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Abstract

Membership Inference Attacks exploit the vul-

nerabilities of exposing models trained on cus-

tomer data to queries by an adversary. In a re-

cently proposed implementation of an auditing

tool for measuring privacy leakage from sensi-

tive datasets, more refined aggregates like the

Log-Loss scores are exposed for simulating in-

ference attacks as well as to assess the total

privacy leakage based on the adversary’s pre-

dictions. In this paper, we prove that this ad-

ditional information enables the adversary to

infer the membership of any number of dat-

apoints with full accuracy in a single query,

causing complete membership privacy breach.

Our approach obviates any attack model train-

ing or access to side knowledge with the adver-

sary. Moreover, our algorithms are agnostic

to the model under attack and hence, enable

perfect membership inference even for models

that do not memorize or overfit. In particular,

our observations provide insight into the extent

of information leakage from statistical aggre-

gates and how they can be exploited.

1 Introduction

Protecting customer privacy is of fundamental

importance when training ML models on sen-

sitive customer data. While explicit data de-

identification and anonymization mechanisms can

help protect privacy leakage to some extent, re-

search has shown that this leakage can hap-

pen when models trained on customer data can

be queried by an external entity (Homer et al.,

2008; Sankararaman et al., 2009; Li et al., 2013;

Shokri et al., 2017), or when statistical aggre-

gates on the dataset are exposed (Dwork and Naor,

2010; Dwork et al., 2017).

Recently, it was shown that the knowledge of

Log-Loss scores leaks information about true la-

bels of test datapoints under some constraints on

the prior knowledge on these labels (Whitehill,

2018). However, extracting meaningful infor-

mation from these aggregates on arbitrary large

datasets, while maintaining reasonable inference

accuracy in a limited number of queries to a Log-

Loss oracle remained an open problem, specially

in cases when no prior knowledge is available.

Moreover, the number of queries required by their

algorithm scales with the size of the test dataset.

We address this problem in this paper and provide

multiple algorithms for optimal inference of arbi-

trarily many test labels in a single query using the

exposed Log-Loss scores. This sheds insight into

the extent of information leakage from this statisti-

cal aggregate and how it can be exploited to game

a classification task, for example, in the context

of data-mining competitions like Kaggle, KDD-

Cup and ILSVRC Challenge (Russakovsky et al.,

2015).

More concretely, consider the following sce-

nario: you are tasked with a critical binary classifi-

cation problem. The quality of your solution will

be assessed through a performance score (Log-

Loss) on an unknown test dataset. If you score the

highest among all candidate solutions, then you

win a significant cash prize. You are allowed only

two attempts at the solution and the best of the two

scores will be considered.

Is it possible to game this system in a way that

your score is always the highest amongst all can-

didates, without even training any classifier?

We answer this in the affirmative by showing

that the knowledge of only the size of the test

dataset is enough to construct a scheme that can

game any binary classifier that uses the Log-Loss

metric to assess the quality of classification. This

scheme is completely agnostic of the underlying

classification task and hence, sheds light on how

a malicious modeller can fake a perfect classifier

by demonstrating zero test error. We assume that

the oracle reports the scores truthfully on the entire
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dataset.

A particularly interesting application of our ob-

servation is for breaching membership privacy,

where an attacker can query the model for infer-

ence on a set of datapoints and use these responses

to infer what datapoints were used to train that

model. Given blackbox access to a model and a

data point x, this attack model is a binary classi-

fier to infer the membership of x in the training

dataset of the target model using its output on x –

the more information this output reveals, the bet-

ter this inference can be performed. Consequently,

the accuracy of the attack depends on how well

the adversary can capture the difference in model

performance.

Nonetheless, the popularity of this attack has

made it a strong candidate for assessing privacy

leakage of models trained on datasets containing

sensitive information (Song and Shmatikov,

2019; Backes et al., 2016; Pyrgelis et al.,

2017; Salem et al., 2018; Liu et al., 2019;

Murakonda and Shokri, 2020). A successful

attack can compromise the privacy of the users

that contribute to the training dataset. Our results

show that an oracle access to Log-Loss scores (for

example, when using open source privacy auditors

on sensitive datasets (Murakonda and Shokri,

2020)) enables full privacy breach in a single

query.

1.1 Related Work

In recent work, (Blum and Hardt, 2015) demon-

strated how an attacker can estimate the test set

labels in a competition setting with probability

2/3. Similarly, and more related to our work,

(Whitehill, 2016, 2018) showed how the knowl-

edge of AUC and Log-Loss scores can be used

to make inference on similar test sets by issu-

ing multiple queries for these statistics. Our

work extends the latter to optimize the number

of queries. Similarly, through a Monte Carlo al-

gorithm, (Matthews and Harel, 2013) show how

knowing most of the test labels can help estimate

the remaining labels upon gaining access to an em-

pirical ROC curve. However, their algorithm is far

from exact inference with no apriori information

of the true labels.

We further observe that the theme of our work

is related to two fields of research: adaptive data

analysis, and protections of statistical aggregates

using Differential Privacy (DP). In adaptive data

analysis (Hardt and Ullman, 2014; Dwork et al.,

2015), an attacker leverages multiple (adaptive)

queries to sequentially construct a complete ex-

ploit (e.g., of a test set). Conversely, with DP

(Dwork et al., 2006) the objective is to protect the

aggregate statistics, such as those exploited by

(Whitehill, 2016), from leaking information.

1.2 Log-Loss Metric

We begin with reminding the reader of the defini-

tion of the Log-Loss metric on a given prediction

vector with respect to a binary labeling of the dat-

apoints in the test dataset (Murphy, 2012).

Definition 1 (Log-Loss). For a dataset D =
[d1, . . . , d|D|], let ℓ ∈ {0, 1}|D| be a binary la-

beling and x = [x1, . . . , x|D|] ∈ [0, 1]|D| be

a vector of prediction scores. Let g(ℓi, xi) =
ℓi loge xi + (1 − ℓi) loge(1 − xi). Then, the Log-

Loss (LL in short) for x with respect to ℓ is defined

as LL(x, ℓ) = − 1
|D|

∑|D|
i=1 g(ℓi, xi).

The definition easily generalizes for multi-class

classifiers. A common variant is to ignore the nor-

malization by |D|. Our constructions in this paper

are scale-invariant.

2 Algorithms for Exact Inference using

Log-Loss scores

In this section, we discuss multiple algorithms for

single shot inference of all ground-truth labels us-

ing carefully constructed prediction vectors that

help establish a 1-1 correspondence of the Log-

Loss scores with the labelings of the test dataset.

We, therefore, refer to the entity that performs

such an inference as an adversary.

2.1 Inference using Twin Primes

Our first algorithm uses twin-primes, i.e.

pairs of prime numbers within distance 2
of each other (see OEIS A001359 from

https://oeis.org/A001359.). It has been

conjectured that infinitely many such pairs ex-

ist (de Polignac, 1851; Dunham, 2013). For a

dataset of some finite size |D| ≥ 1, we require

|D| such pairs. The main steps of our approach

are outlined in Algorithm 1 and the following

theorem proves its correctness.

Theorem 1. If the Twin-Prime Conjecture holds,

then for any dataset D, the Log-Loss scores re-

turned by Algorithm 1 are in 1-1 correspondence

with the binary labelings for datapoints in D.

https://oeis.org/A001359


Algorithm 1: Inference on dataset D =
[d1, . . . , d|D|] using Twin Primes

Let 5 ≤ p1 < · · · < p|D| be a sequence of

(smallest) primes such that pi + 2 is also a

prime for all i. Form the prediction vector

for D as x =
[

p1
2+p1

, . . . ,
p|D|

2+p|D|

]

. Obtain

the Log-Loss on x and use that to infer the

ground-truth labels for D using Algorithm 2.

Proof. For a fixed D and labeling ℓ, it suffices to

show that −|D| · LL(x, ℓ) takes all unique val-

ues. From Definition 1, observe that the following

holds:

−|D|·LL(x, ℓ) = loge

(

2|D0|
∏

dj∈D1
pj

(2 + p1) · · · (2 + p|D|)

)

.

Now, fix any two labelings ℓ1 and ℓ2 for D. If

the number of zeros in them are different, then it

is easy to see that x will give different Log-Loss

scores on both of them, since the exponent of 2 in

the numerator will be different for these two label-

ings and all other prime numbers being odd in the

denominator, no common factors will exist to can-

cel this effect. If the number of zeros is the same,

then observe that:

|D| (LL(x, ℓ1)− LL(x, ℓ2)) = loge

∏

di∈D
(2)
1

pi
∏

dj∈D
(1)
1

pj
,

where D
(2)
1 is the set of datapoints with label 1 in

ℓ2 (similarly for D
(1)
1 ). Now, since ℓ1 and ℓ2 are

different, there must exist some index 1 ≤ k ≤
|D| for which ℓ1(k) = 0 and ℓ2(k) = 1. Thus,

pk will appear in the numerator but not in the de-

nominator. Moreover, since the denominator is

also a product of primes, it does not divide the

numerator in this case, and hence, the difference

LL(x, ℓ1)− LL(x, ℓ2) is non-zero.

As an example of this technique, assume |D| =
2. The primes we can use for this construction

are 5 and 11, so that the prediction vectors can

be set as v1 = [5/7, 2/7] and v2 = [11/13, 2/13].
Then, the following lists the log-loss values for the

prediction vector x∗ = [5/7, 11/13] (as per Algo-

Algorithm 2: True Labels from Log-Loss

Input: Log-Loss score s
Output: True Labels for datapoints in D
Let es|D| = p/q (lowest form) and

q = 2mp1 · · · pk. Find the set of

(zero-indexed) locations I of primes

p1 . . . pk in OEIS A001359. Construct the

labeling ℓ as follows: Insert 1 in indices

specified by I , and 0s elsewhere. Return ℓ.

rithm 1):

−2LL(x∗, [0, 0]) = loge
2

7
+ loge

2

13
= loge

4

91

−2LL(x∗, [0, 1]) = loge
2

7
+ loge

11

13
= loge

22

91

−2LL(x∗, [1, 0]) = loge
5

7
+ loge

2

13
= loge

10

91

−2LL(x∗, [1, 1]) = loge
5

7
+ loge

11

13
= loge

55

91

Our construction allows us to give an algorithm

to determine the true labeling from the Log-Loss

value, without having to consult a lookup table

(see Algorithm 2). This follows from Gauss’s Fun-

damental Theorem of Arithmetic (GFoA), that ev-

ery positive integer is either a prime or is uniquely

factorizable as a product of primes (Gauss, 1966).

We assume that the Log-Loss score s is reported

such that es|D| = p/q is a rational number in its

reduced form (i.e. with q 6= 0 and gcd(p, q) = 1),

and that, without loss of generality, the prediction

vector was constructed using the first |D| prime

numbers, as specified in Algorithm 1.

As an example, suppose on a dataset of size

3, the Log-Loss s is reported such that e3s =
1729/170. Note that this requirement of knowing

|D| is not necessary, since it is equal to the num-

ber of factors of the numerator of es|D|. Now, writ-

ing the denominator 170 = 21 × 5 × 17, we note

that there is 1 zero in the labeling, and the other

two labels are one. From OEIS A001359, we note

that 5 and 17 are the first and third prime numbers

in the series (when we start counting from 5), re-

spectively, and hence, the first and third datapoints

must have labels one. Thus, we have inferred that

the true labeling for D must be [1, 0, 1].

We acknowledge that the assumption of know-

ing es|D| in its reduced fraction form is equivalent

to assuming knowledge of s with infinite precision.

We defer this investigation to Section 3.



2.2 Extension to Multiple Classes

A similar construction can be used to infer all true

labels in a multi-class setting as well. For the One-

vs-All approach, then it is trivial to see that the

individual Log-Loss scores for each class reveal

datapoints from that class. For the K-ary classi-

fier approach (K being the number of classes), the

following construction works: Let p1, . . . , p|D| be

the first |D| primes. For datapoint di, use the fol-

lowing prediction vector:

vi =
[

1/αi, pi/αi, . . . , p
K−1
i /αi

]

,

where αi =
∑K−1

j=0 pji , thus, forming the predic-

tion matrix vD = [v1, . . . , v|D|]. Given the true

labels ℓ ∈ {1, . . . ,K}|D|, it can be shown that the

following holds:

−LL(vD, ℓ)+

K
∑

j=1

loge αj = loge p
ℓ1−1
1 · · · p

ℓ|D|−1

|D| .

This gives the required injection, since the sum on

the left is constant for fixed K and |D|, and the

product on the right is unique (following GFoA).

2.3 Inference using Binary Representations

In Algorithm 1, the main reason why we chose

distinct primes was that when the denominator

of es|D| was factorized, the prime factors would

uniquely define the locations of 1s in the binary

labeling. The same 1-1 correspondence can be

achieved by observing that the each binary label-

ing is also equivalent to a binary representation

(base 2) of a natural number (see Algorithm 3). By

using powers of 2 for only the indices correspond-

ing to locations of 1s in the binary labeling, when

the denominator is now factorized, it produces in

the exponent of the 2 an integer, whose binary rep-

resentation (when reversed) is exactly the same as

the labeling. This also helps eliminate the depen-

dence on the Twin Prime Conjecture. The follow-

ing theorem formally establishes this proof.

Theorem 2. For any dataset D, the Log-Loss

scores returned by Algorithm 3 are in 1-1 corre-

spondence with the labelings for datapoints in D.

Proof. Similar to the proof of Theorem 1, for a

fixed D and labeling ℓ, it suffices to show that d =
|D| · LL(x, ℓ) takes all unique values. Let I1 be

the set of indices in ℓ that have value 1. Now, since

Algorithm 3: Exact Inference using Binary

Representations

Form the prediction vector for

D = [d1, . . . , d|D|] as

x =
[

α1
1+α1

, . . . ,
α|D|

1+α|D|

]

, where αi = 22
i−1

.

Obtain the Log-Loss on x and use that to

infer the true labels for D.

xi =
22

i−1

1+22i−1 , we can write the following:

d =

|D|
∑

j=1

loge

(

1 + 22
j−1
)

−

∑

i∈I1
2i−1

log2 e
.

Thus, if LL(x, ℓ1) = LL(x, ℓ2) for two distinct

labelings ℓ1 and ℓ2, then from above, it is easy to

see that this can only happen when
∑

i∈I
(1)
1

2i−1 =
∑

i∈I
(2)
1

2i−1, where I
(j)
1 is the index set (similar to

I1) for labeling ℓj . Now, since every positive inte-

ger has a unique binary representation, this implies

that I
(1)
1 = I

(2)
1 , which can only happen when the

two labelings are the same. Moreover, note that

since powers of 2 are always even, the product in

the denominator of the equation above has no com-

mon factors with the numerator. Thus, each binary

labeling of x gives a unique Log-Loss score.

As an example, if the true labels for a dataset D
containing four datapoints are [1, 0, 1, 1], the expo-

nent of 2 can be the natural number represented

using the binary representation 1101, which is 13.

Similarly, if the exponent observed is, say 18, then

the corresponding binary representation is 10010,

and hence, the true labels must be [0, 1, 0, 0, 1].

3 Adapting to Fixed Precision Arithmetic

Can we design prediction vectors such that the

Log-Loss scores are atleast some ∆ apart from

each other, where ∆ is limited by the floating point

precision on the machine used to simulate our in-

ference algorithms?

For distinguishing scores with φ significant dig-

its, since there are a total of 10φ possible numeric

values, the threshold value of separation is ∆ ≥
10−φ. If the separation in the scores is smaller

than this value, then they cannot be distinguished.

Inverting this inequality gives φ ≥
⌈

log10
(

1
∆

)⌉

.
For example, if one wishes to have the scores sep-

arated by ∆ ≥ 0.2, then the minimum amount



of precision required is ⌈log10 5⌉ = 1. For ∆ =
0.002, we would need φ ≥ ⌈log10 500⌉ = 3 digits.

We can reduce the requirement of a large preci-

sion by combining the AUC and Log-Loss scores,

which is common in most practical situations

where multiple performance metrics are evaluated

to give a holistic overview of classifier inference.

This way, even if they are individually not-unique

but the tuple is unique for each labeling, exact

inference can be done. For example, consider a

dataset D = [d1, d2, d3] and the prediction vec-

tor v = [0.2, 0.4, 0.6]. Clearly, neither the AUC

scores nor the Log-Loss scores are unique. How-

ever, if we consider the two scores together, the

labels can be uniquely identified. Moreover, pre-

cision of only two significant digits is enough to

make this decision.

A rough analysis tells us that with φ significant

digits, there are 10φ(10φ + 1) possible unique val-

ues in the AUC-Log-Loss tuple (the +1 is to take

into account the case when AUC is Not-Defined).

Using the pigeonhole principle, for any dataset D
with |D| = n, a necessary condition for unique

inference is that 2n ≤ 10φ(10φ + 1), which

gives φ & ⌈0.151n⌉. Conversely, with a preci-

sion of φ significant digits, one can only hope to

uniquely identify labels for datasets of size at most
⌊

log2
(

10φ(10φ + 1)
)⌋

≤ 7φ.

We can recurse over the remaining points in the

database in this situation, for exact inference in

at most ⌈n/6φ⌉. For example, using the IEEE

754 double-precision binary floating-point format,

which has at least 15 digits precision, at most
⌈

|D|
90

⌉

queries suffice.

4 Exact Membership Inference Attacks

using a Log-Loss Oracle

Our observations provide insight into the extent

of information leakage from statistical aggregates

and how they can be exploited. A particularly in-

teresting application is designing stronger Mem-

bership Inference Attacks. These attacks were first

proposed to exploit the vulnerabilities of exposing

models trained on customer data to queries by an

adversary (Shokri et al., 2017).

In a recently open sourced implementation of an

auditing tool for measuring privacy leakage from

sensitive datasets (Murakonda and Shokri, 2020),

more refined aggregates like the Area Under the

ROC Curve (AUC) and Log-Loss scores are ex-

posed for simulating inference attacks as well as

to assess the total privacy leakage based on the ad-

versary’s predictions. In this threat model, our al-

gorithms demonstrate that this additional informa-

tion enables the adversary to improve its inference

accuracy and learn potentially sensitive informa-

tion about the distribution of data inside sensitive

datasets. The response to this query helps infer ex-

actly which datapoints were used for training.

There are multiple observations that one can

make about the Log-Loss based attack. First, the

adversary never queries the model under attack di-

rectly for prediction on any datapoints whatsoever.

This makes intuitive sense since the model does

not decide what specific data goes into its training.

Rather, it is the other way round. Second, the in-

teraction with the model curator is similar to the

interaction with the model interface in the attack

proposed by (Shokri et al., 2017) in that the adver-

sary seeks answers to queries that can help leak in-

formation about the training data. The only differ-

ence is the additional access to a Log-Loss oracle,

which helps make our attack purely deterministic.

5 Conclusion and Future Work

In this paper, we demonstrated how a single Log-

Loss query can enable exact inference of ground-

truth labels of any number of test datapoints. This

sheds light on how sensitive accuracy metrics can

be, even when they are computed on arbitrary

large datasets and do not intuitively seem to leak

any information.

An interesting question to ask is if other popular

metrics (like precision, recall, AUC) used in the

ML literature can be exploited for privacy leakage

in a similar manner. In (Whitehill, 2019), an AUC-

ROC oracle on the test dataset is used to deduce

the true labels in at most 2|D| queries. This opens

up opportunities to explore if exact inference on

all datapoints is possible with one AUC query.

Yet another interesting question to ask is if ex-

act inference is possible when the adversary learns

only a bound on or an approximate value in each

Log-Loss query it issues. Observe that by deciding

the size of the test dataset, the adversary also fixes

the number of possible values Log-Loss scores can

take. In a typical scenario where the adversary

has some prior knowledge about the amount by

which the reported score differs from the actual

value (see (Dwork et al., 2019) for an approach to

add noise to the reported scores), this discrete set

of possible scores can present a huge advantage –



the adversary can perform inference over the most

likely score under the constraint above. Nonethe-

less, a distribution over the labelings for the test

set can be learnt to bound the inference error.
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