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THE PEAK AND DESCENT STATISTICS OVER BALLOT
PERMUTATIONS

DAVID G.L. WANG1,2 AND TONGYUAN ZHAO3

Abstract. A ballot permutation is a permutation π such that in any prefix of
π the descent number is not more than the ascent number. By using a reversal-
concatenation map, we give a formula for the joint distribution (pk, des) of the peak
and descent statistics over ballot permutations, and connect this distribution and
the joint distribution (pk, dp, des) of the peak, depth, and descent statistics over
ordinary permutations in terms of generating functions. As corollaries, we obtain
several formulas for the bivariate generating function for (i) the peak statistic over
ballot permutations, (ii) the descent statistic over ballot permutations, and (iii) the
depth statistic over ordinary permutations. In particular, we confirm Spiros conjec-
ture which finds the equidistribution of the descent statistic for ballot permutations
and an analogue of the descent statistic for odd order permutations.

1. Introduction

In 1887 Bertrand [5] introduced the ballot problem: Consider an election for two
candidates A and B with a total of n votes, where A wins a votes and B wins n−a = b
votes. What is the probability that at each count A is always ahead? Equivalently,
what is the probability of a lattice path from the origin to the point (b, a − 1) is a
ballot path? Here a ballot path is a lattice path that never goes below the line y = x,
see [5,9,22,23,33]. This is one of the beginnings of lattice path enumeration and early
problems in probabilistic combinatorics, see Humphreys [18]. Among various ways of
solving the ballot problem, there are the well known reflection principle [18] and the
cycle lemma [10]. The answer to the ballot problem is the ballot number

a− b

a+ b

(

a+ b

b

)

,

which reduces to the Catalan number 1
n+1

(

2n
n

)

when a = n + 1 and b = n, see [1, 17].
The ballot problem was generalized by Barbier [3] which demands A maintains as more
than k times many votes as B, see also Renault [25, 31].
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A ballot permutation is a permutation in any prefix of which the number of ascents
is at least the number of descents. Every ballot permutation on n distinct integers
naturally corresponds to a ballot path p1p2 · · · pn such that pipi+1 is the unit north step
(0, 1) if i is an ascent, and the unit east step (1, 0) otherwise.

The problem of enumerating ballot permutations is closely related with that of
enumerating ordinary permutations with a given updown signature, see [2, 8, 24, 27].
Bernardi, Duplantier and Nadeau [4] proved that the number of ballot permutations
of length n equals the number of odd order permutations of length n, by using compo-
sitions of bijections, and thus Theorem 1.1 follows. A short proof is given by the first
author and Zhang [32].

Theorem 1.1 (Bernardi, Duplantier and Nadeau). The number of ballot permutations

of length n is

bn =

{

[(n− 1)!!]2, if n is even,

n!!(n− 2)!!, if n is odd,

where (−1)!! = 1.

The sequence {bn}n≥0 can be found in OEIS [28, A000246], of which the exponential
generating function is

(1.1)
∑

n≥0

bn
xn

n!
=

√

1 + x

1− x
.

A ballot permutation whose corresponding ballot path ends on the line y = x is said
to be a Dyck permutation, whose enumeration is the Eulerian-Catalan number, see
Bidkhori and Sullivant [6].

Spiro [29] introduced a statistic M(π) for odd order permutations, and conjectured
that the number of ballot permutations of length n with d descents equals the number
of odd order permutations π of length n such that M(π) = d. In this paper, we
confirm the conjecture by computing their bivariate generating functions in terms of
the Eulerian numbers, respectively.

Theorem 1.2. Let n ≥ 1 and 0 ≤ d ≤ ⌊(n−1)/2⌋. The number of ballot permutations

of length n with d descents equals the number of odd order permutations π of length n
with M(π) = d.

The first author and Zhang [32] refined Spiros conjecture by tracking the neighbors
of the largest letter in these permutations, which is still open. They defined a word u
as a factor of a word w if there exist words x and y such that w = xuy, and a word u
as a cyclic factor of a permutation π ∈ Sn if u is a factor of some word v such that (v)
is a cycle of π. The conjecture is as follows.

Conjecture 1.3 (Wang and Zhang). For all n, d, and 2 ≤ j ≤ n − 1, we have

bn,d(1, j) + bn,d(j, 1) = 2pn,d(1, j), where bn,d(i, j) is the number of ballot permutations

of length n with d descents which have inj as a factor, and pn,d(i, j) is the number of

odd order permutations of length n with M(π) = d which have inj as a cyclic factor.
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Manes, Sapounakis, Tasoulas and Tsikouras [21] introduced the concept of depth for
a lattice path defined to be the difference between the height of the lowest position of the
path and that of the starting point. In this paper, we also consider the depth statistic
of a ballot permutation π defined to be the depth of the ballot path corresponding
to π. Under this notion, a permutation is a ballot one if and only if its depth is zero.

Zhuang [37] studied the generating function P (pk,des) of the peak number and descent
number over ordinary permutations using noncommutative symmetric functions. By
using a map which we called reversal-concatenation, and an operator tool, we find a
relation between P (pk,des) and the generating function B(pk,des) of the same statistics
over ballot permutations, see Theorem 3.2. The reversal-concatenation enables us
to deal with the relations between the joint distribution (pk, dp, des) over ordinary
permutations and the joint distribution (pk, des) over ballot permutations in a uniform
manner which derive several corollaries, see Section 3.

The discovery of the map was inspired by Gessel’s combinatorial interpretation of a
decomposition of formal Laurent series in terms of lattice paths [16], Bernardi et al.’s
path decompositions [4], and the ω-decomposition [32]. Earlier decompositions were
described by Feller [13, page 383] and Foata and Schützenberger [15]. The map is also
related to the lowest points of the paths, which was used in the studies of the Chung-
Feller theorem, see Woan [35], Shapiro [26] and Eu, Fu and Yeh [12]. Basic generating
functions calculating is also used throughout the paper, see Wilf [34] and Flajolet and
Sedgewick [14] for general techniques of generating functions.

The main results of this paper, besides Theorem 1.2, are Theorems 3.4 and 3.5.
In Theorem 3.4 we express the generating function B(pk, des)(x, y, t) as the image of a
rational function under an operator. In Theorem 3.5 we provide a relation between
the generating functions B(pk, des)(x, y, t) and P (pk,dp,des)(x, y, z, t). As corollaries, we
obtain the bivariate generating functions for peak number over ballot permutations,
and that for descent number over ballot permutations, see Theorems 3.6 and 3.7.

The next section consists of necessary notion and notation. In Section 3 we demon-
strate the reversal-concatenation map and its consequences. In Section 4, we use
Theorem 3.7 to establish Theorem 1.2.

2. Preliminary

Let Sn be the permutation group on the set [n] = {1, 2, . . . , n}. A position 1 ≤ i ≤
n− 1 in a permutation π = π1π2 · · ·πn ∈ Sn is a descent if πi > πi+1, and an ascent if
πi < πi+1. Denote the number of descents of π by des(π), and the number of ascents
by asc(π). We call the number

h(π) = asc(π)− des(π)

the height of π. The permutation π is said to be a ballot permutation if the height
of any prefix of π is nonnegative, namely, h(π1π2 · · ·πi) ≥ 0 for all i ∈ [n]. Let Bn

denote the set of ballot permutations on [n]. Define B0 = {ǫ}, where ǫ is the empty
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permutation. The number of ballot permutations of height 0, which are also called the
Dyck permutations, is the Eulerian-Catalan number. We define

dp(π) := −min{h(π1π2 · · ·πi) : 1 ≤ i ≤ n},
and dp(ǫ) = 0. It is clear that

0 ≤ dp(π) ≤ des(π).

A lowest position of π is a position 1 ≤ i ≤ n such that h(π1π2 · · ·πi) = − dp(π).
Denote by L(π) the set of lowest positions of π. For example,

dp(5641327) = 1 and L(5641327) = {4, 6}.
From the definition, we see that

π ∈ Bn ⇐⇒ 1 ∈ L(π).

Let On be the set of odd order permutations of [n], viz., the set of permutations of
[n] which are the products of cycles with odd lengths. In order to define an analogue
for the descent statistic in the context of odd order permutations, Spiro [29] defines for
a permutation π that

M(π) =
∑

c

min
(

cdes(c), casc(c)
)

,

where the sum runs over all cycles c = (c1c2 · · · ck) of π, with the cyclic descent

cdes(c) = |{i ∈ [k] : ci > ci+1 where ck+1 = c1}|,
and the cyclic ascent

casc(c) = |{i ∈ [k] : ci < ci+1 where ck+1 = c1}| = |c| − cdes(c),

where |c| is the length of c.

For n ≥ 1 and 0 ≤ d ≤ n− 1, the Eulerian number, denoted as E(n, d) or
〈

n
d

〉

, is the
number of permutations of [n] with d descents, namely

E(n, d) = |{π ∈ Sn : des(π) = d}|,
see OEIS [28, A008292]. We adopt the convention E(0, 0) = 1 and

E(n, d) = 0, if n < 0, or d < 0, or d = n ≥ 1, or d > n.

As will be seen, this extension helps dealing with summation calculation by simplifying
the domain of indices in summations, so that one may focus on the summands. For
instance, the notation

∑

i implies that the index i runs over all integers.

The nth Eulerian polynomial is

An(t) =
∑

π∈Sn

tdes(π) =
∑

d

E(n, d)td for n ≥ 1,
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and A0(t) = 1, see Kyle Petersen [20, §1.4]. The exponential generating function of
the Eulerian polynomials is

(2.1)
∑

n

An(t)
xn

n!
=

t− 1

t− e(t−1)x
,

see [20, Theorem 1.6] and [14, Formula (75)]. (It is often useful to consider the variant
En(t) of Eulerian polynomials defined by En(t) = tAn(t), which are also called the
Eulerian polynomials in some literatures, see Stanley [30, §1.3] and Bóna [7, Theorem
1.22].)

The bivariate generating function

E(x, t) =
∑

n≥1

∑

d

E(n, d)tdxn

n!
=
∑

n≥1

An(t)
xn

n!

= x+
x2

2
(1 + t) +

x3

3!

(

1 + 4t + t2
)

+
x4

4!

(

1 + 11t+ 11t2 + t3
)

+ · · ·

has the closed form

(2.2) E(x, t) =
t− 1

t− e(t−1)x
− 1 =

e(1−t)x − 1

1− te(1−t)x
.

Form ≥ 1, nonnegative integers n1, n2, . . . , nm, and statistics st1, st2, . . . , stm over Sn,
let

P
(st1, st2, ..., stm)
n (n1, n2, . . . , nm) = {π ∈ Sn : sti(π) = ni for all 1 ≤ i ≤ m} and

p(st1, st2, ..., stm)
n (n1, n2, . . . , nm) = |P(st1, st2, ..., stm)

n (n1, n2, . . . , nm)|.

For convenience, we define P
(st1, st2, ..., stm)
n (n1, n2, . . . , nm) = ∅ if any one of n, n1, . . . , nm

is negative, and

P
(st1, st2, ..., stm)
0 (n1, n2, . . . , nm) =

{

{ǫ}, if n1 = n2 = · · · = nm = 0,

∅, otherwise.

We study the joint distribution of the statistics st1, st2, . . . , stm by the generating
function

P (st1, st2, ..., stm)(x, x1, . . . , xm)

=
∑

n,n1,...,nm

p(st1, st2, ..., stm)
n (n1, n2, . . . , nm)x

n1

1 xn2

2 · · ·xnm

m

xn

n!

= 1 +
∑

n≥1

p(st1, st2, ..., stm)
n (x1, x2, . . . , xm)

xn

n!
.

Replacing the set Sn by Bn in the above definitions, we obtain analogous definitions of

the set B
(st1, ..., stm)
n (n1, . . . , nm), the number b

(st1, ..., stm)
n (n1, . . . , nm), and the generating

function B(st1, ..., stm)(x, x1, . . . , xm). For convenience, we denote (st1) by st1 without the
parentheses.
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For a permutation π = π1π2 · · ·πn on distinct integers, denote by πr the reversal
of π, namely, πr = πnπn−1 · · ·π1. The standardization of π, denoted std(π), is the
permutation σ1σ2 · · ·σn ∈ Sn such that σi < σj if and only if πi < πj . For convenience,
we define std(ǫ) = ǫ.

3. Statistics over ballot permutations

In this section, we use a map, which we call the reversal-concatenation, to establish
a series of relations between joint distributions of statistics over Sn and Bn. Let

P = {(ρ, τ) : ∃ 0 ≤ l ≤ n such that std(ρ) ∈ Bl, std(τ) ∈ Bn−l, and ρτ ∈ Sn}.
The reversal-concatenation map φ is defined as

φ : P →
⋃

n≥1

Sn

(ρ, τ) 7→ ρrτ.(3.1)

Suppose that ρ = ρ1ρ2 · · · ρl and τ = τ1τ2 · · · τn−l. Let π = φ(ρ, τ). It is easy to check
that

(3.2) des(π) = l − 1− des(ρ) + des(τ) + χ(ρ = ǫ or ρ1 > τ1),

where χ is the characteristic function. It is also easy to see that when (ρ, τ) 6= (ǫ, ǫ),

• if ρ = ǫ or ρ1 > τ1, then the position l + 1 is the first lowest position of π;

• if τ = ǫ or ρ1 < τ1, then the position l is the last lowest position of π.

For example, the first lowest position of the permutation φ(341, 265) = 143265 is 4;
the last lowest position of φ(134, 256) = 431256 is 3.

A position 2 ≤ i ≤ n−1 in a permutation π = π1π2 · · ·πn ∈ Sn is a peak if πi−1 < πi

and πi > πi+1. Let pk(π) be the number of peaks in π.

3.1. Connecting the joint distribution (pk, dp, des) over Sn and the joint
distribution (pk, des) over Bn. The goal of this subsection is to establish Theo-
rems 3.4 and 3.5. For clarification, we show the following specification of Theorem 3.5
first.

Theorem 3.1. For n ≥ 0, k ≥ 0 and d ≥ 0 such that (n, k, d) 6= (0, 0, 1), we have

(3.3) p(pk, des)n (k, d)+p(pk,des)n (k, d−1) =
∑

l, i, j

(

n

l

)

b
(pk,des)
l (i, j)b

(pk,des)
n−l (k− i, d− l+ j).

Proof. It is direct to check Eq. (3.3) for n ≤ d and for d = 0. Let n > d ≥ 1 and

Rn(k, d) = {(ρ, τ) : ∃ 0 ≤ l ≤ n and i, j ≥ 0 such that

std(ρ) ∈ B
(pk,des)
l (i, j), std(τ) ∈ B

(pk, des)
n−l (k − i, d− l + j), and ρτ ∈ Sn}.

We shall show that both sides of Eq. (3.3) equal |Rn(k, d)|.
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For the left side, we shall show that ϕ = φ|Rn(k,d) : Rn(k, d) → Un(k, d) is a bijection,
where

Un(k, d) = P
(pk,des)
n (k, d) ∪ P

(pk, des)
n (k, d− 1).

First, we verify that ϕ(Rn(k, d)) ⊆ Un(k, d). Let (ρ, τ) ∈ Rn(k, d). Suppose that

ρ = ρ1ρ2 · · · ρl and τ = τl+1τl+2 · · · τn,
std(ρ) ∈ B

(pk,des)
l (i, j) and std(τ) ∈ B

(pk,des)
n−l (k − i, d− l + j).

Let π = ϕ(ρ, τ), i.e., π = ρrτ .

• If ρ = ǫ or ρ1 > τ1, then the first lowest position of π is l + 1. By Eq. (3.2),

des(π) = (l − 1− j) + (d− l + j) + 1 = d.

Since every peak in π is either in ρr or in τ , we find

pk(π) = pk(ρr) + pk(τ) = pk(ρ) + pk(τ) = i+ (k − i) = k.

Thus π ∈ P
(pk, des)
n (k, d).

• If τ = ǫ or ρ1 < τ1, then the last lowest position of π is l. Similarly,

des(π) = (l − 1− j) + (d− l + j) = d− 1 and pk(ρrτ) = pk(ρ) + pk(τ) = k.

Thus π ∈ P
(pk, des)
n (k, d− 1). This completes the verification.

Second, we show that ϕ is injective. Suppose that (ρ′, τ ′) ∈ Rn(k, d) such that
ϕ(ρ′, τ ′) = π, i.e., (ρ′)rτ ′ = ρrτ . For π ∈ Un(k, d), we define

l(π) =

{

maxL(π), if des(π) = d− 1,

minL(π)− 1, if des(π) = d.

By the definition of ϕ, both the permutations ρ and ρ′ have length l(π). It follows
immediately that ρ′ = ρ and τ ′ = τ . This proves the injectiveness of ϕ.

Thirdly, we show that ϕ is surjective. For any π = π1π2 · · ·πn ∈ Un(k, d), let

ρ = πl(π)πl(π)−1 · · ·π1 and τ = πl(π)+1πl(π)+2 · · ·πn.

It is clear that ϕ(ρ, τ) = π. Hence ϕ is surjective and thus bijective. Therefore,

|Rn(k, d)| = |Un(k, d)| = p(pk,des)n (k, d) + p(pk,des)n (k, d− 1).

Now we show the right side of Eq. (3.3) also equals |Rn(k, d)|. In fact, since for any

pair (ρ′, τ ′) ∈ B
(pk, des)
l (i, j)× B

(pk,des)
n−l (k − i, d− l + j), there are

(

n
l

)

pairs (ρ, τ) such
that std(ρ) = ρ′ and std(τ) = τ ′, we obtain

|Rn(k, d)| =
⋃

l, i, j

(

n

l

)

∣

∣B
(pk,des)
l (i, j)× B

(pk,des)
n−l (k − i, d− l + j)

∣

∣,

which is simplified to the right side of Eq. (3.3). This completes the proof. �

Remark 3.1. From the proof of Theorem 3.1, we see that similar statements hold if the
statistic pk is replaced by a statistic st such that
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(1) st(ǫ) = 0;

(2) st(π) = st(πr) for any π;

(3) st(π) = st(π1π2 · · ·πi−1) + st(πiπi+1 · · ·πn) for any π = π1π2 · · ·πn ∈ Sn, where
i = minL(π).

Theorem 3.1 is translated into the language of generating functions as follows.

Theorem 3.2.

B(pk,des)
(

xt, y,
1

t

)

B(pk, des)(x, y, t) = (1 + t)P (pk, des)(x, y, t)− t.

Proof. Multiplying each term in Eq. (3.3) by yktdxn/n! and summing over all integers
n ≥ 0, d ≥ 0 and k ≥ 0 such that (n, k, d) 6= (0, 0, 1), we deduce the following equations
respectively:

∑

(n,k,d)6=(0,0,1)

p(pk,des)n (k, d)yktd
xn

n!
= P

(pk, des)(x, y, t),

∑

(n,k,d)6=(0,0,1)

p(pk, des)n (k, d− 1)yktd
xn

n!
= t

∑

(n,k,d)6=(0,0,1)

p(pk, des)n (k, d− 1)yktd−1 x
n

n!

= t
∑

(n,k,d)6=(0,0,0)

p(pk, des)n (k, d)yktd
xn

n!

= tP(pk,des)(x, y, t)− t,

and

∑

(n,k,d)6=(0,0,1)

∑

l, i, j

(

n

l

)

b
(pk, des)
l (i, j)b

(pk,des)
n−l (k − i, d− l + j)yktd

xn

n!

=
∑

n, k, d, l, i, j

b
(pk, des)
l (i, j)

yi

tj
(xt)l

l!
· b(pk, des)n−l (k − i, d− l + j)yk−itd−l+j xn−l

(n− l)!

=
∑

l, i, j

b
(pk, des)
l (i, j)

yi

tj
xl

l!

∑

n, k, d

b(pk,des)n (k, d)yktd
xn

n!

=B(pk,des)
(

xt, y,
1

t

)

B(pk, des)(x, y, t).

Combining them together, we obtain the desired equation. �

In order to give a formula for the generating function B(pk, des)(x, y, t), we introduce
an operator Dx1,x2 for multivariate formal power series

P = P (x1, x2, . . . , xk) =
∑

n1, n2, ..., nk

p(n1, n2, . . . , nk)x
n1

1 xn2

2 · · ·xnk

k



THE PEAK AND DESCENT STATISTICS OVER BALLOT PERMUTATIONS 9

by defining

Dx1,x2P =
∑

n1≤(n2−1)/2, n3, ..., nk

p(n1, n2, . . . , nk)x
n1

1 xn2

2 · · ·xnk

k .

For example, Dt,x(x+ 3x2yt+ 2x3y2t) = x+ 2x3y2t. From the definition, it is easy to
see that

(Dx1,x2P )|xi1
=c1, ..., xij

=cj = Dx1,x2(P |xi1
=c1, ..., xij

=cj)

for any 3 ≤ i1 < · · · < ij ≤ k and constants c1, c2, . . . , cj .

Besides, we will need the following result of Zhuang [37, Theorem 4.2].

Theorem 3.3. For n ≥ 1,

(3.4)
∑

π∈Sn

tdes(π)+1ypk(π)+1 =

(

1 + u

1 + uv

)n+1

vAn(v),

where

(3.5)



















u =
1 + t2 − 2yt− (1− t)

√

(1 + t)2 − 4yt

2(1− y)t
,

v =
(1 + t)2 − 2yt− (1 + t)

√

(1 + t)2 − 4yt

2yt
.

Now we can give a formula for B(pk,des)(x, y, t).

Theorem 3.4.

B(pk,des)(x, y, t) = exp

(

Dt,x ln

(

1 +
(1 + t)(1 + u)v(w − 1)

yt(1 + uv)(1− vw)

)

)

.

where u and v are defined by Eq. (3.5), and

w = exp

(

x(1 + u)(1− v)

1 + uv

)

.

Proof. By Eq. (3.4) and Eq. (2.1), we can deduce that

P (pk,des)(x, y, t) = 1 +
∑

n≥1

∑

π∈Sn

ypk(π)tdes(π)
xn

n!

= 1 +
1

yt

∑

n≥1

(1 + u)v

1 + uv
An(v)

(

x(1+u)
1+uv

)n

n!

= 1 +
(1 + u)v

yt(1 + uv)

(

v − 1

v − exp
(x(1+u)(v−1)

1+uv

)
− 1

)

= 1 +
(1 + u)v(w − 1)

yt(1 + uv)(1− vw)
.
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By Theorem 3.2, we have

ln

(

B(pk, des)
(

xt,
1

t
, y
)

)

+ ln
(

B(pk, des)(x, y, t)
)

= ln
(

(1 + t)P (pk,des)(x, y, t)− t
)

= ln

(

1 +
(1 + t)(1 + u)v(w − 1)

yt(1 + uv)(1− vw)

)

.

Since des(π) ≤ (n− 1)/2 for π ∈ Sn, the expansion of

ln
(

B(pk,des)(x, y, t)
)

= ln

(

1 +
∑

n≥1

∑

π∈Sn

ypk(π)tdes(π)
xn

n!

)

is a multivariate formal power series, with terms of the form xnyktd such that d ≤
(n− 1)/2. Similarly, the terms of the series

ln

(

B(pk, des)
(

xt,
1

t
, y
)

)

= ln

(

1 +
∑

n≥1

∑

π∈Sn

ypk(π)tn−des(π)x
n

n!

)

are of the form xnyktd such that d > (n− 1)/2. Therefore,

ln
(

B(pk, des)(x, y, t)
)

=

(

Dt,x ln

(

1 +
(1 + t)(1 + u)v(w − 1)

yt(1 + uv)(1− vw)

)

)

,

which yields the desired equation. �

Now we give a generalization of Theorem 3.2, by considering the statistic dp over Sn.
It can be shown by a proof that is similar to those of Theorem 3.1 and Theorem 3.2.

Theorem 3.5. For n, d, h, k ≥ 0 such that (n, k, h, d) 6= (0, 0, 1, 1),

(3.6) p(pk, dp, des)n (k, h, d) + p(pk,dp,des)n (k, h− 1, d− 1)

=
∑

i, j

(

n

2i+ h

)

b
(pk,des)
2i+h (j, i)b

(pk,des)
n−2i−h (k − j, d− i− h).

In other words,

(3.7) B(pk,des)
(

xzt, y,
1

z2t

)

B(pk,des)(x, y, t) = (1 + zt)P (pk,dp, des)(x, y, z, t)− zt.

Proof. Consider the set

Q(n, k, d, h) = {(ρ, τ) : ρτ ∈ Sn, ∃ i, j ≥ 0 such that

std(ρ) ∈ B
(pk, des)
2i+h (j, i) and std(τ) ∈ B

(pk,des)
n−2i−h (k − j, d− i− h)}.

Similar to the proof of Theorem 3.1, it can be proved that the map φ|Q(n,k,d,h) is a
bijection from Q(n, k, d, h) to the union

P
(pk, dp,des)
n (k, h, d) ∪ P

(pk, dp,des)
n (k, h− 1, d− 1),
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which implies Eq. (3.6). The desired generating function can be obtained by using
standard techniques in generatingfunctionology as that is used in the proof of Theo-
rem 3.2. �

Remark 3.2. Eq. (3.7) reduces to Theorem 3.2 by specifying z = 1.

3.2. The bivariate generating functions for statistics pk, des over Bn. First,
we can deduce the bivariate generating functions for the statistic pk over Bn.

Theorem 3.6.

Bpk(x, y) =

√√
1− y cosh(x

√
1− y) + sinh(x

√
1− y)√

1− y cosh(x
√
1− y)− sinh(x

√
1− y)

.

Proof. We set t = 1 in Theorem 3.2. Since

B(pk,des)(x, y, 1) = Bpk(x, y) and P (pk, des)(x, y, 1) = P pk(x, y),

we find

(3.8) [Bpk(x, y)]2 = 2P pk(x, y)− 1.

It is known that

P pk(x, y) =

√
1− y cosh(x

√
1− y)√

1− y cosh(x
√
1− y)− sinh(x

√
1− y)

,

see Entringer [11], Kitaev [19] and Zhuang [36] for instance. Substituting the above
equation into Eq. (3.8), we derive the desired equation. �

The first few terms of Bpk(x, y) are as follows.

Bpk(x, y) = 1 + x+
x2

2
+

x3

3!
(1 + 2t) +

x4

4!
(1 + 8t) +

x5

5!

(

1 + 28t+ 16t2
)

+ · · · .

The coefficients triangle of the above polynomial is not found in the OEIS [28].

Second, we can deduce the bivariate generating function for the statistic des over
Bn.

Theorem 3.7.

Bdes(x, t) = exp

(

x+ 2
∑

k≥1

∑

d≤k−1

E(2k, d)td+1 x2k+1

(2k + 1)!

)

.

Proof. Taking y = 1 in Theorem 3.2, since

B(pk,des)
(

xt, 1,
1

t

)

= Bdes
(

xt,
1

t

)

,

B(pk,des)(x, 1, t) = Bdes(x, t), and

P (pk,des)(x, 1, t) = P des(x, t) = E(x, t) + 1,
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we have

Bdes
(

xt,
1

t

)

Bdes(x, t) = (1 + t)
(

E(x, t) + 1
)

− t = 1 + (1 + t)E(x, t).

Similar to Theorem 3.4, we have

Bdes(x, t) = exp
(

Dt,x ln
(

1 + (1 + t)E(x, t)
)

)

.

By Eq. (2.2),

2
∑

k≥1

∑

d

E(2k, d)tdx2k

(2k)!
= E(x, t) + E(t, −x) =

e(1−t)x − 1

1− te(1−t)x
+

e(1−t)(−x) − 1

1− te(1−t)(−x)
.

Therefore,

2
∑

k≥1

∑

d

E(2k, d)td+1x2k+1

(2k + 1)!
= 2t

∫ x

0

∑

k≥1

∑

d

E(2k, d)tdu2k

(2k)!
du

= t

∫ x

0

(

e(1−t)u − 1

1− te(1−t)u
+

e(1−t)(−u) − 1

1− te(1−t)(−u)

)

du

= ln
1− tex(t−1)

1− te(1−t)x
− 2xt.

It is not difficult to check that

ln(1 + (1 + t)E(x, t)) = x− xt+ ln
1− tex(t−1)

1− te(1−t)x
.

Thus

Dt,x
(

ln(1 + (1 + t)E(x, t))
)

= Dt,x

(

x+ xt + 2
∑

k≥1

∑

d

E(2k, d)td+1x2k+1

(2k + 1)!

)

= x+ 2
∑

k≥1

∑

d≤k−1

E(2k, d)td+1 x2k+1

(2k + 1)!
,

which completes the proof. �

Expanding the power series B(x, t) in x, we obtain

Bdes(x, t) = 1 + x+
x2

2
+

x3

3!
(1 + 2t) +

x4

4!
(1 + 8t) +

x5

5!

(

1 + 22t+ 22t2
)

+
x6

6!

(

1 + 52t+ 172t2
)

+
x7

7!

(

1 + 114t+ 856t2 + 604t3
)

+ · · · .

The coefficients triangle of the above polynomial is [28, A321280]. Now, we can estab-
lish the bivariate generating function for the statistic dp over Sn.

Corollary 3.8.

P dp(x, z) =
z

1 + z
+

√
1− x2

(1− x)(1 + z)
exp

(

xz + 2
∑

k≥1

∑

d≤k−1

E(2k, k − 1− d)z2d+1 x2k+1

(2k + 1)!

)

.
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Proof. Taking y = t = 1 in Eq. (3.7), we obtain

(3.9) Bdes
(

xz,
1

z2

)

(

∑

n≥0

bn
xn

n!

)

= (1 + z)P dp(x, z)− z,

where bn is the number of ballot permutations of length n. Substituting x by xz in
Theorem 3.7, and then replacing t by 1/z2, we obtain

Bdes
(

xz,
1

z2

)

= exp

(

xz + 2
∑

k≥1

∑

d≤k−1

E(2k, d)z2k−2d−1 x2k+1

(2k + 1)!

)

= exp

(

xz + 2
∑

k≥1

∑

d≤k−1

E(2k, k − 1− d)z2d+1 x2k+1

(2k + 1)!

)

.(3.10)

Substituting Eqs. (1.1) and (3.10) into Eq. (3.9), one may solve P dp(x, z) out as desired.
�

The first few terms of P dp(x, z) are as follows.

P dp(x, z) = 1 + x+
x2

2
+

x3

3!

(

3 + 2z + z2
)

+
x4

4!

(

9 + 11z + 3z2 + z3
)

+ · · · .

The coefficient triangle of the above polynomial is not found in the OEIS [28].

4. A proof for Theorem 1.2

For convenience, define O0(0) = {ǫ}. For any integer pair (n, d) 6= (0, 0), define

On(d) = {π ∈ On : M(π) = d}.
Spiro’s [29, Proposition 3.2] can be restated as Proposition 4.1.

Proposition 4.1 (Spiro). For any integer n ≥ 0 and any integer d,

(4.1) |On+1(d)| = |On(d)|+
∑

i

∑

k≥i

2

(

n

2k

)

E(2k, i− 1) |On−2k(d− i)|.

Now we are in a position to prove Theorem 1.2.

Proof. In view of Theorem 3.7, it is equivalent to show that the generating function
O(x, t) =

∑

n,d|On(d)|tdxn/n! is

(4.2) O(x, t) = exp

(

x+ 2
∑

k≥1

∑

d≤k−1

E(2k, d)td+1 x2k+1

(2k + 1)!

)

.

In fact, multiplying each term in Eq. (4.1) by tdxn/n! and summing over all integers
n ≥ 1 and all integers d, we deduce the following respectively:

∑

n≥1

∑

d

|On+1(d)|td
xn

n!
=

∂O(x, t)

∂x
− |O1(0)| − |O1(1)|t =

∂O(x, t)

∂x
− 1,
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∑

n≥1

∑

d

|On(d)|td
xn

n!
= O(x, t)− 1,

and
∑

n≥1

∑

d, i

∑

k≥i

2E(2k, i− 1)|On−2k(d− i)|td xn

(2k)!(n− 2k)!

= 2t
∑

i

∑

k≥i

E(2k, i− 1)ti−1 x2k

(2k)!

∑

n, d

|On−2k(d− i)|td−i xn−2k

(n− 2k)!

= 2t
∑

k≥1

∑

i≤k

E(2k, i− 1)ti−1 x2k

(2k)!

∑

n, d

|On(d)|td
xn

n!

= 2t O(x, t)
∑

k≥1

∑

d≤k−1

E(2k, d)td
x2k

(2k)!
.

Combining them together, we obtain

∂O(x, t)

∂x
= O(x, t)

(

1 + 2t
∑

k≥1

∑

d≤k−1

E(2k, d)td
x2k

(2k)!

)

.

Solving this differential equation out, we obtain Eq. (4.2). �

As a corollary, we have

Corollary 4.2. For n ≥ 1 and 0 ≤ d ≤ ⌊n−1
2
⌋, we have

bdesn (d) = |On(d)| =
n
∑

m=1

m
∑

i=0

∑

d1+···+di=d−i,

2k1+···+2ki=n−m

2i

m!
E(2k1, d1) · · ·E(2ki, di).

Recall that Bidkhori and Sullivant [6] proved that

bdes2n+1(n) =
E(2n+ 1, n)

n + 1
,

which leads to the following corollary.

Corollary 4.3. For n ≥ 1, we have

E(2n+ 1, n)

n+ 1
=

n
∑

m=0

2m+1
∑

i=0

∑

d1+···+di=n−i

k1+···+ki=n−m

2i

(2m+ 1)!
E(2k1, d1) · · ·E(2ki, di).
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