
An introduction to the
Bernoulli function

Peter H. N. Luschny

Abstract. The Bernoulli function B(s, v) = −s ζ(1− s, v) inter-
polates the Bernoulli numbers but can be introduced independently
of the zeta function. The point of departure is a modification of
the Stieltjes constants based on an integral representation given
by J. Jansen. The functional equation of B(s, v) and its relation
to the Riemann ζ and ξ function is explored. Classical results of
Hadamard, Worpitzky, and Hasse are recast in terms of B(s, v).
The extended Bernoulli function defines the Bernoulli numbers for
odd indices harmonizing with rational numbers studied by Euler
in 1735 and which are the bridge to the Euler and André numbers.
Interpolating functions for both the signed and the unsigned case
are given. The Swiss knife polynomials let the integer sequences of
the Euler–Bernoulli family calculate easily.
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Prologue: extension by interpolation

The question

André Weil recounts the origin of the gamma function in his
historical exposition of number theory [66, p. 275]:

Ever since his early days in Petersburg Euler had been
interested in the interpolation of functions and formulas
given at first only for integral values of the argument;
that is how he had created the theory of the gamma
function.

The three hundred year success story of Euler’s gamma function
shows how fruitful this question is. And that the usefulness of such
an investigation is not limited by the fact that there are infinitely
many ways to interpolate a sequence of numbers.

The question we will explore in this essay is: how can the
Bernoulli numbers be interpolated most meaningfully?
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The method

The Bernoulli numbers had been known for some time at the
beginning of the 18th century and used in the (now Euler–Maclaurin
called) summation formula in analysis, first without realizing that
these numbers are the same in each case.

Then, in 1755, Euler baptized these numbers Bernoulli numbers
in his Institutiones calculi differentialis (following the lead of de
Moivre). After that, things changed, as Edward Sandifer [57] tells:

... for once the Bernoulli numbers had a name, their
diverse occurrences could be recognized, organized, ma-
nipulated and understood. Having a name, they made
sense.

The function we are going to talk about is not new. However,
it is not treated as a function in its own right and with own name.
So we will give the beast a name. We will call the interpolating
function the Bernoulli function. If it is true, as Barry Mazur
[50] explains, that the Bernoulli numbers “act as a unifying force,
holding together seemingly disparate fields of mathematics,” then
this should be reflected all the more in this function.

What to expect

This note is best read as an annotated formula collection, all the
proofs are in the references.

The Bernoulli function and the Riemann zeta function are so
profoundly interwoven that one’s properties can easily be derived
from the properties of the other. For instance all the questions
Riemann associated with the zeta function can also be discussed
with the Bernoulli function.

The introduction of the Bernoulli function leads to greater
coherence. It can advise ‘generatingfunctionologists’ [67] which
numbers to hang up on their clothesline (see also [41]) and in many
cases leads to simpler and more natural representations.

Seemingly the first to treat the Bernoulli function very con-
cretely in our sense was J. Jensen [32], who gave an integral formula
for the Bernoulli function of remarkable simplicity. Except for refer-
encing Cauchy’s theorem, he did not develop the proof. The proof
is worked out in I. Blagouchine and F. Johansson [34].
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Synopsis
eq.no.

B(s, v) = 2π

∫ ∞
−∞

(v − 1/2 + iz)s

(e−πz + eπz)2
dz Jensen formula → 30

B(s) = B(s, 1) = −s ζ(1− s) Bernoulli function → 4

Bc(s) = B (s, 1/2) Central Bernoulli function → 36

B∗(s) = B(s)(1−2s) Alternating Bernoulli function → 74

Bn = B(n) Bernoulli numbers → 6

G(s, v) = 2s
(

B
(
s,
v

2

)
− B

(
s,
v + 1

2

))
Genocchi function → 82

G(s) = G(s, 1) = 2s (Bc(s)− B(s)) Genocchi function → 40

E(s, v) = −G(s+ 1, v)

s+ 1
Generalized Euler function → 83

E(s) = E(s, 1) Euler function → 84

Ec(s) = 2s E(s, 12) Central Euler function → 85

En = Ec(n) Euler numbers → 87

ζ̃(s) = ζ (s) +
ζ
(
s, 14
)
− ζ

(
s, 34
)

2s − 2
Extended zeta function → 89

B(s) = −s ζ̃(1−s) Extended Bernoulli function → 88

E(s) =
4s+1 − 2s+1

(s+ 1)!
B(s+ 1) Extended Euler function → 91

A(s) = s! E(s) = (2s+1− 4s+1) ζ̃(−s) André function → 92

A?(s) = i(is Li−s(−i)−(−i)s Li−s(i)) Unsigned André function → 95

B?(s) =
sA?(s− 1)

4s − 2s
Unsigned extended Bernoulli function → 96

ξ(s) = B(s)
σ!

πσ
with σ = (1−s)/2 Riemann ξ function → 67

γ = −B
′
(0) (Euler), γn−1 = − 1

n
B(n)(0) Stieltjes constants → 44
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The zeta and the Bernoulli function in the complex plane.

The Stieltjes constants

The generalized Euler constants, also called Stieltjes constants ,
are the real numbers γn defined by the Laurent series in a neigh-
borhood of s = 1 of the Riemann zeta function ([56], [1]),

ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)n

n!
γn(s− 1)n, (s 6= 1). (1)

As a special case they include the Euler constant γ0 = γ (≈ 228
395).

An extensive discussion with many historical notes can be found in
[13]. For the numerical values consult [40].

I. V.Blagouchine [12] following J. Franel [23] shows that

γn = − 2π

n+ 1

+∞∫
−∞

log
(
1
2 + iz

)n+1

(e−π z + eπ z)2
dz. (2)

Recently it has been observed that the integral representation (2)
can be employed in a particularly efficient way to numerically
approximate the Stieltjes constants with prescribed precision [34].
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The Bernoulli constants

The Bernoulli constants βn are defined for n ≥ 0 as

βn = 2π

+∞∫
−∞

log
(
1
2 + iz

)n
(e−π z + eπ z)2

dz. (3)

We write f(x)n for (f(x))n and take the principal value for the
logarithm implicit in the exponential, here and in all later similar
formulas.

The Bernoulli function is defined as

B(s) =

∞∑
n=0

βn
sn

n!
. (4)

Note that β0 = 1, thus in particular B(0) = 1. From (2) and (3)
we see that γn = −βn+1/(n+ 1). Thus we get:

B(s) =

∞∑
n=0

βn
sn

n!

= 1 +
∞∑
n=1

βn
sn

n!

= 1 +

∞∑
n=0

βn+1
sn+1

(n+ 1)!

= 1−
∞∑
n=0

γn
sn+1

n!

= 1− s
∞∑
n=0

γn
sn

n!

= −sζ(1− s). (5)

Here the singularity of −sζ(1− s) at s = 0 is removed by B(0) = 1.
So B(s) is an entire function with its defining series converging
everywhere in C.

The Bernoulli numbers

We define the Bernoulli numbers as the values of the Bernoulli
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The Bernoulli constants seen as values of a real function.

function at the nonnegative integers. According to (4) this means

Bn = B(n) =
∞∑
j=0

βj
nj

j!
. (6)

Since for n > 1 an odd integer −nζ(1 − n) = 0, the Bernoulli
numbers vanish at these integers and Bn = 1−n∑∞j=0 γj

nj

j! implies

∞∑
j=0

γj
nj

j!
=

1

n
and

∞∑
j=0

βj
nj

j!
= 0 (n > 1 odd). (7)

The expansion of the Bernoulli function

The Bernoulli function B(s) = −sζ(1− s) can be expanded by
using the generalized Euler–Stieltjes constants

B(s) = 1− γs− γ1s2 −
γ2
2
s3 − γ3

6
s4 . . . , (8)

or in its more natural form using the Bernoulli constants

B(s) = 1 + β1s+
β2
2
s2 +

β3
6
s3 +

β4
24
s4 . . . . (9)
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r β(r)

−1 -1.0967919991262275651322398023421657187190. . .
−1/2 0.3000952439768656513643742483305378454480. . .

0 1.0
1/2 0.2364079388130323148951169845913737350793. . .
1 -0.5772156649015328606065120900824024310421. . .

3/2 -0.4131520868458801199329318166967102536980. . .
2 0.1456316909673534497211727517498026382754. . .

5/2 0.2654200629584708272795102903586382709016. . .
3 0.0290710895786169554535911581056375880771. . .

7/2 -0.0845272473711484887663180676975841853310. . .
4 -0.0082153376812133834646401861710135371428. . .

The Bernoulli constants for some rational r.

Although we will always refer to the well-known properties of
the zeta function when using (5), our definition of the Bernoulli
function and the Bernoulli numbers only depends on (3) and (4).

The index n in (3) is not restricted to integer values. For
illustration the function βr is plotted in the figure above, where the
index r of β is understood to be a real number. The table above
displays some numerical values of Bernoulli constants.

Integral formulas for the Bernoulli constants

Let us come back to the definition of βn as given in (3). The
appearance of the imaginary unit forces complex integration; on
the other hand, only the real part of the result is used. Fortunately,
the definition can be simplified such that the computation stays in
the realm of reals provided n is a nonnegative integer.

Using the symmetry of the integrand with respect to the y-axis
and (e−π z + eπ z)

2
= 4 cosh(πz)2 we get from the definition (3)

βn = π

∫ ∞
0

Re
(
log(12 + iz)n

)
cosh(πz)2

dz . (10)

For the numerator of the integrand we set for n ≥ 0

σn(z) = Re(log(12 + iz)n). (11)
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0.1

0.2

0.3

y

−1 −0.5 0 0.5 1
x

log(2)/2

f(z) = − log((z2 + 1
4)

1
4 ) sech(πz)2 with

∫∞
−∞ f(z) dz = γ

π .

By induction we see that

σn(z) =

bn/2c∑
k=0

(−1)k
(
n

2k

)
a(z)n−2k b(z)2k, (12)

where a(z) = log(z2 + 1
4)/2 and b(z) = arctan(2z).

Therefore the constants can be computed by real integrals,

βn = π

∫ ∞
0

σn(z)

cosh(πz)2
dz . (13)

Similarly for the Stieltjes constants,

γn = − π

n+ 1

∫ ∞
0

σn+1(z)

cosh(πz)2
dz . (14)

Some special integral formulas

Formula (14) reads for n = 0

γ = −π
∫ ∞
0

log(z2 + 1
4)

2 cosh(πz)2
dz. (15)
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This follows since for real z

σ1(z) = Re log

(
1

2
+ iz

)
= log

(
1

2

√
4z2 + 1

)
=

1

2
log

(
z2 +

1

4

)
.

Using the symmetry of the integrand with respect to the y-axis
this can be rephrased as: Euler’s gamma is π times the integral of

− log((z2 + 1
4)

1
4 ) sech(πz)2 over the real line (see the figure above).

The constant γ/π is A301813 in the OEIS.

Using the abbreviations a = log(z2 + 1
4)/2, b = arctan(2z) and

c = cosh(πz) the first few Bernoulli constants are by (12):

β1 = π

∫ ∞
0

a

c2
dz , (16)

β2 = π

∫ ∞
0

a2 − b2
c2

dz , (17)

β3 = π

∫ ∞
0

a3 − 3ab2

c2
dz , (18)

β4 = π

∫ ∞
0

a4 − 6a2b2 + b4

c2
dz , (19)

β5 = π

∫ ∞
0

a5 − 10a3b2 + 5ab4

c2
dz . (20)

Generalized Stieltjes and Bernoulli constants

We recall that γn/n! is the coefficient of (1− s)n in the Laurent
expansion of ζ(s) about s = 1 and γn(v)/n! is the coefficient of
(1− s)n in the Laurent expansion of ζ(s, v) about s = 1. In other
words, with the generalized Stieltjes constants γn(v) we have the
Hurwitz zeta function ζ(s, v) in the form

ζ(s, v) =
1

s− 1
+
∞∑
n=0

(−1)n

n!
γn(v)(s− 1)n, (s 6= 1). (21)

The generalized Stieltjes constants may be computed for n ≥ 0 and
Re(v) > 1

2 by an extension of the integral representation (2), see
[34, formula 2].

γn(v) = − π

2(n+ 1)

∫ ∞
−∞

log
(
v − 1

2 + iz
)n+1

cosh(πx)2
dz. (22)

9

http://www.oeis.org/A301813


The generalized Bernoulli constants are defined as

βs(v) = 2π

∫ +∞

−∞

log
(
v − 1

2 + ix
)s

(e−πx + eπx)2
dx. (23)

Note that β0(v) = 1 for all v and βn(v) = −nγn−1(v) for n ≥ 1.

The generalized Bernoulli function

Next we introduce the generalized Bernoulli function B(s, v),

which is the analog of the Hurwitz zeta function. The new parameter
v can be any complex number which is not a non-positive integer.
The generalized Bernoulli function is defined as

B(s, v) =

∞∑
n=0

βn(v)
sn

n!
. (24)

For v = 1 this is the ordinary Bernoulli function (4). Using the
identities from the last section we get

B(s, v) = 1− s
∞∑
n=0

γn(v)
sn

n!
. (25)

Thus the generalized Bernoulli function can be represented by

B(s, v) = −s ζ(1− s, v), (s 6= 1). (26)

This also embeds the Bernoulli polynomials as

Bn(x) = B(n, x) (n ≥ 0, n integer). (27)

This follows from (26) (see for instance [4, Th. 12.13]) and the fact
that B(0, x) = 1.

Integral formulas for the Bernoulli function

The integral formulas for the Bernoulli constants can be trans-
ferred to the Bernoulli function itself. In the first step we reproduce
a formula by J. L. Jensen [32], which he gave in a reply to E. Cesàro
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in the L’Intermédiaire des mathématiciens.

(s− 1)ζ(s) = 2π

∫ ∞
−∞

(12 + iy)1−s

(eπy + e−πy)2
dy. (28)

Jensen comments:

"... [this formula] is remarkable because of its simplicity
and can easily be demonstrated with the help of Cauchy’s
theorem."

How Jensen actually computed (s − 1)ζ(s) is unclear, since the
formula for the coefficients cv, which he states, rapidly diverges.
This was observed by V. Kotěšovec (personal communication).

In a numerical example Jensen uses the Bernoulli constants
in the form cv = (−1)vβv/v!. Applied to the Bernoulli function,
Jensen’s formula is written as

B(s) = 2π

∫ ∞
−∞

(12 + iz)s

(eπz + e−πz)2
dz. (29)

This formula can be seen as a special case of the first formula in
theorem 1 in Johansson and Blagouchine [34], [61, p. 92], [60].

P. Hadjicostas [26] remarks that from this theorem also the
corresponding representation for the generalized Bernoulli function
can be derived:

For all s ∈ C and v ∈ C with Re(v) ≥ 1/2

B(s, v) = 2π

∫ ∞
−∞

(v − 1
2 + iz)s

(e−πz + eπz)2
dz. (30)

The Hurwitz–Bernoulli function

The Hurwitz–Bernoulli function is defined as

H(s, v) = e−iπs/2 L(s, v) + eiπs/2 L(s, 1− v), (31)

L(s, v) = − s !

(2π)s
Lis(e

2πiv). (32)

Here Lis(v) denotes the polylogarithm. The proposition that

Bs(v) = B(s, v) = H(s, v), for 0 ≤ v ≤ 1 and s > 1, (33)
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The Hurwitz–Bernoulli functions with s = 2 + k/6,
(0 ≤ k ≤ 6), deform B2(x) into B3(x).

goes back to Adolf Hurwitz. In the corresponding case for the zeta
function (33) is known as the Hurwitz formula [4, p. 71].

With the Hurwitz–Bernoulli function the Bernoulli polynomials
can be continuously deformed into each other (see the figure above).

The central Bernoulli function

Setting v = 1 in (33) the Hurwitz–Bernoulli function simplifies to

Bs(1) = −2 s! Lis(1) cos(sπ/2)/(2π)s, (s > 1). (34)

For s > 1 one can replace the polylogarithm by the zeta function
and then apply the functional equation of the zeta function to get

Bs(1) = −sζ(1− s), (s > 1).

Thus the Bernoulli function is a vertical section of the Hurwitz–
Bernoulli function, B(s) = Bs(1), similarly as the Bernoulli numbers
are special cases of the Bernoulli polynomials, Bn = Bn(1).

Setting v = 1/2 in the Hurwitz–Bernoulli function leads to a
second noteworthy case. Then (33) reduces to

Bs(1/2) = −2 s! Lis(−1) cos(sπ/2)/(2π)s, (s > 1). (35)

12
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1
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B(s)

Bc(s)

The Bernoulli function and the central Bernoulli function

For s > 1 we can replace the polylogarithm by the negated alter-
nating zeta function. We call Bc(s) = Bs(1/2) the central Bernoulli
function. Bc(s) has the same trivial zeros as the Bernoulli function,
plus a zero at the point s = 1. (See the plot above.)

An integral representation for the central Bernoulli function
follows from (30). For all s ∈ C

Bc(s) = 2π

∫ ∞
−∞

(iz)s

(e−πz + eπz)2
dz. (36)

The central Bernoulli polynomials

The central Bernoulli numbers are defined as

Bc
n = 2n Bn(1/2). (37)

The first few are, for n ≥ 0:

1, 0, −1

3
, 0,

7

15
, 0, −31

21
, 0,

127

15
, 0, −2555

33
, 0,

1414477

1365
, . . . .

Unsurprisingly Leonhard Euler in 1755 in his Institutiones also
calculated some central Bernoulli numbers (Opera Omnia, Ser. 1,
Vol. 10, p. 351).
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1

x

−1
3 + x2

−x + x3

7
15 − 2x2 + x4

7
3 x − 10

3 x
3 + x5

−31
21 + 7x2 − 5x4 + x6

−31
3 x + 49

3 x
3 − 7x5 + x7

127
15 − 124x2

3 + 98x4

3 − 28x6

3 + x8

381x
5 − 124x3 + 294x5

5 − 12x7 + x9

The central Bernoulli polynomials Bc
n(x).

The central Bernoulli polynomials are defined, like the Bernoulli
polynomials, as an Appell sequence.

Bc
n(x) =

n∑
k=0

(
n

k

)
Bc
k x

n−k. (38)

The parity of n equals the parity of Bc
n(x) (the Bernoulli polyno-

mials do not possess this property).
Despite their systematic significance the central Bernoulli poly-

nomials were not in the OEIS database at the time of writing these
lines (now they are filed in A335953).

In the context of ‘going halves’ also the following identity is
worth noting (we will come back to it later):

2n Bn(1) =

n∑
k=0

(
n

k

)
2k Bk

(
1
2

)
. (39)

The Genocchi function

How much does the central Bernoulli function deviate from the
Bernoulli function? The Genocchi function gives an answer to this
(up to a scaling factor).

G(s) = 2s
(
Bs(

1
2)− Bs(1)

)
. (40)

From the identities (34) and (35), it follows that the Genocchi

14
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The derivatives of the Bernoulli function B(n)(s), 0 ≤ n ≤ 3.

function can be represented, first for s > 1 and then by analytical
continuation in general, as

G(s) = 2(1− 2s) B(s). (41)

A useful property of the Genocchi function is that it takes integer
values for non-negative integer arguments. The Gn = G(n) are
known as Genocchi numbers (A226158).

The Genocchi polynomials are defined as

Gn(x) = 2n
(

Bn

(x
2

)
− Bn

(
x+ 1

2

))
. (42)

They describe the difference between the Bernoulli polynomials
and the central Bernoulli polynomials, up to a scaling factor. The
integer coefficients of these polynomials are recorded as A333303 in
the OEIS. The Genocchi function is closely related to the alternating
Bernoulli function as we will see later.

Derivatives of the Bernoulli function

The Bernoulli constants are related to the derivatives of the
Bernoulli function. With the Riemann zeta function we have

B(n)(s) = (−1)n
(
nζ(n−1)(1− s)− sζ(n)(1− s)

)
. (43)

Here B(n)(s) denotes the n-th derivative of the Bernoulli function.

15
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−0.25

0.25

0.5

0.75

1

2 4 6 8 10 12

B(s) = −sζ(1− s)
−B′(s) = −ζ(1− s) + xζ ′(1− s)

γ

O

−B′(s) hits Euler’s γ at s = 0, red points are Bernoulli numbers.

Taking lims→0 on the right hand side of (43) we get

B(n)(0) = βn = −nγn−1 (n ≥ 1) . (44)

The n-th derivative of the Hurwitz ζ-function with respect to s is

ζ(n)(s, v) =
∂n

∂sn
ζ(s, v) (45)

and the n-th derivative of the generalized Bernoulli function is

B(n)(s, v) = (−1)n (n ζ(n−1)(1− s, v)− s ζ(n)(1− s, v)), (46)

using the limiting value if s = 0. Rewriting (46) we have for n ≥ 1

γn(v)

Γ(v)
= (−1)n lim

s→0

(
n ζ(n−1)(1− s, v)− s ζ(n)(1− s, v)

)
. (47)

Comparing this with the representation of the Stieltjes constants
we see that γn(1) = γn and that relation (44) generalizes to

B(n)(0, n) = −nγn−1(n) (n ≥ 1) . (48)

The plot above summarizes much of what has been said: it shows
the Bernoulli function together with the Bernoulli numbers and the

16



additive inverse of the derivative of the Bernoulli function which
hits Euler’s γ at the origin.

Entire books [28] have been written about the emergence of
Euler’s gamma in number theory. The identity −B′(0) = γ is one
of the beautiful places where this manifests.

The logarithmic derivative

The logarithmic derivative of a function F will be denoted by

LF(s) =
F′(s)
F(s)

.

In particular we will write LB(s), Lζ(s) and LΓ(s) for the loga-
rithmic derivative of the Bernoulli function, the ζ function and the
Γ function (also known as digamma function ψ).

We will also use the notation ρ(s) for the function

ρ(s) =
1

s
+
π

2
cot(s)− log(2π).

In terms of the zeta function LB(s) can also be written

LB(s) =
1

s
− Lζ(1− s). (49)

The case s = 1
2 is particularly interesting. It is known that the

truth of the proposition

LB

(
1

2

)
+ 2 = − 2

π

∫ ∞
0

log

∣∣∣∣∣ζ(12 + it)

ζ(12)

∣∣∣∣∣ dtt2 (50)

is equivalent to the Riemann hypothesis (see [30, Th. 7.26]). Note
that LB(12) = 2− π/4− γ/2− log(8π)/2, (cf. also A335263).

From (49) we can infer, by well known relations (see [30]),

LB(s) = LΓ(s) + Lζ(s) + ρ(s). (51)

Expressing the ζ function by the Euler product, we can derive
from (51) and the von Mangoldt’s function Λ for Re(s) > 1,

∞∑
n=1

Λ(n)

ns
= LΓ(s)− LB(s) + ρ(s). (52)

17
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Bernoulli cumulants

The series expansion of LB(s) =
∑∞

n=1 bns
n−1 at s = 0 starts

LB(s) = β1 + (β2 − β12) s+ (β3 − 3β1β2 + 2β1
3) s2/2

+ (β4 − 3β2
2 − 4β1β3 + 12β1

2β2 − 6β1
4) s3/6 +O(s4).

The coefficients bn are given by

bn = [sn] log

( ∞∑
n=0

βn
sn

n!

)
. (53)

In other words, the coefficients are the logarithmic polynomials
generated by the Bernoulli constants (Comtet [9], p.140). These
polynomials may be called Bernoulli cumulants , following a similar
naming by A. Voros [65, 3.16].

The numerical values appearing in this expansion, listed as an
irregular triangle, are A263634, row-reversed:

[0] 1
[1] 1, -1
[2] 1, -3, 2
[3] 1, [- 3, -4], 12, -6
[4] 1, [-10, -5], [30, 20], -60, 24
[5] 1, [-10, -15, -6], [30, 120, 30], [-270, -120], 360, -120

Worpitzky numbers

The numbers in the above triangle are refinements (indicated by
the square brackets) of the signed Worpitzky numbers W(n, k) ([69],
[64], A163626, A028246).

W(n, k) = (−1)kk!

{
n+ 1

k + 1

}
. (54)

Here
{
n
k

}
denotes the Stirling set numbers. Generalizations based

on Joffe’s central differences of zero are A318259 and A318260.

The Worpitzky transform maps a sequence a0, a1, a2, . . . to a
sequence b0, b1, b2, . . . ,

bn =

n∑
k=0

W(n, k) ak . (55)
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If a has ordinary generating function a(x), then b has exponential
generating function a(1−ex)ex.Merlini et al. [49] call the transform
the Akiyama–Tanigawa transformation, in the OEIS also the term
Bernoulli–Stirling transform is used.

Julius Worpitzky proved in 1883: if we choose ak = 1
k+1 and

apply transform (55), the resulting sequence gives the Bernoulli
numbers. This approach can be generalized.

The generalized Worpitzky transform

The generalized Worpitzky transform (56) maps an integer se-
quence a0, a1, a2, . . . to a sequence of polynomials Wm(a), m ≥ 0.
More formally: W : ZN → Z[x]N, a ∈ ZN and W(a) is a sequence
of polynomials, the m-th term of which is the polynomial Wm(a).

Wm(a) =

m∑
n=0

(−1)n
(
m

n

)
xm−n

n∑
k=0

W(n, k)ak. (56)

Here the inner sum is the Worpitzky transform (55) of a. The first
few polynomials are:

a0

a0x− (a0 − a1)

a0x
2 − 2(a0 − a1) x + (a0 − 3a1 + 2a2)

a0x
3 − 3(a0 − a1) x

2 + 3(a0 − 3a1 + 2a2) x− (a0 − 7a1 + 12a2 − 6a3)

a0x
4 − 4(a0 − a1) x

3 + 6(a0 − 3a1 + 2a2) x
2 − 4(a0 − 7a1 + 12a2 − 6a3)x

+ (a0 − 15a1 + 50a2 − 60a3 + 24a4)

The definition (56) can be rewritten as

Wm(a) =
m∑
n=0

an

n∑
k=0

(−1)k
(
n

k

)
(x− k − 1)m. (57)

As the reader probably anticipated, we get the Bernoulli poly-
nomials if we set an = 1/(n+ 1). Evaluating at x = 1 we arrive at
a well known representation of the Bernoulli numbers:

Bm = (−1)m
m∑
n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
km, m ≥ 0. (58)
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The Hasse representation

Enter Helmut Hasse [27] 1930, who takes the next step in the
development of formula (58) and proves:

Theorem The infinite series

B(s, v) =
∞∑
n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(k + v)s (59)

converges for all complex s and represents the entire function
−sζ(1− s, v), the Bernoulli function.

Corollary The Bernoulli constants βs(v) may be given by
the infinite series

βs(v) =

∞∑
n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
ln(k + v)s. (60)

For proofs see [10], for variants and historical notes regarding the
theorem see [14].

The constant τ and the function τ(s)

As the next topic we shall consider the functional equation of
the Bernoulli function, which generalizes a formula of Euler which
Knuth et al. ([24], eq. 6.89) call almost miraculous.

But before we do this let us introduce yet another function and
quote a remark from Terence Tao [63].

It may be that 2πi is an even more fundamental constant
than 2π or π. It is, after all, the generator of log(1).
The fact that so many formulas involving πn depend on
the parity of n is another clue in this regard.

Taking up this remark we will use the notation τ = 2πi and the
function

τ(s) = τ−s + (−τ)−s. (61)

We are using the principal branch of the logarithm when taking
powers of τ .
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The functional equation

This allows us to write the functional equation of the Riemann
zeta function [56] as the product of three functions,

ζ(1− s) = ζ(s) τ(s) Γ(s) (s ∈ C \ {0, 1}). (62)

Using (62) and B(s) = −sζ(1− s) we get the representation

B(s) = −ζ(s) τ(s) s!. (63)

From B(1− s) = (s− 1)ζ(s) we obtain a self-referential representa-
tion of the Bernoulli function, the functional equation

B(s) =
B(1− s)

1− s τ(s) s! . (64)

This functional equation has also a symmetric variant, which means
that the left side of (65) is unchanged by the substitution s← 1−s.

B(1− s)
(s

2

)
! π−s/2 = B(s)

(
1− s

2

)
! π−(1−s)/2. (65)

Representation by the Riemann ξ function

The right (or the left) side of (65) turns out to be the Riemann ξ
function,

ξ(s) =
(s

2

)
! π−s/2 (s− 1)ζ(s). (66)

For a discussion of this function see for instance Edwards [15]. Our
notation follows Landau, as it is usual nowadays.

Thus we get a second representation of the Bernoulli function
in terms of a Riemann function:

B(s) =
π(1−s)/2

((1− s)/2)!
ξ(s) . (67)

By the functional equation of ξ, ξ(s) = ξ(1− s), we also get

B(1− s) =
πs/2

(s/2)!
ξ(s) . (68)
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The Hadamard decomposition of the Bernoulli function.

This is a good opportunity to check the value of B(−1).

B(−1) = π ξ(−1) =
π2

6
= π ξ(2) . (69)

In this row of identities the names Bernoulli, Euler (solving the
Basel problem in 1734) and Riemann join together.

The Hadamard decomposition

We denote Hadamard’s infinite product over the zeros of ζ(s) by

Hζ(s) =
1

2

∏
Im ρ>0

((
1− s

ρ

)(
1− s

1− ρ

))
. (70)

The product runs over the zeros with Im(ρ) > 0. The absolute
convergence of the product is guaranteed as the terms are taken in
pairs (ρ, 1− ρ). Hadamard’s infinite product expansion of ζ(s) is

ζ(s) =
πs/2

(s/2)!

Hζ(s)

s− 1
, s /∈ {1,−2,−4, . . . }. (71)

Applying Jensen’s formula (28) leads to the representation

Hζ(s) =
2(s/2)!

πs/2−1

∫ ∞
−∞

(12 + ix)1−s

(eπx + e−πx)2
dx. (72)
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Since the zeros of ζ(s) and B(s) are identical in the critical strip
by (63) this representation carries directly over to the Bernoulli
case. Writing σ = (1− s)/2 we get

B(s) =
πσ

σ!
Hζ(s) , s /∈ {3, 5, 7, . . . }. (73)

This is the Hadamard decomposition of the Bernoulli function.
The zeros of B(s) with Im(ρ) = 0 are at 3, 5, 7, . . . (making the

Bernoulli numbers vanish at these indices), due to the factorial term
in the denominator. This representation separates the nontrivial
zeros on the critical line from the trivial zeros on the real axes.
(See the plot above and for complex s the appendix).

Here we can see another reason why B1 = 1
2 . The oscillating

factor has the value π0

0! = 1 and the Hadamard factor has the value
Hζ(1) = −ζ(0) · 1. The Bernoulli value follows from ζ(0) = −1

2 .

If we compare the identities (67) and (73), we get as a corollary
ξ = Hζ . This is precisely the proposition that Hadamard proves in
his 1893 paper [25].

The alternating Bernoulli function

The alternating Bernoulli function is defined as

B∗(s) = B(s) (1− 2s) . (74)

We can express the alternating Bernoulli function in terms of the
zeta function using identity (63) as

B∗(s) = s! ζ(s) τ(s) (2s − 1) . (75)

The alternating Bernoulli numbers are the values of the alternating
Bernoulli function at the nonnegative integers,

B∗n = B∗(n). (76)

Like the Bernoulli numbers the alternating Bernoulli numbers
are rational numbers. Reduced to lowest terms they have the
denominator 2, B∗0 = 0 and B∗1 = −1

2 . In the form Gn = 2 B∗n they
are the Genocchi numbers introduced above as the values of the
Genocchi function at nonnegative integers.
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The alternating Riemann zeta function, also known as the
Dirichlet eta function, is defined as

ζ∗(s) = ζ(s)(1− 21−s), (s 6= 1). (77)

The alternating Bernoulli function can be represented by the alter-
nating zeta function similarly as the Bernoulli function by the zeta
function:

B∗(s) = −sζ∗(1− s), (s 6= 0). (78)

The alternating Bernoulli polynomials

For a positive real number x define the alternating Hurwitz zeta
function as

ζ∗(s, x) =
∞∑
n=0

(−1)n

(n+ x)s
, for Re(s) > 0, (79)

and for other values of s by analytic continuation. It is connected
with the Hurwitz Zeta function by

ζ∗(s, x) = 2−s
(
ζ
(
s,
x

2

)
− ζ

(
s,
x+ 1

2

))
. (80)

The alternating Bernoulli rational polynomials are defined as

B∗n(x) = −nζ∗(1− n, x) . (81)

This definition is in analogy to our introduction of the Bernoulli
polynomials (27). The alternating Bernoulli numbers are by (42)
half the Genocchi numbers: B∗n = 2n−1

(
Bn

(
1
2

)
− Bn (1)

)
=

Gn /2.

The connection with the Euler function

The Euler polynomials are closely related to the Bernoulli
polynomials. In handbooks of mathematical functions they are
often treated side by side and shown how one can be expressed by
the other.
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Our perspective is a little different. We recall that the interpo-
lation of rational sequences is our central theme. However, the two
cases already differ concerning whether the numbers are values of
the respective polynomials: In the Bernoulli case they are, in the
Euler case they are not.

The generalized Euler function is defined as a shifted version
of the generalized Genocchi function.

G(s, v) = 2s
(

B
(
s,
v

2

)
− B

(
s,
v + 1

2

))
, (82)

E(s, v) = −G(s+ 1, v)

s+ 1
. (83)

The Euler polynomials are En(x) = E(n, x) for integers n ≥ 0. The
one-parameter Euler function is the special case v = 1.

E(s) = E(s, 1). (84)

The rational numbers E(n) for integers n ≥ 0 are

1,
1

2
, 0, −1

4
, 0,

1

2
, 0, −17

8
, 0,

31

2
, 0, −691

4
, 0,

5461

2
, . . . .

However, these numbers do not, differently from the case of the
Bernoulli numbers, inherit the name from their defining function.
The Euler numbers are the values at the integers of the generalized
Euler function (83) at v = 1

2 , scaled with a power of 2.

Ec(s) = 2s E

(
s,

1

2

)
. (85)

These are the equivalents to the central Bernoulli numbers (37).
Let us gather the two most important special cases of the Euler

function. For the Euler polynomials we have

En(x) = 2ζ∗(−n, x) = −2
B∗n+1(x)

n+ 1
= −Gn+1(x)

n+ 1
. (86)

As a special case we have 2 B∗n = −nEn−1(1) for n ≥ 1.
For the Euler numbers we have

En = 2n En

(
1

2

)
= −2n+1B∗n+1

(
1
2

)
n+ 1

= −2n
Gn+1(

1
2)

n+ 1
. (87)
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The extended Bernoulli numbers

The family tree of the Euler numbers is subdivided into three
branches: the Euler secant numbers, the Euler tangent numbers and
the André numbers. The André numbers are the secant numbers
interwoven with the tangent numbers, that is the term-wise sum of
the secant and the tangent sequence.

The traditional way of naming reserves the name Euler numbers
for the Euler secant numbers, while the way preferred by combinato-
rialists [59] calls the unsigned André numbers Euler numbers. The
introduction of the name ‘André numbers’ in honor of Désiré An-
dré who studied their combinatorial interpretation as 2-alternating
permutations in 1879 [2] and 1881 [3] resolves this ambiguity.

n 0 1 2 3 4 5 6 7 8

Etan 0 1 0 −2 0 16 0 −272 0

Esec 1 0 −1 0 5 0 −61 0 1385

A 1 1 −1 −2 5 16 −61 −272 1385

Euler and André numbers

Let us try to apply the above extension procedure for the Euler
numbers to the Bernoulli numbers somehow. First, we name the
Bernoulli numbers with even index the Bernoulli tangent numbers
and those with odd index (provisionally) the lost Bernoulli numbers .

n 0 1 2 3 4 5 6 7 8

B? 1 ? 1/6 ? −1/30 ? 1/42 ? −1/30

The lost Bernoulli numbers

The next table shows what will be the outcome of our choice
that we will define in the next section.

n 0 1 2 3 4 5 6 7 8

Btan 1 0 1
6 0 − 1

30 0 1
42 0 − 1

30

Bsec 0 1
2 0 − 3

56 0 25
992 0 − 427

16256 0

B 1 1
2

1
6 − 3

56 − 1
30

25
992

1
42 − 427

16256 − 1
30

The extended Bernoulli numbers
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The extended Bernoulli function

The extended Bernoulli function is defined as

B(s) = −s ζ̃(1− s) (88)

for s 6= 0 and the limiting value B(0) = 1 + π/log(4), where

ζ̃(s) = ζ (s) +
ζ
(
s, 14
)
− ζ

(
s, 34
)

2s − 2
. (89)

An alternate form to write (88) is

B(s) = B(s) + s
2s−1

2s − 1

(
ζ

(
1− s, 1

4

)
− ζ

(
1− s, 3

4

))
. (90)

The extended Bernoulli numbers are the values of the extended
Bernoulli function at positive integers for n ≥ 2 and by convention
Bn = B(n) for n ∈ {0, 1} (see the table above).

The question remains: why did we choose the extended Bernoulli
numbers in this manner? The answer is: because of their relation
to the Euler zeta numbers, which we will introduce next. The
figure above indicates the relations between these six sequences by
showing how they derive from a seventh sequence, the Euler zeta
numbers.

The extended Euler function

The Bernoulli numbers and the Euler numbers have a common
backbone: the Euler zeta numbers defined as the values at the
positive integers of the function

E(s) =
4s+1 − 2s+1

(s+ 1)!
B(s+ 1). (91)

These numbers, in their unsigned form, were introduced by
Leonhard Euler in 1735 in De summis serierum reciprocarum [19].
For n ≥ 0 they are

1, 1, −1

2
, −1

3
,

5

24
,

2

15
, − 61

720
, − 17

315
,

277

8064
,

62

2835
, . . . .
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L. Euler, De summis serierum reciprocarum, 1735.

The André function A(s) interpolating the André numbers is

A(s) = s! E(s) (92)

= (4s+1 − 2s+1)
B(s+ 1)

s+ 1
(93)

= (2s+1 − 4s+1) ζ̃(−s). (94)

When s is a positive integer, these identities are well known, but
less known in the generality given here, as identities of complex
functions.

The unsigned extended functions

The unsigned André function has the representation

A?(s) = i(is Li−s(−i)− (−i)s Li−s(i)) (95)

where i is the imaginary unit, Lis(v) is the polylogarithm and the
principal branch of the logarithm is used for the powers.

The unsigned André numbers are the values at the nonnegative
integers, A?n = A?(n). Its counterpart, the unsigned extended
Bernoulli function, is defined as

B?(s) =
sA?(s− 1)

4s − 2s
(s 6= 0). (96)

For s = 0 the function B? is supplemented by the limiting value,
which, surprisingly, is −1. Therefore B? interpolates the unsigned
extended Bernoulli numbers only for n ≥ 1.
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The unsigned André function A?

The Swiss knife polynomials

The reader, exhausted from studying all these higher transcen-
dental functions, may wonder whether the many numbers considered
here are also easier to calculate. Fortunately, the answer is ‘yes’,
and amazingly a single method is sufficient.

κn(x) =
n∑
k=0

α(k + 1)

2bk/2c

k∑
v=0

(−1)v
(
k

v

)
(x+ v + 1)n. (97)

Here α is the repeating sequence period(0, 1, 1, 1, 0, -1, -1, -1).
The author dubbed κn(x) the Swiss knife polynomials because they
allow calculating the Euler–Bernoulli family of numbers efficiently.
They were introduced in A153641 and discussed in [47].

The coefficients of the polynomials are integers, in contrast
to the coefficients of the Euler and Bernoulli polynomials, which
are rational numbers. The Euler, Bernoulli, Genocchi, Euler zeta,
tangent as well as the André numbers and the Springer numbers
are either values or scaled values of these polynomials, see the table
below.

The polynomials display a beautiful sinusoidal behavior if suit-
able scaled, which can be explained with the Fourier analysis of
the generalized zeta function.
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1

x

x2 − 1

x3 − 3x

x4 − 6x2 + 5

x5 − 10x3 + 25x

x6 − 15x4 + 75x2 − 61

x7 − 21x5 + 175x3 − 427x

x8 − 28x6 + 350x4 − 1708x2 + 1385

x9 − 36x7 + 630x5 − 5124x3 + 12465x

The Swiss knife polynomials κn(x)/n!

Euler zeta even κn(0) / n!

Euler zeta odd κn(1) / n!

Euler zeta (−1)bn/2cκn(n mod 2) / n!

Euler secant κn(0)

Euler tangent κn(1)

Euler extended (−1)bn/2cκn(n mod 2)

Bernoulli tangent κn−1(1)n / (4n − 2n)

Bernoulli secant κn−1(0)n / (4n − 2n)

Bernoulli extended κn−1((n− 1) mod 2)n / (4n − 2n)

Genocchi κn(−1)(n+ 1) / 2n

Springer κn(1/2) 2n

Some applications of the Swiss knife polynomials
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Asymptotics for the Bernoulli function

An asymptotic expansion of the Bernoulli function results directly
from B(s) = −ζ(s) τ(s) s! by using Stirling’s formula and the
generalized harmonic numbers.

For an even positive integer n the Bernoulli function has an
efficient asymptotic approximation [44],

|B(n)| ∼ 4π
( n

2πe

)n+1/2
exp

(
1

2
+
n−1

12
− n−3

360
+
n−5

1260

)
. (98)

Here we use the coefficients in Stirling’s expansion for log(Γ(s)),
see A046969. The number of exact decimal digits guaranteed by
this formula is apparently 3 log(3n) if n ≥ 50. This approximation
is used in the Boost C++ library [7] for very large arguments n.

For general s > 0 the asymptotic expansion is

B(s) ∼ −4π cos
(sπ

2

)( s

2πe

)s+1/2
R(s),

R(s) = exp

(
1

2
+
∞∑
n=1

B(n+ 1)

n+ 1

s−n

n

)
.

(99)

If one agrees to the convention to read s−0

0 = 1, then one can start
the sum at n = 0 and do without the constant term 1

2 .
Other asymptotic developments can be based on different devel-

opments of the Gamma function, for instance on Binet’s formula
[18, p. 48] generalized by Gergő Nemes [52, 4.2]. More general
asymptotic expansions and error bounds follow from those of the
Hurwitz zeta function that Nemes established in [53].

Epilogue: generating functions

The value of B(1) deserves special attention. Since it is well
known that

∑∞
j=0 γj/j! = 1/2 it follows from (8) that B(1) = 1/2.

Unfortunately the popular generating function z/(ez − 1) misses
this value and disrupts at this point the connection between the
Bernoulli numbers and the ζ function.
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For those who do not care about the connection with the zeta
function, we add: Even the most elementary relations between the
Bernoulli numbers and the Bernoulli polynomials break with this
choice. For instance, consider the basic identity (39). It applies to
all Bernoulli numbers if Bn = Bn(1) but not if Bn = Bn(0) is set.

Instead use the power series f(z) with constant term 1 such that
the coefficient of xn in (f(x))n+1 equals 1 for all n. There is only
one power series satisfying this condition, as Friedrich Hirzebruch
[29] observes. This series is the Todd function (called after John
Arthur Todd)

T(z) =
z

1− e−z
= 1 +

1

2

z

1!
+

1

6

z2

2!
− 1

30

z4

4!
+ . . . (100)

and generates the Bernoulli numbers matching the values of the
Bernoulli function at the nonnegative integers.

A modern exposition based on the Todd series is the monograph
[5]. The authors adopt this definition “because it is the original
definition of Seki and Bernoulli for one thing, and it is better suited
to the special values of the Riemann zeta function for another.”
Similarly, J. Neukirch in Algebraic Number Theory [54] writes: The
definition f(z) = z/(1− e−z) “is more natural and better suited for
the further development of the theory.” One might hope that all
mathematicians will use this consistent definition one day.

Fair use of ‘Don Quixote’, sketch by Pablo Picasso.
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Bernoulli function and Riemann zeros on the critical line.

Phase portrait of the Bernoulli function on the right half plane.
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The Bernoulli function on the right half plane, complex view.

The Bernoulli function on the right half plane, 3-dim view.
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The logarithm of the Bernoulli function on the right half plane.

The red peaks on the x-axis correspond to the real zero of the
Bernoulli function (the vanishing of the odd Bernoulli numbers).

The front side of the plot shows the logarithm of the Bernoulli
function on the critical line.

The Hadamard decomposition of the Bernoulli function is displayed
in the two plots below.

38



The Hadamard decomposition of log B : the Riemann ξ-factor.

The Hadamard decomposition of log B : the singularity factor.
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Bernoulli constants

βn bn = βn
n!

[ 0] +1.00000000000000000000000e+00 +1.00000000000000000000000e+00
[ 1] -5.77215664901532860606512e-01 -5.77215664901532860606512e-01
[ 2] +1.45631690967353449721173e-01 +7.28158454836767248605864e-02
[ 3] +2.90710895786169554535912e-02 +4.84518159643615924226519e-03
[ 4] -8.21533768121338346464019e-03 -3.42305736717224311026674e-04
[ 5] -1.16268503273365002873409e-02 -9.68904193944708357278404e-05
[ 6] -4.75994290380637621052001e-03 -6.61103181084218918127779e-06
[ 7] +1.67138541801139726910695e-03 +3.31624090875277235933919e-07
[ 8] +4.21831653646200836859278e-03 +1.04620945844791874221051e-07
[ 9] +3.16911018422735558641847e-03 +8.73321810027379736116201e-09
[10] +3.43947744180880481779146e-04 +9.47827778276235895555407e-11
[11] -2.25866096399971274152095e-03 -5.65842192760870796637242e-11
[12] -3.24221327452684232007482e-03 -6.76868986351369665586675e-12
[13] -2.17454785736682251359552e-03 -3.49211593667203185445522e-13
[14] +3.84493292452642224040106e-04 +4.41042474175775338023724e-15
[15] +3.13813893088949918755710e-03 +2.39978622177099917550506e-15
[16] +4.53549848512386314628695e-03 +2.16773122007268285496389e-16
[17] +3.39484659125248617003234e-03 +9.54446607636696517342499e-18
[18] -4.72986667978530060590399e-04 -7.38767666053863649781558e-20
[19] -5.83999975483580370526234e-03 -4.80085078248806522761766e-20
[20] -1.00721090609471125811119e-02 -4.13995673771330564126948e-21
[21] -9.79321479174274843741249e-03 -1.91682015939912339496482e-22
[22] -2.29763093463200254783750e-03 -2.04415431222621660772759e-24
[23] +1.24567903906919471380695e-02 +4.81849850110735344392922e-25
[24] +2.98550901697978987031938e-02 +4.81185705151256647946111e-26
[25] +3.97127819725890390476549e-02 +2.56026331031881493660913e-27
[26] +2.79393907712007094428316e-02 +6.92784089530466712388013e-29
[27] -1.77336950032031696506289e-02 -1.62860755048558674407104e-30
[28] -9.73794335813190698522061e-02 -3.19393756115325557604211e-31
[29] -1.85601987419318254285110e-01 -2.09915158936342552768549e-32
[30] -2.21134553114167174032372e-01 -8.33674529544144047562508e-34
[31] -1.10289594522767989385320e-01 -1.34125937721921866750473e-35
[32] +2.40426431930087325860325e-01 +9.13714389129817199794565e-37
[33] +8.48223060577873259185100e-01 +9.76842144689316562821221e-38
[34] +1.53362895967472747676942e+00 +5.19464288745573322360277e-39
[35] +1.78944248075279625487765e+00 +1.73174959516100441594633e-40
[36] +7.33429569739007257407068e-01 +1.97162023326628724184554e-42
[37] -2.68183987622201934815062e+00 -1.94848008275558832944550e-43
[38] -8.96900252642345710339731e+00 -1.71484028164349789185891e-44
[39] -1.67295744090075569567376e+01 -8.20162325795024844398325e-46
[40] -2.07168737077169487591557e+01 -2.53909617003982347034561e-47
[41] -1.01975839351792340684642e+01 -3.04837480681247325379474e-49
[42] +3.02221435698546147289327e+01 +2.15103288078139524274228e-50
[43] +1.13468181875436585038896e+02 +1.87813767783170614584043e-51
[44] +2.31656933743621048467685e+02 +8.71456987091534575015368e-53
[45] +3.23493565027658727705394e+02 +2.70429325494165277375631e-54
[46] +2.33327851136153134645751e+02 +4.24030297482975157602467e-56
[47] -3.10666033627557393250479e+02 -1.20123014394335413203436e-57
[48] -1.63390919914361991588774e+03 -1.31619164554817482023699e-58
[49] -3.85544150839888666284589e+03 -6.33824832920169119558284e-60
[50] -6.29221938159892345466820e+03 -2.06884990450560309799972e-61
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J. Jensen computing the Bernoulli function B(−z) in 1895.

Bernoulli cumulants

−Cn − Cn
n!

[ 0] 5.77215664901532860606512e-01 5.77215664901532860606512e-01
[ 1] 1.87546232840365224597203e-01 1.87546232840365224597203e-01
[ 2] 1.03377264066385787604016e-01 5.16886320331928938020082e-02
[ 3] 8.85099529527224643874814e-02 1.47516588254537440645802e-02
[ 4] 1.08587469323889089789907e-01 4.52447788849537874124612e-03
[ 5] 1.73615424543021976826038e-01 1.44679520452518314021698e-03
[ 6] 3.39511736293491636244455e-01 4.71544078185405050339520e-04
[ 7] 7.82108682587720478889760e-01 1.55180294164230253747968e-04
[ 8] 2.07023895260357186095142e+00 5.13452121181441433767714e-05
[ 9] 6.18396764525550941770221e+00 1.70413570471106410320277e-05
[10] 2.05609655822716770310295e+01 5.66605092104047537230752e-06
[11] 7.52770418698025254867191e+01 1.88584861185772720976429e-06
[12] 3.00839552402986587830834e+02 6.28055422785616139551170e-07
[13] 1.30294506447394086233815e+03 2.09240519073573812751380e-07
[14] 6.07848047275118529922938e+03 6.97247031236967546712980e-08
[15] 3.03866350907681039525268e+04 2.32371573798165201572008e-08
[16] 1.62043648652105132185893e+05 7.74483945590082160394406e-09
[17] 9.18184885317620501162217e+05 2.58143755665663419434431e-09
[18] 5.50888477406867075105888e+06 8.60444114522719419372965e-10
[19] 3.48887511550119854518536e+07 2.86807697455596821291504e-10
[20] 2.32588267070109667252423e+08 9.56011653113908225323882e-11
[21] 1.62810356589926860813867e+09 3.18667751404435348670453e-11
[22] 1.19393632362359042013562e+10 1.06222024071484413115002e-11
[23] 9.15348288139870681527169e+10 3.54072294392050811222228e-12
[24] 7.32277241973702388310021e+11 1.18023874334765961275615e-12
[25] 6.10230340797500863040914e+12 3.93412466914448230705943e-13
[26] 5.28865934416774000146351e+13 1.31137399472672361405551e-13
[27] 4.75979146079582837193300e+14 4.37124485922912446959546e-14
[28] 4.44247093871183417895415e+15 1.45708126178764844543513e-14
[29] 4.29438794111778364421710e+16 4.85693682340507565625935e-15
[30] 4.29438756134456760579530e+17 1.61897879796099259670507e-15
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Unsigned extended Bernoulli and Euler zeta numbers

n B?n E?n
0 1 1

1 1
2 1

2 1
6

1
2

3 3
56

1
3

4 1
30

5
24

5 25
992

2
15

6 1
42

61
720

7 427
16256

17
315

8 1
30

277
8064

9 12465
261632

62
2835

10 5
66

50521
3628800

11 555731
4192256

1382
155925

12 691
2730

540553
95800320

13 35135945
67100672

21844
6081075

14 7
6

199360981
87178291200

15 2990414715
1073709056

929569
638512875

16 3617
510

3878302429
4184557977600

17 329655706465
17179738112

6404582
10854718875

18 43867
798

2404879675441
6402373705728000

19 45692713833379
274877382656

443861162
1856156927625

20 174611
330

14814847529501
97316080327065600

21 1111113564712575
628292059136

18888466084
194896477400625

22 854513
138

69348874393137901
1124000727777607680000

23 1595024111042171723
70368735789056

113927491862
2900518163668125

24 236364091
2730

238685140977801337
9545360026665222144000

25 387863354088927172625
1125899873288192

58870668456604
3698160658676859375

26 8553103
6

4087072509293123892361
403291461126605635584000000

27 110350957750914345093747
18014398375264256

8374643517010684
1298054391195577640625

28 23749461029
870

13181680435827682794403
3209350995912777478963200000

29 36315529600705266098580265
288230375614840832

689005380505609448
263505041412702261046875

30 8615841276005
14322

441543893249023104553682821
265252859812191058636308480000000
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