
ON FIBONACCI PARTITIONS

SAM CHOW AND TOM SLATTERY

To Carl Pomerance, a legend of number theory

Abstract. We prove an exact formula for OEIS A000119, which counts partitions into
distinct Fibonacci numbers. We also establish an exact formula for its mean value, and
determine the asymptotic behaviour.

1. Introduction

For n ∈ Z>0, let R(n) be the number of solutions to

x1 + · · ·+ xs = n,

where s ∈ Z>0, and x1 < x2 < · · · < xs are Fibonacci numbers. Note that R(0) = 1. We call
R the Fibonacci partition function, as it counts partitions into distinct Fibonacci numbers.
It has existed since the very first volume of the Fibonacci Quarterly in 1963, see [10], and
its values comprise the sequence OEIS A000119. In 1968, Leonard Carlitz [5, Theorem 2]
showed that

R(Fm) = bm/2c (m = 2, 3, . . .), (1.1)

where F1 = F2 = 1, F3 = 2, and if m ∈ N then Fm denotes the mth Fibonacci number.
Many authors have investigated Fibonacci partitions, and the topic has received attention
over several decades [2, 3, 5, 10, 12, 16, 18, 20]. In general R(n) behaves erratically.

Figure 1. R(n) against n for n = 0, 1, . . . , 6765

Our first result is an exact formula for R(n). Recall Zeckendorf’s theorem [13, 15, 22],
which asserts that each positive integer has a unique representation as a sum of non-
consecutive Fibonacci numbers, called the Zeckendorf expansion.

Theorem 1.1. Let

H = Fm0 + Fm1 + · · ·+ Fmk
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2 SAM CHOW AND TOM SLATTERY

be the Zeckendorf expansion of H ∈ N, where
mi−1 −mi > 2 (1 6 i 6 k), mk > 2.

Write
x` = Fm`

+ · · ·+ Fmk
(0 6 ` 6 k + 1)

and

ti =
⌊mi−1 −mi + 2

2

⌋
, εi = 2ti − 1−mi−1 +mi (1 6 i 6 k).

Finally, let

a0 = 1, a1 = t1, a`+1 = t`+1a` − ε`a`−1 (1 6 ` 6 k − 1).

Then

R(H) =

{
akbmk/2c − εkak−1, if k > 1

bm0/2c, if k = 0.
(1.2)

Throughout, we adopt the standard convention that empty sums are 0, so xk+1 = 0 above.
Carlitz [5] had a recursive formula, but on attempting to produce a non-recursive formula

found that “the general case is very complicated”. Robbins [16] had a simpler recursive
formula, leading to an algorithm used to produce some initial values of R(H), but also did
not write down a non-recursive formula. Weinstein [20] obtained a non-recursive expression,
albeit a complicated one. The nicest formula that we could find in the literature is that
of Berstel [3, Proposition 3.1] which, being a product of 2 × 2 matrices, is quite similar
to Theorem 1.1. Our formula (1.2) is extremely efficient in practice. For example, it can
compute R(10100) in less than one second on a standard laptop computer. Mathematica
[21] code for this is provided in Appendix A. Theorem 1.1 follows readily from Robbins’s
recursion, so it is not our main result by any means.

We also study the mean value

M(H) := H−1
H∑
n=0

R(n) (H ∈ N),

or equivalently the summatory function

A(H) :=
H∑
n=0

R(n) (H ∈ Z).

For t ∈ N, let

f(t) = 1 +
2(4t−1 − 1)

3
. (1.3)

We establish the following exact formula for A(H).

Theorem 1.2. Let H ∈ N, and let the values of the x`, ti, εi and a` be as in Theorem 1.1.
Then for ` = 1, 2, . . . , k we have

A(H) = a`A(x`)− ε`a`−1A(x`+1) +
∑
i6`

ai−1f(ti)2
mi−1−2ti . (1.4)

In particular

A(H) =


ak

⌊
2mk

6
+ mk+1

2

⌋
− εkak−1 +

∑
i6k

ai−1f(ti)2
mi−1−2ti , if k > 1⌊

2m0

6
+ m0+1

2

⌋
, if k = 0.

(1.5)
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This enables us to understand the asymptotic behaviour of A(H) and M(H). Put

ϕ =
1 +
√

5

2
, λ =

log 2

logϕ
≈ 1.44,

and define

c1 = lim inf
H→∞

A(H)

Hλ
, c2 = lim sup

H→∞

A(H)

Hλ
.

We now present our main result.

Theorem 1.3 (Main Theorem). We have

c1 = 0.52534 . . . , c2 = 0.54338 . . . ,

and more precisely

0.525347 < c1 < 0.525349, 0.5433878 < c2 < 0.5433893. (1.6)

It follows that A(H) � Hλ. Subject to hardware constraints, our method computes c1 and
c2 to arbitrary precision.

Figure 2. A(H)/Hλ against H for H = 0, 1, . . . , 75025, with horizontal lines
at 0.525348 and 0.543388.

The Fibonacci partition function behaves very differently to the usual partition function
p(n), for which there is a nice asymptotic formula

p(n) ∼ 1

4n
√

3
exp(π

√
2n/3)

going back to Hardy and Ramanujan [9]; see also [1, §5]. Our work shows that even the mean
value M(H) of the Fibonacci partition function does not have a ‘nice’ asymptotic formula,
however we are able to describe the asymptotic behaviour fairly well.

The logarithmic average of R(n)n1−λ, namely

B(H) := (logH)−1
∑
n6H

R(n)

nλ
(H > 2),

might be better behaved. Breaking into ranges Im = (Fm, Fm+1], wherein

A(Fm+1)− A(Fm)

F λ
m+1

6
∑
n∈Im

R(n)

nλ
6
A(Fm+1)− A(Fm)

F λ
m

,

it follows from Theorem 1.3 that
B(H) � 1.

Though B(H) is not decreasing, it does exhibit a clear downward trend.
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Conjecture 1.4. There exists B > 0 such that

B(H)→ B (H →∞).

We also invite the enthusiastic reader to consider:

(1) Higher moments of the Fibonacci partition function
(2) Lucas partitions [6, 11]
(3) Partitions into distinct terms of a sequence (bτmc)∞m=1, where τ ∈ (1, 2) is fixed
(4) Partitions into distinct terms of a Piatetski-Shapiro sequence (bmτc)∞m=1, where τ > 1

is fixed, cf. for polynomials [7, 8]
(5) Partitions into distinct Piatetski–Shapiro primes, cf. [14, 19].

Methods. We deduce Theorem 1.1 by iterating Robbins’s recursion [16, Theorem 4]. For
Theorem 1.2, we begin with the observation that A(H) counts sets of distinct Fibonacci
numbers whose sum is at most H. This enables us to prove a combinatorial recursion
analogous to that of Robbins. By systematic applications of our recursion, we prove an
exact formula for A(H) in terms of the Zeckendorf expansion of H. Finally, for m ∈ N
large, we subdivide [Fm, Fm+1) ∩ Z into many discrete subintervals, according to the initial
Zeckendorf digits. By estimating A(H) at the endpoints of these subintervals, we are able
to compute c1 and c2 to arbitrary precision, subject to hardware constraints. We used the
software Mathematica [21] to perform the calculations, leading to Theorem 1.3.

Notation. As usual, empty sums are 0. We adopt the following standard asymptotic nota-
tions: if f, g : N→ R>0, we write

f(m) ∼ g(m) if lim
m→∞

f(m)

g(m)
= 1,

f(m) = o(g(m)) if lim
m→∞

f(m)

g(m)
= 0,

and

f(m) � g(m) if 0 < lim inf
m→∞

f(m)

g(m)
6 lim sup

m→∞

f(m)

g(m)
<∞.

In words, the first notion is that f is asymptotic to g, the second notion is that f has a
smaller asymptotic order of magnitude than g, and the third notion is that f and g have the
same asymptotic order of magnitude.

Organisation. We prove Theorems 1.1, 1.2 and 1.3 in Sections 2, 3 and 4, respectively.
The appendices contain the code that we used for the computations.

Funding. SC was supported by EPSRC Fellowship Grant EP/S00226X/2. TS was sup-
ported by a URSS bursary from the University of Warwick.

2. An exact formula for Fibonacci partitions

In this section, we prove Theorem 1.1. With the notation of Theorem 1.1, Robbins [16,
Theorem 4] established the following recursion.

Lemma 2.1 (Robbins). If H > 2 and k > 1 then

R(H) = t1R(x1)− ε1R(x2).
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We induct on ` to show that if ` = 1, 2, . . . , k then

R(H) = a`R(x`)− ε`a`−1R(x`+1). (2.1)

The base case ` = 1 is Lemma 2.1. Now suppose 1 6 ` 6 k − 1, and that (2.1) holds. Then

R(H) = a`R(x`)− ε`a`−1R(x`+1)

= a`(t`+1R(x`+1)− ε`+1R(x`+2))− ε`a`−1R(x`+1)

= a`+1R(x`+1)− ε`+1a`R(x`+2),

which is (2.1) with `+ 1 in place of `. Thus, we have established (2.1) by induction.
For k > 1, applying (2.1) with ` = k, and then applying (1.1) with m = mk, gives

R(H) = akR(mk)− εkak−1 = akbmk/2c − εkak−1.

The k = 0 case of (1.2) is (1.1), which was already established by Carlitz [5, Theorem 2].
This completes the proof of Theorem 1.1.

3. The summatory function

In this section, we prove Theorem 1.2.

3.1. A combinatorial recursion. Recall that the Fibonacci sequence enjoys the recursive
relation Fm+1 = Fm+Fm−1. Our starting point is the following recursion for the summatory
function A(H).

Lemma 3.1. If m ∈ Z>3 and Fm 6 H < Fm+1 then

A(H) = A(H − Fm) + A(H − Fm−1)− A(H − 2Fm−1) + 2m−3.

Proof. Observe that A(H) counts tuples (x1, . . . , xs) of Fibonacci numbers such that

s > 0, x1 < · · · < xs, x1 + · · ·+ xs 6 H.

Note that x1, . . . , xs ∈ {F2, . . . , Fm}, since F1 = F2. There are A(H − Fm) such tuples for
which xs = Fm, since H − Fm < Fm.

If xs = Fm−1, then we have

x1 + · · ·+ xs−1 6 H − Fm−1 < Fm < 2Fm−1.

There would be A(H −Fm−1) solutions to this if xs−1 were allowed to equal Fm−1, but since
xs−1 < xs this is forbidden, and we need to subtract A(H − 2Fm−1). Thus, there are

A(H − Fm−1)− A(H − 2Fm−1)

valid tuples for which xs = Fm−1.
Finally, if x1 < x2 < . . . < xs 6 Fm−2 are Fibonacci numbers, then we always have

x1 + · · ·+ xs 6 F2 + · · ·+ Fm−2 < Fm 6 H,

owing to the well-known identity

F1 + F2 + · · ·+ Fn−2 = Fn − 1 (n ∈ N),

the proof of which is a straightforward exercise in mathematical induction. As there are
2m−3 subsets of {F2, . . . , Fm−2}, there are 2m−3 valid tuples for which xs 6 Fm−2.

Summing the contributions from the three cases completes the proof of the lemma. �
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Next, we provide a simple argument to show that

A(H) � Hλ, (3.1)

recalling our notational convention that this describes the asymptotic order of magnitude as
H → +∞. Let m > 4 be an integer. If m is odd then, by Lemma 3.1, we have

A(Fm) = 2m−3 + 1 + A(Fm−2) = . . .

= (2m−3 + 1) + (2m−5 + 1) + · · ·+ (22 + 1) + A(F3)

= (1 + 22 + · · ·+ 2m−3) + (m+ 1)/2

=
2m−1 − 1

3
+
m+ 1

2
=

⌊
2m

6
+
m+ 1

2

⌋
.

Similarly, when m > 4 is even we reach the same eventual conclusion, and we can check
directly that it also holds when m = 2, 3. Thus, we have

A(Fm) =

⌊
2m

6
+
m+ 1

2

⌋
(m > 2) (3.2)

and

A(Fm) ∼ 2m

6
. (3.3)

Therefore

A(Fm) ∼ cF λ
m, c =

1

6

√
5
λ
.

Note also that if Fm 6 H < Fm+1 then

ϕm(1 + o(1)) = Fm
√

5 6 H
√

5 < Fm+1

√
5 = ϕm+1(1 + o(1)),

and consequently

A(H) < A(Fm+1) =
2m+1

6
(1 + o(1)) 6

1

3
(H
√

5)λ(1 + o(1))

and

A(H) > A(Fm) =
2m

6
(1 + o(1)) >

1

12
(H
√

5)λ(1 + o(1)).

These calculations furnish (3.1), in the stronger form

c/2 6 c1 6 c2 6 2c.

Example 3.2. By Lemma 3.1, as m→∞ we have

A(2Fm−1) = A(2Fm−1 − Fm) + A(Fm−1)− A(0) + 2m−3

= A(Fm−3) + A(Fm−1) + 2m−3 − 1 ∼ 11

48
2m

∼ 11

24
(Fm−1

√
5)λ =

11(
√

5/2)λ

24
(2Fm−1)

λ,
11(
√

5/2)λ

24
≈ 0.538,
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and

A(Fm + Fm−2) = A(Fm−2) + A(2Fm−2)− A(Fm−4) + 2m−3

∼ 2m−2

6
+

11

48
2m−1 − 2m−4

6
+ 2m−3 ∼ 13

48
2m

∼ 13

48

(√
5
Fm + Fm−2

1 + ϕ−2

)λ
=

13
√

5
λ

48(1 + ϕ−2)λ
(Fm + Fm−2)

λ

=
13ϕλ

48
(Fm + Fm−2)

λ =
13

24
(Fm + Fm−2)

λ,
13

24
≈ 0.542.

3.2. An exact formula for the summatory function. Recall (1.3). Applying Lemma
3.1 several times provides the following more elaborate recursion.

Lemma 3.3. If t > 2, m > 2t, and Fm−2t+1 6 x < Fm−2t+3, then

A(Fm + x) = tA(x)− A(x− Fm−2t+2) + f(t)2m−2t.

Proof. For the base case t = 2 of our induction, for m > 4 and Fm−3 6 x < Fm−1 we have

A(Fm + x) = A(x) + A(Fm−2 + x)− A(x− Fm−3) + 2m−3

= 2A(x)− A(x− Fm−2) + 2m−4 + 2m−3 = 2A(x)− A(x− Fm−2) +
3

16
2m

= 2A(x)− A(x− Fm−2) + f(2)2m−4.

Now let t > 3, and suppose the result holds with t − 1 in place of t. Then for m > 2t and
x ∈ [Fm−2t+1, Fm−2t+3) we have

A(Fm + x) = A(x) + A(Fm−2 + x) + 2m−3

= tA(x)− A(x− Fm−2−2(t−1)+2) +

(
1 +

2(4t−2 − 1)

3

)
2m−2−2(t−1) + 2m−3

= tA(x)− A(x− Fm−2t+2) +

(
1 +

22t−3 − 2

3
+ 22t−3

)
2m−2t

= tA(x)− A(x− Fm−2t+2) +

(
1 +

2(4t−1 − 1)

3

)
2m−2t

= tA(x)− A(x− Fm−2t+2) + f(t)2m−2t.

�

The following immediate consequence is analogous to Lemma 2.1.

Corollary 3.4. Let t > 2, m > 2t, and Fm−2t+1 6 x < Fm−2t+3. Set

(ε, y) =

{
(1, x− Fm−2t+2) if Fm−2t+2 6 x < Fm−2t+3

(0, x− Fm−2t+1) if Fm−2t+1 6 x < Fm−2t+2.

Then

A(Fm + x) = tA(x)− εA(y) + f(t)2m−2t.

We now establish (1.4) for 1 6 ` 6 k. For the base case ` = 1 of our induction, we know
from Corollary 3.4 that

A(H) = a1A(x1)− ε1a0A(x2) + a0f(t1)2
m0−2t1 .
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Now suppose that for some ` ∈ {1, 2, . . . , k − 1} we have (1.4). Then

A(H) = a`(t`+1A(x`+1)− ε`+1A(x`+2) + f(t`+1)2
m`−2t`+1)− ε`a`−1A(x`+1)

+
∑
i6`

ai−1f(ti)2
mi−1−2t1

= a`+1A(x`+1)− ε`+1a`A(x`+2) +
∑
i6`+1

ai−1f(ti)2
mi−1−2ti .

We have proved (1.4) by induction on `.

For k > 1, inserting (3.2) into the ` = k case of (1.4) yields (1.5). Meanwhile, the k = 0
case of (1.5) is precisely (3.2). This completes the proof of Theorem 1.2.

Example 3.5. Let m be large, and consider

H = Fm + Fm−7 + Fm−12 + Fm−19.

In this case
t1 = 4, t2 = 3, t3 = 4, ε0 = ε1 = ε2 = 0.

Therefore

A(H) = 48

⌊
2m−19

6
+
m− 18

2

⌋
+ f(4)2m−8 + 4f(3)2m−13 + 12f(4)2m−20

∼ (16 + 43× 212 + 44× 27 + 12× 43)2m−20 =
45573

262144
2m.

Thus, as m→∞, we have

A(H)

Hλ
→ 45573

262144

( √
5

1 + ϕ−7 + ϕ−12 + ϕ−19

)λ

≈ 0.525352.

4. Subdivision

In this section, we prove Theorem 1.3. Let m be a large positive integer. We subdivide
the discrete interval [Fm, Fm+1) ∩ Z into subintervals

[pj, pj+1) ∩ Z (0 6 j 6 317810)

according to the initial Zeckendorf digits. The left endpoints p0, . . . , p317810 are given by

Fm +
∑
i6`

Fm−ai ,

where
` > 0, a1, a2 − a1, . . . , a` − a`−1 > 2, a` 6 27.

The right endpoints have the same form, except p317811 = Fm+1. Using Theorem 1.2, we can
show that

A(pj) ∼ vj2
m, pj ∼ wjϕ

m (0 6 j 6 317811)

as m→∞, for some computable values of vj and wj. Then

(1 + o(1))Lj 6
A(H)

Hλ
6 (1 + o(1))Uj (pj 6 H < pj+1),

where

Lj =
vj
wλj+1

, Uj =
vj+1

wλj
(0 6 j 6 317810).
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We carried out these computations using the software Mathematica [21]; the code is pro-
vided in Appendix B. Then

c1 > min
j
Lj, c2 6 max

j
Uj.

The software also told us which subintervals attaining the least Lj and the greatest Uj,
namely

j = 19401, (a1, . . . , a`) = (7, 12, 18, 25)

and
j = 184839, (a1, . . . , a`) = (3, 5, 8, 10, 12, 16, 18, 21, 23, 26),

respectively. Since
A(pj)

pλj
∼ vj
wλj

,

we thereby also obtained an upper bound for c1 and a lower bound for c2. These calculations
delivered (1.6), completing the proof of Theorem 1.3.

Appendix A. Code for R(H)

Lines 2–7 are Rosetta code [17], available for general use under the GNU Free Documen-
tation License, version 1.2. The value of H in the first line can be changed.

H = 1234;

zeckendorf[0] = 0;

zeckendorf[n_Integer] :=

10^(# - 1) + zeckendorf[n - Fibonacci[# + 1]] &@

LengthWhile[

Fibonacci /@

Range[2, Ceiling@Log[GoldenRatio, n Sqrt@5]], # <= n &];

Z = IntegerDigits[zeckendorf[H]];

l = Total[Z];

X = ConstantArray[0, l];

t = 1;

If[l == 1, Floor[(Length[Z] + 1)/2],

For[i = 1, i < Length[Z] + 1, i++,

If[Z[[i]] == 1, X[[t]] = Length[Z] - i + 2; t++;,]

];

T = ConstantArray[0, l - 1];

Ep = ConstantArray[0, l - 1];

For[i = 1, i < l, i++,

T[[i]] = Floor[(X[[i]] - X[[i + 1]] + 2)/2];

Ep[[i]] = 2 T[[i]] - 1 - X[[i]] + X[[i + 1]];

];

a = ConstantArray[1, l];

a[[2]] = T[[1]];

For[i = 3, i < l + 1, i++,

a[[i]] = T[[i - 1]] a[[i - 1]] - Ep[[i - 2]] a[[i - 2]]

];

a[[l]]*Floor[X[[l]]/2] - a[[l - 1]]*Ep[[l - 1]]

]

Appendix B. Code for A(H)

P = (1 + Sqrt[5])/2;

L = Log[2]/Log[P];

l = 27;

X = ConstantArray[0, {Fibonacci[l + 1], Floor[l/2]}];

t = 1;

X[[2, 1]] = l;
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For[i = 3, i < Fibonacci[l + 1] + 1, i++,

If[X[[i - 1, t]] == l || X[[i - 1, t]] == l - 1,

If[(t > 1 && X[[i - 1, t]] - X[[i - 1, t - 1]] == 2),

t--;

For[j = t, j > 0, j--,

If[j == 1, t = j;

For[k = 1, k < t, k++, X[[i, k]] = X[[i - 1, k]]];

X[[i, t]] = X[[i - 1, t]] - 1; j = 0,

If[X[[i - 1, j]] - X[[i - 1, j - 1]] != 2, t = j;

For[k = 1, k < t, k++, X[[i, k]] = X[[i - 1, k]]];

X[[i, t]] = X[[i - 1, t]] - 1; j = 0]

]

]

,

X[[i]] = X[[i - 1]];

X[[i, t]]--;

],

t++;

X[[i]] = X[[i - 1]];

X[[i, t]] = l;

]

]

T = ConstantArray[0, {Fibonacci[l + 1], Floor[l/2]}];

For[i = 2, i < Fibonacci[l + 1] + 1, i++,

T[[i, 1]] = Floor[(X[[i, 1]] + 2)/2]

]

For[i = 2, i < Fibonacci[l + 1] + 1, i++,

For[j = 2, j < Floor[l/2] + 1, j++,

If[X[[i, j]] == 0, ,

T[[i, j]] = Floor[(X[[i, j]] - X[[i, j - 1]] + 2)/2]

]

]

]

Ep = ConstantArray[0, {Fibonacci[l + 1], Floor[l/2]}];

For[i = 2, i < Fibonacci[l + 1] + 1, i++,

Ep[[i, 1]] = 2 T[[i, 1]] - 1 - X[[i, 1]]

]

For[i = 2, i < Fibonacci[l + 1] + 1, i++,

For[j = 2, j < Floor[l/2] + 1, j++,

If[X[[i, j]] == 0, ,

Ep[[i, j]] = 2 T[[i, j]] - 1 - X[[i, j]] + X[[i, j - 1]]

]

]

]

a = ConstantArray[0, {Fibonacci[l + 1], Floor[l/2] + 1}];

For[i = 1, i < Fibonacci[l + 1] + 1, i++, a[[i, 1]] = 1];

For[i = 2, i < Fibonacci[l + 1] + 1, i++, a[[i, 2]] = T[[i, 1]]];

For[i = 2, i < Fibonacci[l + 1] + 1, i++,

For[j = 3, j < Floor[l/2] + 2, j++,

If[X[[i, j - 1]] == 0, ,

a[[i, j]] =

T[[i, j - 1]] a[[i, j - 1]] - Ep[[i, j - 2]] a[[i, j - 2]]

]

]

]

f = Function[t, 1 + (2/3) (4^(t - 1) - 1)];

k = ConstantArray[0, {Fibonacci[l + 1] + 1}];

k[[1]] = (1/6);

k[[Fibonacci[l + 1] + 1]] = (1/3);

For[i = 2, i < Fibonacci[l + 1] + 1, i++,

For[j = Floor[l/2], j > 0, j--,

If[X[[i, j]] == 0, ,
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k[[i]] = (a[[i, j + 1]]/(6*2^(X[[i, j]]))) +

Sum[(a[[i, l]] f[T[[i, l]]]/2^(X[[i, l - 1]] + 2 T[[i, l]])), {l,

2, j}] + (a[[i, 1]] f[T[[i, 1]]]/2^(2 T[[i, 1]]));

j = 0

]

]

]

p = ConstantArray[0, {Fibonacci[l + 1] + 1}];

p[[1]] = 1; p[[Fibonacci[l + 1] + 1]] = P;

For[i = 2, i < Fibonacci[l + 1] + 1, i++,

For[j = Floor[l/2], j > 0, j--,

If[X[[i, j]] == 0, ,

p[[i]] = 1 + Sum[P^(-X[[i, k]]), {k, 1, j}];

j = 0

]

]

]

LU = ConstantArray[0, {Fibonacci[l + 1], 2}];

For[i = 1, i < Fibonacci[l + 1] + 1, i++,

LU[[i, 1]] = k[[i]]*(Sqrt[5]/p[[i + 1]])^L;

LU[[i, 2]] = k[[i + 1]]*(Sqrt[5]/p[[i]])^L

]

NumberForm[N[Min[LU]], 8]

NumberForm[N[Max[LU]], 8]

Position[LU, Min[LU]]

Position[LU, Max[LU]]

X[[19401]]

X[[184839]]

NumberForm[N[k[[19401]]*(Sqrt[5]/p[[19402]])^L], 8]

NumberForm[N[k[[19401]]*(Sqrt[5]/p[[19401]])^L], 8]

NumberForm[N[k[[184840]]*(Sqrt[5]/p[[184839]])^L], 8]

NumberForm[N[k[[184839]]*(Sqrt[5]/p[[184839]])^L], 8]
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