
THE POLYTOPE ALGEBRA OF GENERALIZED PERMUTAHEDRA

JOSE BASTIDAS

Abstract. The polytope algebra of a zonotope can be endowed with the structure of a module
over the Tits algebra of the corresponding hyperplane arrangement. We explore this structure and
find relations between statistics on (signed) permutations and the composition series of the module
associated with the (signed) braid arrangement. We prove that the relations defining the polytope
algebra are compatible with the Hopf monoid structure of generalized permutahedra.

1. Introduction

In recent years, the family of generalized permutahedra has been a central object of study for
many combinatorialists. They serve as a geometric model for many classical (type A) combinatorial
objects. They were first introduced as polymatroids by Edmonds in [Edm70], where their relation
to submodular functions and optimization was studied. More recently, Aguiar and Ardila [AA17]
endowed this family with the structure of a Hopf monoid GP in the category of species. In doing
so, they gave a unified framework to study similar algebraic structures over many different families
of combinatorial objects.

Over three decades ago, McMullen [McM89] pioneered in endowing polytopes with an algebraic
structure. At first glance, the Hopf monoid of Aguiar and Ardila seems to be very disconnected
from McMullen’s polytope algebra. However, there is a striking relationship between the notion of
inversion on both structures, as already pointed out in [AA17]. Understanding the relation between
both algebraic structures is the starting point of this work.

Let V be a real vector space. The polytope algebra Π(V ) is generated by the classes [p] of
polytopes p ⊆ V . These generators satisfy the valuation and translation invariance relations. We
show that the relations defining McMullen’s algebra are compatible with the Hopf monoid structure
of generalized permutahedra. As a consequence, we construct a new Hopf monoid obtained as a
quotient of GP by these relations.

Theorem 7.1. The species Π of generalized permutahedra modulo the valuation and translation
invariance relations is a Hopf monoid.

The polytope algebra relative to a fixed polytope p ⊆ V , denoted Π(p), was considered by Mc-
Mullen in [McM93a]. It is the subalgebra of Π(V ) generated by the classes of Minkowski summands
of p. Π(p) is a graded algebra, with graded components Ξr(p) for r = 0, 1, . . . ,dim(p). For the case
of zonotopes z, we endow McMullen’s construction with an additional algebraic structure. Π(z) is
a right-module over the Tits algebra Σ[A] of the corresponding hyperplane arrangement A. Mc-
Mullen showed that the algebra Π(p) has very nice properties when the polytope p is simple. One
of them is that the morphisms Π(p)→ Π(f), which are defined for every face f ≤ p, are surjective.
We prove that this also hold s for arbitrary zonotopes.

Proposition 5.2. Let z be a zonotope, not necessarily simple, and f a face of z. Then, the
morphism ψf : Π(p)→ Π(f) is surjective.

The simple modules over Σ[A] are one dimensional and indexed by the flats of the arrange-
ment [AM17, Chapter 9]. Given a module h over Σ[A], the number of copies of the simple module
associated with the flat X that appear as a composition factor of h is ηX(h). We investigate these
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numbers for the module Π(z) in the particular case of the permutahedron π and the type B permu-
tahedron πB. They are closely related to the Eulerian numbers and the Eulerian numbers of type
B, respectively. The main results in this direction are the following.

Theorem 6.1. For any flat X of the braid arrangement in Rd and r = 0, 1, . . . , d− 1,

ηX(Ξr(π)) =
∣∣{σ ∈ Sd : s(σ) = X, exc(σ) = r}

∣∣.
Theorem 6.7. For any flat X of signed braid arrangement in Rd and r = 0, 1, . . . , d,

ηX(Ξr(π
B)) =

∣∣{σ ∈ Bd : s(σ) = X, excB(σ) = r}
∣∣.

This document is organized as follows. We review McMullen’s construction in Section 2. The
Tits algebra of a hyperplane arrangement and characteristic elements are the subject of Section 3.
There, we also determine the dimensions of the eigenspaces of the action of a characteristic element
over any module. Section 4 reviews the (signed) braid arrangement and its relation with (resp.
type B) set partitions and (resp. signed) permutations. In Section 5 we introduce the McMullen
module of a hyperplane arrangement. Section 6 contains the main results: we explore in-depth
the module structure for the Coxeter arrangements of type A and B. In particular, we provide a
conjectural eigenbasis for the action of the Adams element on the module Π(π). In Section 7 we
prove that the valuation and translation invariance relations are compatible with the Hopf monoid
structure of GP. We conclude with some final remarks and questions in Section 8.

2. The polytope algebra

We briefly review the definition of the polytope algebra of McMullen [McM89] and its main
properties. The subalgebra relative to a fixed polytope [McM93a] is studied at the end of this
section. We start by establishing some notation and recalling some definitions.

2.1. Preliminaries. Let V be a real vector space of dimension d endowed with an inner prod-
uct 〈 · , · 〉. For a polytope p ⊆ V and a vector v ∈ V , let pv denote the face of p maximized in the
direction v. That is,

pv = {p ∈ p : 〈p, v〉 ≥ 〈q, v〉 for all q ∈ p}.
The (outer) normal cone of a face f of p is the polyhedral cone

N(f, p) = {v ∈ V | f ≤ pv}.
The normal fan of p is

Σp = {N(f, p) : f ≤ p}.
There is a natural order-reversing correspondence between faces of p and cones in Σp. For F ∈ Σp,
we let pF ≤ p denote the face whose normal cone is F .

v

pv

pw

w
p

N(pv, p)

N(pw, p)

Figure 2.1. A 2-dimensional polytope p and two of its faces pv, pw maximized in
directions v, w, respectively. On the right, the normal fan Σp.

Two polytopes p and q are said to be normally equivalent if Σp = Σq. If, on the other hand, Σp

refines Σq, we say that q is a deformation of p. Recall that a fan Σ refines Σ′ if every cone in Σ′ is
a union of cones in Σ.
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The Minkowski sum of two subsets A,B ⊆ V is

A+B = {v + w : v ∈ A, w ∈ B}.
We say that a set A is a Minkowski summand of S if S = A + B for some set B. The Minkowski
sum of two polytopes is a polytope, and every Minkowski summand of a polytope is necessarily a
polytope. Moreover, the normal fan of p + q is the common refinement of Σp and Σq. Hence, Σp

refines the normal fan of any of its Minkowski summands.
The f -polynomial of a d-dimensional polytope p is

f(p, z) =
d∑
i=0

fi(p)zi,

where fi(p) is the number of i-dimensional faces of p. The h-polynomial of p is defined by

h(p, z) =
d∑
i=0

hi(p)zi = f(p, z − 1).

The sequences (f0(p), . . . , fd(p)) and (h0(p), . . . , hd(p)) are the f -vector and h-vector of p, respec-
tively. These polynomials behave nicely with respect to Cartesian products:

f(p× q, z) = f(p, z)f(q, z) h(p× q, z) = h(p, z)h(q, z).

2.2. Definitions and structure theorem. As an abelian group, the polytope algebra Π(V ) is
generated by elements [p], one for each polytope p ⊆ V . These generators satisfy the relations

(2.1) [p ∪ q] + [p ∩ q] = [p] + [q],

whenever p, q and p ∪ q are polytopes; and

(2.2) [p + {t}] = [p]

for any polytope p and translation vector t ∈ V . These relations are referred as the valuation
property and the translation invariance property, respectively.

The group Π(V ) is endowed with a commutative product. The product of two generators is
defined by means of the Minkowski sum

(2.3) [p] · [q] = [p + q],

and it is extended linearly to all Π(V ). Observe that the class of a point 1 := [{o}] is the unit of
this algebra.

A fundamental operation on Π(V ) is given by the dilations δλ, defined for each scalar λ ∈ R.
For any subset S ⊆ V and scalar λ, the dilate of S by λ is the set λS = {λv : v ∈ S}. The
dilation δλ : Π(V )→ Π(V ) is defined on the generators by

δλ[p] = [λp].

One can easily verify that δλ preserves relations (2.1) and (2.2). Further, δ0[p] = 1 for any poly-
tope p.

Let Ξ0(V ) be the subring of Π(V ) generated by 1, and Z1 be the subgroup of Π(V ) generated
by all elements of the form [p]− 1.

Lemma 2.1 ([McM89, Lemma 8]). As an abelian group, Π(V ) has a direct sum decomposition

Π(V ) = Ξ0(V )⊕ Z1.

The dilation δ0 is the projection from Π(V ) to Ξ0(V ) with kernel Z1.

It follows from the previous lemma that Z1 is an ideal of Π. The next result shows that Z1 is in
fact nilpotent.
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Lemma 2.2 ([McM89, Lemma 13]). Let p be a k-dimensional polytope. Then,

([p]− 1)r = 0 for r > k.

Therefore, we can define maps

(2.4) 1 + Z1 Z1

log

exp

by means of their usual power series

log(1 + x) =
∑
k≥1

(−1)k−1

k
xk exp(x) =

∑
k≥0

1

k!
xk

for x ∈ Z1.

Lemma 2.3 ([McM89, Lemma 18]). The maps (2.4) are inverse of each other. Moreover

log(x1x2) = log(x1) + log(x2) whenever δ0x1 = δ0x2 = 1,(2.5a)

exp(x1 + x2) = exp(x1) exp(x2) whenever x1, x2 ∈ Z1.(2.5b)

In particular, log[p] is defined for any polytope p ⊆ V . If p has dimension k, then

log[p] =
k∑
r=0

(−1)k−1

k
([p]− 1)r and [p] =

k∑
r=0

1

r!
(log[p])r.

It actually follows from the work of McMullen that ([p]− 1)k 6= 0 for a k-dimensional polytope p.
Therefore, all the terms appearing in the sums above are nonzero.

For r ≥ 1 let Ξr(V ) be the subspace of Π(V ) generated by elements of the form (log[p])r.

Theorem 2.4 ([McM89, Theorem 1]). The commutative ring Π(V ) is almost a graded R-algebra,
in the following sense:

i. as an abelian group, Π(V ) admits a direct sum decomposition

Π(V ) =
d⊕
r=0

Ξr(V );

ii. under multiplication,

Ξr(V ) · Ξs(V ) = Ξr+s,

with Ξr = 0 for r > d;
iii. Ξ0(V ) ∼= Z, and for r = 1, . . . , d, Ξr is a real vector space;
iv. the product of elements in Z1 =

⊕
r≥1 Ξr(V ) is bilinear;

v. the dilations δλ are algebra endomorphisms, and for r = 0, 1, . . . , d, if x ∈ Ξr(V ) and λ ≥ 0,
then δλx = λrx.

Convention 2.5. As in later work of McMullen [McM93b, McM93a], we replace Ξ0(V ) ∼= Z with
the tensor product Ξ0(V )R := R⊗Ξ0(V ). We similarly let Π(V )R := Ξ0(V )R⊕Z1. Hence, Π(V )R is
a graded R-algebra. To simplify notation, we write Ξ0 instead of Ξ0(V )R and Π instead of Π(V )R.

The last property in the theorem completely characterizes the graded components of Π, as the
following result shows.

Lemma 2.6 ([McM89, Lemma 20]). Let x ∈ Π and λ > 0, with λ 6= 1. Then,

(2.6) x ∈ Ξr if and only if δλx = λrx.
4



Example 2.7. Let l be a line segment of arbitrary length. Lemma 2.2 shows that ([l] − 1)2 = 0.
Therefore,

log[l] = [l]− 1.

It follows that [l]− 1 ∈ Ξ1 and, by (2.6), [λl]− 1 = δλ([l]− 1) = λ[l]− λ.

Lemma 2.8. Let v1, . . . , vk ∈ V be nonzero vectors and let li denote the line segment Conv(o, vi).
Then,

k∏
i=1

log[li] 6= 0 ⇐⇒ {v1, . . . , vk} is linearly independent.

Proof. Consider the polytope z =
∑

i li. Using (2.5a), we get

(log[z])k =
( k∑
i=1

log[li]
)k

= k!

k∏
i=1

log[li].

The last equality follows since k!
∏

log[li] is the only square-free term in the expansion of (
∑

log[li])
k,

and (log[l])2 = 0 for any line segment l. Finally, (log[z])k 6= 0 if and only if k ≤ dim(z), and z
being the sum of k line segments has dimension at most k, with equality precisely when the vec-
tors v1, . . . , vk are linearly independent. �

2.3. Euler map and maximization operators. The Euler map x 7→ x∗ is the linear operator
defined on generators by

(2.7) [p]∗ =
∑
q≤p

(−1)dim(q)[q].

The sum run over all nonempty faces q of p. Up to a sign, the element [p]∗ corresponds to the class
of the interior of p.

Theorem 2.9 ([McM89, Theorem 2]). The Euler map is an involutory automorphism of Π. More-
over, for x ∈ Ξr and λ < 0,

δλx = λrx∗.

Theorem 2.10 ([McM89, Theorem 12]). For any polytope p,

(2.8) [p] · [−p]∗ = 1.

That is, the class of a polytope is always invertible, with [p]−1 = [−p]∗.

Take a vector v ∈ V . We can define a maximization operator p 7→ pv on the space of all
polytopes p ⊆ V . The next result shows that it induces a well-defined map on Π.

Theorem 2.11 ([McM89, Theorem 7]). The map p 7→ pv induces an endomorphism x 7→ xv on Π,
defined on generators by

[p] 7→ [p]v := [pv].

This endomorphism commutes with nonnegative dilations.

In particular, the morphism x 7→ xv restricts to each graded component Ξr.

Example 2.12. Let p be a 2-simplex. Expanding the power series for log, we get

2 log[p] = 4[p]− [2p]− 3.
5



Consider the decomposition of 2p shown below.

=

Note that the three copies of p have a missing vertex, and only the interior of −p appears. It shows
that [2p] = 3([p]− 1) + [−p]∗. Therefore,

log[p] =
1

2

(
[p]− [−p]∗

)
.

Furthermore, using (2.8) one gets

(log[p])2 =
1

4
([2p] + [−2p]∗ − 2) = [p] + [−p]∗ − 2.

The last equality follows from the picture below. It also reflects the fact that [p] + [−p]∗ − 2 ∈ Ξ2,
since it is an eigenvector of δ2 of eigenvalue 4 = 22.

=

2.4. Subalgebra relative to a fixed polytope. Fix a d-dimensional polytope p ⊆ V . Let Π(p)
be the subalgebra of Π(V ) generated by the classes of Minkowski summands of p. A result of
Shephard [Grü03, Section 15.2.7] implies that a polytope q is a deformation of p if and only if
some small enough positive dilation of q is a Minkowski summand of p. Consequently, Π(p) is
the subalgebra generated by the classes of all deformations of p. In particular, the algebra Π(p)
depends only on Σp.

The grading of Π(V ) induces a grading of Π(p). We let Ξr(p) = Π(p) ∩ Ξr(V ). The dimension
of these spaces was described by McMullen in the case of simple polytopes.

Theorem 2.13 ([McM93a, Theorem 6.1]). Let p be a d-dimensional simple polytope. Then,

dim(Ξr(p)) = hr(p)

for r = 0, 1, . . . , d.

Let f be a face of p and v ∈ relint
(
N(f, p)

)
. The maximization operator x 7→ xv defines a

morphism

(2.9) ψf : Π(p)→ Π(f)

that only depends on the face f.
First observe that this map is well defined; that is, [qv] ∈ Π(f) for every generator [q] of Π(p).

Indeed, if q is a summand of p, say p = q + q′, then

f = pv = qv + q′v,

so qv is a Minkowski summand of f. Moreover, since the normal fan of p refines that of q, qw = qv
for any other w ∈ relint

(
N(f, p)

)
. Therefore the morphism (2.9) only depends on f and not on the

particular choice of v.

Theorem 2.14 ([McM93a, Theorem 2.4]). Let p be a simple polytope and f a face of p. Then, the
morphism ψf is surjective.
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It is worth noting that ψf is a morphism of graded algebras. This is a consequence of Theo-
rem 2.11.

3. The Tits algebra of a linear hyperplane arrangement

3.1. Basic definitions. Let A be a (finite) linear hyperplane arrangement in V . A subspace of V
obtained as the intersection of some hyperplanes in A is called a flat. The set of flats of A is
denoted by L[A], and it forms a graded lattice ordered by inclusion. The ambient space is the top
element of L[A], we denote it by >. The intersection of all the hyperplanes in A is the minimal
element of L[A], we denote it by ⊥.

The characteristic polynomial of A is

χ(A, t) :=
∑

X∈L[A]

µ(X,>) tdim(X),

where µ(X,>) denotes the Möbius function of L[A]. It is a monic polynomial of degree dim(V ).
The arrangement under a flat X is the following collection of hyperplanes in ambient space X

AX = {H ∩X : H ∈ A, X 6⊆ H}.

The hyperplanes in A split V into a collection Σ[A] of polyhedral cones called faces. Explicitly,
the complement in V of the union of hyperplanes in A is the disjoint union of open subsets of V ;
and Σ[A] is the collection of the closures of these regions together with all their faces. Σ[A] is a
poset under containment, its maximal elements are called chambers. It has a minimum element O,
it coincides with the minimal flat ⊥ of the arrangement. See Figure 3.1 for an example.

The support of a face F is the smallest flat s(F ) containing it. It coincides with the linear span
of F . The support map

(3.1) s : Σ[A]→ L[A]

is surjective and order preserving.

A

H1

H2

H3

Σ[A]

O

L[A] µ(·,>)

⊥2

H1
−1 H2

−1 H3
−1

>1

Figure 3.1. A 2-dimensional arrangement A (top) together with its poset of faces
(left) and lattice of flats (right). The Möbius function of the lattice of flats is shown
in blue. The characteristic polynomial of A is χ(A; t) = t2 − 3t+ 2.
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3.2. The Tits algebra. The collection of faces of a hyperplane arrangement has the structure of
a monoid. The product of two faces F and G, denoted FG, is the first face you encounter after
moving a small positive distance from an interior point of F to an interior point of G, as illustrated
in Figure 3.2. This product turns Σ[A] into a monoid, with unit O. One can easily verify the
following properties. The first says that Σ[A] is a left regular band (LRB). For any faces F,G of A:

FGF = FG(3.2a)

FG = F ⇐⇒ s(G) ≤ s(F )(3.2b)

FG = G ⇐⇒ F ≤ G(3.2c)

O
F

CFC

F

FH

H
G = GF

FG

Figure 3.2. Product of faces in arrangements of rank 2 (left) and 3 (right). The
arrangement of rank 3 is intersected with a sphere around the origin. F is a ray, G, H
and FG are walls, and FH is a chamber.

The linearization Σ[A] := RΣ[A] of this monoid is the Tits algebra of A. See [AM17, Chapters
1 and 9] for more details. We let HF denote the basis element of Σ[A] associated with the face F
of A.

We view L[A] as a commutative monoid with the join operation for the product. This makes the
support map (3.1) a morphism of monoids. We let HX denote the basis element of RL[A] associated
with the flat X of A. RL[A] is the monoid algebra of L[A], and the product between basis elements
is given by

HX · HY = HX∨Y.

A result of Solomon [Sol67, Theorem 1] shows that RL[A] is a split-semisimple algebra. This
rests on the fact that the unique complete system of orthogonal idempotents for RL[A] consists of
elements QX uniquely determined by

QX =
∑

Y: Y≥X

µ(X,Y)HY or equivalently HX =
∑

Y: Y≥X

QY.

3.3. Modules over the Tits algebra. The simple modules over a split-semisimple algebra are
1-dimensional and are in correspondence to its complete system of orthogonal idempotents, see for
instance [AM17, Appendix D.3]. The module of RL[A] associated with the flat X is 〈QX〉 ⊆ RL[A].
Hence, the character χX associated with X is determined by

χX(QY) =

{
1 if Y = X,

0 otherwise.
equivalently χX(HY) =

{
1 if Y ≤ X,

0 otherwise.
8



Let h be an arbitrary module over RL[A] and χh the corresponding character. For every flat X
define

(3.3) ξX(h) = χh(HX) and ηX(h) = χh(QX).

The relation between the H-basis and the Q-basis imply that

(3.4) ηX(h) =
∑

Y : Y≥X

µ(X,Y)ξY(h).

Moreover, since the elements HX and QX are idempotent,

χh(HX) = dim(h · HX) and χh(QX) = dim(h · QX)

It follows that ηX(h) is the number of copies in h of the simple representation associated with QX.
That is,

h ∼=
⊕

X

〈QX〉⊕ηX(h)

The algebra RL[A] is the maximal split-semisimple quotient of Σ[A] via the support map. It
follows that the simple modules over Σ[A] are obtained from those of RL[A] factoring the action
through the support map. That is, the simple modules over Σ[A] are 1-dimensional and indexed
by flats. The character χX associated with the flat X evaluated on an element

w =
∑
F

wFHF

of Σ[A] yields

(3.5) χX(w) =
∑

F : s(F )≤X

wF .

Now, let h be an arbitrary right module over the Tits algebra Σ[A], and χh the corresponding
character. Then, as with simple modules, χh factors through the support map. For a flat X,
define ξX(h) and ηX(h) as in (3.3). It follows that

ξX(h) = χh(HF ) = dim(h · HF )

where F is any face of support X. This is well defined since the character factors through the
support map, but it can also be checked directly: h · HF = h · HG whenever s(F ) = s(G). This is a
consequence of (3.2a) and (3.2b).

The module h does not necessarily decompose as the sum of simple modules, so we consider
composition series of h instead. The integer ηX(h) is the number of times the simple module with
multiplicative character χX appears as a composition factor in a composition series of h.

3.4. Characteristic elements and diagonalization. Let t be a fixed scalar. An element w of
the Tits algebra is characteristic of parameter t if for each flat X

χX(w) = tdim(X),

with χX(w) as in (3.5). Characteristic elements determine the characteristic polynomial of the
arrangement and also determine the characteristic polynomial of the arrangements under each flat.
See [AM17, Section 12.4] and [ABM19] for more information.

We say that a scalar t is non-critical if t is not a root of χ(AX; t) for any flat X. A characteristic
element w of non-critical parameter t uniquely determines a family of Eulerian idempotents E =
{EX}X, which satisfies

(3.6) w =
∑

X

tdim(X)EX.

9



This is a consequence of [AM17, Propositions 11.9, 12.59]. A complete system of orthogonal
idempotents E = {EX}X of Σ[A] is an Eulerian family if each EX is of the form

EX =
∑

F : s(F )≥X

aFHF ,

with aF 6= 0 for at least one F with s(F ) = X. By definition, they satisfy

(3.7) EXEY =

{
EX if X = Y,

0 otherwise,
and

∑
X

EX = HO.

It follows that s(EX) = QX, and that QX 7→ EX defines an algebra section RL[A] → Σ[A] of the
support map. Since the corresponding characteristic element w is on the image of this section, its
action on any Σ[A]-module is diagonalizable. Let us make this explicit.

Let h be a right Σ[A]-module. It follows from (3.7) that h has the following decomposition as a
vector space:

h =
⊕

X

h · EX.

Moreover, the presentation of w as a weighted sum of Eulerian idempotents (3.6) shows that it acts

on h · EX by multiplication by tdim(X). Hence, the dimension of the eigenspace of the action of w
with eigenvalue tk is∑

dim(X)=k

dim(h · EX) =
∑

dim(X)=k

χh(EX) =
∑

dim(X)=k

χh(QX) =
∑

dim(X)=k

ηX(h).

All these results have an identical counterpart for left modules. This is summed up in the following
proposition.

Proposition 3.1. Let h be a (left or right) module over Σ[A] and w ∈ Σ[A] a characteristic
element of non-critical parameter t. Then, the action of w on h is diagonalizable. Furthermore,
the eigenvalues of the action of w on h are

tk with multiplicity
∑

dim(X)=k

ηX(h),

for k = dim(⊥), . . . ,dim(A).

4. Coxeter arrangements, permutation statistics and Eulerian polynomials

We will review some combinatorial aspects of the braid (type A) and signed braid (type B)
arrangements. These are the reflection arrangements of the symmetric group Sd and the hy-
peroctahedral group Bd, respectively. We make an explicit identification between flats of these
arrangements and the corresponding notion of set partition. See [AM17, Sections 6.6 and 6.7] for
further details. Some relevant statistics on elements of Sd and Bd are reviewed.

4.1. Braid arrangement and symmetric group. The braid arrangement Ad in Rd consists of
the diagonal hyperplanes xi = xj for 1 ≤ i < j ≤ d. The central face is the line x1 = · · · = xd.
Intersecting with a sphere around the origin in the hyperplane x1 + · · · + xd = 0 we obtain the
Coxeter complex of type Ad−1. The pictures below show the cases d = 3 and 4. Points with the
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same color correspond to rays (1-dimensional faces) of Ad in the same Sd-orbit.

A weak set partition of a finite set I is a collection X = {S1, . . . , Sk} of disjoint subsets whose
union is I. The subsets Si are the blocks of X. A set partition is a weak set partition with no
empty blocks. We write X ` I to denote that X is a partition of I. If T is a union of blocks of X,
we let X|S ` S denote the corresponding partition of S.

Given a partition X ` [d], the corresponding flat of the braid arrangement is the intersection of
the hyperplanes xi = xj for i, j in the same block of X. Its dimension equals the number of blocks
of X. We also use X to denote the corresponding flat. Hence, X ≤ Y if and only if the blocks of X
are union of blocks of Y.

Let X = {S1, . . . , Sk}. The Möbius function of L[A] is determined by

µ(⊥,X) = (−1)k−1(k − 1)!.

Using that a partition Y ≥ X corresponds to a partition Y|Si of each block Si of X, we also have

(4.1) µ(X,Y) = µ(⊥,Y|S1) . . . µ(⊥,Y|Sk
).

A set composition of I is an ordered set partition F = (S1, . . . , Sk). We write F � I to denote
that F is a composition of I, and let s(F ) ` I be the underlying (unordered) set partition. Given a
set composition F � [d], the corresponding face of the braid arrangement consists of points x ∈ Rd
satisfying:

• xi = xj whenever i, j belong to the same block of F ,
• xi > xj whenever the block containing i precedes the block containing j.

We also use F to denote the corresponding face. Under these identifications, the two possible
definitions of s(F ), as a flat or as a partition, agree.

4.1.1. The symmetric group and Eulerian polynomial. The symmetric group Sd is the group of
permutations σ : [d]→ [d] under composition. It acts on Rd by permuting coordinates:

σ(x1, x2, . . . , xd) = (xσ(1), xσ(2), . . . , xσ(d)).

We let s(σ) denote the subspace of fixed points by the action of σ; it is a flat of Ad. Under the
identification above, s(σ) is the partition of [d] underlying the cycle decomposition of σ. Given a
finite set S, we let C(S) denote the collection of cyclic permutations on S. For a block S ∈ s(σ),
we let σ|S ∈ C(S) be the restriction of σ to S.

We present some statistics on elements of Sd that we will use in subsequent sections. For σ ∈ Sd,
define

Des(σ) = {i ∈ [d− 1] : σ(i) > σ(i+ 1)} des(σ) =
∣∣Des(σ)

∣∣
Exc(σ) = {i ∈ [d− 1] : σ(i) > i} exc(σ) =

∣∣Exc(σ)
∣∣

Elements in the sets above are the descents and excedances of σ, respectively. It is a classical result
that descents and excedances are equidistributed in Sd. That is,∣∣{σ ∈ Sd : des(σ) = k}

∣∣ =
∣∣{σ ∈ Sd : exc(σ) = k}

∣∣,
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for all possible values of k. Foata’s fundamental transformation provides a simple proof of this
result.

The Eulerian polynomial Ad(z) keeps track of the distribution of descents, or excedances, in Sd:

Ad(z) =
d−1∑
k=0

Ad,kz
k =

∑
σ∈Sd

zexc(σ).

That is, the coefficient Ad,k counts the number of permutations of [d] with exactly k excedances.
These coefficients are called Eulerian numbers (OEIS: A008292). The exponential generating func-
tion for these polynomials was originally given by Euler himself:

(4.2) A(z, x) =
∑
d≥0

Ad(z)
xd

d!
=

z − 1

z − ex(z−1)
.

See [Foa10, Section 3] for a derivation of this formula.

4.2. Signed braid arrangement and hyperoctahedral group. The Coxeter arrangement of
type B, or signed braid arrangement A±d in Rd consists of the hyperplanes xi = xj , xi = −xj
for 1 ≤ i < j ≤ d and xk = 0 for 1 ≤ k ≤ d. The Coxeter complex of type Bd, obtained by
intersecting with the sphere in Rd, is shown below for d = 2 and 3. Points with the same color
correspond to rays of A±d in the same Bd-orbit.

Let I be a finite set with an fixed point free involution x 7→ x. For instance,

±[d] := {−d,−d+ 1, . . . ,−1, 1, . . . , d− 1, d} with involution x = −x.
A type B set partition X of I is a weak set partition satisfying two additional properties:

(1) There is one distinguished block S0 ∈ X satisfying S0 = S0. It is called the zero block of X,
and it might be empty.

(2) All the other blocks S ∈ X \ {S0} are non-empty, satisfy S ∩ S = ∅ and S ∈ X. They are
called the nonzero blocks of X

We write X `B I to denote that X is a type B partition of I. Note that the involution of I restricts
to S0, and that nonzero blocks come in pairs S, S.

Convention 4.1. To simplify notation, we let X `B [d] denote that X is a type B partition of ±[d].
When we write {S0, S1, S1, . . . , Sk, Sk} `B [d], we assume that Si contains the element max(SitSi)
for 1 ≤ i ≤ k.

Given X `B [d], the corresponding flat of the braid arrangement is the intersection of the following
hyperplanes:

xi = 0 for each i ∈ S0

xi = xj for each i, j ∈ [d] in the same block of X
xi = −xj for each i, j ∈ [d] with i,−j in the same block of X

For instance, the partition {11̄33̄, 24̄5, 2̄45̄, 67, 6̄7̄} corresponds to the flat of A±d consisting of

points x ∈ Rd with:
x1 = x3 = 0, x2 = −x4 = x5, x6 = x7.

12
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If X has 2k + 1 blocks, then the dimension of the corresponding flat is k. We also write X for the
corresponding flat. Hence, X ≤ Y if Y refines X.

Let X = {S0, S1, S1, . . . , Sk, Sk}. The Möbius function of L[A±d ] is determined by

µ(⊥,X) = (−1)k(2k − 1)!!,

where (2k − 1)!! denotes the double factorial (2k − 1)!! = (2k − 1)(2k − 3) . . . 1. Using that a
type B partition Y ≥ X is equivalent to a type B partition Y|S0 `B S0 and partitions Y|Si ` Si
for i = 1, . . . , k, we also have

(4.3) µ(X,Y) = µ(⊥,Y|S0)µ(⊥,Y|S1) . . . µ(⊥,Y|Sk
).

Observe that the first factor corresponds to the Möbius function of the type B arrangement and
the remaining factors correspond to the Möbius function of the type A arrangement.

4.2.1. The hyperoctahedral group. The hyperoctahedral group Bd is the group of signed permuta-
tions under composition. A signed permutation is a bijection σ : ±[d]→ ±[d] satisfying σ(i) = j if
and only if σ(i) = j. Hence, the values σ(1), σ(2), . . . , σ(d) completely determine a signed permu-
tation σ. The group Bd acts on Rd by permutations and negation of coordinates:

σ(x1, x2, . . . , xd) = (xσ(1), xσ(2), . . . , xσ(d)),

where for i ∈ [d], we let xi = −xi. We let s(σ) denote the maximal point-fixed subspace by the

action of σ; it is a flat of A±d . Under the identification above, s(σ) is the type B partition of [d]
obtained from the underlying the cycle decomposition of σ by merging all the blocks that contain
an element i ∈ [d] and its negative i.

Example 4.2. Let σ ∈ B6 be defined by

σ(1) = 1 σ(2) = 2̄ σ(3) = 4 σ(4) = 3̄ σ(5) = 6̄ σ(6) = 5̄.

In cycle notation, we can write

σ = (1)(1̄)(22̄)(343̄4̄)(56̄)(5̄6).

Then,
s(σ) = {22̄33̄44̄, 1, 1̄, 56̄, 5̄6}.

Let σ ∈ Bn. The restriction σ|S0 to the zero block S0 ∈ s(σ) is a signed permutation of S0.

Its action on R|S0|/2 does not fix any nonzero vector, so s(σ|S0) =⊥. For a nonzero block S ∈
s(σ), σ|S ∈ C(S) is a cyclic permutation of the elements in S. The restriction σ|StS is again a
signed permutation, and it is completely determined by either σ|S or σ|S .

We present some statistics on signed permutations. For σ ∈ Bd, let

Des(σ) = {i ∈ [d− 1] ∪ {0} : σ(i) > σ(i+ 1)} where σ(0) := 0 des(σ) =
∣∣Des(σ)

∣∣
Exc(σ) = {i ∈ [d− 1] : σ(i) > i} exc(σ) =

∣∣Exc(σ)
∣∣

Neg(σ) = {i ∈ [d] : σ(i) < 0} neg(σ) =
∣∣Neg(σ)

∣∣
fexc(σ) = 2 exc(σ) + neg(σ)

Elements in the sets above are descents, excedances and negations of σ, respectively. The last
statistic is called the flag-excedance of a signed permutation. We define one last statistic, the
B-excedance of σ:

(4.4) excB(σ) = b fexc(σ)+1
2 c = exc(σ) + bneg(σ)+1

2 c.
Foata and Han [FH09, Section 9] show that descents and B-excedances are equidistributed. That
is, ∣∣{σ ∈ Bd : des(σ) = k}

∣∣ =
∣∣{σ ∈ Bd : excB(σ) = k}

∣∣,
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for all possible values of k. The type B Eulerian polynomial Bd(z) keeps track of the distribution
of descents, or B-excedances, in Bd:

Bd(z) =
d∑

k=0

Bd,kz
k =

∑
σ∈Bd

zexcB(σ).

The coefficients Bd,k are the Eulerian numbers of type B (OEIS: A060187). The exponential
generating function of these polynomials is first due to Brenti [Bre94, Theorem 3.4]. We will be
interested in the type B exponential generating function of these polynomials:

(4.5) B(z, x) =
∑
d≥0

Bd(z)
xd

(2d)!!
=

(1− z)ex(1−z)/2

1− zex(1−z) ,

where (2d)!! is the double factorial (2d)!! = (2d)(2d − 2) . . . 2 = 2dd!. Substituting x by 2x we
obtains Brenti’s original formula.

5. McMullen module of the Tits algebra

Fix a hyperplane arrangement A in V . A zonotope of A is a polytope obtained as the Minkowski
sum of segments lH orthogonal to each hyperplane H ∈ A:

(5.1) z =
∑

H

lH.

Consequently, the normal fan Σz coincides with the collection of faces Σ[A] of the arrangement.
We say that a polytope p is a generalized zonotope of A it is a deformation of z.

It follows from (5.1) that the face zF of z is a translate of

zX :=
∑

H : H⊇X

lH,

where X = s(F ). Hence, it is a Minkowski summand of z. In fact, this property characterizes
zonotopes.

Lemma 5.1. For a polytope p ⊆ V , the following are equivalent.

i. p is a zonotope.
ii. Every face f ≤ p is a Minkowski summand of p.

iii. Every 1-dimensional face f ≤ p is a Minkowski summand of p.

We now consider the algebra Π(z) introduced in Section 2.4. It is generated by the classes of
generalized zonotopes of A. Therefore, it only depends on the arrangement A and not on the
particular choice of zonotope z.

Being a Minkowski summand is a transitive relation. Hence, the generators of Π(f) are also
in Π(z) for any face f ≤ z. That is, Π(f) is a subalgebra of Π(z). Moreover, if f = zv for some v ∈ V
and q is a summand of f, then qv = q. Therefore, the composition

Π(f) ↪→ Π(z)
ψf−→ Π(f),

where ψf is the morphism (2.9), is the identity map. We have proved the following.

Proposition 5.2. Let z be a zonotope, not necessarily simple, and f a face of z. Then, the mor-
phism ψf is surjective.
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Note that there is no natural morphism Π(f)→ Π(z) for arbitrary polytopes f ≤ z.
Let F be a face of A and f the corresponding face of z. We define the right multiplication of the

basis element HF ∈ Σ[A] on Π(z) by means of the following composition:

Π(z) Π(f) Π(z)
ψf

·HF

That is, [q] · HF = [qv] where v ∈ relint(F ).

Proposition 5.3. With this product, the algebra Π(z) is a right Σ[A]-module. Moreover, each
graded component Ξr(z) is a submodule of Π(z).

Proof. The zero vector belongs to the central face O, so the action is clearly unital. Associativity
follows from the following fact about polytopes [Grü03, Section 3.1.5]. If q ⊆ V is a polytope
and v, w ∈ V , then (qv)w = qv+λw for any small enough λ > 0. Similarly, the definition of the Tits
product is such that if v ∈ relint(F ) and w ∈ relint(G), then v + λw ∈ relint(FG) for any small
enough λ > 0. Hence,

([q] · HF ) · HG = (qv)w = qv+λw = [q] · HFG.
It follows that this product gives Π(z) the structure of a right Σ[A]-module.

Theorem 2.11 implies that nonnegative dilations are morphisms of modules. Moreover, for
any x ∈ Ξr(z),

δλ(x · HF ) = δλ(x) · HF = λrx · HF = λr(x · HF ).

The characterization of the graded components Ξr in (2.6) then implies that x · HF ∈ Ξr(z). There-
fore, each graded component Ξr(z) is a right Σ[A]-module. �

Remark 5.4. The characterization (2.6) not only shows that nonnegative dilations are morphisms
of modules, but also that the action of basis elements HF is by algebra morphisms.

Given the direct sum decomposition of Π(z) into proper modules Π(z) =
⊕

r Ξr(z), it is natural
to ask about the module structure of each Ξr(z). Proposition 5.2 implies that

ξX(Ξr(z)) = dim(Ξr(z) · HF ) = dim(Ξr(zX)),

where F ∈ Σ[A] is any face of support X. Hence,

ηX(Ξr(z)) =
∑
Y≥X

µ(X,Y) dim(Ξr(zY)).

If in addition A is a simplicial arrangement, Theorem 2.13 yields

(5.2) ηX(Ξr(z)) =
∑
Y≥X

µ(X,Y)hr(zY).

Let w ∈ Σ[A] be a characteristic element of non-critical parameter t, and let {EX}X be the
corresponding Eulerian family. We say that an element x ∈ Π(z) is a double-eigenvector if it lies in
one of the spaces ⊕

dim(X)=k

Ξr(z) · EX,

for some r and k. Recall that en element is in this subspace if and only if

δλx = λrx and x · w = tkw

for any λ > 0, λ 6= 1.
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5.1. First example: the cube and the coordinate arrangement. Let Cd be the coordinate
arrangement in Rd. It consists of the d coordinate hyperplanes xi = 0 for i = 1, . . . , d. We identify
the lattice of flats L[Cd] with the (opposite) boolean algebra 2[d] in the following manner:

S ⊆ [d]←→ XS :=
⋂
i∈S
{x : xi = 0}.

The flat XS has codimension |S|. Note that XS ≤ XT if and only if T ⊆ S.
The d-cube c = cd = [0, 1]d a zonotope of Cd. It is the Minkowski sum of the d line segments li :=

Conv(o, ei) for i = 1, . . . , d. It is a simple polytope with h-vector h(cd, z) = (1 + z)d. Furthermore,
for any S ⊆ [d] we have

cXS
=
∑
i∈S

li ∼= c|S|.

Let us consider right Σ[Cd]-module Π(c). For a flat XS , formula (5.2) yields∑
r

ηXS
(Ξr(c))z

r =
∑
r

(∑
T⊆S

µ(T, S)hr(c|T |)
)
zr =

∑
T⊆S

(−1)|S|−|T |(1 + z)|T | = z|S|.

Hence,

ηXS
(Ξr(c)) =

{
1 if r = |S|,
0 otherwise.

That is, a series decomposition of Ξr(c) contains exactly one copy of the simple module indexed

by XS for every S ∈
(

[d]
r

)
. We can go a step further.

For t 6= 1, consider the characteristic element γt ∈ Σ[Cd] introduced in [ABM19, Section 5.3]. It
is defined by

γFt =

{
(t− 1)dim(F ) if F lies in the first orthant,

0 if not.

For each flat XS , there is exactly one face FS in the first orthant whose support is XS . Namely,

FS =
( ⋂
i∈S
{x : xi = 0}

)
∩
( ⋂
i/∈S

{x : xi ≥ 0}
)
.

We have s(FS) = XS and T ⊆ S if and only if FS ≤ FT . A simple computation shows that the
corresponding Eulerian family is determined by

EXS
=
∑
T⊆S

(−1)|S\T |HFT
.

For each S ⊆ [d], define

yS =
∏
i∈S

log[li] ∈ Π(c).

Lemma 2.8 shows that yS is a nonzero element of Π(c).
We claim that {yS}S⊆[d] is a basis of double-eigenvectors of Π(c). Explicitly, yS is an eigenvector

for the action of γt of eigenvalue td−|S|, and for the action of δλ of eigenvalue λ|S| (λ > 0). The
second statement is clear, since log[li] ∈ Ξ1(c). Moreover, using that log[li] = [li]− 1, we have

yS =
∏
i∈S

([li]− 1) =
∑
T⊆S

(−1)|S\T |[cXT
].

On the other hand, observe that

[cXS
] · EXS

=
∑
T⊆S

(−1)|S\T |[cXS
] · HFT

=
∑
T⊆S

(−1)|S\T |[cXT
] = yS .
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Therefore,

yS ∈ Ξr(c) ∩ (Π(c) · EXS
) = Ξr(c) · EXS

.

The claim follows since dim(XS) = d− |S|.

5.2. Product of arrangements. The Cartesian product of two arrangements A in V and A′
in W is the following collection of hyperplanes in V ⊕W :

A×A′ = {H⊕W : H ∈ A} ∪ {V ⊕H : H ∈ A′}.

One can easily verify that Σ[A×A′] ∼= Σ[A]×Σ[A′] as monoids. Hence, Σ[A×A′] ∼= Σ[A]⊗Σ[A′].
In fact, it is also true that

Π(z× z′) ∼= Π(z)⊗Π(z′),

where z and z′ are zonotopes of A and A′, respectively, and therefore z× z′ is a zonotope of A×A′.
Indeed, every generalized zonotope of A × A′ is the Cartesian product of generalized zonotopes
of A and A′. The corresponding isomorphism is induced by

Π(z)⊗Π(z′)→ Π(z× z′)
[p]⊗ [q] 7→ [p× q]

The fact that this map is well-defined and a morphism of Σ[A×A′]-modules follows from the ideas
in Section 7.2.

6. Double diagonalization and Eulerian numbers

We study the double diagonalization problem for Coxeter arrangements of type A and B. Building
on top of work by Björner [Bjö84], Brenti noticed that, for any Coxeter group W , the h-polynomial
of the W -permutahedron (a zonotope of A) is the corresponding W -Eulerian polynomial [Bre94,
Theorem 2.3]. For the permutahedron and the type B permutahedron, these are the polynomials
considered in 4.1 and 4.2, respectively.

6.1. Type A. Let A = Ad be the braid arrangement in Rd. The permutahedron π = πd ⊆ Rd is
the convex hull of the Sd-orbit the point (1, 2, . . . , d). It is a zonotope of A and has dimension d−1.
Deformations of π are called generalized permutahedra. For a flat/partition X = {S1, . . . , Sk} of A,

(6.1) πX
∼= π|S1| × · · · × π|Sk|

is a product of lower-dimensional permutahedra.
We consider the module Π(π) as in Section 5. The main goal of this section will be to prove the

following result.

Theorem 6.1. For any flat X ∈ L[Ad] and r = 0, 1, . . . , d− 1,

ηX(Ξr(πd)) =
∣∣{σ ∈ Sd : s(σ) = X, exc(σ) = r}

∣∣.
The next lemma is an essential ingredient in the proof of Theorem 6.1.

Lemma 6.2.

(6.2)
∑

{S1,...,Sk}`[d]

µ(⊥,X)A|S1|(z) · . . . ·A|Sk|(z) =
∑
σ∈C(d)

zexc(σ).

Proof. We will show that the exponential generating functions of both sides of (6.2) agree with the
logarithm of A(z, x) defined in (4.2). Note that both sums are empty in the case d = 0.
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Recall that µ(⊥,X) = (−1)k−1(k− 1)!, where k = |X|. Thus, a direct application of the Compo-
sitional Formula [Sta99, Theorem 5.1.4] shows that the exponential generating function of the LHS
of (6.2) is the composition of∑

d≥1

(−1)d−1(d− 1)!
xd

d!
=
∑
d≥1

(−1)d−1x
d

d
= log(1 + x)

with ∑
d≥1

Ad(z)
xd

d!
= A(z, x)−A0(z) = A(z, x)− 1,

namely logA(z, x).
On the other hand, grouping permutations with the same underlying partition s(σ), we obtain

A(z, x) =
∑
d≥0

( ∑
σ∈Sd

zexc(σ)
)xd
d!

=
∑
d≥0

( ∑
X`[d]

( ∑
σ∈Sd

s(σ)=X

zexc(σ)
))xd

d!
.

Observe that for each partition X of [d],

(6.3)
∑
σ∈Sd

s(σ)=X

zexc(σ) =
∏
S∈X

( ∑
σS∈C(S)

zexc(σS)
)
.

Thus, the Exponential Formula [Sta99, Corollary 5.1.6] implies

A(z, x) = exp

(∑
d≥1

( ∑
σ∈C(d)

zexc(σ)
)xd
d!

)
.

Taking logarithms on both sides yields the result. �

The key idea of the proof is: if F (x) is the generating function counting certain family of objects,
each of which is a disjoint union of “irreducible” ones, then logF (x) is counts these “irreducible”
objects. That is the case for permutations, where the “irreducible” permutations are the cyclic
ones. We will explore an extension of these ideas for objects of type B, concretely for Bd, in the
following section.

Proof of Theorem 6.1. The permutahedron is a simple polytope. Hence, Theorem 2.13, (6.1) and
the multiplicativity of the h polynomial yield∑

r

ξX(Ξr(π))zr =
∑
r

dim(Ξr(πX))zr = h(πX, z) = A|S1|(z) · . . . ·A|Sk|(z),

where X = {S1, . . . , Sk}. The relation between ξ and η in (3.4) yields∑
r

ηX(Ξr(π))zr =
∑

Y : Y≥X

µ(X,Y)
(∑

r

ξY(Ξr(π))zr
)
.

Using (4.1), we can rewrite the expression above as∑
r

ηX(Ξr(π))zr =
∏
S∈X

( ∑
Y={T1,...,T`}`S

µ(⊥,Y)A|T1|(z) · . . . ·A|T`|(z)
)
.

Applying Lemma 6.2 and relation (6.3) to this expression, we get∑
r

ηX(Ξr(π))zr =
∏
S∈X

( ∑
σ∈C(S)

zexc(σ)
)

=
∑
σ∈Sd

s(σ)=X

zexc(σ).

Finally, taking the coefficient of zr on both sides yields the result. �
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Adding over all flats with the same dimension in Theorem 6.1, we conclude the following.

Corollary 6.3. Let w ∈ Σ[A] be a characteristic element of non-critical parameter t. Then, the
multiplicity of the eigenvalue tk on Ξr(πd) is∣∣{σ ∈ Sd : | s(σ)| = k, exc(σ) = r}

∣∣.
It follows from the proof of Lemma 6.2 that the exponential generating function of the polyno-

mials ∑
σ∈Sd

t| s(σ)|zexc(σ)

is

exp(t logA(z, x)) = A(z, x)t.

This generating function was already discovered by Brenti [Bre00, Proposition 7.3].

6.1.1. Double-eigenbasis for the Adams element. Perhaps the most natural characteristic element
for the braid arrangement is the Adams element

αt =
∑
F

(
t

dim(F )

)
HF .

It is invariant with respect to the action of Sd, and it is closely related with the convolution
powers of the identity map of a Hopf monoid. The corresponding Eulerian idempotents are [AM17,
Theorem 12.75]

EX =
1

dim(X)!

∑
s(F )=X

∑
G≥F

(−1)dim(G/F )

deg(G/F )
HG,

where dim(G/F ) = dim(G)− dim(F ) and,

deg(G/F ) =
∏
S∈F

∣∣G|S∣∣.
Theorem 6.1 suggest the existence of a natural basis for Ξr(π) · EX indexed by permutations σ

with r excedances and s(σ) = X. In this section we will construct a candidate for such basis.
The standard simplex ∆[d] ⊆ Rd is the convex hull of the standard basis {e1, . . . , ed} of Rd. For

a nonempty subset S ⊆ [d], we let ∆S denote the following face of ∆[d]:

∆S = Conv{ei : i ∈ S}.
Ardila, Benedetti and Doker showed [ABD10, Proposition 2.4] that every generalized permuta-

hedron p can be written uniquely as a signed Minkowski sum of simplices

p =
∑
J⊆[d]

yJ∆J ,

meaning that

p +
∑
yJ<0

|yJ |∆J =
∑
yJ>0

yJ∆J .

Thus,

log[p] =
∑
J⊆[d]

yJ log[∆J ].

Recall that log[∆J ] = 0 if
∣∣J∣∣ = 1, and that [p] = [q] if and only if p is a translate of q. We conclude

that {log[∆J ] : J ⊆ I,
∣∣J∣∣ ≥ 2} is a linear basis for Ξ1(π). This agrees with dim(Ξ1(π)) = h1(π) =

2d − d− 1.
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We will use a bijection between increasing rooted forests on [d] and permutations in Sd. An
increasing rooted forest is a disjoint union of planar rooted trees where each child is larger than
its parent and the children are in strict order from the left to the right. Given a rooted forest t,
the corresponding permutation σ(t) is read as follows. Each connected component of t corresponds
to a cycle of σ(t). To form a cycle, traverse the corresponding tree counterclockwise and record a
node the last time you see it1.

1

2 4 10

3 5

6 8

7

9 11 12 7−→ (3 7 6 8 5 2 9 4 11 12 10 1)

The inverse can be described inductively by writing each cycle with its minimum element in the
last position, and using right to left minima. We omit the details, but provide an example σ 7→ t(σ)
to illustrate the idea.

(6.4) (7 3 6 9 5 1)(4 10 8 2) 7−→
1

(73) (695)

2

4 (10 8)
7−→

1

3

7

5

6 9

2

4 8

10

This bijection is such that the connected components of the forest t(σ) are the blocks of s(σ).
Moreover, the number of leaves of t(σ) in S ∈ s(σ) is exc(σ|S) (a tree consisting only of its root
has zero leaves). Consequently, the total number of leaves t(σ) is exc(σ).

Let σ ∈ Sd be a permutation with r excedances and s(σ) = X. For 1 ≤ i ≤ r, let Ji be the
elements on the path from the ith leaf of t(σ) to the root of the corresponding tree. Define the
element

xσ =
( r∏
i=1

log[∆Ji ]
)
· EX.

For instance, if σ is the permutation in (6.4), then

xσ =
(

log[∆{7,3,1}] log[∆{6,5,1}] log[∆{9,5,1}] log[∆{4,2}] log[∆{10,8,2}]
)
E{1,3,5,6,7,9},{2,4,8,10}.

Conjecture 6.4. For fixed X ` [d] and r ≤ d−
∣∣X∣∣, the collection

{xσ : s(σ) = X, exc(σ) = r}
is a basis of Ξr(π) · EX.

It follows from the definition that xσ ∈ Ξr(π) · EX. The content of the conjecture is that these
elements are linearly independent. Explicit computations show that this is the case for d = 2, 3, 4.
Propositions 6.5 and 6.6 below prove the extremal cases r = 1 and r = d − |X| of this conjecture,
respectively. A forest with 1 leaf must consist of exactly one path and isolated roots. A forest
with k trees and d− r leaves must have height 1, meaning that all non-roots are leaves.

Proposition 6.5. For a subset J ⊆ [d] of cardinality at least 2, let XJ ` [d] be the partition whose
only non-singleton block is J . Then,

log[∆J ] · EXJ

1A similar bijection is described by Peter Luschny in this OEIS entry.
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is a nonzero element. Furthermore, {log[∆J ] · EXJ
: J ⊆ [d], |J | ≥ 2} is a basis of double-

eigenvectors for Ξ1(π).

Proof. First, observe that any cyclic permutation on a set with more than one elements has at least
one excedance, and only one cyclic permutation attains this minimum. Hence, a permutation σ ∈
Sd has at least as many excedances as non-singleton blocks in s(σ). Moreover, for a fixed X, only
one σ with s(σ) = X attains this minimum. It then follows from Theorem 6.1 that

dim(Ξ1(π) · EX) =

{
1 if X ` [d] has exactly one non-singleton block,

0 otherwise.

Thus, the second statement follows from the first.
We have proved that B1 = {log[∆J ] : J ⊆ I,

∣∣J∣∣ ≥ 2} is a linear basis for Ξ1(π). Then, it is
enough to write log[∆J ] · EXJ

in the basis B1 and check that at least one coefficient is nonzero.
Observe that XJ = N(∆J ,∆J). Therefore, ∆J · HG is a proper face of ∆J for any F < G

with s(F ) = XJ . Explicitly, if G = (S1, S2, . . . , Sk), then ∆J · HG = ∆J∩Si where i is the first index
for which J ∩ Si is nonempty. Hence, the coefficient of log[∆J ] ∈ B1 in log[∆J ] · EXJ

is

1

dim(XJ)!

∑
s(F )=XJ

1 = 1.

The equality follows since for any flat X of the braid arrangement, AX has dim(X)! chambers. �

Note that the element log[∆J ] · EXJ
in the proposition is precisely the element xσ for the unique

permutation σ with s(σ) = XJ and exc(σ) = 1. Similarly, the element xX in the following proposi-
tion is precisely xσ for the unique permutation with s(σ) = X and exc(σ) = d− |X|.

Proposition 6.6. For any X = {S1, . . . , Sk} ` [d], the space Ξd−k(π) · EX is 1-dimensional. More-
over,

(6.5) xX =

k∏
i=1

( ∏
j 6=min(Si)

log[∆min(Si),j ]
)

is a nonzero element in Ξd−k(π) · EX.

Proof. Just like before, observe that any cyclic permutation on a set with s elements has at most s−1
excedances, and only one cyclic permutation attains this maximum. Hence, for any X ` [d] there
is exactly one permutation with s(σ) = X and d− |X| excedances. Therefore,

dim(Ξd−|X|(π) · EX) = 1

for any flat X.
By Lemma 2.8, the element xX is nonzero. We are only left to prove that xX · EX = xX.

Let G ∈ σ[A] with s(G) > X. Then, for some block Si ∈ X and some a ∈ Si, a and min(Si) are
not in the same block of s(G). Hence ∆min(Si),a · HG is a point and log[∆min(Si),a] · HG = log[o] = 0.
Therefore,

xX · EX = xX ·
( 1

dim(X)!

∑
s(F )=X

HF

)
=

1

dim(X)!

∑
s(F )=X

xX · HF = xX,

as we wanted to show. �
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6.2. Type B. Let A = A±d be signed braid arrangement in Rd. The type B permutahedron πB =

πBd ⊆ Rd is the convex hull of all the signed permutations of the point (1, 2, . . . , d). It is full-

dimensional and a zonotope of A. For a flat X = {S0, S1, S1, . . . , Sk, Sk} of A,

(6.6) πBX
∼= πB|S0|/2 × π|S1| × · · · × π|Sk|

is a product of lower-dimensional permutahedra of type A and B, where exactly one factor is of
type B.

We now consider the module Π(πB). The main result of this section is the following.

Theorem 6.7. For any flat X ∈ L[A±d ] and r = 0, 1, . . . , d,

ηX(Ξr(π
B
d )) =

∣∣{σ ∈ Bd : s(σ) = X, excB(σ) = r}
∣∣.

The following is the analogous of Lemma 6.2 for the hyperoctahedral group. Again, it plays an
essential role in the proof of Theorem 6.7.

Lemma 6.8.

(6.7)
∑

{S0,...,Sk,Sk}`B [d]

µ(⊥,X)B|S0|/2A|S1| . . . A|Sk| =
∑
σ∈Bd

s(σ)=⊥

zexcB(σ).

In the same spirit as the proof of Lemma 6.2, we will compare the type B exponential generating
function of both sides of (6.7). An important tool in this proof is the following analog of the
compositional formula for type B generating functions.

Proposition 6.9 (Type B Compositional Formula). Let

f(x) = 1 +
∑
d≥1

fd
xd

(2d)!!
g(x) = 1 +

∑
d≥1

gd
xd

(2d)!!
a(x) =

∑
d≥1

ad
xd

d!
.

If

h(x) = 1 +
∑
d≥1

hd
xd

(2d)!!
where hd =

∑
{S0,S1,S1,...,Sk,Sk}`B [d]

f|S0|/2gka|S1| . . . a|Sk|,

then
h(x) = f(x)g(a(x)).

Proof. Using the usual Compositional Formula, the coefficient of
xd

(2d)!!
in f(x)g(a(x)) is

2d d!
d∑
r=0

fr
2r r!

 1

(d− r)!
∑

{K1,...,Kk}`[d−r]

gk
2k
a|K1| . . . a|Kk|


=

d∑
r=0

(
d

r

) ∑
{K1,...,Kk}`[d−r]

2d−r−k fr gk a|K1| . . . a|Kk|


=

∑
{S0,S1,S1,...,Sk,Sk}`B [d]

f|S0|/2 gk a|S1| . . . a|Sk|,

this is precisely the coefficient of
xd

(2d)!!
in h(x). To verify the last equality, note that choosing a

type B partition {S0, S1, S1, . . . , Sk, Sk} `B [d] with |S0| = 2r is equivalent to:

(a) choosing a subset K0 ∈
(

[d]
r

)
and setting S0 = K0 tK0,

(b) choosing a partition {K1, . . . ,Kk} of [d] \K0, and
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(c) for each j ∈ Ki \ {maxKi}, choosing whether j ∈ Si or j ∈ Si.
Recall that according to our Convention 4.1, maxKi = max(Si ∪ Si) ∈ Si, so there is no freedom
for that element. �

Taking gd = 1 in the Type B Compositional Formula we deduce the following.

Corollary 6.10 (Type B Exponential Formula). Let f(x) and a(x) be as before. If

h(x) = 1 +
∑
d≥1

hd
xd

(2d)!!
where hd =

∑
X`B [d]

f|S0|/2a|S1| . . . a|Sk|,

then
h(x) = f(x)ea(x)/2.

In the proof of Theorem 6.1, we used that for (type A) permutations σ ∈ Sd, exc(σ) equals the
sum of exc(σ|S) as S runs through the blocks of s(σ). For signed permutations, one easily checks
this also holds for the statistics exc and neg. However, it is not obvious at all that the same is true
for excB, since its definition uses the floor function.

Consider the order ≺ of the elements of any subset S ⊆ ±[d] with S ∩ S = ∅ defined as follows:

(6.8) i ≺ j ⇐⇒


0 < i < j, or

i < 0 < j, or

j < i < 0.

Proposition 6.11. Let σ ∈ Bd and s(σ) = {S0, S1, S1, . . . , Sk, Sk}. Then,

excB(σ) = excB(σ|S0) + exc≺(σ|S1) + · · ·+ exc≺(σ|Sk
),

where exc≺(σ|Si) is the number of usual excedances of σ|Si with respect to the order ≺.

Proof. Let i ≥ 1 and write σ|Si = (j1j2 . . . j`) in cycle notation, with j1 = max(Si t Si) > 0.
Since σ|Si

= (j1 j2 . . . j`), negations of σ|SitSi
are in correspondence with changes of sign in

j1 7→ j2 7→ · · · 7→ j` 7→ j1.

It follows that
neg(σ|SitSi

) = 2 ·
∣∣{j ∈ Si : j < 0 < σ(j)}

∣∣
is an even number.

Observe that according to the three cases of definition (6.8), a ≺-excedance of σ|Si corresponds
to either 

an excedance of σ|SitSi
occurring in Si, or

a negation of σ|SitSi
occurring in Si, or

an excedance of σ|SitSi
occurring in Si,

respectively. Since exactly half of the negations of σ|SitSi
occur in Si, we deduce that

exc≺(σ|Si) = exc(σ|SitSi
) +

neg(σ|SitSi
)

2 .

Thus, in view of (4.4),

excB(σ) = exc(σ) + bneg(σ)+1
2 c

= exc(σ|S0) +
∑
i

exc(σ|SitSi
) + b

neg(σ|S0
)+

∑
i neg(σ|SitSi

)+1

2 c

= exc(σ|S0) +
∑
i

exc(σ|SitSi
) + bneg(σ|S0

)+1

2 c+
∑
i

neg(σ|SitSi
)

2

= excB(σ|S0) + exc≺(σ|S1) + · · ·+ exc≺(σ|Sk
),
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as we wanted to show. �

Proof of Lemma 6.8. Recall that µ(⊥,X) = (−1)k(2k − 1)!!, where |X| = 2k + 1. Observe that

1 +
∑
d≥1

(−1)d(2d− 1)!!
xd

(2d)!!
=
∑
d≥0

(
−1/2

d

)
xd = (1 + x)−1/2.

Using the Type B Compositional formula, we conclude that the type B exponential generating
function of the LHS of (6.7) is

B(z, x)(1 + (A(z, x)− 1))−1/2 =
B(z, x)√
A(z, x)

,

where A(z, x) and B(z, x) are the generating functions in (4.2) and (4.5), respectively. On the other
hand, Proposition 6.11 shows that for each partition X = {S0, S1, S1, . . . , Sk, Sk} `B [d],

(6.9)
∑
σ∈Bd

s(σ)=X

zexcB(σ) =
( ∑
σ0∈B(S0)
s(σ0)=⊥

zexcB(σ0)
) k∏
i=1

( ∑
σ∈C(|Si|)

zexc(σ)
)
.

In the proof of Lemma 6.2, we showed that the (usual) exponential generating function of the terms
in the product is logA(z, x). An application of the type B Exponential Formula and (6.9) yields

B(z, x) = f(x)e
logA(z,x)

2 = f(x)
√
A(z, x),

where f(x) is the type B exponential generating function of the RHS of (6.7). Dividing both sides

by
√
A(z, x) yields the result. �

We are now ready to complete the proof of the main theorem in this section. The steps of the
proof mirror those of the type A counterpart.

Proof of Theorem 6.7. Using that πB is a simple polytope, and the decomposition of its faces
in (6.6), we deduce that for any flat X = {S0, S1, S1, . . . , Sk, Sk}∑

r

ξX(Ξr(π
B))zr = h(πBX , z) = B|S0|/2(z)A|S1|(z) · . . . ·A|Sk|(z).

Using (4.3) and the expression, we have∑
r

ηX(Ξr(π
B))zr =

∑
Y≥X

µ(X,Y)h(πBY , z) =

( ∑
Y`BS0

Y={T0,...,T`,T`}

µ(⊥,Y)B|T0|/2A|T1| . . . A|T`|

) k∏
i=1

( ∑
Yi`Si

Yi={T i
1,...,T

i
`}

µ(⊥,Yi)A|T i
1|

(z) · . . . ·A|T i
` |

(z)
)
.

Using Lemmas 6.2 and 6.8, this becomes∑
r

ηX(Ξr(π
B))zr =

( ∑
σ∈B(S0)
s(σ)=⊥

zexcB(σ)
) k∏
i=1

( ∑
σ∈C(|Si|)

zexc(σ)
)

=
∑
σ∈Bd

s(σ)=X

zexcB(σ).

The last equality is (6.9). Taking the coefficient of zk on both sides yields the result. �

Adding over all flats with the same dimension in Theorem 6.7, we conclude the following.
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Corollary 6.12. Let w ∈ Σ[A] be a characteristic element of non-critical parameter t. Then, the
multiplicity of the eigenvalue tk on Ξr(πd) is∣∣{σ ∈ Sd : | s(σ)| = 2k + 1, excB(σ) = r}

∣∣.
Recall that for the dimension of the flat corresponding to X `B [d] with |X| = 2k + 1 is k.

Proposition 6.13. The type B generating function of the polynomials∑
σ∈Sd

tdim(s(σ))zexcB(σ)

is

B(z, x)A(z, x)
t−1

2 .

Proof. We use the results in the proof of Lemma 6.8. Note that

∑
σ∈Bd

s(σ)=X

tdim(X)zexcB(σ) =
( ∑
σ0∈B(S0)
s(σ0)=⊥

zexcB(σ0)
) k∏
i=1

(
t
∑

σ∈C(|Si|)

zexc(σ)
)
.

Hence, the type B compositional yields that the type B generating function of the polynomials
above is

B(z, x)√
A(z, x)

exp
( t logA(z, x)

2

)
= B(z, x)A(z, x)

t−1
2 ,

as we wanted to show. �

Eulerian numbers are defined for any Coxeter group W in terms of W -descents. For the Coxeter
groups of type A and B, descents and (B-)excedances are equally distributed, so we can interpret
the W -Eulerian polynomials as the generating functions for (B-)excedances. However, the joint
distributions of

(
| s(·)|,des(·)

)
and

(
| s(·)|, exc(·)

)
do no longer agree. Therefore, Theorems 6.1

and 6.7 cannot be expressed in terms of descents. Extending the results of this section to other
Coxeter groups W requires to find the correct notion of W -excedance for other types.

7. Hopf monoid structure

Combinatorial species were originally introduced by Joyal [Joy81] as a tool for studying gener-
ating power series from a combinatorial perspective. A comprehensive introduction to the theory
of species can be found in the work by Bergeron, Labelle, and Leroux [BLL98]. The category
of species possesses more than one monoidal structure. Of central interest are the Cauchy and
Hadamard product. Aguiar and Mahajan [AM10] have explored these structures extensively, and
have exploited this rich algebraic structure to obtain outstanding combinatorial results. The first
of these structures leads to the definition of Hopf monoids in species, a very active topic of research
in the last years.

Aguiar and Ardila introduced the Hopf monoid of generalized permutahedra GP in [AA17]. It
contains many other interesting combinatorial Hopf monoids as submonoids. In this section we will
shows that the valuation (2.1) and translation invariance (2.2) properties, define a Hopf monoid
quotient of GP.
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7.1. Hopf monoids in a nutshell. Let set× denote the category of finite sets with bijections as
morphisms, and Vec the category of vector spaces and linear maps. The category of species Sp is
the functor category [set×,Vec]. It is a symmetric monoidal category under the Cauchy product.
The Cauchy product of two species p and q is

(p · q)[I] =
⊕

I=StT
p[S]⊗ q[T ].

We say a species h is a Hopf monoid if it is a bimonoid with an antipode in this monoidal category.
Let us make these definitions explicit. A species p consists of the following data:

i. For each finite set I, a vector space p[I].
ii. For each bijection σ : I → J , a linear isomorphism p[σ] : p[I]→ p[J ]. These linear maps satisfy

p[σ ◦ τ ] = p[σ] ◦ p[τ ] and p[Id] = Id .

A morphism of species f : p→ q is a collection of linear maps

fI : p[I]→ q[I],

one for each finite set I, that commute with bijections. That is, fJ ◦ p[σ] = q[σ] ◦ fI for any
bijection σ : I → J .

A Hopf monoid is a species h together a collection of product, coproduct and antipode maps

µS,T : h[S]⊗ h[T ]→ h[I] ∆S,T : h[I]→ h[S]⊗ h[T ] sI : h[I]→ h[I]
x⊗ y 7→ x · y z 7→

∑
z|S ⊗ z/S z 7→ sI(z)

for all finite sets I and decompositions I = S t T . This morphisms satisfy certain naturality,
(co)unitality, (co)associativity and compatibility axioms. See [AM13, Section 2] and [AA17] for
more details.

7.2. Generalized permutahedra and the McMullen (co)ideal. The Hopf monoid of gener-
alized permutahedra GP was introduced by Aguiar and Ardila in [AA17]. As a species, GP[I] is the
vector space with basis

GP[I] = {p ⊆ RI : p is a generalized permutahedra}.
The product µS,T is defined by

µS,T (p⊗ q) = p× q,

for all p ∈ GP[S] and q ∈ GP[T ]. In particular, GP is a commutative monoid. Let F be the face of
the braid arrangement in RI corresponding to the composition (S, T ), and let v ∈ relint(F ). Then,
for any p ∈ GP[I], the face (p)v decomposes as a product of generalized permutahedra p|S × p/S ,
with p|S ∈ GP[S] and p/S ∈ GP[T ]. The coproduct is defined by

∆S,T (p) = p|S ⊗ p/S .

Aguiar and Ardila provide the following grouping-free and cancellation-free formula for its antipode.
For a generalized permutahedron p ∈ GP[I],

sI(p) = (−1)|I|
∑
q≤p

(−1)dim(q)q.

We now introduce the subspecies Mc of GP. The space Mc[I] ⊆ GP[I] is the subspace spanned
by elements

(7.1) p ∪ q + p ∩ q− p− q for p, q, p ∪ q ∈ GP[I],

and

(7.2) p+t − p for p ∈ GP[I] and t ∈ RI ,
26



where p+t denotes the Minkowski sum p+{t}. The sums and differences in (7.1) and (7.2) correspond
to the vector space structure of GP[I], not to Minkowski sum. Note that if p and q are generalized
permutahedra such that p ∪ q is a polytope, then p ∪ q is necessarily a generalized permutahedra.
This follows since the edge directions of p ∪ q are contained in the edge directions of p and q.

Theorem 7.1. The subspecies Mc is an ideal and a coideal of GP. That is,

µS,T
(
Mc[S]⊗ GP[T ]

)
⊆ Mc[I] and ∆S,T

(
Mc[I]

)
⊆ Mc[S]⊗ GP[T ] + GP[S]⊗Mc[T ],

for any I = S t T . Therefore, the quotient species Π defined by

Π[I] = GP[I]/Mc[I] ∼= Π(πI)

inherits the Hopf monoid of GP.

Proof. For generators of Mc of the form (7.2), the result follows from the following two observations.
If p ∈ GP[S], r ∈ GP[T ] and t ∈ RS , then

p+t × r = (p× r)+(t,0).

If p ∈ GP[I] and t ∈ RT , then

∆S,T (p+t) = (p|S)+tS ⊗ (p|S)+tT

where tS and tT denote the projections of t to RS and RT , respectively.
We will now focus on elements of the form (7.1). Fix an arbitrary finite set I and a nontrivial

decomposition I = S t T . Let v ∈ RI be any vector in the interior of the corresponding face of the
braid arrangement.

Suppose p, q, p ∪ q ∈ GP[S] and r ∈ GP[T ]. Then,

(p ∪ q)× r = (p× r) ∪ (q× r), (p ∩ q)× r = (p× r) ∩ (q× r),

and (p ∪ q)× r = (p× r) ∪ (q× r) is a polytope if and only if p ∪ q is. It follows that

µS,T
(
(p ∪ q + p ∩ q− p− q)⊗ r

)
= (p× r) ∪ (q× r) + (p× r) ∩ (q× r)− p× r− q× r ∈ Mc[I].

Since GP is commutative, this proves that Mc is an ideal.
Now, let p, q, p ∪ q ∈ GP[I]. There are two possibilities:

i. The face (p ∪ q)v of p ∪ q is completely contained in p or in q. Without loss of generality,
suppose the former. Then (p ∪ q)v = pv and, necessarily, (p ∩ q)v = qv. Hence,

∆S,T

(
p ∪ q + p ∩ q− p− q

)
= ∆S,T (p) + ∆S,T (q)−∆S,T (p)−∆S,T (q) = 0.

ii. The face (p∪q)v is not contained in p nor in q. Hence, (p∪q)v = pv ∪qv and (p∩q)v = pv ∩qv.
Expanding the first equality we have

(p ∪ q)|S × (p ∪ q)/S = (p|S × p/S) ∪ (q|S × q/S).

The union of two Cartesian products A×B and C×D is again a Cartesian product if and only
if one contains the other or either A = C or B = D. By assumption, the is no containment
between pv and qv. We can therefore assume without loss of generality that

(7.3) p|S = q|S .
Projecting to RS and RT , we further see that

(7.4) (p ∪ q)|S = p|S ∪ q|S = p|S and (p ∪ q)/S = p/S ∪ q/S .

In particular, p/S∪q/S is a generalized permutahedron. On the other hand, expanding (p∩q)v =
pv ∩ qv, we have

(p ∩ q)|S × (p ∩ q)/S = (p|S × p/S) ∩ (p|S × q/S) = p|S × (p/S ∩ q/S).
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Comparing factors, we deduce

(7.5) (p ∩ q)|S = p|S and (p ∩ q)/S = p/S ∩ q/S .

Putting together (7.3), (7.4) and (7.5), we conclude

∆S,T

(
p ∪ q + p ∩ q− p− q

)
= ∆S,T (p ∪ q) + ∆S,T (q ∩ q)−∆S,T (p)−∆S,T (q)
= p|S ⊗ (p/S ∪ q/S) + p|S ⊗ (p/S ∩ q/S)− p|S ⊗ p/S − p|S ⊗ q/S
= p|S ⊗

(
p/S ∪ q/S + p/S ∩ q/S − p/S − q/S

)
∈ GP[S]⊗Mc[T ].

In either case, ∆S,T

(
p ∪ q + p ∩ q − p − q

)
∈ Mc[S] ⊗ GP[T ] + GP[S] ⊗Mc[T ], so Mc is a coideal

of GP. �

The antipode formula of GP descends to the quotient Π, but it is no longer grouping-free in
general. The Euler map (2.7) allows us to write the antipode formula of GP in a very compact
form:

sI([p]) = (−1)|I|[p]∗.

7.3. Higher monoidal structures. We have just proved that Π is a Hopf monoid in the sym-
metric monoidal category (Sp, ·). The algebra structure of each space Π[I] defined by McMullen
can also be defined for GP. In both cases, this endows the species with the structure of a monoid
in the symmetric monoidal category (Sp,×) of species with the Hadamard product. The Hadamard
product of two species p and q is defined by

(p× q)[I] = p[I]⊗ q[I].

Hence, a monoid in (Sp,×) consists of a species p with an algebra structure on each space p[I]. For
generalized permutahedra, these structures are compatible in a very special way.

Theorem 7.2. The species of generalized permutahedra GP is a (2, 1)-monoid in the 3-monoidal
category (Sp, ·,×, ·).

See [AM10, Chapter 7] for the definition of higher monoidal categories and of monoids in such
categories. The notation (2, 1) indicates that GP is a monoid with respect to the first two monoidal
structures (Cartesian product and Minkowski sum, respectively) and a comonoid with respect to
the last (coproduct maps ∆S,T ).

Proof. We only verify the remaining compatibility axioms: the compatibility between Cartesian
products and Minkowski sum, and the compatibility between Minkowski sums and coproducts.

For p1, p2 ∈ GP[S] and q1, q2 ∈ GP[T ], we have

(p1 + p2)× (q1 + q2) = (p1 × q1) + (p2 × q2).

On the other hand, for p, q ∈ GP[I], we have

(p + q)|S ⊗ (p + q)/S = (p|S + q|S)⊗ (p/S + q/S).

This follows by projecting the identity

(p + q)v = pv + qv

to RS and RT , respectively, where v is any vector in the interior of the face F ∈ Σ[A] corresponding
to (S, T ). �
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8. Final remarks and questions

1. The results in Section 6.1.1 strongly rely on the existence of a good set of generators for gen-
eralized permutahedra modulo translation: the simplices ∆S with |S| ≥ 2. The log-classes log[∆S ]
of these simplices form a linear basis for the space Ξ1(π). In particular, these classes form a min-
imal set of generators of the algebra Π(π). The question about the existence of a nice family of
generators in other Coxeter types was already formulated by Ardila, Castillo, Eur, and Postnikov
in [ACEP20], in particular for type B.

Already in dimension 2 we have

ηH(Ξ1(πB2 )) = 1 for all hyperplanes H of A±2 , and η⊥(Ξ1(πB2 )) = 2.

Indeed, the log-classes of the intervals perpendicular to the hyperplanes and of any two type B
triangles with distinct edge directions generate Ξ1(πB2 ). For instance, the type B triangles on the
left satisfy this condition, but the triangles on the right do not.

This already shows that, unlike the type A case, such a collection of generators cannot arise from
the set of faces of a single (type B) polytope.

2. McMullen [McM89] also studied valuation relations for the collection of polyhedral cones in V .
The full cone group of V is generated by the classes [C], one for each polyhedral cone C ⊆ V . They
satisfy the following relation:

(8.1) [C1 ∪ C2] = [C1] + [C2]

whenever C1 ∪ C2 is a cone and C1 ∩ C2 is a proper face of C1 and of C2. Note that this is not to
say that the class [C1 ∩ C2] is zero.

A cone of an arrangement A is any convex cone obtained as the union of faces of A. The space
of formal linear combinations of cones Ω[A] is a right Σ[A] module under the following operation.
If C is a cone of A and F ∈ Σ[A], then

C · HF =

{
TF̃C if F ⊆ C,
0 otherwise,

where F̃ ≤ C is the minimum face of C containing F and TF̃C denotes the tangent cone of C at F̃ .

The relation (8.1) is compatible with this action, and defines a quotient module Ω[A].
Restricting to the case of all the braid arrangements, Ω defines a Hopf monoid in species. The

product is defined by means of the Cartesian product. Let C be a cone of the braid arrangement
in RI and F the face corresponding to the composition (S, T ) � I. If F ⊆ C, the tangent cone TF̃C

decomposes as a product C|S × C/S of cones in RS and RT . The coproduct of Ω is defined as
follows:

∆S,T (C) =

{
C|S ⊗ C/S if F ⊆ C
0 otherwise.

With these operations, Ω is isomorphic to the Hopf monoid of preposets Q considered in [AA17].
Relation (8.1) defines a Hopf monoid quotient Ω. Under a suitable change of basis, Ω is isomorphic
to the dual Hopf monoid of faces Σ∗ defined in [AM10, Chapter 12].
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3. There is a Hopf monoid morphism GP → Ω, whose components GP[I] → Ω[I] are defined as
follows:

(8.2) p 7−→
∑
q≤p

N(q, p) =
∑
C∈Σp

C.

Moreover, this is a morphism of (2, 1)-monoids in the 3-monoidal category (Sp, ·,×, ·), where the
monoidal structure of Ω under the Hadamard product is given by

C1 · C2 =

{
C1 ∩ C2 if relint(C1) ∩ relint(C2) 6= ∅,
0 otherwise.

That this map defines a morphism of monoids under the Hadamard product is equivalent to the
following fact: the normal fan of p + q is the common refinement of Σp and Σq.

The map (8.2) does not induce a well defined morphism Π → Ω. In [McM89, Theorem 5],
McMullen shows that

p 7−→
∑
q≤p

vol(q)N(q, p)

induces an injective map Π[I] → Ω[I], where vol(q) is the normalized volume of q in the affine
space spanned by p. Moreover, one can verify that the induced morphism Π→ Ω is a morphism of
Hopf monoids. Is it possible to endow Ω with the structure of a (2, 1)-monoid so that the morphism
above is a morphism of (2, 1)-monoids?

Such a structure on Ω̄[I] would contain a subalgebra isomorphic to the Möbius algebra B∗(M)
introduced by Huh and Wang in [HW17, Definition 5], where M is the matroid associated with the
braid arrangement AI in RI .
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