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1. Introduction

Conformal field theories (CFTs) are special quantum field theories (QFTs) with extended space-

time symmetry groups. CFTs are important in QFTs as fixed points of the renormalization group

flow and in condensed matter theory as descriptions of second-order phase transitions. Their ex-

tra symmetries lead to a separation of operators into quasi-primaries and descendants, that then

imply a very powerful operator product expansion (OPE). Indeed, in CFTs the OPE re-expresses

the product of two quasi-primaries at different points into an infinite sum of quasi-primaries. To

generate the descendants, the latter quasi-primaries are acted upon by differential operators that

are completely fixed by conformal invariance, up to the OPE coefficients which encode the different

CFTs. Hence, once the OPE is determined, it is straightforward to generate arbitrary correlation

functions in terms of infinite sums of products of the OPE coefficients and the so-called conformal

blocks that are generated by the multiple action of the OPE.

For arbitrary correlation functions, conformal blocks are functions of sets of conformal cross-

ratios (ratios of position space distances that are invariant under the conformal group) that are

completely fixed by conformal covariance from, e.g. the conformal covariance of the OPE. Confor-

mal blocks are however exceptionally hard to compute in general. Nevertheless, when conformal

blocks are determined, it is possible to constrain the allowed values of the OPE coefficients by

relying on the associativity of the correlation functions, the celebrated conformal bootstrap ap-

proach [1]. Generally, the constraints originating from the four-point conformal bootstrap are all

there is—higher-point conformal bootstrap being redundant, although they could help by consid-

ering external quasi-primary operators in scalar representations only.

Hence, much of the work done has been towards the computation of four-point conformal

blocks following different approaches. See for example the Casimir equations [2], the shadow

formalism [3], the weight-shifting formalism [4], integrability [5], AdS/CFT [6], and the OPE

[7–13].

With respect to higher-point correlation functions, most of the work is fairly new, with scalar

M -point blocks in the comb topology1 in one- and two-dimensional CFTs as well as scalar five-

point blocks in any spacetime dimensions first computed in [14–16]. Higher-point conformal blocks

in the comb topology for arbitrary spacetime dimensions have been obtained in [17, 18]. Scalar

six-point conformal blocks in the first non-comb topology, the so-called snowflake topology, have

been presented in [19].2 Scalar seven-point conformal blocks in the extended snowflake topology,

scalar higher-point conformal blocks in the OPE topology, as well as plausible rules for scalar

higher-point conformal blocks in higher-dimensional CFTs were introduced in [21,22].

1Sometimes topologies are referred to as channels in the literature. Here, we use channels to distinguish different

external field assignments in a given topology, as is customary for four-point functions.

2See also [20] for specific snowflake conformal blocks in two-dimensional CFTs.
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In [18, 19, 21], the authors relied on the embedding space OPE developed in [11, 12] to re-

cursively compute higher-point conformal blocks. It is well-known that CFTs in one and two

spacetime dimensions are much simpler than higher-dimensional CFTs. For example, they do not

need to use the machinery of the embedding space. Moreover, the possible irreducible represen-

tations of the Lorentz group are much simpler, leading to all four-point conformal blocks [23].

Strangely enough, although the position space OPE has been known in one- and two-dimensional

CFTs for a very long time (see for example [8,9,24,25]), it has not been used to compute arbitrary

conformal blocks.3

In this paper, we use the known position space OPE in one- and two-dimensional CFTs to

compute any conformal partial wave for arbitrary internal and external quasi-primary operators,

including spinning quasi-primary operators in 2d CFTs, irrespective of the topology. We introduce

a set of rules to decompose higher-point correlation functions in sums of higher-point conformal

blocks (depending on carefully-chosen conformal cross-ratios), with the proper leg factors and

OPE coefficient functions. We then determine the action of the position space OPE on products

of powers of position space distances and use it recursively to prove the rules. With these results,

all quantities in arbitrary one- and two-dimensional correlation functions that are prescribed by

global conformal invariance can be determined. Moreover, since there exists max{1, T0(M) − 1}

independent conformal bootstrap equations for M -point correlation functions [19], we present the

M -point conformal bootstrap equations for four-, five-, six-, seven-, and eight-point correlation

functions. Here T0(M) is the number of inequivalent M -point topologies, or the number of

unrooted binary trees with M unlabeled leaves.4

This paper is organized as follows: Section 2 discusses the simplifications occurring in low-

dimensional CFTs, reviews the position space OPE, and determines its action on products of

powers of position space distances. In Section 3, we first review (M < 4)-point correlation

functions and then introduce our notation for (M ≥ 4)-point correlation functions. For the latter,

we decompose correlation functions in sums of OPE coefficient functions times conformal partial

waves dependent on the chosen topology. We also write conformal partial waves in terms of

leg factors times conformal blocks which are functions of the conformal cross-ratios. We finally

introduce the rules by defining different OPE vertices according to their number of internal legs.

The rules determine the OPE coefficient factors, the leg factors, the conformal blocks, and the

3CFTs in two spacetime dimensions are not only invariant under the standard conformal group, dubbed the

global conformal group, they are also invariant under the local conformal group, leading to the Virasoro algebra.

This distinction leads to a separation between the quasi-primaries and the primaries. There has been a lot of very

important work on local conformal invariance and their associated Virasoro blocks, e.g. [25,26]. In this work, we are

only concerned about the global conformal blocks.

4T0(M) does not have an analytic expression. Starting at M = 2, the first few numbers in the sequence

are (1, 1, 1, 1, 2, 2, 4, 6, 11, . . .). See The On-line Encyclopedia of Integer Sequences at https://oeis.org/A000672 and

https://oeis.org/A129860 for more details.
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conformal cross-ratios. We then present several examples in Section 4, giving the complete set of

conformal bootstrap equations for four-, five-, six-, seven-, and eight-point correlation functions.

Finally, we conclude in Section 5 with a discussion of the generalization to higher-dimensional

CFTs while Appendix A presents the proof of the rules using the position space OPE recursively.

2. Operator Product Expansion

After describing the simplifications occurring in one- and two-dimensional CFTs, this section

reviews the position space OPE and presents its action on the most general function of position

space coordinates relevant to CFTs in one and two spacetime dimensions.

2.1. Simplifications in Low Dimensions

Before discussing the position space OPE, we first survey the simplifications occurring in global

CFTs in one and two spacetime dimensions.

First, global CFTs in one and two spacetime dimensions are much simpler than in higher

spacetime dimensions due to the allowed irreducible Lorentz group representations. Indeed, the

possible irreducible representations of 1d and 2d CFTs are all trivial.

In d = 1, all quasi-primary operators ϕ(z) with conformal dimensions h are in the trivial

irreducible representation. Thus, for a triplet of 1d quasi-primary operators there is only one

(trivial) OPE tensor structure. In other words, there exists only one OPE coefficient per triplet

of quasi-primary operators.

In d = 2, all irreducible Lorentz representations have at most two independent components. As

such, a 2d quasi-primary operator in a non-trivial irreducible representation with two components

can be split into two quasi-primary operators (its holomorphic and anti-holomorphic parts), each

effectively in the trivial irreducible representation. They are denoted by ϕ(z, z̄) [labeled by (h, h̄)]

and ϕ̄(z, z̄) [labeled by (h̄, h)], respectively, and their conformal dimension and spin are ∆ = h+ h̄

and s = h− h̄ (with 2s ∈ Z). Considering the latter quasi-primary operators instead of the former,

the OPE for any triplet of quasi-primary operators in the complete set {ϕi(z, z̄), ϕ̄i(z, z̄)} (all in

the trivial irreducible representation) has only one trivial OPE tensor structure. Once again, there

exists only one OPE coefficient per triplet of quasi-primary operators.

Hence, CFTs in one and two spacetime dimensions are not plagued by the intricacies origi-

nating from non-trivial irreducible representations that are ubiquitous in higher spacetime dimen-

sions. They can be fully investigated by considering only quasi-primary operators in the trivial

irreducible representation.

Second, the number of independent conformal cross-ratios, which are ratios of position space

coordinates zij = zi − zj of the type

ηij;kl =
zijzkl
zilzkj

, (2.1)
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and are invariant under conformal transformations, is much smaller in one- and two-dimensional

CFTs.

Indeed, for (M ≥ 4)-point correlation functions, there are M − 3 conformal cross-ratios in

d = 1. Hence only the analog of the ua conformal cross-ratios in higher-dimensional CFTs exist

in one-dimensional CFTs, all the higher-dimensional vab conformal cross-ratios are redundant.

For two-dimensional (M ≥ 4)-point correlation functions, the number of conformal cross-ratios

is 2(M − 3), twice as much as in d = 1. This fact can be deduced from the factorization of the

2d OPE discussed below. The factorization property also implies that the extra conformal cross-

ratios of the v-type appearing in two-dimensional CFTs are easily deduced from the 1d conformal

cross-ratios as

η̄ij;kl =
z̄ij z̄kl
z̄ilz̄kj

. (2.2)

As a consequence, control over the conformal cross-ratios is much simpler in one- and two-

dimensional CFTs when compared to CFTs in higher spacetime dimensions. For one, the action of

the OPE differential operator does not involve as many re-summations. Moreover, the observation

that only the u-type conformal cross-ratios exist in one- and two-dimensional CFTs directly leads

to a proof of the higher-point correlation function rules presented in this paper.

2.2. Action of the Operator Product Expansion

The position space OPE in one and two spacetime dimensions is well known [8, 9, 24, 25]. In

one-dimensional CFTs, it is given by

ϕi(z1)ϕj(z2) =
∑

k

c k
ij D k

ij (z1, z2)ϕk(z2),

D k
ij (z1, z2) =

1

z
hi+hj−hk

12

1F1(hi − hj + hk, 2hk; z12∂2),

(2.3)

while it is
ϕi(z1, z̄1)ϕj(z2, z̄2) =

∑

k

c k
ij D k

ij (z1, z̄1, z2, z̄2)ϕk(z2, z̄2),

D k
ij (z1, z̄1, z2, z̄2) =

1

z
hi+hj−hk

12

1F1(hi − hj + hk, 2hk; z12∂2)

×
1

z̄
h̄i+h̄j−h̄k

12

1F1(h̄i − h̄j + h̄k, 2h̄k; z̄12∂̄2),

(2.4)

in two-dimensional CFTs (with the extra requirement that hi − h̄i + hj − h̄j + hk − h̄k ∈ Z from

spin statistics). Here it is understood that the partial derivatives in the expansion of the Kummer

confluent hypergeometric function act first, i.e.

1F1(a, b; z12∂2) ≡
∑

n≥0

(a)n
(b)n

zn12∂
n
2

n!
. (2.5)
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Clearly, the 2d OPE factorizes into two 1d OPEs—the holomorphic and anti-holomorphic OPEs.

As a consequence, two-dimensional higher-point conformal blocks factorize into their one-dimensional

holomorphic (functions of ηa) and anti-holomorphic (functions of η̄a) factors. Thus, without loss

of generality, we can focus solely on one-dimensional CFTs from now on.

The most general function of position space coordinates that can appear in a CFT is made

out of products of powers of zij . Since

∂n
j

∏

a6=i,j

1

zpaja
= (−1)nn!

∑

{ma}≥0∑
a ma=n

∏

a6=i,j

(pa)ma

ma!z
pa+ma

ja

,

from the multinomial theorem, we have

D 3
12 (zi, zj)

∏

a6=i,j

1

zpaja
=

∑

{ma}≥0

(−1)m̄(h1 − h2 + h3)m̄

(2h3)m̄zh1+h2−h3−m̄
ij

∏

a6=i,j

(pa)ma

ma!z
pa+ma

ja

, (2.6)

where m̄ =
∑

a6=i,j ma. Equation (2.6) is the analog of the Ī-function of [12]. Its knowledge will

allow us to construct and prove the rules for building M -point correlation functions, to which we

now turn.

3. Higher-Point Correlation Functions

This section relies on the position space OPE in one spacetime dimension (2.3) and its action on

products of powers of position space coordinates zij (2.6) to generate all correlation functions in

any topology, the generalization to two spacetime dimensions is straightforward. After reviewing

the one-, two-, and three-point correlation functions, we present a complete set of rules to explicitly

write any M -point correlation function. The proof of the rules and detailed computations are left

for the appendix.

3.1. M < 4-Point Correlation Functions

In a CFT, the only non-trivial one-point correlation function involves the identity operator 1,

which is invariant under conformal transformations with h1 = 0 (and h̄1 = 0 in two spacetime

dimensions). The identity operator is defined such that 〈1〉 = 1.

From the OPE (2.3) and the one-point correlation function 〈1〉, non-vanishing two-point cor-

relation functions are given by

〈ϕi(z1)ϕj(z2)〉 = c 1

ij D 1

ij (z1, z2)〈1〉 =
c 1

ij

z2h12
, (3.1)

with hi = hj = h. As expected, two-point correlation functions vanish unless both quasi-primary

operators have the same conformal dimension.
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By applying the OPE (2.3) on the two-point correlation functions (3.1), it is straightforward

to compute three-point correlation functions as

〈ϕi(z1)ϕj(z2)ϕk(z3)〉 =
∑

k′

c k′

ij D k′

ij (z1, z2)〈ϕk′(z2)ϕk(z3)〉 =
cijk

z
hi+hj−hk

12 z
hj+hk−hi

23 z
hk+hi−hj

13

, (3.2)

with the help of (2.6). We note that in (3.2) we defined three-point coefficients cijk from OPE

coefficients c k
ij as cijk =

∑

k′ c
k′

ij c 1

k′k .

The well-known results (3.1) and (3.2), and their straightforward generalizations to 2d CFTs,

show that the one-, two-, and three-point correlation functions are completely fixed by global

conformal invariance up to some overall constants, as expected.5

3.2. M ≥ 4-Point Correlation Functions

Due to the presence of conformal cross-ratios, (M ≥ 4)-point correlation functions are not com-

pletely fixed by conformal invariance. Hence, they are technically more difficult to determine.

Nevertheless, higher-point correlation functions can be separated through the OPE into their fun-

damental constituents, the conformal blocks, which are completely fixed by conformal invariance.

However, traditionally conformal blocks have been technically challenging to compute. We intro-

duce here a complete set of rules to explicitly write down (M ≥ 4)-point conformal blocks in any

topology. Before proceeding, we first discuss our notation.

Any M -point correlation function can be expanded through the OPE in several different ways.

By consistency, these different ways must lead to the same answer, an observation at the core

of the conformal bootstrap [1]. When the number of quasi-primary operators is larger than

five, the OPE leads to decompositions with different topologies. By choosing one specific OPE

decomposition, (M ≥ 4)-point correlation functions can be divided into conformal partial waves

as

〈ϕi1(z1) · · ·ϕiM (zM )〉 =
∑

{ka}

f
(i1,...,iM )
M(k1,...,kM−3)

W
(hi1

,...,hiM
)

M(hk1
,...,hkM−3

)

∣

∣

∣

∣

topology

, (3.3)

where the summation is over the M − 3 exchanged quasi-primary operators ϕk1(z), . . . , ϕkM−3
(z)

appearing in the OPE decomposition. In (3.3), the products of OPE coefficients (including the

proper sign for fermion crossings in two spacetime dimensions) are denoted by fM and the con-

5As is common knowledge, conformal invariance fixes the form of the (M < 4)-point correlation functions. From

the familiar two- and three-point correlation functions (3.1) and (3.2), it is then straightforward to obtain the 1d OPE

(2.3) [as well as (2.4) in two spacetime dimensions].
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formal partial waves WM are expressible in terms of conformal blocks GM following6

W
(hi1

,...,hiM
)

M(hk1
,...,hkM−3

)

∣

∣

∣

∣

topology

= L
(hi1

,...,hiM
)

M |topology





∏

1≤a≤M−3

(ηMa )hka



G
(h)
M |topology(η

M ). (3.5)

In (3.5), LM represents the leg which is made out of position space coordinates zab and is respon-

sible for the proper behavior of the conformal partial wave under scale transformations, while η
M

is the vector of conformal cross-ratios. Moreover, the conformal blocks are power series expansion

in the conformal cross-ratios of the form

G
(h)
M |topology(η

M ) =
∑

{na}≥0

C
(h)
M |topology(n)F

(h)
M |topology(n)

∏

1≤a≤M−3

(ηMa )na

na!
, (3.6)

with n the vector of indices of summation {na}, CM a summand of the hypergeometric type,

and FM encoding extra sums. Although in more dimensions it was useful to treat CM and FM

separately, here we always provide the product CMFM combined. Our goal in this section is thus

to provide rules for the determination of the leg LM and the explicit definitions of the conformal

cross-ratios η
M in terms of the position space coordinates as well as the conformal block GM for

an arbitrary topology.

3.3. Rules for M ≥ 4-Point Correlation Functions

To begin, we note that the OPE can be used recursively to increase the number of points in an

arbitrary correlation function. This technique depends on the OPE differential operator acting

on the initial correlation function using (2.6), followed by re-summations to eliminate superfluous

sums. In principle, one can generate any correlation function following this prescription. However,

to keep a suitable handle on the conformal cross-ratios and the associated re-summations, it

is necessary to build the conformal partial waves constructively. Hence our strategy relies on

applying the OPE following a fixed, ordered, procedure to reach the appropriate topology.

To this end, we divide the OPE into three different groups—1I, 2I, and 3I OPEs—where an

nI OPE vertex in a given topology has n internal lines (representing internal, or exchanged, quasi-

primary operators) and 3 − n external lines (representating external quasi-primary operators).7

6In two-dimensional CFTs, M -point correlation functions are given by

〈ϕi1(z1, z̄1) · · ·ϕiM (zM , z̄M )〉 =
∑

{ka}

f
(i1,...,iM )
M(k1,...,kM−3)

W
(hi1

,...,hiM
)

M(hk1
,...,hkM−3

)W̄
(h̄i1

,...,h̄iM
)

M(h̄k1
,...,h̄kM−3

)

∣

∣

∣

∣

topology

, (3.4)

in terms of one-dimensional conformal partial waves. Here the bar on top of the second conformal partial wave simply

means that zab → z̄ab and ηa → η̄a as dictated by the factorization of the 2d OPE.

7In this notation, 0I OPE vertices never appear in (M ≥ 4)-point correlation functions. Obviously, an 0I OPE

vertex always appears alone—it represents a three-point correlation function—and its associated set of rules is derived

straightforwardly from (3.2).
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1I OPE vertex

ϕiα(zα)

ϕiβ (zβ) ϕkj3
(zγ)

ϕiα(zα)ϕiβ (zβ) ∼ ϕkj3
(zβ)

(−1)
−hkj3 c

kj3
iαiβ

z
hiα

βγ;αz
hiβ

γα;β

(hiα − hiβ + hkj3 )nj3

2I OPE vertex

ϕiα(zα)

ϕkj2
(zβ) ϕkj3

(zγ)

ϕiα(zα)ϕkj2
(zβ)∼ϕkj3

(zβ)

ϕkj3
(zγ)ϕiα (zα)∼ϕkj2

(zα)

(−1)
−hkj3 c

kj3
iαkj2

z
hiα

βγ;α

(hiα−hkj2
−nj2

+hkj3
)nj3

×(−hiα+hkj2
+hkj3

)nj2

3I OPE vertex

ϕkj1
(zα)

ϕkj2
(zβ) ϕkj3

(zγ)

ϕkj1
(zα)ϕkj2

(zβ)∼ϕkj3
(zβ)

ϕkj3
(zγ)ϕkj1

(zα)∼ϕkj2
(zα)

ϕkj3
(zγ)ϕkj2

(zβ)∼ϕkj1
(zβ)

(−1)
hkj1

−hkj3 c
kj3

kj1kj2

—

(hkj1
−hkj2

−nj2
+hkj3

)nj1
+nj3

×(−hkj1
+hkj2

+hkj3
)nj2

3F2

Fig. 1: 1I, 2I, and 3I OPE vertices with their associated OPE limits, OPE coeffi-

cient contributions, leg factors, and conformal block factors (from top to bottom). Here,

solid (dotted) lines represent external (internal, or exchanged) quasi-primary operators while

the arrows depict the flow of position space coordinates, i.e. the chosen OPE limits rele-

vant for the gluing procedure representing the OPE action. The hypergeometric function

that appears in the conformal block factor for the 3I OPE vertex is given by 3F2 ≡

3F2

[

−nj1,−nj2 , 1− 2hkj2 − nj2

hkj1 − hkj2 − nj2 + hkj3 , 1 + hkj1 − hkj2 − nj2 − hkj3

; 1

]

. We note that the internal quasi-

primary operator without an arrow in the 3I OPE vertex serves as an anchor point for an extra

comb structure.

We also introduce an extra 1I OPE vertex which corresponds to the initial 1I OPE vertex from

which the full topology will be constructed. The nI OPE vertices with their associated rules are

shown in Figures 1 and 2.

For these figures, solid (dotted) lines represent external (internal, or exchanged) quasi-primary

operators while arrows depict the flow of position space coordinates. The latter fix the choice

of OPE limits relevant when appending OPE vertices together following the gluing procedure.

The OPE limits determine fully the set of rules, with each nI OPE vertex having a specific leg

and conformal block factor, while two glued OPE vertices are necessary to obtain the conformal

cross-ratios.

Hence specific rules for the OPE coefficient contributions (up to fermion crossings in two

8



Initial 1I OPE vertex

ϕiα(zα)

ϕkj2
(zβ) ϕiγ (zzγ )

ϕiγ (zγ)ϕiα(zα) ∼ ϕkj2
(zα)

ciαkj2 iγ

z
hiα

βγ;αz
hiγ

αβ;γ

(hiγ − hiα + hkj2 )nj2

Fig. 2: Initial 1I OPE vertex with its OPE limit, OPE coefficient contribution, leg factor, and

conformal block factor. The notation matches the one of Figure 1.

spacetime dimensions),8 the legs with the notation

zαβ;γ =
zαβ

zαγzβγ
, (3.7)

(and its obvious generalization with zi → z̄i for 2d CFTs), and the conformal block factors are

associated to each nI OPE vertex while the conformal cross-ratios, defined in (2.1) and (2.2), are

not yet included in the rules of Figures 1 and 2 since they are built from the gluing of two OPE

vertices.

Although the leg rules are included in Figures 1 and 2, they require the knowledge of the

position space coordinates of all quasi-primary operators, including the exchanged quasi-primary

operators. Consequently, it is also necessary to know how the different OPE vertices are combined

together in an arbitrary topology to determine the proper leg factors, as for the conformal cross-

ratios.

These observations lead us to the gluing procedure and the flow of position space coordinates

depicted by the arrows in Figures 1 and 2, or in other words the chosen OPE limits. To elucidate

the gluing procedure, we first note that any topology has at least two 1I OPE vertices, with

the comb topology saturating the bound. We now choose one 1I OPE vertex (any will do) that

plays the role of the initial 1I OPE vertex of Figure 2. We then start gluing 2I and 3I OPE

8The overall minus signs in the OPE coefficient contributions originate from the choice of leg factors since zji =

−zij , contrary to higher-dimensional CFTs.
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α2

β2 β1 α1

kj1

α2

β2 β1 α1

kj1

α2

β2
β1

α1

kj1

α2

β2 β1

α1

kj1

Fig. 3: The conformal cross-ratio associated to the exchanged quasi-primary operator ϕkj1
(z) is

given by ηj1 = ηα2β2;β1α1 while the leg factor for the 1I, 2I, or 3I OPE vertex denoted by a dot

is z
hiβ2
α2β1;β2

z
hiα2
β1β2;α2

(1I OPE vertex), z
hiβ2
α2β1;β2

(2I OPE vertex), or 1 (3I OPE vertex). Finally, the

leg factor associated to the initial 1I OPE vertex, denoted by a square, is z
hiβ1
α2α1;β1

z
hiα1
β1α2;α1

.

vertices in the proper order until we reach another 1I OPE vertex, where this procedure stops.

This procedure produces a comb-like topology, but some of the teeth of this comb correspond to

internal lines that need to be glued further.

When 2I OPE vertices are included in this initial comb-like structure there is nothing further

to do since the corresponding tooth represents an external operator. This is not the case 3I OPE

vertices. From this initial comb topology, we select one of the 3I OPE vertices and repeat the

procedure above by gluing 2I and 3I OPE vertices in the correct order corresponding to the

associated OPE decomposition until we reach another 1I OPE vertex. We note that this new

comb-like structure needs another arrow type to differentiate its flow of position space coordinates.

To systematically construct the conformal partial wave of interest, we continue this procedure with

each additional comb structure and their associated arrows until all the 3I OPE vertices have

been completely glued, i.e. until the number of 3I OPE vertices added in the final comb structure

is zero.

With our specific choice of OPE limits on the nI OPE vertices, the gluing procedure leads

to well-defined rules for the leg factors and the conformal cross-ratios appearing in the conformal

partial wave of interest. These rules are shown in Figure 3.

To simplify the notation, we draw all lines as solid ones. Moreover, external quasi-primary

operators are denoted only by their position space coordinates. Hence α1 in Figure 3 corresponds

to ϕiα1
(zα1). For internal quasi-primary operators, we include an index with a subscript on

10



each internal line. Thus, kj1 in Figure 3 denotes the exchanged quasi-primary operator ϕkj1
(zz).

Circles with outgoing arrows (implicit when not depicted) represent arbitrary contributions, with

the numbers corresponding to the first external quasi-primary operators from which the arrows

flow out. Finally, circles with incoming arrows correspond to arbitrary contributions, but with the

numbers standing for the first external quasi-primary operators appearing in the contributions.

The complete set of rules are thus given in Figures 1, 2 and 3 with the following recipe. First,

the product of OPE coefficients fM in (3.3) is computed by multiplying the OPE coefficient contri-

butions for each vertex (up to an overall sign for fermion crossings in two spacetime dimensions).

In the same manner, the leg is the product of the leg factors. Finally, the conformal block (3.6),

more precisely the product CMFM , is calculated from the product of the conformal block factors

divided by
∏

1≤a≤M−3(2hka)na , with each exchanged quasi-primary operator having its associated

conformal cross-ratio. Conveniently, in 1d there are as many exchange operators as conformal

cross-ratios.

The complete set of rules are proven by induction in Appendix A. To demonstrate the rules

better, we now turn to concrete examples.

4. Example

In this section, we use the rules of Section 3 to build conformal partial waves for arbitrary

topologies. The goal is to illuminate the procedure. We note that according to our rules, there

are several ways of writing the same conformal partial waves. Indeed, the choice of the initial 1I

OPE vertex, of the initial comb structure, and of the flow of position space coordinates, lead to

different-looking answers that must be equal by consistency at the level of the conformal partial

waves. At the level of the correlation functions, i.e. for the conformal bootstrap, different orderings

(non-trivial re-orderings) of the external quasi-primary operators and/or different topologies must

be equated.

We present here the conformal partial waves for the four-, five-, six-, seven-, and eight-point

conformal bootstrap equations. To encode the OPE order, we organize the quasi-primary oper-

ators in the initial comb structure as follows: 〈· · ·ϕi4(z4)ϕi3(z3)ϕi2(z2)|ϕi1(z1)〉 where the first

OPE is ϕi3(z3)ϕi2(z2) ∼ ϕk1(z2), the second OPE is ϕi4(z4)ϕk1(z2) ∼ ϕk2(z2), and so on until

the last OPE which is ϕkn(zn)ϕi1(z1) ∼ 1. Moreover, we delimit all extra comb structures by

curly brackets, as for example {· · ·ϕi3(z3)ϕi2(z2)ϕi1(z1)} with the same pattern for the OPEs, i.e.

first ϕi2(z2)ϕi1(z1) ∼ ϕk1(z1) followed by ϕi3(z3)ϕk1(z1) ∼ ϕk2(z1) and so forth. Finally, fermion

crossings occurring in two spacetime dimensions lead to overall sign factors of the form (−1)Fi1i2

that are −1 when both ϕi1(z1) and ϕi2(z2) are fermions and 1 otherwise.

11
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Fig. 4: Four-point conformal bootstrap equations.

4.1. Four-Point Correlation Functions

The conformal partial waves for four-point correlation functions of arbitrary quasi-primary opera-

tors were found in [23]. The four-point conformal bootstrap equations are shown in Figure 4 and

correspond to

〈ϕi4(z4)ϕi2(z2)ϕi1(z1)|ϕi3(z3)〉 = (−1)Fi2i4 〈ϕi2(z2)ϕi4(z4)ϕi1(z1)|ϕi3(z3)〉, (4.1)

where the overall minus sign appears in two-dimensional CFTs and comes from fermion crossings.

Demanding the equality (4.1) for all external quasi-primary operators constitute the full set of

four-point bootstrap equations (which is the complete set of bootstrap equations since higher-point

bootstrap equations are redundant).

Following our rules for 〈ϕi4(z4)ϕi2(z2)ϕi1(z1)|ϕi3(z3)〉 (see the arrows for the left topology of

Figure 4), we have

f4 = (−1)−hk1 c k1
i2i1

ci4k1i3 ,

L4 = z
hi2
14;2z

hi1
42;1z

hi4
13;4z

hi3
41;3,

η41 = η12;43,

C4F4 =
(hi2 − hi1 + hk1)n1(hi3 − hi4 + hk1)n1

(2hk1)n1

,

(4.2)

which is the usual result quoted in the literature.

For the right topology found in Figure 4, which is denoted by 〈ϕi2(z2)ϕi4(z4)ϕi1(z1)|ϕi3(z3)〉,

we obtain instead
f4 = (−1)−hk1 c k1

i4i1
ci2k1i3 ,

L4 = z
hi4
12;4z

hi1
24;1z

hi2
13;2z

hi3
21;3,

η41 = η14;23 = 1− η12;43,

C4F4 =
(hi4 − hi1 + hk1)n1(hi3 − hi2 + hk1)n1

(2hk1)n1

.

(4.3)

We note that although the exchanged quasi-primary operators are denoted by ϕk1(z) in both

(4.2) and (4.3), they do not necessarily represent the same sets. Using (3.3), demanding that (4.1)

is satisfied for all external quasi-primary operators leads to the full conformal bootstrap.
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Fig. 5: Five-point conformal bootstrap equations.

4.2. Five-Point Correlation Functions

Five-point correlation functions are reminiscent of four-point correlation functions: they also have

only one topology, the so-called comb topology [14,15]; and there exists only one set of conformal

bootstrap equations, depicted in Figure 5. Any other bootstrap equation is satisfied automatically

due to the symmetries of the comb topology [19]. Figure 5 leads to

〈ϕi4(z4)ϕi3(z3)ϕi2(z2)ϕi1(z1)|ϕi5(z5)〉 = (−1)Fi1i2
+Fi1i3

+Fi1i4 〈ϕi1(z1)ϕi4(z4)ϕi3(z3)ϕi2(z2)|ϕi5(z5)〉,

(4.4)

where again the overall minus sign exists only in two-dimensional CFTs and comes from fermion

crossings.

From the rules of Section 3 applied to 〈ϕi4(z4)ϕi3(z3)ϕi2(z2)ϕi1(z1)|ϕi5(z5)〉 (the left topology

of Figure 5), we can write

f5 = (−1)−hk1
−hk2c k1

i2i1
c k2
i3k1

ci4k2i5 ,

L5 = z
hi2
13;2z

hi1
32;1z

hi3
14;3z

hi4
15;4z

hi5
41;5,

η51 = η12;34, η52 = η13;45,

C5F5 =
(hi2 − hi1 + hk1)n1(hi3 − hk1 − n1 + hk2)n2(−hi3 + hk1 + hk2)n1(hi5 − hi4 + hk2)n2

(2hk1)n1(2hk2)n2

,

(4.5)

which matches the result found in [15] after trivial manipulations.

Equivalently, for 〈ϕi1(z1)ϕi4(z4)ϕi3(z3)ϕi2(z2)|ϕi5(z5)〉, we reach

f5 = (−1)−hk1
−hk2c k1

i3i2
c k2
i4k1

ci1k2i5 ,

L5 = z
hi3
24;3z

hi2
43;2z

hi4
21;4z

hi1
25;1z

hi5
12;5,

η51 = η23;41, η52 = η24;15,

C5F5 =
(hi3 − hi2 + hk1)n1(hi4 − hk1 − n1 + hk2)n2(−hi4 + hk1 + hk2)n1(hi5 − hi1 + hk2)n2

(2hk1)n1(2hk2)n2

,

(4.6)

a simple rewriting of (4.5).

From (3.3) and the conformal partial waves (4.5) and (4.6), (4.4) implements the five-point

conformal bootstrap.
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Fig. 6: Six-point conformal bootstrap equations.

4.3. Six-Point Correlation Functions

Six-point correlation functions are interesting due to the appearance of a new topology, the so-

called snowflake topology [19]. Equating the snowflake and the comb as in Figure 6 leads to the

only independent set of six-point conformal bootstrap equations given by

〈ϕi4(z4){ϕi6(z6)ϕi5(z5)}ϕi2(z2)ϕi1(z1)|ϕi3(z3)〉

= (−1)Fi2i3
+Fi3i6

+Fi1i3
+Fi3i5

+Fi1i5
+Fi2i5

+Fi2i6 〈ϕi4(z4)ϕi3(z3)ϕi2(z2)ϕi6(z6)ϕi1(z1)|ϕi5(z5)〉,

(4.7)

where once again fermion crossings imply the overall minus signs of two-dimensional CFTs.

Applying the rules of Section 3 to the snowflake 〈ϕi4(z4){ϕi6(z6)ϕi5(z5)}ϕi2(z2)ϕi1(z1)|ϕi3(z3)〉

implies that the conformal partial waves are

f6 = (−1)−hk1
−hk2c k1

i2i1
c k3
i6i5

c k2
k3k1

ci4k2i3 ,

L6 = z
hi2
15;2z

hi1
52;1z

hi3
41;3z

hi4
13;4z

hi6
51;6z

hi5
16;5,

η61 = η12;54, η62 = η15;43, η63 = η56;14,

(4.8)

with

C6F6 =
(hi2 − hi1 + hk1)n1(hi3 − hi4 + hk2)n2(hi6 − hi5 + hk3)n3

(2hk1)n1(2hk2)n2(2hk3)n3

× (hk3 − hk1 − n1 + hk2)n3+n2(−hk3 + hk1 + hk2)n1

× 3F2

[

−n3,−n1, 1− 2hk1 − n1

hk3 − hk1 − n1 + hk2 , 1 + hk3 − hk1 − n1 − hk2
; 1

]

.

For the comb 〈ϕi4(z4)ϕi3(z3)ϕi2(z2)ϕi6(z6)ϕi1(z1)|ϕi5(z5)〉, we obtain instead

f6 = (−1)−hk1
−hk2

−hk3c k1
i6i1

c k2
i2k1

c k3
i3k2

ci4k3i5 ,

L6 = z
hi6
12;6z

hi1
26;1z

hi2
13;2z

hi3
14;3z

hi4
15;4z

hi5
41;5,

η61 = η16;23, η62 = η12;34, η63 = η13;45,

(4.9)
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Fig. 7: Seven-point conformal bootstrap equations.

with

C6F6 =
(hi6 − hi1 + hk1)n1(hi5 − hi4 + hk3)n3

(2hk1)n1(2hk2)n2(2hk3)n3

× (hi2 − hk1 − n1 + hk2)n2(−hi2 + hk1 + hk2)n1

× (hi3 − hk2 − n2 + hk3)n3(−hi3 + hk2 + hk3)n2 ,

in agreement with [15].

Starting from the six-point conformal bootstrap equations (4.7) for all external quasi-primary

operators, using the conformal partial wave decomposition (3.3) with the results (4.8) and (4.9),

generates the full six-point conformal bootstrap.

4.4. Seven-Point Correlation Functions

Seven-point correlation functions can be decomposed in conformal partial waves following two

topologies: the comb and the extended snowflake topologies [21,22]. They are depicted in Figure

7 with a given choice of OPE limits. The equality shown in Figure 7 translates into

〈ϕi7(z7){ϕi3(z3)ϕi5(z5)ϕi4(z4)}ϕi2(z2)ϕi1(z1)|ϕi6(z6)〉

= (−1)Fi1i2
+Fi1i3

+Fi1i4
+Fi2i3

+Fi2i4
+Fi3i4

+Fi3i5
+Fi5i7

× 〈ϕi5(z5)ϕi7(z7)ϕi1(z1)ϕi2(z2)ϕi4(z4)ϕi3(z3)|ϕi6(z6)〉,

(4.10)

and represents the sole set of seven-point conformal bootstrap equations, when considering all

external quasi-primary operators. In (4.10), the minus sign takes into account fermion crossings

that are possible in two-dimensional CFTs only.

Looking at the extended snowflake topology with the choice of OPE limits seen in Figure

7, i.e. the seven-point correlation functions 〈ϕi7(z7){ϕi3(z3)ϕi5(z5)ϕi4(z4)}ϕi2(z2)ϕi1(z1)|ϕi6(z6)〉,
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the conformal partial waves are

f7 = (−1)−hk1
−hk2

−hk4 c k1
i2i1

c k2
k3k1

c k3
i3k4

c k4
i5i4

ci7k2i6 ,

L7 = z
hi2
14;2z

hi1
42;1z

hi3
41;3z

hi5
43;5z

hi4
35;4z

hi7
16;7z

hi6
71;6,

η71 = η12;47, η72 = η14;76, η73 = η43;17, η74 = η45;31,

(4.11)

with

C7F7 =
(hi2 − hi1 + hk1)n1(hi6 − hi7 + hk2)n2(hi5 − hi4 + hk4)n4

(2hk1)n1(2hk2)n2(2hk3)n3(2hk4)n4

× (hi3 − hk4 − n4 + hk3)n3(−hi3 + hk4 + hk3)n4

× (hk3 − hk1 − n1 + hk2)n3+n2(−hk3 + hk1 + hk2)n1

× 3F2

[

−n3,−n1, 1− 2hk1 − n1

hk3 − hk1 − n1 + hk2 , 1 + hk3 − hk1 − n1 − hk2
; 1

]

.

Focusing on 〈ϕi5(z5)ϕi7(z7)ϕi1(z1)ϕi2(z2)ϕi4(z4)ϕi3(z3)|ϕi6(z6)〉 instead, which corresponds to

the comb topology of Figure 7, we get

f7 = (−1)−hk1
−hk2

−hk3
−hk4c k1

i4i3
c k2
i2k1

c k3
i1k2

c k4
i7k3

ci5k4i6 ,

L7 = z
hi4
32;4z

hi3
24;3z

hi2
31;2z

hi1
37;1z

hi7
35;7z

hi5
36;5z

hi6
53;6,

η71 = η34;21, η72 = η32;17, η73 = η31;75, η74 = η37;56,

(4.12)

with

C7F7 =
(hi4 − hi3 + hk1)n1(hi6 − hi5 + hk4)n4

(2hk1)n1(2hk2)n2(2hk3)n3(2hk4)n4

× (hi2 − hk1 − n1 + hk2)n2(−hi2 + hk1 + hk2)n1

× (hi1 − hk2 − n2 + hk3)n3(−hi1 + hk2 + hk3)n2

× (hi7 − hk3 − n3 + hk4)n4(−hi7 + hk3 + hk4)n3 ,

as expected from the literature [15].

As usual, comparing the conformal partial wave decomposition (3.3) of the seven-point corre-

lation functions appearing in (4.10) that are given by (4.11) and (4.12) generate the seven-point

conformal bootstrap.

4.5. Eight-Point Correlation Functions

As a final example, we consider eight-point correlation functions for which there are four different

topologies. The three independent eight-point conformal bootstrap equations are shown in Figure
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Fig. 8: Eight-point conformal bootstrap equations.

8. They translate to

〈ϕi8(z8){{ϕi6(z6)ϕi5(z5)}ϕi4(z4)ϕi3(z3)}ϕi2(z2)ϕi1(z1)|ϕi7(z7)〉

= (−1)Fi1i2
+Fi1i3

+Fi1i4
+Fi1i5

+Fi6i8 〈ϕi6(z6)ϕi8(z8)ϕi1(z1){ϕi5(z5)ϕi4(z4)}ϕi3(z3)ϕi2(z2)|ϕi7(z7)〉

= (−1)Fi1i7
+Fi2i7

+Fi3i7
+Fi4i7

+Fi5i7
+Fi6i7

+Fi1i8
+Fi2i8

+Fi3i8
+Fi4i8

+Fi5i8
+Fi6i8

+Fi7i8

× 〈ϕi7(z7)ϕi6(z6){ϕi5(z5)ϕi4(z4)}ϕi3(z3)ϕi2(z2)ϕi1(z1)|ϕi8(z8)〉

= (−1)Fi1i7
+Fi2i7

+Fi3i7
+Fi4i7

+Fi5i7
+Fi6i7

+Fi1i8
+Fi2i8

+Fi3i8
+Fi4i8

+Fi5i8
+Fi6i8

+Fi7i8

× 〈ϕi7(z7)ϕi6(z6)ϕi5(z5)ϕi4(z4)ϕi3(z3)ϕi2(z2)ϕi1(z1)|ϕi8(z8)〉,

(4.13)

where fermion crossings are responsible for the overall minus signs that occur in two-dimensional

CFTs. Here, the three independent sets of eight-point conformal bootstrap equations are obtained

by equating the first line with the second, the third, and the fourth lines of (4.13). Obviously,

they imply the remaining pairings.
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For the correlation functions 〈ϕi8(z8){{ϕi6(z6)ϕi5(z5)}ϕi4(z4)ϕi3(z3)}ϕi2(z2)ϕi1(z1)|ϕi7(z7)〉 rep-

resenting the most symmetric eight-point topology, the conformal partial waves are

f8 = (−1)−hk1
−hk2

−hk4c k1
i2i1

c k2
k3k1

c k4
i4i3

c k3
k5k4

c k5
i6i5

ci8k2i7 ,

L8 = z
hi2
13;2z

hi1
32;1z

hi4
35;4z

hi3
54;3z

hi6
53;6z

hi5
36;5z

hi8
17;8z

hi7
81;7,

η81 = η12;38, η82 = η13;87, η83 = η35;18, η84 = η34;51, η85 = η56;31,

(4.14)

with

C8F8 =
(hi2 − hi1 + hk1)n1(hi7 − hi8 + hk2)n2(hi4 − hi3 + hk4)n4(hi6 − hi5 + hk5)n5

(2hk1)n1(2hk2)n2(2hk3)n3(2hk4)n4(2hk5)n5

× (hk3 − hk1 − n1 + hk2)n3+n2(−hk3 + hk1 + hk2)n1

× 3F2

[

−n3,−n1, 1− 2hk1 − n1

hk3 − hk1 − n1 + hk2 , 1 + hk3 − hk1 − n1 − hk2
; 1

]

× (hk5 − hk4 − n4 + hk3)n5+n3(−hk5 + hk4 + hk3)n4

× 3F2

[

−n5,−n4, 1− 2hk4 − n4

hk5 − hk4 − n4 + hk3 , 1 + hk5 − hk4 − n4 − hk3
; 1

]

.

In the case of 〈ϕi6(z6)ϕi8(z8)ϕi1(z1){ϕi5(z5)ϕi4(z4)}ϕi3(z3)ϕi2(z2)|ϕi7(z7)〉, we have instead

f8 = (−1)−hk1
−hk2

−hk3
−hk4 c k1

i3i2
c k2
k5k1

c k3
i1k2

c k5
i5i4

c k4
i8k3

ci6k4i7 ,

L8 = z
hi3
24;3z

hi2
43;2z

hi5
42;5z

hi4
25;4z

hi1
28;1z

hi8
26;8z

hi6
27;6z

hi7
62;7,

η81 = η23;41, η82 = η24;18, η83 = η21;86, η84 = η28;67, η85 = η45;21,

(4.15)

with

C8F8 =
(hi3 − hi2 + hk1)n1(hi7 − hi6 + hk4)n4(hi5 − hi4 + hk5)n5

(2hk1)n1(2hk2)n2(2hk3)n3(2hk4)n4(2hk5)n5

× (hi1 − hk2 − n2 + hk3)n3(−hi1 + hk2 + hk3)n2

× (hi8 − hk3 − n3 + hk4)n4(−hi8 + hk3 + hk4)n3

× (hk5 − hk1 − n1 + hk2)n5+n2(−hk5 + hk1 + hk2)n1

× 3F2

[

−n5,−n1, 1− 2hk1 − n1

hk5 − hk1 − n1 + hk2 , 1 + hk5 − hk1 − n1 − hk2
; 1

]

.

For 〈ϕi7(z7)ϕi6(z6){ϕi5(z5)ϕi4(z4)}ϕi3(z3)ϕi2(z2)ϕi1(z1)|ϕi8(z8)〉, the conformal partial waves

are
f8 = (−1)−hk1

−hk2
−hk3

−hk4 c k1
i2i1

c k2
i3k1

c k3
k5k2

c k5
i5i4

c k4
i6k3

ci7k4i8 ,

L8 = z
hi2
13;2z

hi1
32;1z

hi3
14;3z

hi5
41;5z

hi4
15;4z

hi6
17;6z

hi7
18;7z

hi8
71;8,

η81 = η12;34, η82 = η13;46, η83 = η14;67, η84 = η16;78, η85 = η45;16,

(4.16)
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with

C8F8 =
(hi2 − hi1 + hk1)n1(hi8 − hi7 + hk4)n4(hi5 − hi4 + hk5)n5

(2hk1)n1(2hk2)n2(2hk3)n3(2hk4)n4(2hk5)n5

× (hi3 − hk1 − n1 + hk2)n2(−hi3 + hk1 + hk2)n1

× (hi6 − hk3 − n3 + hk4)n4(−hi6 + hk3 + hk4)n3

× (hk5 − hk2 − n2 + hk3)n5+n3(−hk5 + hk2 + hk3)n2

× 3F2

[

−n5,−n2, 1− 2hk2 − n2

hk5 − hk2 − n2 + hk3 , 1 + hk5 − hk2 − n2 − hk3
; 1

]

.

Finally, for 〈ϕi7(z7)ϕi6(z6)ϕi5(z5)ϕi4(z4)ϕi3(z3)ϕi2(z2)ϕi1(z1)|ϕi8(z8)〉, we obtain the conformal

partial waves for the comb topology as

f8 = (−1)−hk1
−hk2

−hk3
−hk4

−hk5c k1
i2i1

c k2
i3k1

c k3
i4k2

c k4
i5k3

c k5
i6k4

ci7k5i8 ,

L8 = z
hi2
13;2z

hi1
32;1z

hi3
14;3z

hi4
15;4z

hi5
16;5z

hi6
17;6z

hi7
18;7z

hi8
71;8,

η81 = η12;34, η82 = η13;45, η83 = η14;56, η84 = η15;67, η85 = η16;78,

(4.17)

with

C8F8 =
(hi2 − hi1 + hk1)n1(hi8 − hi7 + hk5)n5

(2hk1)n1(2hk2)n2(2hk3)n3(2hk4)n4(2hk5)n5

× (hi3 − hk1 − n1 + hk2)n2(−hi3 + hk1 + hk2)n1

× (hi4 − hk2 − n2 + hk3)n3(−hi4 + hk2 + hk3)n2

× (hi5 − hk3 − n3 + hk4)n4(−hi5 + hk3 + hk4)n3

× (hi6 − hk4 − n4 + hk5)n5(−hi6 + hk4 + hk5)n4 ,

as expected [15].

Therefore, equating the conformal partial wave decompositions (3.3) of eight-point correlation

functions as in (4.13), using the conformal partial waves (4.14), (4.15), (4.16), and (4.17), gives

rise to the complete eight-point conformal bootstrap.

5. Discussion and Conclusion

In this paper, we developed and proved a complete set of rules for global one- and two-dimensional

higher-point conformal partial waves in arbitrary topology. We proved the rules based on the

known position space operator product expansion by determining its action on products of powers

of position space distances. The methods used to obtain these rules have been known for a long

time, but have not been applied to M -point functions. With our results, all quantities appearing
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in correlation functions that are determined by conformal invariance can be written explicitly.

Hence, with the CFT data, i.e. the spectrum of quasi-primary operators with their dimensions

h and h̄ as well as the OPE coefficients, it is straightforward to compute any global M -point

correlation function.

The rules that we introduced in this paper apply for a fixed choice of OPE limits. The

generalization of the rules to higher-dimensional conformal field theories, including the extra

conformal cross-ratios, for scalar conformal blocks with any choice of OPE limits will be presented

in a forthcoming publication [27].

Moreover, now that the global conformal blocks are determined, it would be of interest to

investigate if local higher-point conformal blocks could be computed following the usual method

used for four-point Virasoro blocks. Also, from the AdS/CFT-correspondence, higher-point con-

formal blocks could perhaps be useful in the study of bulk AdS3.

Acknowledgments

The authors would like to thank Sarah Hoback, Sarthak Parikh, and Valentina Prilepina for

useful discussions. The work of JFF is supported by NSERC. WJM is supported by the China

Scholarship Council and in part by NSERC. The work of WS is supported in part by DOE HEP

grant DE-SC00-17660.

A. Proof of the Rules

In this appendix, we provide the proof of the complete set of rules for arbitrary higher-point

correlation functions in one- and two-dimensional CFTs. Due to the factorization property of the

OPE in 2d CFTs, the proof is presented for 1d CFTs without loss of generality. The proof is

constructive: we first build the initial comb structure and then we add extra comb structures

following one of the three possible patterns discussed below. At each step, we verify that the

built structure satisfies the rules, completing the proof.

In the proof, we rely on standard hypergeometric identities like

2F1

[

−n, b

c
; 1

]

=
(c− b)n
(c)n

,

3F2

[

−n, b, c

d, 1 + b+ c− d− n
; 1

]

=
(d− b)n(d− c)n
(d)n(d− b− c)n

,

(A.1)

(for n a non-negative integer) to eliminate superfluous sums as well as the binomial identity

(

zjb
zja

)n

=
∑

s≥0

(−1)s(−n)s
s!

(

zab
zja

)s

, (A.2)
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2 M

3 4

. . .

M − 1

⇒

2 M

1 3

. . .

M − 1

Fig. 9: Proof by induction for the initial comb structure with M − 1 points. The arrows dictate

the flow of position space coordinates in the topologies, i.e. the choice of OPE limits, following

our convention.

to introduce the proper conformal cross-ratios.

Moreover, to simplify the notation, we always reshuffle the position space coordinates such

that the OPE is performed as in (2.3). We also omit most subscripts and superscripts.

A.1. Initial Comb

First, it is straightforward to check that the four-point conformal partial waves satisfy the rules

of Section 3. Therefore, we assume that the initial (M − 1)-point comb structure satisfies the

rules, then we generate the M -point comb structure applying the OPE to finally verify that it

also satisfies the rules, as depicted in Figure 9. As a consequence of this computation, the comb

structure with our choice of OPE vertices satisfies our rules.

Thus, we assume that the (M − 1)-point conformal partial wave

W
(hk1

,hi3
,...,hiM−1

)

M−1(hk2
,...,hkM−3

) = LM−1





∏

2≤a≤M−3

(ηM−1
a )hka



GM−1,

satisfies our rules, i.e. with the leg (3.7) expressed as

LM−1 = z
hk1
43;2z

hiM

M−1,2;M

∏

3≤a≤M−1

z
hia

2,a+1;a,

the conformal cross-ratios (2.1) given by

ηM−1
a = η2,a+1;a+2,a+3 2 ≤ a ≤ M − 3,

and the conformal block written as

GM−1 =
∑

{na}≥0

(hi3 − hk1 + hk2)n2(hiM − hiM−1
+ hkM−3

)nM−3

(2hk2)n2

×
∏

2≤a≤M−4

(hia+2 − hka − na + hka+1)na+1(−hia+2 + hka + hka+1)na

(2hka+1)na+1

∏

2≤a≤M−3

(ηMa )na

na!
,

according to the rules of Section 3.
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Acting with the OPE (2.3), we obtain, after extracting (−1)hk1 from the rule for the OPE

coefficients and using (2.6),

W
(hi1

,...,hiM
)

M(hk1
,...,hkM−3

) =
(−1)hk1

z
hi1

+hi2
−hk1

12

1F1(hi1 − hi2 + hk1 , 2hk1 ; z12∂2)W
(hk1

,hi3
,...,hiM−1

)

M−1(hk2
,...,hkM−3

)

= LM





∏

1≤a≤M−3

(ηMa )hka





(

z23
z13

)−hi1
−hk1

+hi2

×
∑

{ma}≥0

(−1)m̄(hi1 − hi2 + hk1)m̄

(2hk1)m̄z−m̄
12





∏

3≤a≤M

(pa)ma

ma!z
ma

2a



GM−1,

where the proper M -point leg is

LM = z
hi1
23;1z

hi2
31;2z

hiM

M−1,2;M

∏

3≤a≤M−1

z
hia

2,a+1;a,

the proper M -point conformal cross-ratios are

ηM1 = η21;34, ηMa = η2,a+1;a+2,a+3 2 ≤ a ≤ M − 3,

and the different powers are

p3 = hk1 + hi3 − hk2 − n2,

p4 = −hi3 + hi4 + hk1 − hk3 − n3,

pa = −ha−1 + hia + hka−3 + na−3 − hka−1 − na−1 5 ≤ a ≤ M − 2,

pM−1 = −hiM−2
+ hiM−1

+ hkM−4
+ nM−4 − hiM ,

pM = −hiM−1
+ hiM + hkM−3

+ nM−3.

(A.3)

Thus, isolating the M -point conformal block in the M -point conformal partial wave above, we

simply need to verify that

GM =

(

z23
z13

)−hi1
−hk1

+hi2 ∑

{ma}≥0

(−1)m̄(hi1 + hk1 − hi2)m̄

(2hk1)m̄z−m̄
12





∏

3≤a≤M

(pa)ma

ma!z
ma

2a



GM−1, (A.4)

satisfies the appropriate rules. We note that in (A.4) and throughout, the sums over {na} appear-

ing in GM−1 must be understood as being performed in the summation symbol with the {ma}.

This is evident from the powers (A.3) which depend explicitly on {na}. This is done only to

simplify the notation and should be clear from the context.

To proceed, we first extract z23 from the product in (A.4) as

GM =
∑

{ma}≥0

(−1)m̄(hi1 + hk1 − hi2)m̄(p3)m̄−
∑

4≤a≤M ma

(2hk1)m̄(m̄−
∑

4≤a≤M ma)!

(

z23
z13

)−hi1
−hk1

+hi2
−m̄
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×

(

z12
z13

)m̄





∏

4≤a≤M

(pa)ma

ma!

zma
23

zma
2a



GM−1,

and rewrite the power of z23/z13 following (A.2) to reach

GM =
∑

{ma,s}≥0

(−1)m̄(hi1 + hk1 − hi2)m̄+s(p3)m̄−
∑

4≤a≤M ma

(2hk1)m̄(m̄−
∑

4≤a≤M ma)!s!

(

z12
z13

)m̄+s





∏

4≤a≤M

(pa)ma

ma!

zma

23

zma

2a



GM−1.

We then rename s = n1 − m̄ and re-sum over m3 with the help of the first identity in (A.1) to

get

GM =
∑

{n1,ma}≥0

(−1)
∑

4≤a≤M ma(hi1 + hk1 − hi2)n1(2hk1 − p3 +
∑

4≤a≤M ma)n1−
∑

4≤a≤M ma

(2hk1)n1(n1 −
∑

4≤a≤M ma)!

×

(

z12
z13

)n1





∏

4≤a≤M

(pa)ma

ma!

zma
23

zma
2a



GM−1.

Using (A.2) for all ratios of conformal cross-ratios appearing in the product, we obtain

GM =
∑

{n1,ma,sa}≥0

(−1)
∑

4≤a≤M ma(hi1 + hk1 − hi2)n1(2hk1 − p3 +
∑

4≤a≤M ma)n1−
∑

4≤a≤M ma

(2hk1)n1(n1 −
∑

4≤a≤M ma)!

×

(

z12
z13

)n1





∏

4≤a≤M

(pa)ma

(ma − sa)!sa!

zsaa3
zsa2a



GM−1,

where we now change summation indices from ma to ma + sa to evaluate all the sums over ma

[again using the first identity in (A.1)], leading to

GM =
∑

{n1,sa}≥0

(−1)
∑

4≤a≤M sa(hi1 + hk1 − hi2)n1(2hk1 −
∑

3≤a≤M pa)n1−
∑

4≤a≤M sa

(2hk1)n1(n1 −
∑

4≤a≤M sa)!

×

(

z12
z13

)n1





∏

4≤a≤M

(pa)sa
sa!

zsaa3
zsa2a



GM−1.

From the definitions of the powers (A.3), we see that

∑

3≤a≤M

pa = 2hk1 ,

hence the Pochhammer symbol (0)n1−
∑

4≤a≤M sa forces
∑

4≤a≤M sa = n1 and we can fix s4 =

n1 −
∑

5≤a≤M sa to reach

GM =
∑

{n1,sa}≥0

(−1)n1(hi1 + hk1 − hi2)n1

(2hk1)n1

(

z12
z13

)n1





∏

4≤a≤M

(pa)sa
sa!

zsaa3
zsa2a



GM−1
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=
∑

{n1,sa}≥0

(hi1 + hk1 − hi2)n1(p4)n1−
∑

5≤a≤M sa

(2hk1)n1(n1 −
∑

5≤a≤M sa)!

×

(

z12z43
z13z42

)n1





∏

5≤a≤M

(pa)sa
sa!

(

z24z3a
z2az34

)sa



GM−1.

At this stage, we observe the appearance of the new conformal cross-ratio ηM1 = η21;34.

To generate the remaining conformal cross-ratios, we use the fact that

z24z3a
z2az34

= η24,3a = 1 +
∑

5≤b≤a

(−1)b
∏

2≤c≤b−3

ηMc ,

and write

GM =
∑

{n1,sa}≥0

(hi1 + hk1 − hi2)n1(p4)n1−
∑

5≤a≤M sa

(2hk1)n1(n1 −
∑

5≤a≤M sa)!
(ηM1 )n1GM−1

×
∏

5≤a≤M

(pa)sa
sa!



1 +
∑

5≤b≤a

(−1)b
∏

2≤c≤b−3

ηMc





sa

=
∑

{n1,tab}≥0

(hi1 + hk1 − hi2)n1(p4)n1−
∑

5≤a≤M ta0

(2hk1)n1(n1 −
∑

5≤a≤M ta0)!
(ηM1 )n1

×





∏

5≤a≤M

(−1)ta0(pa)ta0(η
M
a−3)

∑
a≤b≤M tb,a−4

∏

0≤b≤a−4

(−1)tab

(tab − ta,b+1)!



GM−1,

where ta0 = sa and ta,a−3 = 0. In the last equality, we simply expanded using the binomial

theorem repetitively, introducing in the process several sums with indices of summation tab.

We now evaluate the sums over ta0 using the 2F1 identity (A.1) after performing the change

of variables ta0 → ta0 + ta1, leading to

GM =
∑

{n1,tab}≥0

(hi1 + hk1 − hi2)n1(hk1 − hi3 + hk2 + n2 +
∑

5≤a≤M ta1)n1−
∑

5≤a≤M ta1

(2hk1)n1(n1 −
∑

5≤a≤M ta1)!
(ηM1 )n1

×





∏

5≤a≤M

(pa)ta1(η
M
a−3)

∑
a≤b≤M tb,a−4

∏

1≤b≤a−4

(−1)tab

(tab − ta,b+1)!



GM−1,

where we used
∑

4≤a≤M

pa = hk1 − hi3 + hk2 + n2,

from the definitions (A.3).

By defining t51 = t2 −
∑

6≤a≤M ta1, we get

GM =
∑

{n1,t2,tab}≥0

(hi1 + hk1 − hi2)n1(hk1 − hi3 + hk2 + n2 + t2)n1−t2

(2hk1)n1(n1 − t2)!

(−1)t2(p5)t2−
∑

6≤a≤M ta1

(t2 −
∑

6≤a≤M ta1)!
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× (ηM1 )n1(ηM2 )t2





∏

6≤a≤M

(pa)ta1(η
M
a−3)

∑
a≤b≤M tb,a−4

(ta1 − ta2)!

∏

2≤b≤a−4

(−1)tab

(tab − ta,b+1)!



GM−1,

which allows us to evaluate the sums over ta1 after completing the change of variables ta1 →

ta1 + ta2 [with the first identity in (A.1)], implying

GM =
∑

{n1,t2,tab}≥0

(hi1 + hk1 − hi2)n1(hk1 − hi3 + hk2 + n2 + t2)n1−t2

(2hk1)n1(n1 − t2)!

×
(−1)t2(hk2 − hi4 + hk3 + n2 + n3 +

∑

6≤a≤M ta2)t2−
∑

6≤a≤M ta2

(t2 −
∑

6≤a≤M ta2)!

× (ηM1 )n1(ηM2 )t2





∏

6≤a≤M

(pa)ta2(η
M
a−3)

∑
a≤b≤M tb,a−4

∏

2≤b≤a−4

(−1)tab

(tab − ta,b+1)!



GM−1,

where we replaced
∑

5≤a≤M

pa = hk2 − hi4 + hk3 + n2 + n3,

using the definitions of the powers (A.3).

Defining ta =
∑

a+3≤b≤M tb,a−1 and repeating the previous procedure, it is straightforward to

evaluate all the remaining sums over tab apart from tM,M−4 = tM−3, leading to

GM =
∑

{n1,ta}≥0

(hi1 + hk1 − hi2)n1(hk1 − hi3 + hk2 + n2 + t2)n1−t2

(2hk1)n1(n1 − t2)!
(ηM1 )n1

×





∏

2≤a≤M−4

(−1)ta(hka − hia+2 + hka+1 + na + na+1 + ta+1)ta−ta+1

(ta − ta+1)!
(ηMa )ta





×
(−1)tM−3(hiM + hkM−3

− hiM−1
+ nM−3)tM−3

tM−3!
(ηMM−3)

tM−3GM−1.

Using the explicit definition of GM−1, we obtain

GM =
∑

{na,ta}≥0

(hi1 + hk1 − hi2)n1(hk1 − hi3 + hk2 + n2 + t2)n1−t2(hi3 − hk1 + hk2)n2

(2hk1)n1(2hk2)n2(n1 − t2)!

×
(−1)tM−3(hiM + hkM−3

− hiM−1
)nM−3+tM−3

tM−3!
(ηM1 )n1

×
∏

2≤a≤M−4

(−1)ta(hka − hia+2 + hka+1 + na + na+1 + ta+1)ta−ta+1

(ta − ta+1)!

×
∏

2≤a≤M−4

(hia+2 − hka − na + hka+1)na+1(−hia+2 + hka + hka+1)na

(2hka+1)na+1

∏

2≤a≤M−3

(ηMa )na+ta

na!
,
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where we can transform na → na− ta for a ≥ 2 and evaluate the sums over ta starting from tM−3,

using this time the second identity in (A.1), to reach

GM =
∑

{na}≥0

(hi1 − hi2 + hk1)n1(hiM − hiM−1
+ hkM−3

)nM−3

(2hk1)n1

×
∏

1≤a≤M−4

(hia+2 − hka − na + hka+1)na+1(−hia+2 + hka + hka+1)na

(2hka+1)na+1

∏

1≤a≤M−3

(ηMa )na

na!
,

which verifies the rules.

Hence, the comb structure satisfies the rules introduced in Section 3. It will now serve as

the initial comb structure on which we will append extra comb structures to construct the full

topology.

Before proceeding, we note first that one can provide a simpler proof of the rules for the comb

topology by starting from the result of [15], which can also be proven easily by recurrence from

the OPE, by changing variables to the conformal cross-ratios used here,=and by re-summing the

additional sums.

A.2. Extra Combs

At this point—now that the initial comb structure has been shown to satisfy the rules for any

number of points—we need to prove that the rules are correct when extra comb structures are

added to the initial comb. To do so, we assume that the rules are satisfied for some arbitrary

topology and add one OPE vertex as boundary condition for the extra comb structure. After

the rules are shown to be correct for the extra comb structure with only one OPE vertex, we

once again assume that the rules are valid for an extra comb structure with q − 1 OPE vertices

attached to the arbitrary topology and use the OPE to generate an additional OPE vertex to the

extra comb structure. We finally verify that the rules are consistent for the arbitrary topology

to which an extra comb structure with q OPE vertices is glued. This procedure thus proves the

rules for any topology by induction.

To properly add an extra comb structure to an arbitrary topology, it is necessary to separate

the possible topologies into three different types. The types, illustrated in Figure 10, change

according to where the extra comb structure is attached, with type n implying the extra comb

is glued to a nI OPE vertex. We note that the blobs represent any substructures in the initial

arbitrary topology (with the parameters representing position space coordinates) while the arrows

show the comb structure of interest (i.e. the OPE limits) in the arbitrary topology to which the

extra comb structure is glued. This particularity allows us to determine the leg factor and the

conformal cross-ratios that carry the position space coordinate (chosen without loss of generality

to be z2) relevant to the OPE differential operator.
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2

β0 α0

α1

α2 ⇒

Type 1

2 1 γ3

· · · γq−1

β0 α0

α1

α2

2

β0 α0

α1 β1

α2 ⇒

Type 2

2 1 γ3

· · · γq−1

β0 α0

α1 β1

α2

2

β0 α0

α1 β1

α2

β2

⇒

Type 3

2 1 γ3

· · · γq−1

β0 α0

α1 β1

α2

β2

Fig.10: Types of arbitrary topologies on which an extra comb structure can be glued. The blobs

represent arbitrary substructures while the arrows dictate the flow of position space coordinates

in the topologies, i.e. the choice of OPE limits, following our convention.
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A.2.1. Type 1: Boundary Condition

We first assume that the (M − 1)-point conformal partial wave

W
(hk1

,hi3
,...,hiM

)

M−1(hk2
,...,hkM−3

) = LM−1





∏

2≤a≤M−3

(ηM−1
a )hka



GM−1,

satisfies the rules. Therefore, the conformal block is given by (3.6) and is of the form

GM−1 =
∑

{na}≥0

CM−1FM−1
(ηM−1

a )na

na!
,

with the proper factors (originating from the rules) associated to the arbitrary topology of Figure

10. With our convention for the OPE limits, the only z2-dependent quantities in the conformal

partial wave are the leg factors and conformal cross-ratios

LM−1 = z
hk1
α1β0;2

z
hiα1
2α2;α1

z
hiα2
α12;α2

L̄M−1,

ηM−1
2 = ηα1α2;2β0 , ηM−1

3 = ηα12;β0α0 ,

where L̄M−1 represents the remaining leg contributions. Hence it is straightforward to act with

the OPE once (2.3) using (2.6) to generate

W
(hi1

,...,hiM
)

M(hk1
,...,hkM−3

) =
1

z
hi1

+hi2
−hk1

12

1F1(hi1 + hk1 − hi2 , 2hk1 ; z12∂2)W
(hk1

,hi3
,...,hiM−1

)

M−1(hk2
,...,hkM−3

)

= LM





∏

1≤a≤M−3

(ηMa )hka





(

z2α1

z1α1

)−hi1
−hk1

+hi2

×
∑

{na},n,m0,m1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





zn12
zn−m0−m1
2α1

zm1
2α2

zm0
2β0

×
(−1)n(hi1 + hk1 − hi2)n(hk1 + hiα1

− hiα2
− hk3 − n3)n−m0−m1

(2hk1)n(n−m0 −m1)!

×
(hiα2

− hiα1
+ hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

m1!m0!
,

where the proper leg and cross-ratios are

LM = z
hi1
2α1;1

z
hi2
α11;2

z
hiα1
2α2;α1

z
hiα2
α12;α2

L̄M−1,

ηM1 = η21;α1β0 , ηMa = ηM−1
a 2 ≤ a ≤ M − 3.
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Therefore, the M -point conformal block is given by

GM =

(

z2α1

z1α1

)−hi1
−hk1

+hi2 ∑

{na},n,m0,m1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





zn12
zn−m0−m1
2α1

zm1
2α2

zm0
2β0

×
(−1)n(hi1 + hk1 − hi2)n(hk1 + hiα1

− hiα2
− hk3 − n3)n−m0−m1

(2hk1)n(n−m0 −m1)!

×
(hiα2

− hiα1
+ hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

m1!m0!

=
∑

{na},n,n1,m0,m1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





(

z12
z1α1

)n1 zm0+m1
2α1

zm1
2α2

zm0
2β0

×
(−1)n(hi1 + hk1 − hi2)n1(hk1 + hiα1

− hiα2
− hk3 − n3)n−m0−m1

(2hk1)n(n1 − n)!(n−m0 −m1)!

×
(hiα2

− hiα1
+ hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

m1!m0!
,

(A.5)

where we used (A.2) for (z2α1/z1α1)
−hi1

−hk1
+hi2

−n and we shifted the new index of summation

in the second equality. We must now prove that the M -point conformal block (A.5) satisfies our

rules by evaluating all superfluous sums.

We first redefine n → n+m0 +m1 and sum over n using the 2F1 identity (A.1) to reach

GM =
∑

{na},m0,m1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





(

z12
z1α1

)n1
(

z2α1

z2α2

)m1
(

z2α1

z2β0

)m0

×
(−1)m0+m1(hi1 + hk1 − hi2)n1(hk1 − hiα1

+ hiα2
+ hk3 + n3 +m0 +m1)n1−m0−m1

(2hk1)n1(n1 −m0 −m1)!

×
(hiα2

− hiα1
+ hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

m1!m0!
.

Using (A.2) for (z2α1/z2α2)
m1 and (z2α1/z2β0)

m0 , we find that

GM =
∑

{na},m0,m1,s0,s1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





(

z12
z1α1

)n1
(

zα2α1

z2α2

)s1
(

zβ0α1

z2β0

)s0

×
(−1)m0+m1(hi1 + hk1 − hi2)n1(hk1 − hiα1

+ hiα2
+ hk3 + n3 +m0 +m1)n1−m0−m1

(2hk1)n1(n1 −m0 −m1)!

×
(hiα2

− hiα1
+ hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

(m1 − s1)!s1!(m0 − s0)!s0!
.

We can now rename the indices of summation m0 → m0 + s0 and m1 → m1 + s1 and perform the

sums over m0 and m1 with the help of the first identity in (A.1), leading to

GM =
∑

{na},s0,s1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





(

z12
z1α1

)n1
(

zα2α1

z2α2

)s1
(

zβ0α1

z2β0

)s0
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×
(−1)s0+s1(hi1 + hk1 − hi2)n1(0)n1−s0−s1

(2hk1)n1(n1 − s0 − s1)!

×
(hiα2

− hiα1
+ hk2 + n2)s1(hk1 − hk2 + hk3 − n2 + n3)n1−s1

s1!s0!
.

The Pochhammer symbol with vanishing argument forces s0 = n1− s1 which allows us to simplify

the M -point conformal block (A.5) to

GM =
∑

{na},s1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





(

z12zβ0α1

z1α1zβ02

)n1
(

z2β0zα1α2

z2α2zα1β0

)s1

×
(hi1 + hk1 − hi2)n1(hiα2

− hiα1
+ hk2 + n2)s1(hk1 − hk2 + hk3 − n2 + n3)n1−s1

(2hk1)n1s1!(n1 − s1)!
.

We finally see the conformal cross-ratios ηM1 = η21;α1β0 and ηM2 = η2β0;α1α2 appear.

Extracting the known part of the (M − 1)-point conformal block of type 1 following our rule,

we have

CM−1 =
(hk1 − hk2 − n2 + hk3)n3(−hk1 + hk2 + hk3)n2(hiα2

− hiα1
+ hk2)n2

(2hk2)n2

C̄M−1,

where C̄M−1 is undetermined (it is defined by the arbitrary topology) and most importantly

independent of n2. Hence, we can rewrite the M -point conformal block as

GM =
∑

{na},s1≥0

C̄M−1FM−1





∏

3≤a≤M−3

(ηMa )na

na!



 (ηM1 )n1
(ηM2 )n2+s1

n2!

(−hk1 + hk2 + hk3)n2

(2hk2)n2

×
(hi1 + hk1 − hi2)n1(hiα2

− hiα1
+ hk2)n2+s1(hk1 − hk2 − n2 + hk3)n1+n3−s1

(2hk1)n1s1!(n1 − s1)!
,

which is easy to re-sum after changing variables as n2 → n2 − s1, leading to

GM =
∑

{na}≥0

C̄M−1FM−1





∏

1≤a≤M−3

(ηMa )na

na!





(hi1 − hi2 + hk1)n1(hiα2
− hiα1

+ hk2)n2

(2hk1)n1

×
(hk1 − hk2 − n2 + hk3)n1+n3(−hk1 + hk2 + hk3)n2

(2hk2)n2

× 3F2

[

−n1,−n2, 1 − 2hk2 − n2

hk1 − hk2 − n2 + hk3 , 1 + hk1 − hk2 − n2 − hk3
; 1

]

,

where the 3F2 originates from the sum over s1. Comparing with Section 3, we see that the

boundary condition for the gluing of an extra comb structure for type 1 topologies satisfies our

rules.
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A.2.2. Type 1: Full Extra Comb

Now that the boundary condition for an extra comb structure glued to an arbitrary topology

of type 1 has been verified to follow the rules, we are ready to generate a full comb structure.

Again, we proceed by induction, assuming that the (q − 1)-point extra comb structure satisfies

our rules, using the OPE to generate the q-point extra comb structure, and verifying that the

resulting conformal block satisfies the rules of Section 3.

From the rules, the only z2-dependent quantities in the leg and conformal cross-ratios are

LM−1 = z
hk1
γ4γ3;2





∏

3≤a≤q−1

z
hiγa

2γa+1;γa



 z
hiα1
2α2;α1

z
hiα2
α12;α2

L̄M−1,

and
ηM−1
a = η2γa+1;γa+2γa+3 2 ≤ a ≤ q − 3,

ηM−1
q−2 = η2γq−1;α1β0 , ηM−1

q−1 = ηα1α2;2β0 , ηM−1
q = ηα12;β0α0 ,

where L̄M−1 is fixed by the topology and we define γq = α1 for convenience. Moreover, extracting

once again the n2-dependent part of the (M − 1)-point conformal block, we have

GM−1 =
∑

{na}≥0

C̄M−1F̄M−1





∏

2≤a≤M−3

(ηM−1
a )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hiα2
− hiα1

+ hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq)nq−2+nq(−hkq−2 + hkq−1 + hkq)nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,

following the same notation than in the previous section, with C̄M−1 and F̄M−1 having no depen-

dence in n2.

Acting with the OPE (2.3) using (2.6), we find that the M -point conformal block is

GM =

(

z2γ3
z1γ3

)−hi1
−hk1

+hi2 ∑

{na,ma},n≥0

(−1)n(hi1 + hk1 − hi2)n(p3)n−m0−m1−
∑

4≤a≤q ma

(2hk1)n(n−m0 −m1 −
∑

4≤a≤q ma)!

×
zn12

z
n−m0−m1−

∑
4≤a≤q ma

2γ3
zm0
2β0

zm1
2α2

(p0)m0(p1)m1

m0!m1!

∏

4≤a≤q

(pa)ma

ma!z
ma
2γa

× C̄M−1F̄M−1





∏

2≤a≤M−3

(ηM−1
a )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hiα2
− hiα1

+ hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1
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×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq)nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,

where
p0 = −hkq−1 + hkq−2 + hkq − nq−1 + nq−2 + nq,

p1 = −hiα1
+ hiα2

+ hkq−1 + nq−1,

p3 = hk1 + hiγ3 − hk2 − n2,

p4 = −hiγ3 + hiγ4 + hk1 − hk3 − n3,

pa = −hiγa−1
+ hiγa + hka−3 + na−3 − hka−1 − na−1 5 ≤ a ≤ q − 2,

pq−1 = −hiγq−2
+ hiγq−1

+ hkq−4 + nq−4 − hkq−2 − nq−2,

pq = hiα1
− hiα2

− hiγq−1
+ hkq−3 − hkq + nq−3 − nq.

(A.6)

As a consequence of (A.2) for (z2γ3/z12)
−hi1

−hk1
+hi2

−n, we obtain

GM =
∑

{na,ma},n≥0

(−1)n(hi1 + hk1 − hi2)n1(p3)n−m0−m1−
∑

4≤a≤q ma

(2hk1)n(n −m0 −m1 −
∑

4≤a≤q ma)!(n1 − n)!

×

(

z12
z1γ3

)n1
(

z2γ3
z2β0

)m0
(

z2γ3
z2α2

)m1 (p0)m0(p1)m1

m0!m1!

∏

4≤a≤q

(pa)ma

ma!

zma

2γ3

zma

2γa

× C̄M−1F̄M−1





∏

2≤a≤M−3

(ηM−1
a )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hiα2
− hiα1

+ hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq)nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,

(A.7)

after shifting the new index of summation. Once again, we simply need to evaluate the superfluous

sums to verify that the M -point conformal block (A.7) satisfies the rules. To simplify the notation,

in the following the last four lines of (A.7) will be denoted by HM−1 and
∑

4≤a≤q ma = m̄.

We first implement the change of summation index n → n +m0 +m1 + m̄ and evaluate the

sum over n with the help of the first identity in (A.1) to reach

GM =
∑

{na,ma}≥0

(−1)m0+m1+m̄(hi1 + hk1 − hi2)n1(hk1 − hiγ3 + hk2 + n2 +m0 +m1 + m̄)n1−m0−m1−m̄

(2hk1)n1(n1 −m0 −m1 − m̄)!
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×

(

z12
z1γ3

)n1
(

z2γ3
z2β0

)m0
(

z2γ3
z2α2

)m1 (p0)m0(p1)m1

m0!m1!





∏

4≤a≤q

(pa)ma

ma!

zma

2γ3

zma
2γa



HM−1.

We then use (A.2) for all factors of (z2γ3/z2xa)
ma with x ∈ {α, β, γ} to eliminate all factors of

z2γ3 and obtain

GM =
∑

{na,ma,sa}≥0

(−1)m0+m1+m̄(hi1 + hk1 − hi2)n1(hk1 − hiγ3 + hk2 + n2 +m0 +m1 + m̄)n1−m0−m1−m̄

(2hk1)n1(n1 −m0 −m1 − m̄)!

×

(

z12
z1γ3

)n1
(

zβ0γ3

z2β0

)s0
(

zα2γ3

z2α2

)s1 (p0)m0(p1)m1

(m0 − s0)!s0!(m1 − s1)!s1!





∏

4≤a≤q

(pa)ma

(ma − sa)!sa!

zsaγaγ3
zsa2γa



HM−1.

Shifting ma → ma + sa, we can evaluate the sums over ma using the first identity in (A.1)

repetitively and rewrite the M -point conformal block (A.7) as

GM =
∑

{na,sa}≥0

(−1)s0+s1+s̄(hi1 + hk1 − hi2)n1(0)n1−s0−s1−s̄

(2hk1)n1(n1 − s0 − s1 − s̄)!

×

(

z12
z1γ3

)n1
(

zβ0γ3

z2β0

)s0
(

zα2γ3

z2α2

)s1 (p0)s0(p1)s1
s0!s1!





∏

4≤a≤q

(pa)sa
sa!

zsaγaγ3
zsa2γa



HM−1,

since

p0 + p1 +
∑

4≤a≤q

pa = hk1 − hiγ3 + hk2 + n2,

from (A.6).

Setting s4 = n1− s0− s1−
∑

5≤a≤q sa from the Pochhammer symbol with vanishing argument,

we have

GM =
∑

{na,sa}≥0

(hi1 + hk1 − hi2)n1(p4)n1−s0−s1−
∑

5≤a≤q sa

(2hk1)n1(n1 − s0 − s1 −
∑

5≤a≤q sa)!
(ηM1 )n1

×

(

z2γ4zγ3β0

z2β0zγ3γ4

)s0
(

z2γ4zγ3α2

z2α2zγ3γ4

)s1 (p0)s0(p1)s1
s0!s1!





∏

5≤a≤q

(pa)sa
sa!

(

z2γ4zγ3γa
z2γazγ3γ4

)sa



HM−1,

where we see the extra conformal cross-ratio ηM1 = η21;γ3γ4 appear. Since for a ≥ 2 the remaining

conformal cross-ratios satisfy ηMa = ηM−1
a , we have

z2γ4zγ3β0

z2β0zγ3γ4
= η2γ4;γ3β0 = 1 +

∑

5≤b≤q+1

(−1)b
∏

2≤c≤b−3

ηMc ,

z2γ4zγ3α2

z2α2zγ3γ4
= η2γ4;γ3α2 = 1 +

∑

5≤b≤q

(−1)b
∏

2≤a≤b−3

ηMc + (−1)q+1
∏

2≤c≤q−1

ηMc ,

z2γ4zγ3γa
z2γazγ3γ4

= η2γ4;γ3γa = 1 +
∑

5≤b≤a

(−1)b
∏

2≤c≤b−3

ηMc 5 ≤ a ≤ q,
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and after applying the binomial theorem several times, we obtain

GM =
∑

{na,tab}≥0

(hi1 + hk1 − hi2)n1(p4)n1−t00−t10−
∑

5≤a≤q ta0

(2hk1)n1(n1 − t00 − t10 −
∑

5≤a≤q ta0)!
(ηM1 )n1

×
(p0)t00(−1)t0,q−3(ηMq−2)

t0,q−3

(t0,q−4 − t0,q−3)!t0,q−3!

(p1)t10(−1)t1,q−3(ηMq−2)
t1,q−3(ηMq−1)

t1,q−3

(t1,q−4 − t1,q−3)!t1,q−3!

×





∏

5≤a≤q

(−1)ta0+t0,a−4+t1,a−4(pa)ta0
(t0,a−5 − t0,a−4)!(t1,a−5 − t1,a−4)!

(ηMa−3)
t0,a−4+t1,a−4+

∑
a≤b≤q tb,a−4

×
∏

0≤b≤a−4

(−1)tab

(tab − ta,b+1)!



HM−1,

which is the M -point conformal block in terms of the proper conformal cross-ratios. Here we

defined ta0 = sa for all a as well as t0,q−2 = t1,q−2 = ta,a−3 = 0 for a ≥ 5.

At this point, we shift ta0 → ta0 + ta1 and evaluate the sums over ta0 using the 2F1 identity

(A.1), giving us

GM =
∑

{na,tab}≥0

(hi1 + hk1 − hi2)n1(hk1 + hk2 − hiγ3 + n2 + t01 + t11 +
∑

5≤a≤q ta1)n1−t01−t11−
∑

5≤a≤q ta1

(2hk1)n1(n1 − t01 − t11 −
∑

5≤a≤q ta1)!

× (ηM1 )n1
(p0)t01(−1)t0,q−3(ηMq−2)

t0,q−3

∏

1≤a≤q−3(t0a − t0,a+1)!

(p1)t11(−1)t1,q−3(ηMq−2)
t1,q−3(ηMq−1)

t1,q−3

∏

1≤a≤q−3(t1a − t1,a+1)!

×





∏

5≤a≤q

(−1)t0,a−4+t1,a−4(pa)ta1(η
M
a−3)

t0,a−4+t1,a−4+
∑

a≤b≤q tb,a−4
∏

1≤b≤a−4

(−1)tab

(tab − ta,b+1)!



HM−1,

with

p0 + p1 +
∑

4≤a≤q

pa = hk1 + hk2 − hiγ3 + n2,

from (A.6).

With the re-definitions ta,a−4 = ta−3 − t0,a−4 − t1,a−4 −
∑

a+1≤b≤q tb,a−4 for 5 ≤ a ≤ q, we

can perform the sums over tab after shifting tab → tab + ta,b+1 (starting from the smallest value

for a, i.e. summing over t01, t11, t61, t71, . . . followed by t02, t12, t62, t72, . . ., etc.) following the 2F1

identity (A.1) which leads to

GM =
∑

{na,ta}≥0

(hi1 + hk1 − hi2)n1(hk1 + hk2 − hiγ3 + n2 + t2)n1−t2

(2hk1)n1(n1 − t2)!

×
(−1)tq−2(p0)tq−2−tq−1(p1)tq−1

(tq−2 − tq−1)!tq−1!
(ηM1 )n1(ηMq−2)

tq−2(ηMq−1)
tq−1

×





∏

2≤a≤q−3

(−1)ta(hka + hka+1 − hiγa+2
+ na + na+1 + ta+1)ta−ta+1

(ta − ta+1)!
(ηMa )ta



HM−1,
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where we defined t0,q−3 = tq−2 − tq−1, t1,q−3 = tq−1 and we used (A.6).

To proceed, we re-introduce HM−1 and get

GM =
∑

{na,ta}≥0

(hi1 + hk1 − hi2)n1(hk1 + hk2 − hiγ3 + n2 + t2)n1−t2

(2hk1)n1(n1 − t2)!

×
(−1)tq−2(p0)tq−2−tq−1(p1)tq−1

(tq−2 − tq−1)!tq−1!
(ηM1 )n1(ηMq−2)

tq−2(ηMq−1)
tq−1

×
∏

2≤a≤q−3

(−1)ta(hka + hka+1 − hiγa+2
+ na + na+1 + ta+1)ta−ta+1

(ta − ta+1)!
(ηMa )ta

× C̄M−1F̄M−1





∏

2≤a≤M−3

(ηM−1
a )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hiα2
− hiα1

+ hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq)nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

.

We then expand the 3F2 with index of summation s, we shift nq−1 → nq−1 − tq−1, we rename

tq−1 = t − s to perform the sum over s using the first identity of (A.1), and finally we express

the sum over t in terms of a 3F2 to reach

GM =
∑

{na,ta}≥0

(hi1 + hk1 − hi2)n1(hk1 + hk2 − hiγ3 + n2 + t2)n1−t2

(2hk1)n1(n1 − t2)!
(ηM1 )n1

(−ηMq−2)
tq−2

tq−2!

×
∏

2≤a≤q−3

(−1)ta(hka + hka+1 − hiγa+2
+ na + na+1 + ta+1)ta−ta+1

(ta − ta+1)!
(ηMa )ta

× C̄M−1F̄M−1





∏

2≤a≤M−3

(ηMa )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hiα2
− hiα1

+ hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq)nq−2+nq+tq−2(−hkq−2 + hkq−1 + hkq )nq−1

(2hkq )nq

× 3F2

[

−nq−2 − tq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,

using again the definitions (A.6).
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To complete the proof, we shift na → na− ta for 2 ≤ a ≤ q− 2 and compute the sums over ta

using the 3F2 identity in (A.1) to reach

GM =
∑

{na}≥0

(hi1 − hi2 + hk1)n1

(2hk1)n1

(hiα2
− hiα1

+ hkq−1)nq−1

(2hkq−1)nq−1

C̄M−1F̄M−1

∏

1≤a≤M−3

(ηMa )na

na!

×
∏

1≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq)nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,

which satisfies the rules. We note that the proof for the type 1 full extra comb is reminiscent of

the proof for the initial comb. As seen in the next subsections, the same is true for types 2 and

3, simplifying their proofs.

Therefore, gluing an extra comb structure unto an arbitrary topology of the first type following

our convention for the OPE limits demonstrates that our rules are valid in that case.

A.2.3. Type 2: Boundary Condition

Following the same steps than for the boundary condition of type 1, we find that the only z2-

dependent quantities in the (M−1)-point conformal partial wave are the leg factors and conformal

cross-ratios

LM−1 = z
hk1
α1β0;2

z
hiα2
α12;α2

L̄M−1,

ηM−1
2 = ηα1α2;2β0 , ηM−1

3 = ηα12;β0α0 , ηM−1
4 = ηα1β1;α22.

As a consequence, the M -point conformal partial wave resulting from the action of the OPE (2.3)

is

W
(hi1

,...,hiM
)

M(hk1
,...,hkM−3

) =
1

z
hi1

+hi2
−hk1

12

1F1(hi1 + hk1 − hi2 , 2hk1 ; z12∂2)W
(hk1

,hi3
,...,hiM−1

)

M−1(hk2
,...,hkM−3

)

= LM





∏

1≤a≤M−3

(ηMa )hka





(

z2α1

z1α1

)−hi1
−hk1

+hi2

×
∑

{na},n,m0,m1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





zn12
zn−m0−m1
2α1

zm1
2α2

zm0
2β0

×
(−1)n(hi1 + hk1 − hi2)n(hk1 + hk4 + n4 − hiα2

− hk3 − n3)n−m0−m1

(2hk1)n(n −m0 −m1)!

×
(hiα2

− hk4 − n4 + hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

m1!m0!
,
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where we used (2.6). Here the proper leg and cross-ratios are

LM = z
hi1
2α1;1

z
hi2
α11;2

z
hiα2
α12;α2

L̄M−1,

ηM1 = η21;α1β0 , ηMa = ηM−1
a 2 ≤ a ≤ M − 3,

which imply that the M -point conformal block is given by

GM =

(

z2α1

z1α1

)−hi1
−hk1

+hi2 ∑

{na},n,m0,m1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





zn12
zn−m0−m1
2α1

zm1
2α2

zm0
2β0

×
(−1)n(hi1 + hk1 − hi2)n(hk1 + hk4 + n4 − hiα2

− hk3 − n3)n−m0−m1

(2hk1)n(n−m0 −m1)!

×
(hiα2

− hk4 − n4 + hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

m1!m0!

=
∑

{na},s1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!



 (ηM1 )n1(ηM2 )s1

×
(hi1 + hk1 − hi2)n1(hiα2

− hk4 − n4 + hk2 + n2)s1(hk1 − hk2 + hk3 − n2 + n3)n1−s1

(2hk1)n1s1!(n1 − s1)!
,

(A.8)

since (A.8) corresponds to (A.5) with the replacement hiα1
→ hk4 + n4.

From the known part of the (M − 1)-point conformal block of type 2, assuming our rules, we

can write

CM−1 =
(hk1 − hk2 − n2 + hk3)n3(−hk1 + hk2 + hk3)n2(hiα2

− hk4 − n4 + hk2)n2

(2hk2)n2

C̄M−1,

where C̄M−1 is determined by the arbitrary topology and does not depend on n2. This is again

equivalent to the type 1 boundary condition case with hiα1
→ hk4 +n4, hence we can express the

M -point conformal block (A.8) as

GM =
∑

{na}≥0

C̄M−1FM−1





∏

1≤a≤M−3

(ηMa )na

na!





(hi1 − hi2 + hk1)n1(hiα2
− hk4 − n4 + hk2)n2

(2hk1)n1

×
(hk1 − hk2 − n2 + hk3)n1+n3(−hk1 + hk2 + hk3)n2

(2hk2)n2

× 3F2

[

−n1,−n2, 1− 2hk2 − n2

hk1 − hk2 − n2 + hk3 , 1 + hk1 − hk2 − n2 − hk3
; 1

]

,

which satisfies our rules as dictated in Section 3. In conclusion, our rules are valid for the

boundary condition when gluing an extra comb structure for type 2 topologies.
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A.2.4. Type 2: Full Extra Comb

Since the type 2 boundary condition is valid, we can follow the same path than for the type

1 extra comb structure and proceed by induction to verify that the addition of an extra comb

structure on an arbitrary topology of type 2 is consistent with our rules. Hence, we assume that

the rules are verified for a (q−1)-point extra comb structure and compute the q-point extra comb

structure using the OPE to show that the resulting conformal block matches our expectation.

As seen from Figure 10, the rules imply that all z2-dependence can be found in the leg

LM−1 = z
hk1
γ4γ3;2





∏

3≤a≤q−1

z
hiγa

2γa+1;γa



 z
hiα2
α12;α2

L̄M−1,

and conformal cross-ratios

ηM−1
a = η2γa+1;γa+2γa+3 2 ≤ a ≤ q − 3,

ηM−1
q−2 = η2γq−1;α1β0 , ηM−1

q−1 = ηα1α2;2β0 , ηM−1
q = ηα12;β0α0 , ηM−1

q+1 = ηα1β1;α22,

where L̄M−1 is z2-independent and γq = α1. With C̄M−1 and F̄M−1 being n2-independent, the

n2-dependent part of the (M − 1)-point conformal block is

GM−1 =
∑

{na}≥0

C̄M−1F̄M−1





∏

2≤a≤M−3

(ηM−1
a )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hiα2
− hkq+1 − nq+1 + hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq)nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,

following Figure 10 and the rules.

With the help of (2.6), it is trivial to find that the OPE (2.3) leads to the M -point conformal
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block

GM =

(

z2γ3
z1γ3

)−hi1
−hk1

+hi2 ∑

{na,ma},n≥0

(−1)n(hi1 + hk1 − hi2)n(p3)n−m0−m1−
∑

4≤a≤q ma

(2hk1)n(n−m0 −m1 −
∑

4≤a≤q ma)!

×
zn12

z
n−m0−m1−

∑
4≤a≤q ma

2γ3
zm0
2β0

zm1
2α2

(p0)m0(p1)m1

m0!m1!

∏

4≤a≤q

(pa)ma

ma!z
ma

2γa

× C̄M−1F̄M−1





∏

2≤a≤M−3

(ηM−1
a )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hiα2
− hkq+1 − nq+1 + hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq )nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,

(A.9)

where
p0 = −hkq−1 + hkq−2 + hkq − nq−1 + nq−2 + nq,

p1 = −hkq+1 − nq+1 + hiα2
+ hkq−1 + nq−1,

p3 = hk1 + hiγ3 − hk2 − n2,

p4 = −hiγ3 + hiγ4 + hk1 − hk3 − n3,

pa = −hiγa−1
+ hiγa + hka−3 + na−3 − hka−1 − na−1 5 ≤ a ≤ q − 2,

pq−1 = −hiγq−2
+ hiγq−1

+ hkq−4 + nq−4 − hkq−2 − nq−2,

pq = hkq+1 + nq+1 − hiα2
− hiγq−1

+ hkq−3 − hkq + nq−3 − nq.

(A.10)

Comparing (A.9) and (A.10) with (A.7) and (A.6), respectively, we note that (A.9) is nothing

but (A.7) with the change hiα1
→ hkq+1 + nq+1. As a result, we thus have (with ηM1 = z21;γ3γ4 as

before)

GM =
∑

{na}≥0

(hi1 − hi2 + hk1)n1

(2hk1)n1

(hiα2
− hkq+1 − nq+1 + hkq−1)nq−1

(2hkq−1)nq−1

C̄M−1F̄M−1

∏

1≤a≤M−3

(ηMa )na

na!

×
∏

1≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq)nq−2+nq (−hkq−2 + hkq−1 + hkq )nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,
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which is in agreement with our rules.

Following our convention for the OPE limits, we conclude that the rules of Section 3 are

correct for the addition of an extra comb structure unto an arbitrary topology of the second type.

A.2.5. Type 3: Boundary Condition

We once again adapt the procedure from the boundary condition of type 2 to type 3. First, we

observe that the z2-dependence of the (M − 1)-point conformal partial wave is located in the leg

factors and conformal cross-ratios

LM−1 = z
hk1
α1β0;2

L̄M−1,

ηM−1
2 = ηα1α2;2β0 , ηM−1

3 = ηα12;β0α0 , ηM−1
4 = ηα1β1;α22, ηM−1

5 = ηα2β2;α12,

where L̄M−1 does not depend on z2 and is fixed by the topology. From the OPE (2.3) and the

identity (2.6), the M -point conformal partial wave is

W
(hi1

,...,hiM
)

M(hk1
,...,hkM−3

) =
1

z
hi1

+hi2
−hk1

12

1F1(hi1 + hk1 − hi2 , 2hk1 ; z12∂2)W
(hk1

,hi3
,...,hiM−1

)

M−1(hk2
,...,hkM−3

)

= LM





∏

1≤a≤M−3

(ηMa )hka





(

z2α1

z1α1

)−hi1
−hk1

+hi2

×
∑

{na},n,m0,m1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





zn12
zn−m0−m1
2α1

zm1
2α2

zm0
2β0

×
(−1)n(hi1 + hk1 − hi2)n(hk1 + hk4 + n4 − hk5 − n5 − hk3 − n3)n−m0−m1

(2hk1)n(n −m0 −m1)!

×
(hk5 + n5 − hk4 − n4 + hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

m1!m0!
,

with the following leg and conformal cross-ratios

LM = z
hi1
2α1;1

z
hi2
α11;2

L̄M−1,

ηM1 = η21;α1β0 , ηMa = ηM−1
a 2 ≤ a ≤ M − 3,

as expected from our rules.
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Isolating the M -point conformal block, we have

GM =

(

z2α1

z1α1

)−hi1
−hk1

+hi2 ∑

{na},n,m0,m1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!





zn12
zn−m0−m1
2α1

zm1
2α2

zm0
2β0

×
(−1)n(hi1 + hk1 − hi2)n(hk1 + hk4 + n4 − hk5 − n5 − hk3 − n3)n−m0−m1

(2hk1)n(n−m0 −m1)!

×
(hk5 − n5 − hk4 − n4 + hk2 + n2)m1(hk1 − hk2 + hk3 − n2 + n3)m0

m1!m0!

=
∑

{na},s1≥0

CM−1FM−1





∏

2≤a≤M−3

(ηMa )na

na!



 (ηM1 )n1(ηM2 )s1

×
(hi1 + hk1 − hi2)n1(hk5 − n5 − hk4 − n4 + hk2 + n2)s1(hk1 − hk2 + hk3 − n2 + n3)n1−s1

(2hk1)n1s1!(n1 − s1)!
,

(A.11)

where in the last equality we used the fact that (A.11) is analog to (A.8) but with hiα2
→ hk5+n5.

From the rules of Section 3, extracting the known part of the (M − 1)-point conformal block

of type 3 leads to

CM−1 =
(hk1 − hk2 − n2 + hk3)n3(−hk1 + hk2 + hk3)n2(hk5 − hk4 − n4 + hk2)n5+n2

(2hk2)n2

C̄M−1

= (hk5 − hk4 − n4 + hk2)n5

×
(hk1 − hk2 − n2 + hk3)n3(−hk1 + hk2 + hk3)n2(hk5 + n5 − hk4 − n4 + hk2)n2

(2hk2)n2

C̄M−1,

where C̄M−1 is independent of n2 (it is undetermined, it is only fixed when the arbitrary topology

is chosen). Up to the factor (hk5+hk2−hk4−n4)n5 which does not play a role in the remaining re-

summations, this result is equivalent to the type 2 boundary condition result with hiα2
→ hk5+n5.

Consequently, we derive the M -point conformal block (A.11) as

GM =
∑

{na}≥0

C̄M−1FM−1





∏

1≤a≤M−3

(ηMa )na

na!





(hi1 − hi2 + hk1)n1(hk5 + n5 − hk4 − n4 + hk2)n2

(2hk1)n1

× (hk5 − hk4 − n4 + hk2)n5

(hk1 − hk2 − n2 + hk3)n1+n3(−hk1 + hk2 + hk3)n2

(2hk2)n2

× 3F2

[

−n1,−n2, 1− 2hk2 − n2

hk1 − hk2 − n2 + hk3 , 1 + hk1 − hk2 − n2 − hk3
; 1

]

=
∑

{na}≥0

C̄M−1FM−1





∏

1≤a≤M−3

(ηMa )na

na!





(hi1 − hi2 + hk1)n1(hk5 − hk4 − n4 + hk2)n5+n2

(2hk1)n1

×
(hk1 − hk2 − n2 + hk3)n1+n3(−hk1 + hk2 + hk3)n2

(2hk2)n2
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× 3F2

[

−n1,−n2, 1− 2hk2 − n2

hk1 − hk2 − n2 + hk3 , 1 + hk1 − hk2 − n2 − hk3
; 1

]

,

which satisfies the rules discussed in Section 3. We conclude that the rules are valid for the type

3 boundary condition.

A.2.6. Type 3: Full Extra Comb

With the appropriate boundary condition, we are once again ready to verify by induction the

rules of Section 3 when an extra comb structure is glued to an arbitrary topology of the third

type.

From the rules and Figure 10, we deduce that the z2-dependence is located in the leg

LM−1 = z
hk1
γ4γ3;2





∏

3≤a≤q−1

z
hiγa

2γa+1;γa



 L̄M−1,

and the conformal cross-ratios

ηM−1
a = η2γa+1;γa+2γa+3 2 ≤ a ≤ q − 3,

ηM−1
q−2 = η2γq−1;α1β0 , ηM−1

q−1 = ηα1α2;2β0 , ηM−1
q = ηα12;β0α0 ,

ηM−1
q+1 = ηα1β1;α22, ηM−1

q+2 = ηα2β2;α12,

with L̄M−1 independent of z2 and γq = α1. Denoting by C̄M−1 and F̄M−1 the n2-independent of

the (M − 1)-point conformal blocs, we have

GM−1 =
∑

{na}≥0

C̄M−1F̄M−1





∏

2≤a≤M−3

(ηM−1
a )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hkq+2 + nq+2 − hkq+1 − nq+1 + hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq)nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

× (hkq+2 − hkq+1 − nq+1 + hkq−1)nq+2 ,

by direct application of the rules. Note the re-writing of one Pochhammer symbol for future

convenience.

The action of the OPE (2.3) using the identity (2.6) thus implies that the M -point conformal

42



block is

GM =

(

z2γ3
z1γ3

)−hi1
−hk1

+hi2 ∑

{na,ma},n≥0

(−1)n(hi1 + hk1 − hi2)n(p3)n−m0−m1−
∑

4≤a≤q ma

(2hk1)n(n−m0 −m1 −
∑

4≤a≤q ma)!

×
zn12

z
n−m0−m1−

∑
4≤a≤q ma

2γ3
zm0
2β0

zm1
2α2

(p0)m0(p1)m1

m0!m1!

∏

4≤a≤q

(pa)ma

ma!z
ma

2γa

× C̄M−1F̄M−1





∏

2≤a≤M−3

(ηM−1
a )na

na!





(hiγ3 − hk1 + hk2)n2

(2hk2)n2

(hkq+2 + nq+2 − hkq+1 − nq+1 + hkq−1)nq−1

(2hkq−1)nq−1

×
∏

2≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq )nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1− 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

× (hkq+2 − hkq+1 − nq+1 + hkq−1)nq+2 ,

(A.12)

where
p0 = −hkq−1 + hkq−2 + hkq − nq−1 + nq−2 + nq,

p1 = −hkq+1 − nq+1 + hkq+2 + nq+2 + hkq−1 + nq−1,

p3 = hk1 + hiγ3 − hk2 − n2,

p4 = −hiγ3 + hiγ4 + hk1 − hk3 − n3,

pa = −hiγa−1
+ hiγa + hka−3 + na−3 − hka−1 − na−1 5 ≤ a ≤ q − 2,

pq−1 = −hiγq−2
+ hiγq−1

+ hkq−4 + nq−4 − hkq−2 − nq−2,

pq = hkq+1 + nq+1 − hkq+2 − nq+2 − hiγq−1
+ hkq−3 − hkq + nq−3 − nq,

(A.13)

with again the new conformal cross-ratio given by ηM1 = z21;γ3γ4 . A direct comparison between

(A.12) and (A.13) on one side and (A.9) and (A.10) on the other side shows that (A.12) corre-

sponds to (A.9) where hiα2
→ hkq+2 + nq+2 up to the factor (hkq+2 − hkq+1 − nq+1 + hkq−1)nq+2 .

Since this factor is inconsequential in the re-summations, we reach the result

GM =
∑

{na}≥0

(hi1 − hi2 + hk1)n1

(2hk1)n1

(hkq+2 + nq+2 − hkq+1 − nq+1 + hkq−1)nq−1

(2hkq−1)nq−1

C̄M−1F̄M−1

×
∏

1≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

∏

1≤a≤M−3

(ηMa )na

na!

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq )nq−1

(2hkq )nq
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× 3F2

[

−nq−2,−nq−1, 1 − 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

× (hkq+2 − hkq+1 − nq+1 + hkq−1)nq+2

=
∑

{na}≥0

(hi1 − hi2 + hk1)n1

(2hk1)n1

(hkq+2 − hkq+1 − nq+1 + hkq−1)nq+2+nq−1

(2hkq−1)nq−1

C̄M−1F̄M−1

×
∏

1≤a≤q−3

(hiγa+2
− hka − na + hka+1)na+1(−hiγa+2

+ hka + hka+1)na

(2hka+1)na+1

∏

1≤a≤M−3

(ηMa )na

na!

×
(hkq−2 − hkq−1 − nq−1 + hkq )nq−2+nq(−hkq−2 + hkq−1 + hkq )nq−1

(2hkq )nq

× 3F2

[

−nq−2,−nq−1, 1 − 2hkq−1 − nq−1

hkq−2 − hkq−1 − nq−1 + hkq , 1 + hkq−2 − hkq−1 − nq−1 − hkq
; 1

]

,

which matches with the rules applied to Figure 10.

As a consequence, the rules of Section 3 are consistent when an extra comb structure is glued

unto an arbitrary topology of the third type. This thus completes the proof of the rules in all

cases.
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