 −1 ≥ 2k2 −4k+4 > k2 −2k+2 = (k−1)2 +1

letters to the right of 1 in p′A, meaning by Erdös-Szekeres that the letters to the right of one contain

either an increasing or a decreasing subsequence of k letters. We can make such a subsequence

increasing by reversing if decreasing and then we can denote the letters in this subsequence by

a j1,a j2, . . . ,a jk−1
. Using the equivalence relation, we can change the sub-sequence n1a j1a j2 · · ·a jk−1

to na jk−1
a jk−2

· · ·a j11, and then to 1a jk−1
a j1a j2 · · ·a jk−2

n which gives us an equivalent permutation

to pA that begins with 1, a contradiction. Therefore, pA begins with 1. �

Corollary 2.4. Under the {12 · · ·k,k · · ·21}-equivalence, each permutation is equivalent to one

that matches the identity for the first n− (3k2 −6k+5) letters.

Proof. This follows from repeated applications of Lemma 2.3. �

The preceding corollary shows that every equivalence class contains a permutation with a long

prefix matching the identity permutation. The next lemma extends this to show that there are

always at most two equivalence classes. Moreover, the lemma keeps track of parity in a way that

will prove useful when characterizing the equivalence classes.

Lemma 2.5. Let k ≥ 3 and let n ≥ 3k2 − 4k+ 3. Then every permutation a ∈ Sn beginning with

12 · · ·(2k−2) is equivalent to either 12 · · ·n or 213 · · ·n via an even number of pattern-replacements

under the {12 · · ·k,k · · ·21}-equivalence.

Proof. Consider a non-identity permutation a = a1 · · ·an ∈ Sn beginning with 12 · · ·(2k−2). Then

let l be the largest position such that ai = i for all 1 ≤ i ≤ l. Since a is not the identity, we know

l ≤ n− 2. Note that al+1 > l + 1. Take the subsequence 1,2, . . . ,(2k− 2),al+1,(l + 1). We can
5



repeatedly apply pattern replacements to the subsequence, as follows: (the overlined portion of the

subsequence in each step forms the pattern being rearranged.)

1,2,3,4, . . . ,(2k−2),al+1,(l+1)

= 1,2,3,4, . . . ,k,(k+1),(k+2), . . .,(2k−2),al+1,(l+1)

→ al+1,2,k,(k−1), . . . ,3,(k+1),(k+2), . . . ,(2k−2),1,(l+1)

= al+1,2,k,(k−1), . . . ,3,(k+1),(k+2), . . .,(2k−2),1,(l+1)

→ al+1,(l+1),k,(k−1), . . . ,3,(2k−2),(2k−3), . . .,(k+1),1,2

= al+1,(l+1),k,(k−1), . . . ,3,(2k−2),(2k−3), . . .,(k+1),1,2

→ 2,(l+1),3,4, . . . ,k,(2k−2),(2k−3), . . .,(k+1),1,al+1

= 2,(l+1),3,4, . . . ,k,(2k−2),(2k−3), . . .,(k+1),1,al+1

→ 2,1,3,4, . . . ,k,(k+1),(k+2), . . .,(2k−2),(l+1),al+1

= 2,1,3,4, . . . ,(2k−2),(l+1),al+1.

If the new permutation is 2134 · · ·n, then we are done, since we applied an even number of trans-

formations to a. Otherwise, the new permutation looks like 2134 · · ·mam+1 · · ·an where am+1 6=
m+ 1 and l + 1 ≤ m ≤ n− 2. Then by repeating the above process with the roles of 1 and 2

swapped we end up with a permutation that begins with 12 · · ·(m+ 1), having applied a total of

8 transformations to a. Repeating the entire process on the new permutation, we will eventually

reach either the identity or the identity with 1 and 2 swapped. Since each time we use the pro-

cess, we apply an even number of transformations, in total we will have applied an even number

of transformations. Therefore, the parity of the final permutation will be the same as that of the

initial. �

We now prove our main result, which generalizes Erdös-Szekeres.

Theorem 2.6. Let k ≥ 3. Then if n ≥ 3k2−4k+3 then the number equivalence classes in Sn under

the {12 · · ·k,k · · ·21}-equivalence is one when k (mod 4) ∈ {2,3} and is two when k (mod 4) ∈
{0,1}.

Proof. Let n ≥ 3k2 − 4k+ 3. By Corollary 2.4, every permutation is equivalent to a permutation

beginning with 12 · · ·(2k − 2). By Lemma 2.5, all permutations beginning with 12 · · ·(2k − 2)
are equivalent to one of 1234 · · ·n or 2134 · · ·n via an even number of transformations. Now if k

(mod 4) ∈ {0,1}, then we know that the equivalence does not allow even and odd permutations

to be equivalent since one replacement is equivalent to ⌊ k
2
⌋ transpositions. In this case we have

our two equivalence classes. Suppose instead that k (mod 4) ∈ {2,3}. We have shown that all

even permutations beginning with 123 · · ·(2k − 2) · · · are equivalent to 123 · · ·n and that all odd

permutations beginning with 123 · · ·(2k−2) · · · are equivalent to 2134 · · ·n. But we know that

123 · · ·n ≡ 123 · · ·(n− k)n(n−1) · · ·(n− k+1)

which is a pair of even and odd permutations beginning with 123 · · ·(2k−2) · · · . Thus all permu-

tations beginning with 123 · · ·(2k− 2) are equivalent, implying that all permutations are equiva-

lent. �

6



We conjecture that Theorem 2.6 can be strengthened further to the following. The conjecture has

been experimentally verified for k ≤ 4.

Conjecture 2.7. Let k ≥ 3. Then if n ≥ k2 −2k+3 there are only one or two equivalence classes

under the equivalence {12 · · ·k,k · · ·21}. Furthermore if k is even we need only that n≥ k2−2k+2.

3. THE ROTATIONAL EQUIVALENCE

3.1. Introduction. The first infinite family of pattern replacement equivalences to be studied was

rotational equivalences by [8]. In the paper, it was proven that for any pattern m, if Π is the set

of cyclic rotations of the pattern, then there are always at most two nontrivial equivalence classes

under Π-equivalence with adjacency constraints (meaning that pattern-replacements may only be

performed on adjacent blocks of letters). This equivalence relation is known as the m-rotational

equivalence.

Furthermore Conjecture 2.12 in [8] states that for a given pattern m, the number of nontrivial

classes in Sn (for n larger than |m|) is independent of n. In this section, we present a counterexample

for the conjecture, and prove a revised version of the conjecture.

When m has an odd length there are are always two nontrivial classes due to a parity invariant.

Therefore, for the remainder of the section we will focus only on cases where |m| is even, and for

convenience |m| is denoted by c.

The conjecture stated in [8] can be disproven by computational brute force. For example, when

m = 1324 and n = 6 we find that there are 2 nontrivial equivalence classes, but when n = 7 there

is only 1 nontrivial equivalence class. More generally, computational data motivates the following

result:

Theorem 3.1. Let m be a pattern of even length c. Let f (n) denote the number of nontrivial

equivalence classes in Sn under m-rotational equivalence. Then there is some cutoff t ≤ 2c− 1

such that

f (n) =

{

2 if c < n < t

1 if n ≥ t

A striking feature of Theorem 3.1 is that for all n ≥ 2c− 1, there is only a single equivalence

class under m-rotational equivalence, regardless of the choice of m. Furthermore, we conjecture a

slightly stronger version of the theorem, which is that t = 2c−1 if and only if m is alternating.

In the following two subsections, we present a proof of Theorem 3.1. Subsection 3.2 defines

a notion of a pseudo-permutation and constructs an equivalence relation on pseudo-permutations

which mimics rotational equivalence; by characterizing the equivalence classes for pseudo-permutations,

we are able to use them as a lens through which to study rotational-equivalence classes for permu-

tations. Subsection 3.3 then uses our results on pseudo-permutations in order to prove Theorem

3.1 for permutations.

3.2. A New Equivalence. In this section we present a notion of pseudo-permutations and define a

useful equivalence relation on them which mimics m-rotational equivalence on permutations. For

the rest of the section, for simplicity, we will assume that m begins with a 1 (which by rotational

symmetry may be taken without loss of generality).

Given a permutation w ∈ Sn with a pattern in a particular position, it can be useful to abstract

away the pattern by considering what we call a pseudo-permutation. The pseudo-permutation is

obtained by replacing the pattern with a single letter denoted by p. Note that p does not take an
7



integer value, and can be thought of instead as being a formal variable representing a pattern. This

is formalized in the following two definitions.

Definition 3.2. A pseudo-permutation of length n is a word of length n−c+1 letters consisting

of the letter p and of n− c distinct letters from 1 to n.

Definition 3.3. Given a pseudo-permutation τ, let α be the unique c-letter word that is both order-

isomorphic to m and contains each of the letters from [n] that are not in τ. The representative

permutation σ of a pseudo-permutation τ is the permutation formed by replacing the letter p

within τ by the sub-sequence α.

For example, if m= 1324 and τ= 2p468, then the representative permutation for σ is 21537468.

In particular, p expands to become the pattern m formed by the letters 1,3,5,7. As a convention,

we refer to the letters in [n] which do not appear in τ as appearing within the pattern in the pseudo-

permutation.

For convenience we now introduce notation for identifying specific letters of interest within a

pattern.

Definition 3.4. Take a pseudo-permutation τ with representative permutation σ. For a letter a∈ [n],
define a+ as the smallest letter in τ’s pattern that is larger than a. Similarly define a− as the largest

letter within τ’s pattern that is smaller than a. If no such letter exists, then we do not consider a+

(or a−, respectively) to be well defined.

We will proceed by defining an equivalence relation on pseudo-permutations which mimics the

rotation-equivalence, while considering only a single pattern within the permutation.

Definition 3.5. Take a pseudo-permutation τ. An pseudo-rotation on τ is any replacement in

which either something of the form pa within τ is replaced with (a±)p, or something of the form

ap within τ is replaced with p(a±). Here ± denotes either + or −, and we require that a and a±

appear adjacently to p within τ.

It is important to notice that if a pseudo-rotation changes a pseudo-permutation τ1 to τ2 then

there is another pseudo-rotation that instead changes τ2 to τ1. That is, the inverse of a pseudo-

rotation is a pseudo-rotation.

Definition 3.6. We can say two pseudo-permutations, τ1 and τ2, are equivalent if and only if one

can be reached from the other through a series of pseudo-rotations.

Notice that the above definition induces an equivalence relation on pseudo-permutations. More-

over, as formalized by the following lemma, equivalence for pseudo-permutations can be viewed

as a weak version of m-rotational equivalence.

Lemma 3.7. If two pseudo-permutations τ1 and τ2 are equivalent then their representative permu-

tations σ1 and σ2 are equivalent under m-rotational equivalence.

Proof. For i∈ [c+1], define (i)m to be the unique permutation in Sc+1 that begins with i and whose

final c letters form the pattern m. Similarly, define m(i) to be the unique permutation in Sc+1 that

ends with i and whose first c letters form the pattern m. Then, Lemma 2.7 of [8] states that for

j ∈ [c], we have that ( j)m is equivalent to m( j+1), and that m( j) is equivalent to ( j+1)m under

m-rotational equivalence.

This implies that if a pseudo-rotation takes a pseudo-permutation τa1
to τa2

, then their repre-

sentative permutations σa1
and σa2

are equivalent. Repeatedly using this fact proves the desired

result.

�

In the remainder of this section, we will show that for n≥ c+1, there are exactly two equivalence

classes of pseudo-permutations of length n. Our next definition introduces a surprising parity
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invariant under pseudo-permutation equivalence. We will see that this invariant determines the

equivalence classes.

Definition 3.8. Give a pseudo-permutation τ the pseudo-parity of τ is the sum modulo two of the

number of inversions within τ (ignoring the letter p), the number of odd valued letters before p,

and the number of even valued letters after p. If this is 0, we will say τ is even and otherwise τ is

odd.

For example, if τ = 16p28, then the pseudo-parity is inv(1628)+1+2 mod 2, which simplifies

to 1+1+2 = 0 mod 2. Thus τ is said to be even in this case.

The next lemma establishes that pseudo-parity is an invariant.

Lemma 3.9. If pseudo-rotation takes τ1 to τ2, then the pseudo-parity does not change.

Proof. For simplicity, we will consider only the case where the pseudo-rotation changes pa within

τ1 to a+p within τ2 – the other cases follow similarly. Define k = a+−a. Now look at the difference

in the pseudo-parities of τ1 and τ2. All inversions or non-inversions other than those involving a

or a+ remain unchanged. The only change in the inversions is due to letters with values between a

and a+ interacting with a and a+. Namely, we must consider the letters

a+1,a+2, · · · ,a+ k−1,

each of which is either involved in one more or one fewer inversions in τ2 than in τ1. So the

change in the number of inversions is the same parity as k − 1. Now, as for the changes in the

number (modulo two) of odd valued letters before p and even valued letters after p, there are two

cases: If k is odd then there the sum modulo two is unchanged due to a and a+ having opposite

parities; and if k is even then the sum modulo two changes since a and a+ are the same parity and

appear on opposite sides of p. So once again the change has the same parity as k−1. Hence the

overall pseudo-parity remains invariant.

�

The next lemma establishes that pseudo-equivalence is determined entirely by pseudo-parity

when n = c+1 or n = c+2. We will then use the lemma in order to prove the same result for all

n ≥ c+1.

Lemma 3.10. If n= c+1 or n= c+2 then there are two equivalence classes on pseudo-permutations

of length n.

Proof. Before beginning, recall that c is even by assumption, a fact which we will use repeatedly.

Because pseudo-parity is an invariant 123 · · ·(n−c)p and 213 · · ·(n−c)p have different pseudo-

parities, meaning there must be at least two equivalence classes. Now we wish to show that all

pseudo-permutations of a given parity are equivalent. First for n = c + 1 we can see that the

pseudo-permutations 1p, p2,3p, . . . , pc,(c+ 1)p are equivalent and that the pseudo-permutations

p1,2p, p3, . . . ,cp, p(c+1) are equivalent, completing the proof in that case.

For n = c+ 2 we can manually verify the theorem as follows. First, notice that any pseudo-

permutation is equivalent to another pseudo-permutation for which p is not the first or last let-

ter. Moreover, by the already proven case of c+ 1, we know that for each i 6= p, all of the even

pseudo-permutations beginning with i are equivalent. Therefore, in order to establish that all even

pseudo-permutations are equivalent, it suffices to show that for all i, j 6= p there is an even pseudo-

permutation beginning with i which is equivalent to an even pseudo-permutation beginning with j.

When i and j are odd, this follows from the sequence,

1p(c+2)≡ 3p(c+2)≡ ·· · ≡ (c−1)p(c+2)≡ (c+1)p(c+2).
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Moreover, the even pseudo-permutations beginning with 1 are equivalent to those beginning with

2 because

1p2 ≡ 4p2 ≡ 4p5 ≡ 2p5 ≡ 2p(c+1).

The even pseudo-permutations beginning with 2, are in turn equivalent to those beginning with any

even i 6= c+2 because

2p(c+1)≡ 4p(c+1)≡ ·· · ≡ (c−2)p(c+1)≡ cp(c+1).

And finally, the even pseudo-permutations beginning with 1 are equivalent to those beginning with

(c+2), since

1p2 ≡ 4p2 ≡ (c+2)p2 ≡ (c+2)pc.

Combining these, we see that the even pseudo-permutations form a single equivalence class. A

similar analysis of the odd pseudo-permutations establishes that there are two equivalence classes

in the case of n = c+2.

�

We conclude the subsection by generalizing the preceding lemma to hold for all n ≥ c + 1,

thereby establishing pseudo-parity as a complete invariant.

Theorem 3.11. If n ≥ c+ 1 then there are two equivalence classes on pseudo-permutations of

length n.

Proof. By Lemma 3.10, we may assume without loss of generality that n ≥ c+3.

We introduce the notion of the control block of a pseudo-permutation, which is defined to be

the letter p along with the letter following it. If p is the last letter then the control block is p along

with the letter before it. We will denote the control block by C, representing p and the additional

letter. For example, the pseudo-permutation 4p17 has control block p1 and can be represented as

4C7.

The key observation is that if a is a letter and C is a control block which contains the letter b,

then psuedo-rotations can be used to transform aC into Ca and to transform aC into bC, where the

new control blocks contain different letters than the original.This follows from Lemma 3.10, since

the control blocks in bC and in Ca can be chosen to ensure that they are the same psuedo-parity as

aC. (In particular, the fact that the control block is c+1 letters allows us to use the n = c+1 case

from Lemma 3.10 in order to select a control block with either pseudo-parity.)

Armed with this we can finish the proof. Given a pseudo-permutation τ, first move τ’s control

block so that it follows the letter 1 (using operations of the form aC ↔Ca); then use an operation

of the form C1 → bC for some b to move 1 into the control block; then use operations of the

form aC ↔Ca to move the control block to the second second position in the psuedo-permutation;

and finally use an operation of the form aC → 1C to move 1 into the first position. Continue like

this to place 2 in the second position, and so on, until we get a psuedo-permutation of the form

12 · · ·(n− c− 1)C. By the case of n = c+ 1 applied to the control block C, there are only two

equivalence classes containing such pseudo-permutations, completing the proof that there are at

most two equivalence classes of pseudo-permutations of length n. Because pseudo-parity is an

invariant, it follows that there are exactly two classes.

�
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3.3. Analyzing m-Rotational Equivalence. In the previous section, we introduced an equiva-

lence relation on pseudo-permutations which mimicked rotational equivalence. We were then able

to fully characterize the equivalence classes under the equivalence relation for pseudo-permutations.

Now, with the help of Theorem 3.11, we can prove our main result, Theorem 3.1. We restate the

result below for convenience.

Theorem 3.12 (Theorem 3.1 restated). Let m be a pattern of even length c. Let f (n) denote the

number of nontrivial equivalence classes in Sn under m-rotational equivalence. Then there is some

cutoff t ≤ 2c−1 such that

f (n) =

{

2 if c < n < t

1 if n ≥ t

Proof. Consider permutations of length n for some n> c. Notice that by Theorem 3.11 and Lemma

3.7 we know there are at most two equivalence classes under m-rotational equivalence. Also if there

exists a t such that when n = t there is one equivalence class, this means there are two pseudo-

permutations of different pseudo-parity such that their representative permutations are equivalent.

Now notice if we add t+1 to the end of both pseudo-permutations they still have different pseudo-

parities and their representative permutations are still equivalent. This means by induction that for

all n ≥ t, there must be a single equivalence class in Sn. Thus, in order to complete the proof, it

suffices to show when n = 2c−1 that there is one equivalence class.

Define σ1 = a1a2 · · ·a2c−1 to be the permutation in S2c−1 such that a1 · · ·ac are the letters 1 · · ·c
rearranged to form the pattern m, and such that ac+1 · · ·a2c−1 are the letters (c+ 1) · · ·(2c− 1)
rearranged to form the final c−1 letters of the pattern m. Recall that without loss of generality we

assume m begins with 1. Hence the final c letters ac · · ·a2c−1 of σ1 form the pattern m. As a result,

σ1 is the representative permutation for the pseudo-permutation,

τ1 = a1 · · ·ac−1p.

On the other hand, via an m-rotation, σ1 is equivalent to the permutation,

σ2 = a2a3 · · ·ac−1aca1ac+1ac+2 · · ·a2c−1.

Moreover, because a1 = 1 and the pattern m begins with one, the final c letters of σ2 form an

instance of the pattern m. This means that σ2 is the representative permutation for the pseudo-

permutation,

τ2 = a2 · · ·acp.

We will show that τ1 and τ2 have different pseudo-parities. Since their representative permuta-

tions are equivalent, this implies that there is a single equivalence class in S2c−1 under m-rotational

equivalence.

Since a1 = 1, we have that a1a2 · · ·ac and a2 · · ·ac have the same parity of number of inversions.

Moreover, if we remove ac from a1a2 · · ·ac then we change the parity by ac mod 2. So the dif-

ference in parity of inversions between a1a2 · · ·ac−1 and a2a3 · · ·ac is ac mod 2. Moreover, notice

that the difference (modulo two) in the number of odd valued letters before p within τ1 and τ2 is

ac+a1 ≡ ac +1 mod 2. Thus the pseudo-parities of τ1 and τ2 differ by ac+(ac +1)≡ 1 mod 2,

as desired.

�
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4. PATTERN-REPLACEMENT WITH PATTERNS OF LENGTH FOUR

In past work, extensive effort has been made to study the special case of pattern-replacement

equivalences involving patterns of length three [6–8, 10, 13, 14]. The resulting enumerations have

yielded many beautiful number sequences, Catalan numbers, sums of binomial coefficients, sums

of Motzkin numbers, etc. The difficulty when studying equivalences with patterns of length four

is selecting which equivalence relations to focus on. Specifically, while considering all subsets of

S3 as replacement sets is feasible, doing the same for subsets of S4 is not, even when symmetry is

taken into account.

We initiate the study of replacement sets containing patterns of length four, by focusing on cases

which experimentally correspond with known number sequences from the On-Line Encyclopedia

of Integer Sequences. We focus on patterns with no adjacency constraints since they seem more

prone to yielding interesting number sequences, and we limit ourselves to sets of two patterns.

Through computer computation, we are able to calculate the number of nontrivial equivalence

classes in Sn under Π-equivalence for all n < 12 and Π consisting of two patterns of length four.

We focus on the nontrivial equivalence classes due to the fact the number of trivial equivalence

classes typically grows at an exponential rate and can be treated as a separate pattern-avoidance

enumeration problem. For three sets of patterns, the computed number sequence appears to match

an OEIS entry. Below, we study these three equivalences. For two of the equivalence relations, we

are able to prove a formula for the number of classes, and for the third, we pose the formula as a

conjecture.

Note that, due to symmetry, each of the three OEIS hits correspond with multiple pairs of pat-

terns. For example the sequence resulting from the patterns 1234 and 3421 is the same as that

resulting from 4321 and 1243. Now we explore the first of these 3 sequences.

Lemma 4.1. For n ≥ 8, all permutations in Sn not beginning with n that contain either of the

patterns 1234 or 3421 are equivalent under the {1234,3421}-equivalence (with no adjacency con-

straints). Equivalently, these permutations are all equivalent to the identity.

Proof. For n = 8 this can be checked by computer. Now we will proceed by induction. Assume the

proposition is true for n−1. Take any permutation a = a1a2 · · ·an with a1 6= n that contains at least

one instance of one of the patterns. Then we claim a is equivalent to the identity. Say our pattern is

formed by the letters ai1,ai2,ai3,ai4. Choose some j with 1≤ j ≤ n such that j 6= 1, i1, i2, i3, i4,n and

a j 6= n. Then we can use our inductive hypothesis on all the ai except a j to order to rearrange them

into increasing order. Now, since j 6= 1, the new first letter will be either one or two, and the first

n−1 letters will contain (several) 1234 patterns, meaning we can apply the inductive hypothesis

to them in order to rearrange them in increasing order. Since j was not n, the new permutation

will have its first n−1 letters in increasing order, and will end either with n−1 or n. Applying the

inductive hypothesis to the final n−1 letters, we arrive at the identity, as desired. �

Theorem 4.2. For n≥ 7 the number of nontrivial equivalence classes in Sn under the {1234,3421}
equivalence (with no adjacency constraints) is n+28.

Proof. We prove the theorem by induction. The n = 7 case can be checked by computer. Assume

the statement holds for n− 1. Denote the equivalence classes for the permutations in Sn−1 by

A1,A2, · · · ,An+27. Now for i = 1,2, · · · ,n+27 we can define Bi = {na1a2 · · ·an−1 | a1a2 · · ·an−1 ∈
Ai}. We claim each of the Bi is an equivalence class. Note that n can never belong to either of the

patterns 1234 or 3421 since it is the first letter. Therefore, the equivalence relation on the elements

of Bi can be seen as acting on only the final n−1 letters, thereby making Bi an equivalence class.
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By Proposition 4.1 all permutations not beginning with n must belong to one equivalence class C

or belong to their own trivial equivalence class. Hence there are n+28 nontrivial classes. �

The second equivalence relation we study will have exponential growth in nontrivial equivalence

classes, rather than linear growth. Nonetheless, we can use a very similar technique to analyze it.

Lemma 4.3. For n ≥ 8 all permutations in Sn not beginning or ending with n that contain either of

the patterns 1243 or 3421 are equivalent under the {1243,3421}-equivalence (with no adjacency

constraints) to all other such permutations of the same parity. Notice that this means that each such

permutation is thus equivalent to either 12n3(n−1)4567 · · ·(n−2) or 12n3(n−1)5467 · · ·(n−2).

Proof. We can check that the result holds for n= 8 by computer. We proceed by induction. Assume

the proposition is true for n−1. Take any permutation a1a2 · · ·an with a1,an 6= n that contains at

least one of the patterns. We will show that a1 · · ·an is equivalent to either 12n3(n−1)4567 · · ·(n−
2) or 12n3(n−1)5467 · · ·(n−2). Call these A-form and B-form respectively. Assume our pattern

uses the letters ai1,ai2,ai3,ai4 . Pick a j such that 1 ≤ j ≤ n and j 6= i1, i2, i3, i4,n and a j 6= 1,n.

Then we can use our inductive hypothesis on all the ai except a j to order them into either A-form

or B-form. By doing this, we guarantee that n is either in the third or fourth position, and that there

is pattern within the first five letters. Hence we can use the inductive hypothesis on the first n−1

letters, rearranging them to be either A-form or B-form. Notice that n is now in the third position,

and that the letters 2,3,(n− 1),4 form a pattern within the final n− 1 letters. Therefore, we can

apply the inductive hypothesis to the final n− 1 letters. This places n− 2 in the final position

(since the very first letter in the permutation will be 1 or 2). Moreover, since n is now in the fourth

position and the second through fourth letters form a pattern, we can apply the inductive hypothesis

a final time to the first n− 1 letters, rearranging them to be either A-form or B-form. Combined

with the fact that the final letter is n−2, we see that the entire permutation is now either A-form or

B-form.

We know that each non-avoiding permutation not beginning or ending with n is equivalent to one

of 12n3(n−1)4567 · · ·(n−2) or 12n3(n−1)5467 · · ·(n−2). Since the {1243,3421}-equivalence

preserves parity, it follows that such permutations are partitioned according to their parity. �

Theorem 4.4. For n≥ 7 the number of nontrivial equivalence classes of Sn under the {1243,3421}
equivalence (with no adjacency constraints) is 7 ·2n−4 −2.

Proof. We will prove the theorem by induction. The base case of n = 7 can be checked by com-

puter. Assume as an inductive hypothesis that the statement is true for n−1. Then say the equiv-

alence classes for Sn−1 are A1,A2, · · · ,A7·2n−5−2. Define Bi = {na1a2 · · ·an−1 | a1a2 · · ·an−1 ∈ Ai}.
and Ci = {a1a2 · · ·an−1n | a1a2 · · ·an−1 ∈ Ai}. Now since an n in the beginning or end of a permu-

tation can never be part of a pattern, it follows from the inductive hypothesis that each Bi and each

Ci is a class in Sn. By Proposition 4.3, since parity is an invariant, the remaining non-avoiding

permutations fall into two nontrivial equivalence classes. Hence the total number of nontrivial

equivalence classes is 2 · (7 ·2n−5−2)+2 = 7 ·2n−4 −2, completing the proof by induction. �

Now we look at the third and final OEIS sequence to appear.

Conjecture 4.5. For n ≥ 7 the number of nontrivial equivalence class of Sn under the 1234,3412-

equivalence (with no adjacency constraints) is n3+6n2−55n+54
6

.

We suspect that the preceding conjecture can be proven with similar methods to the other results

in this section. We have verified the conjecture for n < 12. Using the technique from the previous
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proofs in which we consider first the permutations not beginning with n, and then add in the other

permutations via an induction, Conjecture 4.5 reduces to the following.

Conjecture 4.6. For n ≥ 8 the number of nontrivial equivalence classes dividing all permutations

in Sn not beginning with n that contain either of patterns 1234 or 3412 is n2+3n−20
2

.

5. CONCLUSION

In this paper, we have presented a generalization of the Erdös-Szekeres Theorem to permuta-

tion pattern-replacement equivalences, a characterization of equivalence classes under rotational

equivalence, and the first results on enumerating nontrivial classes generated by pairs of patterns

of length 4. There are several directions of future work to consider.

• Our generalization of Erdös-Szekeres holds for n ≥ 3k2 −4k+3. We conjecture that the result

can be tightened to n ≥ k2 −2k+3. Moreover, when k is even, this could potentially be reduced

to k2 −2k+2, matching the standard Erdös-Szekeres Theorem.

• We have proven that under rotational equivalence there is one nontrivial equivalence class when

n ≥ 2c−1. We conjecture that this bound is tight exactly when m is an alternating pattern.

• We have enumerated the nontrivial equivalence classes as OEIS sequences for two relations

given by pairs of patterns of length 4. A direction of future work is to prove the third OEIS

match (Conjecture 4.5) and to find additional sets of patterns which yield interesting number

sequences. These could arise from changing adjacency constraints or mixing patterns of lengths

3 and 4.

• In our work, we have studied two infinite families of replacement equivalences, the rotational-

equivalence with adjacency constraints, and the Erdös-Szekeres equivalence. Additionally, [7]

and [8] have studied several other infinite families. Continuing to identify infinite families of

particular interest is an important direction of future work, since there are far too many sets of

patterns of small size to consider each individually.
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