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Abstract

A survey of enumeration problems arising from the study of graphs formed when the edges of a
polygon are marked with evenly spaced points and every pair of points is joined by a line. A few of
these problems have been solved, a classical example being the the graph Kn formed when all pairs of
vertices of a regular n-gon are joined by chords, which was analyzed by Poonen and Rubinstein in 1998.
Most of these problems are unsolved, however, and this two-part article provides data from a number of
such problems as well as colored illustrations, which are often reminiscent of stained glass windows. The
polygons considered include rectangles, hollow rectangles (or frames), triangles, pentagons, pentagrams,
crosses, etc., as well as figures formed by drawing semicircles joining equally-spaced points on a line.

This first part discusses rectangular grids. The 1 × n grids, or equally the graphs Kn+1,n+1, were
studied by Legendre and Griffiths, and here we investigate the number of cells with a given number of
edges and the number of nodes with a given degree. We have only partial results for the m×n rectangles,
including upper bounds on the numbers of nodes and cells.

1 Introduction.

In 1998 Poonen and Rubinstein [17] (see also [22]) solved the problem of finding the numbers of intersection
points and cells in a regular drawing of the complete graph Kn, and in 2009-2010 Legendre [10] and Grif-
fiths [7] solved a similar problem for the complete bipartite graph Kn,n. Stated another way, [17] analyzes
the graph formed by joining all pairs of vertices of a regular n-gon, while [10, 7] analyze the graph formed
by taking a row of n − 1 identical squares and drawing lines between every pair of boundary nodes.

One motivation for the present work was to see if these investigations could be extended to graphs formed
from other structures, such as an m × n array of identical squares. Take a rectangle of size m × n, and place
m − 1 equally spaced points on the two vertical sides, and n − 1 equally spaced points on the two horizontal
sides, and then draw lines between every pair of the 2(m+n) boundary points. The resulting planar graph,
which we denote by BC(m,n), is the main subject of Part 1 of this paper.

Although we have not been very successful in analyzing these graphs, we have collected a great deal of data,
which has been entered into various sequences in the On-Line Encyclopedia of Integer Sequences [14].

In Part 2 [3], we continue this work by considering other structures such as hollow squares (or “frames”),
triangles, pentagons, hexagons, pentagrams, etc., as well as figures formed by drawing semicircles joining
equally-spaced points on an interval.

1To whom correspondence should be addressed.
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We were also motivated by memories of stained glass windows seen in the great Gothic cathedrals of Northern
Europe. In 2019 we made a colored drawing of K23 (Fig. 1) which was reminiscent of a rose window, and
we were curious to see what colored versions of other graphs would look like. Informally, our philosophy has
been, if we can’t solve it, make art. We make no great claims for artistic merit, but the images are certainly
colorful.

Figure 1: Colored drawing of complete graph K23 (see §10.3 for coloring algorithm). Entry A007678 in [14]
has many similar images (which are also of higher quality).

Space limitations have restricted the number and quality of the images that we could include here. The
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corresponding entries in [14] (A0076782 in the case of Fig. 1) contain a large number of other images, with
better resolution. We are especially fond of the three images of K41 in A007678, and in A331452 the reader
should not miss the images labeled T (10,2), T (6,6), T (7,7), which are drawings of the graphs BC(10,2),
BC(6,6), and BC(7,7) discussed below.

This paper is arranged as follows. The last section of this Introduction establishes the notation we will use,
especially the terms nodes, chords, and cells, and provides some examples. Section 2 deals with the graphs
BC(1, n) (or equivalently BC(n,1)), where the underlying polygon is a rectangle of size 1 × n (or n × 1).
Theorem 2.1 gives Legendre and Griffiths’s enumeration of the nodes and cells in BC(1, n). In 2019, Max
Alekseyev (personal communication; see also A306302) pointed out that that the Legendre-Griffiths results
are essentially the same as results that he and his coauthors obtained in connection with the enumeration of
two-dimensional threshold functions [1, 2]. The family of isosceles triangle graphs IT (n) (Section 3) provides
a bridge between the graphs BC(1, n) and two-dimensional threshold function. Alekseyev also mentioned
that their work implies a result that was apparently overlooked in the Legendre and Griffiths papers: the
cells in BC(1, n) are always triangles or quadrilaterals. See Theorem 3.1. The proof of this fact in [2]
depends on a theorem about teaching sets for threshold function [19, 26]. We feel that such a elementary
property should have a purely geometrical proof, although no such proof is presently known. We state this
question as Open Problem 3.2.

One possible attack on this problem is to study the distribution of cells in each of the n squares of BC(1, n)—
see Tables 2, 3, 4. The gfun Maple program [18] suggests a form for the generating functions of the columns
of these tables, but so far this is only a conjecture.

We next consider the number of interior nodes in BC(1, n) where c chords meet (Table 5). The number
of simple nodes, where just two chords cross, is of the greatest interest, since these seem to dominate. But
even though we have calculated 500 terms of this sequence (Table 6, A334701) we have been unable to find
a formula or recurrence (Open Problem 5.2). There have been several similar occasions during this project
when we have regretted not having an oracle that would take a few hundred terms of a simple, well-defined
sequence and suggest some kind of formula.3

The graph BC(1, n) starts from a 1 × n rectangle. If we start from an m × n rectangle, with m and n > 1,
there are actually three natural ways to define a graph, which we will denote by BC(m,n), AC(m,n), and
LC(m,n). These are the subjects of Sections 6, 8, and 9, respectively. For these families we have plenty
of data and pictures, but not many results. In Section 6 we conjecture that the cells in BC(2, n) have at
most eight sides, and for n ≥ 19, at most six sides (Conjecture 6.2). Our main result concerning BC(m,n)
is an upper bound on the numbers of nodes and cells in BC(m,n), presented in §7, which appears to be
reasonably close to the true values.

The final section (§10) describes the algorithms that were used to color the graphs.

Terminology. The graphs that we study are usually constructed by starting with a polygon P drawn in the
plane, having sides and vertices. We then subdivide the sides by dividing them into some number of equal
parts. To divide a side into k equal parts, we insert k−1 equally spaced nodes along that side. The side then
contains the two end-vertices and the k − 1 internal nodes. We say that the side has been k-reticulated. A
chord in P is a finite line-segment joining a pair of vertices or nodes. A chord is undirected, does not extend
outside P , and has specified end points.

Given a polygon P , we construct a planar graph G by drawing chords according to some specified rule. For
example, we might join every vertex or node to all the vertices or nodes on all the other sides. Points where

2Six-digit numbers prefixed by A refer to entries in the On-Line Encyclopedia of Integer Sequences [14].
3The oracle might compare the sequence with a shifted version of each of the 300000 entries in [14], and ask Bruno Salvy

and Paul Zimmermann’s program gfun, or Harm Derksen’s program guesss, or Christian Kratthentaler’s program Rate, or one
of the other programs used by Superseeker [20] if there is a formula for the difference.
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Figure 2: BC(1,1): a 1-reticulated square with four cells.

chords intersect are also nodes of the graph G. The graph thus formed has nodes (referring to the vertices
and edge-nodes of the polygon and also any interior intersection points), edges (which are line segments
between pairs of nodes), and cells (the connected regions defined by the edges). In graph theory the cells
are sometimes called faces or chambers, but we will not use those terms. Our graphs are also maps in the
sense of Tutte [24, 25], but we will refer to them simply as planar graphs.

For a connected planar graph, Euler’s formula states that the numbers of nodes, edges, and cells are related
by

∣nodes ∣ − ∣ edges ∣ + ∣ cells ∣ = 1. (1.1)

Examples: Figure 2 shows the graph BC(1,1) (defined in §2), which has 5 nodes, 8 edges, and 4 cells. The
polygon is a square and there are two chords which meet at the central node. Figure 3 shows the graph
BC(2,2), constructed from a square in which each side has been 2-reticulated. There are 14 chords. The
graph has 37 nodes, 92 edges, and 56 cells.4 Figure 4 shows a colored version of the graph. The principles
used to color these graphs are discussed in Section 10. For any undefined terms from graph theory see [4, 9].

Figure 3: BC(2,2): a 2-reticulated square with
56 cells.

Figure 4: The same BC(2,2) drawn with col-
ored cells. See §10.2 for coloring scheme.

2 BC(1, n): 1 × n rectangular windows

The graph BC(1, n) (n ≥ 1) is constructed by taking a 1 × n rectangle, inserting n − 1 equally spaced nodes
along the top and bottom sides, and then joining every pair of vertices or nodes by chords. Figures 2, 5, and
6 show BC(1, n) for n = 1,2, and 3.

4 BC(3,3) is shown in Fig. 14 in §6 and has 340 cells. There is no known formula for the number of cells in BC(n,n), even
though we have 52 terms. The sequence begins 4,56,340,1120,3264, . . . (A255011).
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Figure 5: BC(1,2). Figure 6: BC(1,3).

Figure 7: BC(4,1) colored using to the red and
yellow palettes (see §10.2).

Figure 8: A version of BC(4,1) colored by our
‘random coloring’ algorithm (see §10.3).

Of course we could equally well have started with a vertical rectangle of size n × 1, in which case the graph
would be denoted by BC(n,1). Since this work was partly inspired by the windows of Gothic cathedrals,
we admit to a slight preference for BC(n,1) over BC(1, n), although as graphs they are isomorphic. Figs. 7
and 8 show our stained glass window BC(4,1) using two different coloring schemes.

We will continue to discuss BC(1, n), but the reader should remember that the results apply equally well to
BC(n,1).

Another way to construct BC(1, n) is to start with the complete bipartite graph Kn+1,n+1 formed by taking
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n + 1 equally spaced points in each of two horizontal rows, joining every upper point to every lower point,
and then adding the line segments through the two rows of points. Thus BC(1,2) in Fig. 5 is the well-known
nonplanar “utilities” graph K3,3 if the two horizontal lines and the colors are ignored.

The graphs BC(1, n) are one of the few families where there are explicit formulas for the numbers of nodes
(N (1, n)), edges (E(1, n)), and cells (C(1, n)). The initial values of these quantities are shown in Table 1,
along with the A-numbers in [14]) of the corresponding sequences.

Table 1: Numbers of nodes, edges, cells in BC(1, n).

n ∶ 1 2 3 4 5 6 7 8 9 10 ⋯ [14]
N (1, n) ∶ 5 13 35 75 159 275 477 755 1163 1659 ⋯ A331755
E(1, n) ∶ 8 28 80 178 372 654 1124 1782 2724 3914 ⋯ A331757
C(1, n) ∶ 4 16 46 104 214 380 648 1028 1562 2256 ⋯ A306302

Since by Euler’s formula (1.1), E(1, n) = N (1, n) + C(1, n) − 1, there is no need to tabulate E(1, n), and in
future we shall omit those numbers.

The following theorem is due to Legendre (2009) [10] and Griffiths (2010) [7], who discuss the problem from
the point of view of Kn+1,n+1. First we introduce an expression that will frequently appear in these formulas.
For m,n, q ≥ 1, let

V (m,n, q) = ∑
a=1..m

∑
b=1..n

gcd{a,b}=q

(m + 1 − a)(n + 1 − b) . (2.1)

Theorem 2.1. (Legendre [10, Prop. 6], Griffiths [7, Th. 3].) For n ≥ 1, the number of nodes in BC(1, n),
N (1, n) (A331755) is given by

N (1, n) = 2(n + 1) + V (n,n,1) − V (n,n,2) , (2.2)

and the number of cells, C(1, n) (A306302) is

C(1, n) = n2 + 2n + V (n,n,1) . (2.3)

Remarks: (i) A key step in the proof of (2.2) (see [10]) is finding a condition for three chords to meet at a
point. (ii) The starting point for the proof of (2.3) (see [7]) is the observation that in the graph BC(1, n)
there are no interior edges that are parallel to the two long sides of the rectangle. This means that every cell
has a unique node that is closest to the upper side of the rectangle. (iii) The term 2(n+1) on the right-hand
side of (2.2) is the number of nodes on the boundary of the rectangle. The difference between the other two
terms is therefore the number of interior nodes in BC(1, n) (A159065):

1,7,27,65,147,261,461,737,1143,⋯ . (2.4)

In 2019 Max Alekseyev added a comment to A306302 pointing out that the results in Theorem 2.1 are
essentially the same as the results he and his coauthors had obtained in [2] (2015) for the isosceles triangle
graphs IT (n).

3 The isosceles triangle graph IT (n).

The definition of the isosceles triangle graph IT (n), n ≥ 1, starts with an isosceles right triangle with vertices
(0,0), (0,1), and (1,0). On the vertical side of the triangle we place n nodes at the points

(0,
1

2
) ,(0,

1

3
) ,(0,

1

4
) , . . . ,(0,

1

n + 1
) ,
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Figure 9: The isosceles triangle graph IT (2). There are 14 nodes (7 on boundary, 7 in interior), 17 cells (15
triangles, 2 quadrilaterals), and 30 edges.

and similarly on the horizontal side we place n nodes at the points

(
1

2
,0) ,(

1

3
,0) ,(

1

4
,0) , . . . ,(

1

n + 1
,0) .

There are no internal nodes on the hypotenuse.5 We then draw chords between every pair of the 2n + 3
points on the boundary of the triangle. Figs. 9, 10, 11 show IT (2), IT (3) and IT (4). The latter two graphs
have been colored using the red and yellow palettes (§10.2).

Figure 10: IT (3) (33 triangles, 14 quadrilaterals) Figure 11: IT (4) (71 triangles, 34 quadrilaterals)

Alekseyev pointed out that if we take the boundary points of BC(1, n) to be the points (i,0) and (i,1) for
5In Part 2 of this paper [3] we will discuss graphs formed by inserting n equally-spaced nodes on all three sides of an

equilateral triangle.
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A B C D

E F G D

E

F

G

D C B A

Figure 12: Illustrating the map (3.1) from BC(1,2) to IT (2).

i = 0, . . . , n, then the map

(x, y) z→ (
1 − y

x + 1
,

y

x + 1
) , (3.1)

maps BC(1, n) onto IT (n) minus the node and cell at the origin. Figure 12 illustrates this in the case
n = 2. The six boundary nodes A,B,C,E,F,G of BC(1,2) are mapped to six of the seven boundary nodes
of IT (2). The point D, the point at infinity on the positive x axis (not part of BC(1,2)), is mapped to the
origin in IT (2). The region D,C,G,D to the right of BC(1,2) is mapped to the triangular cell D,G,C,D
at the origin in IT (2).

A similar thing happens in the general case: IT (n) always has one more node than BC(1, n), two more
edges, and one more cell. When these adjustments are made to the formulas in Theorem 2.1, we obtain
the formulas in Theorem 13 of [2]. The counts for nodes, edges, and cells in IT (n) are given in A332632,
A332360, and A332358.

However, Alekseyev (personal communication) also pointed out that Theorem 13 of [2] mentions an additional
property of IT (n)—and hence of BC(1, n)—that seems to have been overlooked in [10] and [7]:

Theorem 3.1. (Alekseyev et al. [2]): The cells in IT (n) and hence BC(1, n) are either triangles or quadri-
laterals.

That is, no cell in BC(1, n) has five or more edges. The proof in [2] depends on a theorem about teaching
sets for threshold function [19, 26]. No other proof seems to be known. We therefore state:

Open Problem 3.2. Find a purely geometrical proof of Theorem 3.1.

4 The cells in BC(1, n)

From Theorems 2.1 and 3.1, we can determine the numbers of triangular and quadrilateral cells in BC(1, n)
(sequences A324042 and A324043).

Theorem 4.1. The C(1, n) cells in BC(1, n) are made up of

T (n) = 2V (n,n,2) + 2n(n + 1) (4.1)
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triangles and
Q(n) = V (n,n,1) − 2V (n,n,2) − n2 (4.2)

quadrilaterals.

Proof. The sum 3T (n)+ 4Q(n) double-counts the edges in BC(1, n) except that the 2n+ 2 boundary edges
are counted only once. Therefore

3T (n) + 4Q(n) + (2n + 2) = 2E(1, n) = 2(N (1, n) + C(1, n) − 1) , (4.3)

and of course by Theorem 3.1, T (n)+Q(n) = C(1, n). The proof is completed by solving these two equations
for T (n) and Q(n) and using (2.2), (2.3).

Figures 2, 5, 6, and 7 show the triangles and quadrilaterals for n = 1, ...,4.

One way to attack Open Problem 3.2 is to try to understand the distribution of cells in each of the n squares
of BC(1, n). Let tn,k, qn,k, and cn,k denote the numbers of triangles, quadrilaterals, and cells in the k-th
square of BC(1, n) for 1 ≤ k ≤ n (so tn,k + qn,k = cn,k and ∑k cn,k = C(1, n)). From Fig. 5, for example, we
see that t1,1 = t1,2 = 7, q1,1 = q1,2 = 1, and c1,1 = c1,2 = 8.

The two end squares of BC(1, n) are easily understood, and for future reference we state the result as:

Theorem 4.2. For n ≥ 2, the two end squares of BC(1, n) both contain 2n + 3 triangles and 2n − 3 quadri-
laterals.

.

Table 2: Number tn,k of triangles in k-th square in BC(1, n) (A333286).

n/k 1 2 3 4 5 6 7 8 9 10
1 4
2 7 7
3 9 14 9
4 11 24 24 11
5 13 30 38 30 13
6 15 38 60 60 38 15
7 17 44 76 86 76 44 17
8 19 52 92 120 120 92 52 19
9 21 58 106 146 158 146 106 58 21
10 23 66 126 178 216 216 178 126 66 23

Tables 2, 3, and 4 show the values of tn,k, qn,k, and cn,k for n ≤ 10. More extensive tables, for n ≤ 80, are
given in entries A333286, A333287, A333288. However, even with 80 rows of data, we have been unable to
find formulas for these numbers.

There is certainly a lot of structure in these tables. Using the Salvy-Zimmermann gfun Maple program [18],
we attempted to find generating functions for the columns of these tables. On the basis of admittedly little
evidence, we make the following conjecture.

Conjecture 4.3. In all three of Tables 2, 3, and 4, the k-th column for k ≥ 3 has a rational generating
function which can be written with denominator (1 − xk−2)(1 − xk−1)(1 − xk).

9
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Table 3: Number qn,k of quadrilaterals in k-th square in BC(1, n) (A333287).

n/k 1 2 3 4 5 6 7 8 9 10
1 0
2 1 1
3 3 8 3
4 5 12 12 5
5 7 22 32 22 7
6 9 28 40 40 28 9
7 11 38 58 74 58 38 11
8 13 46 74 98 98 74 46 13
9 15 58 92 130 152 130 92 58 15
10 17 68 104 150 180 180 150 104 68 17

Table 4: Total number cn,k of cells in k-th square in BC(1, n) (A333288).

n/k 1 2 3 4 5 6 7 8 9 10
1 4
2 8 8
3 12 22 12
4 16 36 36 16
5 20 52 70 52 20
6 24 66 100 100 66 24
7 28 82 134 160 134 82 28
8 32 98 166 218 218 166 98 32
9 36 116 198 276 310 276 198 116 36
10 40 134 230 328 396 396 328 230 134 40

For example, column 3 of Table 2, the sequence {tn,3}, appears to have generating function

x3
9 + 15x + 5x2 − 2x3 − 13x4 − 11x5 − 9x6 + 2x7 + 8x8 − 4x10 + 4x12

(1 − x)(1 − x2)(1 − x3)
. (4.4)

It would be nice to know more about these quantities.

5 The nodes in BC(1, n)

Besides looking at the cells of BC(1, n), it is also interesting to study the nodes. For n ≥ 2, BC(1, n) has
four boundary nodes of degree n+1 and 2n−2 boundary nodes of degree n+2. An interior node formed when
c chords (say) cross has degree 2c. Let vn,c denote the number of interior nodes of degree 2c, for 2 ≤ c ≤ n+1.
Table 5 shows the values of vn,c for n ≤ 10. A more extensive table, for n ≤ 100, is given in A333275.
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Table 5: Number vn,c of interior nodes in BC(1, n) where c chords cross (A333275).

n/c 2 3 4 5 6 7 8 9 10 11
1 1
2 6 1
3 24 2 1
4 54 8 2 1
5 124 18 2 2 1
6 214 32 10 2 2 1
7 382 50 22 2 2 2 1
8 598 102 18 12 2 2 2 1
9 950 126 32 26 2 2 2 2 1
10 1334 198 62 20 14 2 2 2 2 1

Theorem 5.1. For n ≥ 2, the numbers vn,c satisfy:

n+1
∑
c=2

vn,c + 2n + 2 = N (1, n) , (5.1)

n+1
∑
c=2

c vn,c + n2 + 4n + 1 = E(1, n) , (5.2)

n+1
∑
c=2

(
c

2
) vn,c = (

n + 1

2
)

2

. (5.3)

Proof. The first equation simply gives the total number of nodes in BC(1, n). For (5.2) we count pairs
(α,β), where α is a cell and β is a node, in two ways, obtaining

3T (n) + 4Q(n) = 4(n + 1) + (2n − 2)(n + 2) +∑
c

2c vn,c ,

and use (4.3). To establish (5.3), we start with the observation that if all the 2n + 2 boundary points of
BC(1, n) are perturbed by small random amounts, there will be no triple or higher-order intersection points,
all the internal nodes will be simple, and there will be (

n+1
2

)
2
of them (since any pair of nodes on the upper

side of the rectangle and any pair of nodes on the lower side will determine a unique intersection point). As
the boundary points are returned to their true positions, the internal nodes coalesce. If there is an interior
point where c chords intersect, the (

c
2
) interior nodes there coalesce into one, and we lose (

c
2
)−1 intersections.

We are left with the N (1, n) − (2n + 2) interior intersection points. Thus

n+1
∑
c=2

((
c

2
) − 1) vn,c + N (1, c) − (2n + 2) = (

n + 1

2
)

2

,

which simplifies to give (5.3).

However, we do not even have a formula for the number of simple interior intersection points in BC(1, n)
(the first column of Table 5, the sequence {vn,2}, A334701), although we have computed 500 terms. The
first 100 terms are shown in Table 6. We feel that a formula should exist!

Open Problem 5.2. Find a formula for the number of simple interior intersection points in BC(1, n) (see
Table 6 for 100 terms, or A334701 for 500 terms).
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Table 6: The first 100 terms of the number of simple interior intersection points in BC(1, n).

Terms 1–25 26–50 51–75 76–100
1 49246 679040 3264422
6 57006 732266 3438642

24 65334 790360 3616430
54 75098 849998 3805016
124 85414 914084 3998394
214 97384 980498 4202540
382 110138 1052426 4408406
598 124726 1125218 4626162
950 139642 1203980 4850198
1334 156286 1285902 5085098
1912 174018 1374300 5321854
2622 194106 1463714 5571470
3624 214570 1559064 5826806
4690 237534 1657422 6095870
6096 261666 1762004 6369534
7686 288686 1869106 6655902
9764 316770 1983922 6948566

12010 348048 2102162 7256076
14866 380798 2228512 7565826
18026 416524 2356822 7889032
21904 452794 2493834 8220566
25918 492830 2635310 8568428
30818 534962 2786090 8919298
36246 580964 2938326 9285288
42654 627822 3099230 9658638

6 BC(m,n): m × n rectangular windows

The graph BC(1, n) (n ≥ 1) is based on a 1 × n rectangle. In this section we consider what happens if we
start more generally from an (m,n)-reticulated rectangle (where m ≥ 1, n ≥ 1): this is a rectangle of size
m × n in which both vertical edges are divided into m equal parts, and both horizontal edges into n equal
parts. There are m − 1 nodes on each vertical edge and n − 1 nodes on each horizontal edge, for a total of
4 + 2(m − 1) + 2(n − 1) = 2(m + n) boundary nodes.

We will discuss three families of graphs based on these rectangles, denoted by BC(m,n), AC(m,n), and
LC(m,n). The graph BC(m,n) is formed by joining every pair of boundary nodes by a line segment and
placing a node at each point where two or more line segments intersect. Figs. 3 and 4 show BC(2,2), and
Fig. 14 shows BC(3,3). (“BC” stands for “boundary chords”.)

Alternatively, we could have constructed BC(m,n) by starting with an m×n grid of equal squares, and then
joining each pair of boundary grid points by a line segment. However, if we include the interior grid points,
there are there are (m+ 1)(n+ 1) grid points in all, and if we join each pair of grid points by a line segment,
we obtain the graph AC(m,n). (“AC” stands for “all chords”.) These graphs are discussed by Huntington
T. Hall [8], Marc E. Pfetsch and Günter M. Ziegler [15], and Hugo Pfoertner (entry A288187 in [14]). We
shall say more about AC(m,n) in §8.

A third family of graphs, LC(m,n), arises if we extend each line segment in AC(m,n) until it reaches the
boundary of the grid. (“LC” stands for “long chords”.) These graphs are discussed by Seppo Mustonen
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Figure 13: Comparison of the graphs BC(3,2) (black lines), AC(3,2) (add the red lines), and LC(3,2) (also
add the blue lines).

[11, 12, 13]. We say more about LC(m,n) in §9.

Figure 13 shows the differences between the three definitions in the case of a (3,2) reticulated rectangle,
the first time the definitions differ. The black lines form the graph BC(3,2). The four red lines are the
additional line segments that appear when we construct AC(3,2). They start at an interior grid point and
so are not present in BC(3,2). The four blue lines extend the red chords until they reach the boundary of
the grid, and form AC(3,2).

The numbers of nodes N (m,n) and cells C(m,n) in BC(m,n) are shown for m,n ≤ 37 in A331453 and
A331452, respectively, and the initial terms are shown in Table 7.

Table 7: Numbers of nodes N (m,n) and cells C(m,n) in BC(m,n) for 1 ≤m,n ≤ 7.

m/n 1 2 3 4 5 6 7
1 5,4 13,16 35,46 75,104 159,214 275,380 477,648
2 13,16 37,56 99,142 213,296 401,544 657,892 1085,1436
3 35,46 99,142 257,340 421,608 881,1124 1305,1714 2131,2678
4 75,104 213,296 421,608 817,1120 1489,1916 2143,2820 3431,4304
5 159,214 401,544 881,1124 1489,1916 2757,3264 3555,4510 5821,6888
6 275,380 657,892 1305,1714 2143,2820 3555,4510 4825,6264 7663,9360
7 477,648 1085,1436 2131,2678 3431,4304 5821,6888 7663,9360 12293,13968

Regrettably, except when m or n is 1, we have been unable to find formulas for any of these quantities. The
diagonal case, when m = n, is the most interesting (because the most symmetrical), but is also probably
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Figure 14: The graph BC(3,3). There are 257 nodes and 340 cells.

the hardest to solve. In accordance with our philosophy of “if you can’t solve it, make art”, Fig. 14 shows
our stained glass window BC(3,3), and entry A331452 has a large number of larger and even more striking
examples which space restrictions do not permit us to show here.

Out of all these unsolved problems, the casem = 2 (or n = 2) would seem to be the most amenable to analysis,
perhaps by extending the work of Legendre [10] and Griffiths [7]. For instance, what are the conditions for
three chords in BC(2, n) to intersect at a common point? We emphasize this by stating:

Open Problem 6.1. Find formulas for the numbers of nodes (N (2, n), A331763) and cells (C(2, n),
A331766) in BC(2, n).

The first 10 terms are given in Table 8, and 100 terms are given in the entries for these two sequences in [14].

Table 8: Numbers of nodes and cells in BC(2, n).

n ∶ 1 2 3 4 5 6 7 8 9 10 ⋯ [14]
N (2, n) ∶ 13 37 99 213 401 657 1085 1619 2327 3257 ⋯ A331763
C(2, n) ∶ 16 56 142 296 544 892 1436 2136 3066 4272 ⋯ A331766
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Figure 15: BC(4,2) with cells color-coded to distinguish triangles (red), quadrilaterals (yellow), and pen-
tagons (blue).

In BC(1, n) the cells are always triangles or quadrilaterals (Theorem 3.1). It appears that a similar phe-
nomenon holds for BC(2, n). The data strongly suggests the following conjecture.

Conjecture 6.2. The cells in BC(2, n) have at most eight sides, and for n ≥ 19, at most six sides.

We have verified the conjecture for n ≤ 106. Row n of Table 9 gives the number of cells in BC(2, n) with k
sides, for k ≥ 3 and n ≤ 20. For rows n = 1,2, and 3 of this table see Figs. 5, 2, and 13 (black lines only).
For row 4 see Figure 15, where one can see that BC(4,2) has 192 triangular cells (red), 92 quadrilaterals
(yellow), and 12 pentagons (blue). Entry A335701 gives the first 106 rows of this table, and has many further
illustrations. The row sums in Table 9 are the numbers C(2, n) given in column 2 of Table 7 and A331766.

More generally we may ask: For BC(m,n), m fixed, is there an upper bound on the number of sides of a
cell as n varies?

We are at least able to analyze the corner squares of BC(2, n).

Theorem 6.3. For n = 2 the four corner squares of BC(2, n) (and BC(n,2)) each contain 12 triangles and
4 quadrilaterals, while for n = 3 they contain 15 triangles, 6 quadrilaterals, and (exceptionally) one pentagon.
For n ≥ 4, the corner squares each contain 7n+1 cells, consisting of 2n+9 triangles and 5n−8 quadrilaterals.
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Table 9: Row n gives the number of cells in BC(2, n) with k sides, for k ≥ 3. It appears that for n ≥ 19, no
cell has more than six sides (see A335701).

n/k 3 4 5 6 7 8
1 14 2
2 48 8
3 102 36 4
4 192 92 12
5 326 194 24
6 524 336 28 4
7 802 554 80
8 1192 812 128 4
9 1634 1314 112 0 4 2
10 2296 1756 200 20
11 3074 2508 236 22
12 4052 3252 356 28
13 5246 4348 472 28
14 6740 5464 652 28
15 8398 7054 656 74
16 10440 8760 940 52
17 12770 11050 1040 58
18 15512 13324 1300 60 4
19 18782 16162 1600 70
20 22384 19256 1948 104

Proof. We consider the top left corner square of BC(n,2), assuming n ≥ 4. The key to the proof is to dissect
this square into regions, in each of which the cell structure is apparent, and such that the boundaries of the
regions do not cross any cell boundaries. This is done as indicated in Fig. 16. There are six regions, labeled
a through f .

We assume the coordinates are chosen so that nodes A,B,C,D have coordinates (0,0), (1,0), (1,1), and
(0,1), respectively. The four vertices of the rectangle defining BC(n,2) have coordinates (0,0), (2,0), (2, n),
and (0, n).

The chord from A to the grid point (1, n) cuts the line DC midway between D and F , and the n− 1 chords
from A to grid points (2, n), (2, n−1), . . ., (2,2) cut DC between F and C. The final chord from A to (2,1)
cuts BC at E. The top left triangular region f is therefore divided into n + 2 triangular cells.

There is a chord from B to D, a chord from B to the grid point (0,2) which cuts DC at F , and n−2 further
chords from B to the grid points (0,3), . . . , (0, n), which cut DC to the right of F .

There is one further chord that cuts this corner square, the chord fron D to E

The reader will now have no difficulty in verifying that the cells in regions a, b, c, d, e, f are as shown in
Table 10.
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Figure 16: Dissection of corner square of BC(n,2), n ≥ 4, used in proof of Theorem 6.3.

Table 10: Numbers of triangles and quadrilaterals in the regions shown in Fig. 16.

Region triangles quadrilaterals
a n 0
b 2 2n − 3
c 2 n − 2
d 1 3
e 2 2n − 6
f n + 2 0

Total 2n + 9 5n − 8

7 BC(m,n) in general position.

We can obtain reasonably good upper bounds on N (m,n) and C(m,n) by analyzing what would happen
if all the intersection points in BC(m,n) were simple intersections—that is, if there was no interior point
where three or more chords met.

We use BCGP (m,n) to denote a graph obtained by perturbing the boundary nodes of BC(m,n) (excluding
the four vertices) by small random sideways displacements along the boundaries. That is, if a boundary
node was a fraction i

j
say of the way along an edge, we move it to a point i

j
+ ε of the way along the edge,

where ε is a small random real number. If the ε’s are chosen independently, the new graph will be in “general
position", and there will be no multiple intersection points in the interior.

To illustrate the perturbing process, in Fig. 17 below one can see (ignoring for now the supporting strut on
the left) a perturbed version of BC(1,2) obtained by slightly displacing just one node (labeled 4) so as to
avoid the triple intersection point at the center (see Fig. 5).

Let NGP (m,n) and CGP (m,n) denote the numbers of nodes and cells, respectively, in the perturbed graph.
The perturbations increase the numbers of nodes and cells, so NGP (m,n) ≥ N (m,n) and CGP (m,n) ≥

C(m,n), and NGP (m,n)→ N (m,n) and CGP (m,n)→ C(m,n) as the displacements are reduced to zero.
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Theorem 7.1. For m,n ≥ 1, the number of interior nodes in BCGP (m,n) is

1

4
{(m + n)(m + n − 1)2(m + n − 4) + 2mn(2m + n − 1)(m + 2n − 1)} . (7.1)

Proof. We start with the observation that any four boundary nodes of the rectangle, no three of which are
on an edge, determine a unique intersection point in the interior of the rectangle. There are several ways
to choose these four points. They might be the four vertices of the rectangle, which can be done in just
one way. They might consist of three vertices and a single node on one of the other two sides, which can
be done in 4(m1 + n1) ways, where m1 = m − 1 and n1 = n − 1 are the numbers of ways of choosing a single
non-vertex point on a side. A more typical example consists of one vertex, and one, resp. two, points on
the two opposite sides, as shown in the following drawing. This can be done in 4(m1n2 +m2n1) ways, where
m2 = (m− 1)(m− 2)/2, n2 = (n− 1)(n− 2)/2 are the numbers of ways of choosing two non-vertex nodes from
the sides.

n − 1

(
m−1
2

)

There are in all seventeen different configurations for choosing four points, and when the seventeen counts
are added up the result is the expression given in (7.1). We omit the details.

Remarks. (i) Since there are 2(m + n) boundary nodes, the total number of nodes in BCGP (m,n) is

NGP (m,n) =
1

4
{(m + n)(m + n − 1)2(m + n − 4) + 2mn(2m + n − 1)(m + 2n − 1)} + 2(m + n) . (7.2)

This is our upper bound for N (m,n).

(ii) Another way to interpret NGP (m,n) is that this is the number of nodes in BC(m,n) counted with
multiplicity (meaning that if there is an interior node where c chords meet, it contributes c− 1 to the total).

(iii) When m = n, (7.2) simplifies to
n

2
(17n3 − 30n2 + 19n + 4) , (7.3)

which is our upper bound for N (n,n). For n = 52, N (n,n) = 52484633 (from A331449), while (7.3) gives
60065408, too large by a factor of 1.14, which is not too bad. The moral seems to be that most internal
nodes are simple.

(iv) When m = 1, (7.2) becomes n2(n + 1)2/4, which agrees with the number mentioned in the proof of
Theorem 5.1.

(v) For large m and n, the expression (7.2) is dominated by the degree 4 terms, which are

1

4
(m4

+ n4 + 8mn(m2
+ n2) + 16m2n2) . (7.4)

Setting m = n, we get NGP (n,n) ∼ 17n4/2 as n→∞. We can confirm this by looking at the number of ways
to choose four nodes out of the 4n boundary nodes so that no three are on a side. This is (essentially)

(
4n

n
) − 4(

n

4
) − 12n(

n

3
) ∼

17

2
n4 .
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(vi) From (v), we have N (n,n) = O(n4). In fact, we conjecture that N (n,n) ∼ NBC(n,n) ∼ 17n4/2. But
to establish this we would need better information about the number of interior nodes in BC(n,n) with a
given multiplicity.

0

1

2

3

4

5

Figure 17: BC(1,2) in general position: node 4 has been displaced slightly so as to avoid the triple inter-
section point at the center. The strut on the left tilts the figure so that the ordinates of the boundary nodes
are in the same order as the labels. The red line is the “counting line”, which descends across the picture in
order to count the cells.

Now that we know the number of nodes, we can also find the number CGP (m,n) of cells in BCGP (m,n).
For this we use a method described by Freeman [6]. The following is a slight modification of his procedure.
BCGP (m,n) has 2(m + n) boundary nodes. We label the top left corner vertex 0, and the bottom right
corner vertex 2(m+n)−1. The nodes along the top edge we label 0, 1, 3, 5 . . .,2n−1, continuing along along
the right-hand edge with 2n + 1, 2n + 3 . . ., 2(m + n) − 1. Along the left-hand edge we place the labels 0, 2,
4, . . ., 2m, continuing along the bottom edge with 2m + 2, 2m + 4, . . ., 2m + 2n − 2, 2(m + n) − 1.

We now raise the bottom left corner of the rectangle until the boundary nodes are at different heights, and
so that the order of the heights matches the order of the labels (node 0 becomes the highest point, followed
by nodes 1, 2, . . . in order). Fig. 17 illustrates the case BCGP (1,2). The black strut raises the bottom left
corner so that the heights of the nodes are in the correct order.

We now take a horizontal line (Freeman calls it a “counting line”), and slide it downwards from the top of
the figure to the bottom, recording each time it cuts a new cell. The counting line is shown in red in the
figure.

When the counting line reaches a boundary node, with label k (say), the count is increased by the number
of cells originating at k that have not yet been counted. This number is equal to the number of boundary
nodes with label greater than k which are not on the same side as k. On the other hand, when the counting
line reaches an interior node the count increases by exactly 1 (this is because there is no point where three
chords meet). So the contribution to the count from the interior nodes is simply the number of interior
nodes, which is known from Theorem 7.1.

In Fig. 17, the count goes up by 3 at node 0, by 3 at node 1, 1 at node 2, and 1 at node 3, for a subtotal of
8. There are 9 interior nodes, so the total number of cells is 17.
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From a careful study of a tilted version of general case BCGP (m,n)„ combined with (7.2), we obtain:

Theorem 7.2. For m,n ≥ 1, the number of cells in BCGP (m,n) is

CGP (m,n) =
1

4
{(m − 1)2(m − 2)2 + (n − 1)2(n − 2)2} + 2mn(m + n −

3

2
)

2

+
9mn

2
− 1 . (7.5)

Remark. Asymptotically, CGP (m,n) and NGP (m,n) behave in the same way. In fact the difference
CGP (m,n) − NGP (m,n) is only a quadratic function of m and n, m2 + 4mn + n2 − 4m − 4n + 1.

Figure 18: The graph AC(3,3). There are 353 nodes and 520 cells.

8 The graphs AC(m,n).

The graph AC(m,n) was defined in §6. We take an (m+ 1)× (n+ 1) square grid of nodes, and draw a chord
between every pair of grid nodes. (If we only joined pairs of boundary nodes we would get BC(m,n).)

Figure 13 shows AC(3,2) (take the black and red lines only, not the blue lines). Hugo Pfoertner has made
black and white drawings of AC(m,n) for 1 ≤ m,n ≤ 5 in A288187. Figure 18 shows a black and white
drawing of AC(3,3) made using TikZ [5, 23].
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The numbers of nodes NAC(m,n) and cells CAC(m,n) in AC(m,n) are given for m,n ≤ 9 in A288180 and
A288187, respectively, and the initial terms are shown in Table 11. The first row and column of Table 11
are the same as the first row and column of Table 7 but are included for completeness.

Table 11: Numbers of nodes NAC(m,n) and cells CAC(m,n) in AC(m,n) for 1 ≤m,n ≤ 7.

m/n 1 2 3 4 5 6 7
1 5,4 13,16 35,46 75,104 159,214 275,380 477,648
2 13,16 37,56 121,176 265,388 587,822 1019,1452 1797,2516
3 35,46 121,176 353,520 771,1152 1755,2502 3075,4392 5469,7644
4 75,104 265,388 771,1152 1761,2584 4039,5700 7035,9944 12495,17380
5 159,214 587,822 1755,2502 4039,5700 8917,12368 15419,21504 27229,37572
6 275,380 1019,1452 3075,4392 7035,9944 15419,21504 26773,37400 47685,65810
6 477,648 1797,2516 5469,7644 12495,17380 27229,37572 47685,65810 84497,115532

It is clear (compare Figs. 14 and 18) that AC(m,n) contains far more nodes and cells than BC(m,n).
We may obtain an upper bound on NAC(n,n) as follows. The graph AC(n,n) has (n + 1)2 grid points.
The number of ways of choosing four grid points is (

(n+1)2
4

), and except for a vanishingly small fraction of
cases, no three points will be collinear. There are then two possibilities: the four points may form a convex
quadrilateral, or a triangle with the fourth point in its interior. In the first case the intersection of the two
diagonals of the quadrilaterals is a node of AC(m,n) (which may or may not be a new node), but in the
second case no new node is formed.

If four points in the plane are chosen at random from a square, by what is known as “Sylvester’s Theorem”,
the probability that they form a convex quadrilateral is 25/36 and the probability that they form a triangle
with an interior point is 11/36 (see [16, Table 4], [21, Table 3, p. 114] for the complicated history of this
result). Assuming that Sylvester’s theorem applies to our problem, we can conclude that the number of
nodes in AC(m,n) counted with multiplicity is asymptotically

25

36
(
(n + 1)2

4
) ∼

1

35.56
n8 . (8.1)

Both Tom Duff (personal communication) and Keith F. Lynch (personal communication) have have carried
out extensive experiments, studying what happens when four points are chosen from an m×n grid, and have
found that there is excellent agreement with the predictions of Sylvester’s Theorem.

In a remarkable calculation, Tom Duff enumerated and classified all sets of four points chosen from an m×n
grid for m,n ≤ 349. In a 349× 349 grid, there are 6366733094048270910 strictly convex quadrilaterals out of
9170030499095875150 total. The fraction is 0.6942979, just a little short of Sylvester’s 25/36 = 0.694444 . . ..
The deficit is explained by the not quite negligible counts of quadrilaterals with at least three collinear points.
If those are included with the strictly convex quadrilaterals, the ratio is 0.6945982, slightly more than 25/36.
This is convincing evidence that Sylvester’s theorem does apply to our problem.

In any case, NAC(n,n) = O(n8), compared with N (n,n) = O(n4) for BC(n,n).

9 The graphs LC(m,n).

The graph LC(m,n) was defined in §6. We take an (m + 1) × (n + 1) square grid of nodes, draw a chord
between every pair of grid nodes, and extend all the chords until they meet the boundary of the grid. These
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Figure 19: The graph LC(3,3). There are 405 nodes and 624 cells.

graphs were discussed by Mustonen [11, 12, 13]. Figure 13 shows LC(3,2) (take the black, red, and blue
lines), and Fig. 19 shows our stained glass coloring of LC(3,3).

The numbers of nodes NLC(m,n) and cells CLC(m,n) in LC(m,n) are given for m,n ≤ 8 in A333284 and
A333282, respectively, and the initial terms are shown in Table 12. Again the first row and column are the
same as in Table 7. Mustonen [12, Table 3] gives the first 29 terms of the diagonal sequence NLC(n,n)
(A333285).

For this problem we can give only an upper bound on the number of nodes counted with multiplicity.
The argument does, however, avoid the use of Sylvester’s Theorem. Consider four points chosen from the
(n + 1) × (n + 1) grid points, with no three points collinear. If the points form a triangle with a point in the
interior, joining the three vertices of the triangle to the interior point and then extending these chords until
they meet the sides of the triangle (something we were not allowed to do in the previous case) will produce
three potentially new nodes. If the four points form a convex quadrilateral, there are also potentially three
nodes that could be created: the intersection of the two diagonals, and the two points where pairs of opposite
sides meet when extended. Figure 20 shows the two cases. The black nodes are the four grid points and
the red nodes are the potential new nodes. Of course in the second case the two external red points may be
outside the grid (or at infinity), and so would not be counted.
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Table 12: Numbers of nodes NLC(m,n) and cells CLC(m,n) in LC(m,n) for 1 ≤m,n ≤ 7.

m/n 1 2 3 4 5 6 7
1 5,4 13,16 35,46 75,104 159,214 275,380 477,648
2 13,16 37,56 129,192 289,428 663,942 1163,1672 2069,2940
3 35,46 129,192 405,624 933,1416 2155,3178 3793,5612 6771,9926
4 75,104 289,428 933,1416 2225,3288 5157,7520 9051,13188 16129,23368
5 159,214 663,942 2155,3178 5157,7520 11641,16912 20341,29588 36173,52368
6 275,380 1163,1672 3793,5612 9051,13188 20341,29588 35677,51864 63987,92518
7 477,648 2069,2940 6771,9926 16129,23368 36173,52368 63987,92518 114409,164692

Figure 20: The two possibilities for choosing four noncollinear points from an m × n grid.

In any case, the maximum number of new nodes that are created is at most 3 ((n+1)
2

4
) ∼ n8/8, and this is

an upper bound on NLC(n,n). This is an over-count, both because we do not always get three new nodes
for each 4-tuple of grid points, and because multiple intersection points are counted multiple times. Based
on his data for n ≤ 29, Mustonen [12] makes an empirical estimate that NLC(n,n) ∼ Cn8, where C is
about 0.0075. So our constant, 1/8 is, unsurprisingly, an over-estimate.

We conclude that as we progress from BC(n,n) to AC(n,n) to LC(n,n), the graphs become progressively
more dense, and so counting the nodes with multiplicity gives a steadily weaker upper bound on their number.

10 Choosing the colors.

We used three different coloring schemes.

10.1 Number-of-sides coloring.

The simplest scheme colors the cells according to the number of sides, with randomly chosen colors. This is
used in Fig. 15 and in figures in [14] (entries A333282, A335701, for example) when studying the distribution
of cells according to number of sides.
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10.2 The yellow and red palettes.

This is a refinement of the previous scheme, which modifies the color according to the shape of the cell. For
Figs. 4, 5, 6, 7, 10, 11 the cells are either triangles or quadrilaterals, and we use colors which darken as the
cell becomes more irregular. More precisely, the cells are colored according to the following rule. If the cell
has n sides (where n is 3 or 4), let λ be the area of the cell divided by the area of an n-sided regular polygon
with the same circumradius. Then the cell is assigned color number

√
λ from the following palettes:

triangles

quadrilaterals

10.3 Random colorings.

For Figs. 1, 7, 14, etc. the color of a cell is assigned by first computing the average distance of the nodes of
the cell from the center of the picture. These average distances are then grouped into a certain number of
bins (we used 1000 bins), and the nonempty bins are assigned a random color from the standard spectrum
from red to violet. This ensures a symmetrical coloring with contrasting colors for neighboring cells. In
practice we do this several times and then choose the most appealing picture. We also have the option of
restricting the color palette to achieve certain effects (reds, blues, and greens for a cathedral-like window, or
various shades of browns for the frames that we will see in Part 2).
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