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ODD DIAGRAMS, BRUHAT ORDER, AND PATTERN AVOIDANCE

FRANCESCO BRENTI, ANGELA CARNEVALE, AND BRIDGET EILEEN TENNER

Abstract. The odd diagram of a permutation is a subset of the classical diagram with
additional parity conditions. In this paper, we study classes of permutations with the same
odd diagram, which we call odd diagram classes. First, we prove a conjecture relating odd
diagram classes and 213- and 312-avoiding permutations. Secondly, we show that each odd
diagram class is a Bruhat interval. Instrumental to our proofs is an explicit description of
the Bruhat edges that link permutations in a class.

1. Introduction

Odd analogues of well-known combinatorial objects and statistics associated with permu-
tations (and, more generally, with Weyl and Coxeter group elements) have been recently
considered and studied (see, for instance, [3, 4, 5, 6, 7, 10, 13, 14, 15]). In particular, odd
analogues of permutation diagrams, called odd diagrams, were introduced and studied in [6].
It is well known that (classical) diagrams of permutations are in bijection with permuta-
tions themselves, and they capture interesting related features. For instance, the size of
the diagram of a permutation equals its number of inversions (that is, its length), and the
diagram constitutes a main tool in the definition of the Schubert variety associated with the
permutation. The odd diagram of a permutation is a subset of the diagram, its size equals
the number of odd inversions—its odd length, and can be used to define a corresponding odd

Schubert variety.
It is easy to see that odd diagrams are not in bijection with permutations. As we show

in this paper, however, when passing from diagrams to odd diagrams, we trade faithful
encodings of permutations for a rich combinatorial structure within each odd diagram class.
In this article, we carry out an in-depth analysis of these classes, relating them to well-studied
notions such as pattern avoidance and Bruhat order in symmetric groups.

The following is our first main result, which implies in particular [6, Conjecture 6.1].

Theorem A. Every odd diagram class contains at most one permutation avoiding the
pattern 213 and at most one avoiding 312. If these permutations exist, they are, respectively,
the maximum and the minimum elements of the class with respect to Bruhat order.

This is proved in Sections 3 and 5 (cf. Corollaries 3.4 and 5.3) as a consequence of a
detailed analisys of legal moves carried out in Section 4, and a certain notion of connectivity
within odd diagram classes.

Our second main result shows that odd diagrams partition each symmetric group in a
particularly pleasant way (see also Theorem 6.1).

Theorem B. The subset of Sn having a given odd diagram is a Bruhat interval.
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The characterization of legal moves and Theorem B imply that, with respect to the right
weak order, odd diagram classes exhibit the opposite behavior. Namely, in right weak order
each odd diagram class is an antichain (cf. Corollary 6.11).

The paper is organized as follows. In Section 2, we collected some notation, definitions
and preliminaries. The next sections focus on relationships between permutations having the
same odd diagram. Section 3 shows that the permutation patterns 213 and 312 are central
to understanding how this can occur. This sets the stage for Section 4, which develops a
method for traversing the permutations in an odd diagram class. Using those techniques in
Section 5 we complete the proof of Theorem A, resolving in particular the length conjecture
from [6]. We prove Theorem B in the last section. We show that each odd diagram class
has a unique Bruhat minimal and a unique Bruhat maximal element and we build on the
theory of legal moves to show that in an odd diagram class there is always a maximal chain
of elements within the class. We conclude the paper with some remarks and open questions
regarding the intervals arising from odd diagram classes.

2. Notation and preliminaries

For n ∈ N, we let Sn denote the symmetric group of degree n. We regard Sn as a Coxeter
group generated by the simple transpositions S = {(i i + 1) : i = 1, . . . n − 1}. The set of
reflections of Sn is T = {w−1sw : w ∈ Sn, s ∈ S} = {(a b) : 1 ≤ a < b ≤ n}. The Coxeter
length of a permutation w ∈ Sn is denoted ℓ(w). It is well known (see, e.g., [2, Proposition
1.5.2]) that

ℓ(w) = |{(i, j) ∈ [n]2 : i < j, w(i) > w(j)}|.

The Bruhat graph of Sn is the directed graph B(Sn) having Sn as its vertex set and
where, for u, v ∈ Sn, u → v if and only if v u−1 ∈ T and ℓ(u) < ℓ(v). We say that {u, v} is
a Bruhat edge if either u → v or v → u, and denote this by u ↔ v.

The Bruhat order on Sn is the partial order, which we denote by ≤, which is the transitive
closure of B(Sn). Unless explicitly stated, we always regard Sn as partially ordered by the
Bruhat order. We follow [12, Chapter 3] for notation and terminology concerning posets.
The following characterization of Bruhat order covering relations in the symmetric groups is
well known (see, e.g., [2, Lemma 2.1.4]) and will be repeatedly used in the sequel.

Proposition 2.1. Let u, v ∈ Sn. Then the following conditions are equivalent:

• u is covered by v in Bruhat order (written u ⊳ v);
• there are 1 ≤ i < j ≤ n such that v = u(i j), u(i) < u(j), and {k ∈ [n] : i < k <
j, u(i) < u(k) < u(j)} = ∅.

Recall that a permutation u ∈ Sn is said to contain the pattern α = α1 · · ·αk if there exist
1 ≤ i1 < · · · < ik ≤ n such that u(i1), . . . , u(ik) are in the same relative order as α1, . . . , αk.
A permutation u ∈ Sn is said to avoid the pattern α if it does not contain the pattern α. We
denote with Avn(α) = {u ∈ Sn : u avoids α} the set of permutations of degree n avoiding α.

We graph w = w(1) · · ·w(n) ∈ Sn using matrix coordinates: the point (i, w(i)) appears
in the ith row from the top of the grid and the w(i)th column from the left. We let G(w)
denote the graph of w.

Example 2.2. The permutation 41325 is graphed in Figure 1. Related objects appear in
Figures 2 and 3.
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Figure 1. G(41325).

The diagram D(w) of a permutation w is

D(w) := {(i, j) ∈ [n]2 : j < w(i), w−1(j) > i}.

The diagram can be seen by drawing lines to the south (legs) and to the east (arms) of each
point (i, w(i)) ∈ G(w), and keeping the empty boxes that remain (see Figure 2).

Figure 2. D(41325) consists of the four empty boxes.

The odd diagram of a permutation w, as defined in [6], is the subset of D(w) defined by

Do(w) := {(i, j) ∈ D(w) : i 6≡ w−1(j) (mod 2)}.

We will often mark the elements of Do(w) by stars ∗, and refer to them as such. The odd
diagram of 41325 ∈ S5 is depicted in Figure 3.

∗

∗

∗

Figure 3. Do(41325) consists of the three boxes that are marked by ∗s.

Let u, v ∈ Sn be such that u → v in the Bruhat graph, and set λ(u, v) := v u−1 ∈ T . If
(x0, . . . , xd) ∈ S

d
n is a saturated chain, then define

λ(x0, . . . , xd) := (λ(x0, x1), . . . , λ(xd−1, xd)) ∈ T d.

Let� be the lexicographic order on T , so (1 2) � (1 3) � · · · � (1n) � (2 3) � · · · � (n−1n).
We use the same notation for the lexicographic order on T d for any d ∈ N. Given two
saturated chains of the same length C1, C2 ∈ S

d
n, we write C1 � C2 and say that C1 is

lexicographically smaller than C2 if λ(C1) � λ(C2). It is well known, and easy to see (see, e.g.,
[2, Chapter 5, Exercise 20]), that � is a reflection order. (We refer the reader to, e.g., [2,
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§5.2], for the definition of and further information about reflection orderings.) A saturated
chain (x0, . . . , xd) ∈ S

d
n is increasing if λ(x0, x1) � · · · � λ(xd−1, xd).

3. Injectivity and permutation patterns

Permutations in Sn can be partitioned by their odd diagrams, and we will indicate that
two permutations are in the same class by ∼; that is, we write v ∼ w if Do(v) = Do(w).
We begin by noting that if two permutations have the same odd diagrams, then the leftmost
columns of their graphs must be the same.

Lemma 3.1. If v ∼ w then v−1(1) = w−1(1).

Proof. Because we are looking at the leftmost column of the (odd) diagrams, no boxes are
eliminated by arms. Therefore the lowest star in Do(v) = Do(w) sits directly north of the
leftmost point in the graphs of v and w. �

This enables us to prove something quite useful about permutations v ∼ w.

Theorem 3.2. If v ∼ w for v 6= w, then v has a 213-pattern and w has a 312-pattern, or
conversely.

Proof. Let k + 1 be minimal such that v−1(k + 1) 6= w−1(k + 1). By Lemma 3.1, k ≥ 1.
To ease notation, set

a := v−1(k) = w−1(k),

b := v−1(k + 1), and

c := w−1(k + 1).

So (a, k) ∈ G(v) ∩ G(w), while (b, k + 1) ∈ G(v) and (c, k + 1) ∈ G(w). Without loss of
generality, assume that b < c.

Because Do(v) = Do(w), the point (c− 1, k + 1) must lie in the arm of (c− 1, d) ∈ G(w)
for some d ≤ k. By minimality of k, we have that (c − 1, d) ∈ G(v), as well. Similarly, it
must also be the case that

v(c) > k + 1 and w(b) > k + 1.

From this we find the desired patterns. �

We illustrate the proof of Theorem 3.2 in Figure 4. Note that the point (a, k) ∈ G(v) ∩
G(w) is not needed for either of the patterns unless d = k.

A vincular permutation pattern is one in which pairs of letters may be required to ap-
pear consecutively. For example, the permutation 41325 contains the classical pattern 321
(demonstrated by the substring 432), but it does not contain the vincular pattern 32 1 be-
cause there is no occurrence of 321 in which the first two letters are consecutive. In this
language of vincular patterns, then, Theorem 3.2 actually shows a slightly stronger result.

Corollary 3.3. Suppose that v ∼ w for v 6= w. Then, without loss of generality, v has a
213-pattern and w has a 312-pattern such that

• these two patterns occupy the same positions in v and w,
• the value of the “2” is the same in each pattern, and
• G(v) and G(w) coincide at all points (a, b), for b less than that shared value of “2.”
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(c− 1, d)

(c, v(c))

(b, k + 1)

G(v)

(c− 1, d)

(c, k + 1)

(b, w(b))

G(w)

Figure 4. The graphs of the permutations v and w as described in the proof
of Theorem 3.2, showing a 213-pattern in v and a 312-pattern in w. The
graphs are identical to the left of the dashed line.

Theorem 3.2 also shows how the map w 7→ Do(w) behaves on pattern classes, suggesting
further significance to the patterns 213 and 312 that appear in the statement of the theorem,
and verifying the first part of Conjecture 6.1 of [6].

Corollary 3.4. (a) The map w 7→ Do(w) is injective on Avn(213). That is, if v 6= w
both avoid 213, then Do(v) 6= Do(w). Moreover, we can replace 213 by 213 in both
statements.

(b) The map w 7→ Do(w) is injective on Avn(312). That is, if v 6= w both avoid 312,
then Do(v) 6= Do(w). Moreover, we can replace 312 by 312 in both statements.

(c) For all other p with |Avn(p)| > 1, the map w 7→ Do(w) is not injective on Avn(p).

Let on := |{Do(v) : v ∈ Sn}| denote the number of distinct odd diagrams of permutations
in Sn. It follows from [8, Propositions 1 and 3] that the number of permutations in Avn(312)
is given by the nth Bell number Bn. Thus the previous result gives a lower bound for the
number of odd diagrams in degree n.

Corollary 3.5. Let n ∈ N. Then on ≥ Bn, where Bn is the nth Bell number.

The first values of the sequence {on}n∈N are: 1, 2, 5, 17, 70, 351, 2041, 13732, 103873,
882213 (cf. also [11, A335926]).

4. Legal moves

Definition 4.1. Two permutations v 6= v are connected by a Bruhat edge if they agree on
all but two values. A particular Bruhat edge v ↔ v is legal if v ∼ v. If v = vt ∼ v we will
also sometimes say that the transposition t is legal for v.

Because a transposition only changes the positions of two values in the permutation,
legality depends only on the non-overlapping portions of the points, arms, and legs that
were affected by that transposition.

Lemma 4.2. Consider a Bruhat edge v ↔ v where the points that move are as indicated
in red and blue in Figure 5. The Bruhat edge is legal if and only if none of the boxes that
include only red or only blue in Figure 5 belong to Do(v) or to Do(v).
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Proof. Whether or not any of the other points is included in an odd diagram is not impacted
by the points being swapped. �

Figure 5. In a Bruhat edge v ↔ v, the black arms and legs will arise for
both permutations, whereas the red points and segments appear for only one
permutation, and the blue points and segments only appear for the other.

The following result is fundamental in all that follows.

Theorem 4.3. Let v be a permutation and v := v (ij) for i < j. Set m := min{v(i), v(j)}
and M := max{v(i), v(j)}. The Bruhat edge v ↔ v is legal if and only if the following
requirements are met:

(R1) i and j have the same parity,
(R2) v(x) < m for all x ∈ {i+ 1, i+ 3, . . . , j − 1}, and
(R3) v(y) 6∈ [m,M ] for all y ∈ {j + 1, j + 3, . . .}.

Proof. As suggested by Lemma 4.2, we prove the result by checking three things: the square
marked by the blue point in the upper left of Figure 5, the squares marked by vertical
colored segments in that figure, and the squares marked by horizontal colored segments in
that figure.

• The upper-left square marked by the blue point will be in one (but not both) of the
odd diagrams for v and v if and only if (R1) is not met.

• For the vertical colored segments to contribute no elements to either odd diagram,
all boxes in those columns whose heights differ in parity to i (or j, by (R1)) must lie
in the arms of points that appear to the left of m in the graph. This is equivalent to
(R2).

• For the horizontal colored segments to contribute no elements to either odd diagram,
there can be no boxes in those rows that are an odd distance above points in the
graph. In light of (R2), this is equivalent to (R3).

Thus v ∼ v if and only if (R1), (R2), and (R3) are met. �

One impact of Theorem 4.3 is that if v ∼ v is a legal Bruhat edge, then v and v differ by
the change of a particular pattern.

Definition 4.4. Let v ↔ v be a (not necessarily legal) Bruhat edge. If the points in which
v and v they differ form the endpoints of a 213-pattern in one of the permutations and a

312-pattern in the other, then we call this a pattern swap, written v
◦

↔ v. The type of the

pattern swap for v is the pattern (213 or 312) in v that gets changed to make v.
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So, for example, 5431627 ↔ 3451627 is not a pattern swap, while 5431627 ↔ 5431726 is a
pattern swap of type 213 for 5431627 (and of type 312 for 5431726).

Corollary 4.5. If a Bruhat edge is legal, then it must be a pattern swap.

Proof. Suppose that v ↔ v is legal. By Theorem 4.3, (R1) and (R2) must be satisfied.
Maintaining the notation from the proof of that theorem, (R1) says that j ≥ i + 2, and
(R2) says that v(j − 1) = v(j − 1) < m. Thus, the values in positions {i, j − 1, j} form a

213-pattern in one of the permutations, and a 312-pattern in the other, so v
◦

↔ v. �

A pattern swap that results from a legal Bruhat edge will correspondingly be called a legal

pattern swap. A pattern swap v
◦

↔ v for which Do(v) 6= Do(v) is an illegal pattern swap.

The properties discussed in Corollary 3.3 are highly localized, and the permutations might
differ substantially otherwise. However, we can use these results to find much closer “neigh-
bors” to a permutation, staying within the same class.

Definition 4.6. Consider v ∼ w with v 6= w. Maintaining notation from Theorem 3.2, let
{

(b, k+1), (c−1, d), (c, v(c))
}

be the 213-pattern found in v, and let
{

(b, w(b)), (c−1, d), (c, k+

1)
}

be the corresponding 312-pattern found in w. Define permutations vw := v (b c) and

wv := w (b c). In other words, v
◦

↔ vw via the 213-pattern found in v during Theorem 3.2,

and w
◦

↔ wv via the 312-pattern found in w.

Example 4.7. Consider v = 5431627 and w = 7461325. Then vw = 5461327. Repeating
the process with u := vw and w produces uw = 7461325 = w.

Notice how the (classical) lengths of v and w compare to those of the permutations
described in Definition 4.6:

(1) ℓ(v) < ℓ(vw) and ℓ(w) > ℓ(wv).

These new permutations act as intermediaries, allowing us to travel between any two per-
mutations in the same odd diagram class.

Theorem 4.8. Suppose that v ∼ w with v 6= w. Then v ∼ vw and w ∼ wv.

Proof. We show that v ∼ vw. Maintain the notation of Theorem 3.2 and Definition 4.6.
Since v ∼ w, we have that b ≡ c (mod 2) (else (b, k + 1) ∈ Do(w) \ Do(v)). Also, v(x) <
k + 1 if x ∈ {b + 1, b + 3, . . . , c − 1} (otherwise w(x) > k + 1 by the minimality of k, so
(x, k + 1) ∈ Do(w) \Do(v)). Finally, v(x) /∈ [k + 2, v(c) − 1] if x ∈ {c + 1, c + 3, . . .} (else
(c, v(x)) ∈ Do(v) \ Do(w)). Hence, by Theorem 4.3, the Bruhat edge v ↔ vw is legal and
therefore v ∼ vw. The proof that w ∼ wv is similar. �

Note an interesting consequence of Definition 4.6 and Theorem 4.8.

Corollary 4.9. Consider permutations v ∼ w that agree for the first k, but not k+1, values
(that is, v−1(i) = w−1(i) for all i ≤ k, but not for i = k+1). Then the permutations vw and
w agree for the first k + 1 values, at least, as do wv and v.

From these results we see that the class of permutations with a given odd diagram is, in
a sense, connected.
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Definition 4.10. Let D be an odd diagram, and consider the set

Permn(D) := {w ∈ Sn : Do(w) = D}.

Define the class graph GD,n to have vertex set Permn(D), and an edge between vertices v
and v′ if v′ = vw for some permutation w ∈ Permn(D).

Corollary 4.11. The class graph GD,n is connected.

5. Consequences of legality

While legality implies that a Bruhat edge is a pattern swap, not all pattern swaps are legal.
In fact, as we show below, the potential for illegal pattern swaps is, in a sense, persistent in
a class.

Definition 5.1. If v has an illegal pattern swap of type π, then we say that the pattern
represented by π is an illegal pattern in v.

In other words, an illegal pattern is a 213- or 312-pattern in v for which the permutation
v′ obtained by swapping the left and right letters in the pattern, does not have the same odd
diagram as v.

Theorem 5.2. Suppose that v ∈ Sn has an illegal pattern of type π. Then all w ∼ v also
have illegal patterns of type π.

Proof. Set D := Do(v). We prove this result recursively, showing that if v has this property,
then every neighbor vw of v in the graph GD,n defined above also has this property. By
Corollary 4.11, this will prove the result.

Let 1 ≤ i < h < j ≤ n be the positions of the illegal pattern π in v.
We first check whether there is a vw with no illegal patterns of type π, in which v(i) = vw(i)

and v(j) = vw(j). If vw
◦

↔ v legally moved (h, v(h)), then for at least one of h′ ∈ {h ± 1},
we would have v(h′) < v(h) by (R2). Then

π′ :=
{

(

i, vw(i)
)

,
(

h′, vw(h
′)
)

,
(

j, vw(j)
)

}

is a pattern of type π in vw. If π is illegal because i 6≡ j (mod 2) then π′ is illegal in vw.
We may therefore assume that i ≡ j (mod 2). If there is x ∈ {i + 1, i + 3, . . . , j − 1} such
that v(x) > m and vw(x) 6= v(x) then vw = v(h x) so vw(h) > m and, since v ↔ vw is legal,
h ∈ {i+ 1, i+ 3, . . . , j − 1} so π′ is illegal for vw. Similarly, if there is y ∈ {j + 1, j + 3, . . .}
such that v(y) ∈ [m,M ] and vw(y) 6= v(y) then vw = v(h y) so vw(h) > m and we conclude
as above.

Now consider vw in which, without loss of generality, vw = v(i i′) for some i′ 6= i.
Suppose that (R1) is not met in v. To fix this, the point at height i must move legally to

form vw. By (R1), i and i′ have the same parity. Thus, in all but one case, we have that
{

(

I, vw(I)
)

,
(

h, vw(h)
)

,
(

j, vw(j)
)

}

is an illegal pattern of type π in vw, for at least one I ∈ {i, i′}, failing (R1). The only case

where this might not hold is when i < h < i′ and v(i′) < v(h). For v
◦

↔ vw to have been
legal, we must have had v(i+ 1) < min{v(i), v(i′)}, and thus

{

(

i, vw(i)
)

,
(

i+ 1, vw(i+ 1)
)

,
(

j, vw(j)
)

}
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is an illegal pattern of type π in vw, again failing (R1).
Now suppose that (R2) is not met in v. To fix this in vw, the point at height i must move

legally downward, below the lowest x ∈ {i + 1, i + 3, . . . , j − 1} for which v(x) ≥ m. The
only circumstances in which that swap would not violate (R2) mean that

{

(i, vw(i)), (h, v(h)), (j, v(j))
}

is an illegal pattern of type π in vw, again failing (R2).
Finally, suppose that (R3) is not met in v. In any legal Bruhat edge from v, we find that

{

(i, vw(i)), (j − 1, v(j − 1)), (j, v(j))
}

is an illegal pattern of type π in vw, again failing (R3). �

The notion of legal Bruhat edges introduced in Section 4 also allows us to resolve the
length conjecture [6, Conjecture 6.1] and conclude the proof of Theorem A.

Corollary 5.3.

(a) If v ∈ Permn(D) is 312-avoiding, then v ≤ u for all u ∈ Permn(D).
(b) If w ∈ Permn(D) is 213-avoiding, then w ≥ u for all u ∈ Permn(D).

Proof. Let u be a minimal (with respect to Bruhat order) element of {z ∈ Permn(D) : v 6≤ z}.
Then, by Theorem 3.2 and our hypothesis, v has a 213-pattern and u has a 312-pattern.
Thus uv < u (notation as in Definition 4.6) which contradicts the minimality of u since, by
Theorem 4.8, u ∼ uv. The proof of (b) is analogous. �

6. Odd diagram classes are Bruhat intervals

This section is devoted to proving the following result.

Theorem 6.1. LetD ⊂ [n]2 be an odd diagram. Then Permn(D) = [u, v] for some u, v ∈ Sn.

We prove Theorem 6.1 in three main steps. The first is to show that given an odd diagram
class, there exist one Bruhat-minimal and one Bruhat-maximal element in the class. Next,
we will show that the class contains a maximal chain between those two extreme elements.
Finally, we will use the “flip” operation of [1] to complete the argument.

For the rest of the paper, assume that |Permn(D)| ≥ 2. We start by showing that within
a class, each value k ∈ [n] can only appear in positions having the same parity.

Lemma 6.2. Let u, v ∈ Sn with u ∼ v. Then u−1(k) ≡ v−1(k) (mod 2) for all k ∈ [1, n].

Proof. Set D := Do(u) = Do(v). Since GD,n is connected by Corollary 4.11, we may assume
that u and v are connected by an edge. Hence there is w ∈ Permn(D), w 6= v such that
u = vw. This means that u = v(b c) for some b, c ∈ [n], and u ↔ v is a legal Bruhat edge.
Hence, by Theorem 4.3, b ≡ c (mod 2).

Thus u−1(i) ≡ v−1(i) (mod 2) for all i ∈ [n], as desired. �

Note that the lemma implies, in particular, that we can talk about “admissible parity” of
a column of the graph of a permutation in a class.

Definition 6.3. Fix an odd diagram D. Let the kth column be labeled εk ∈ {0, 1} according
to the parity of w−1(k) for some (every, by Lemma 6.2) permutation w ∈ Permn(D). An
arbitrary permutation v has admissible parity if v−1(k) ≡ εk (mod 2) for all k.
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We exploit this notion in the next theorem to construct, starting from any permutation,
the unique minimal element of its odd diagram class. The idea is to define a “smallest”
permutation with the given odd diagram.

Theorem 6.4. Fix an odd diagram D. There exists u ∈ Permn(D) such that, for all
w ∈ Permn(D), u ≤ w in Bruhat order.

Proof. Based on the odd diagram D, we will construct the permutation u by placing dots
(points in the graph of u) in each column, from left to right. For each new column, we place
a dot in the highest empty cell which does not have a star below it or to the right, and which
has no dots already placed to its left, and which has admissible parity.

Consider an arbitrary w ∈ Permn(D). In order to show that the desired u exists, we will
construct a sequence of permutations w = w1, w2, . . . , wn such that

(i) wk+1 ≤ wk in Bruhat order,
(ii) w−1

k+1
(i) = w−1

k (i) for all i, except for (at most) two values of i ∈ [k + 1, n], and
(iii) wk ∼ wk+1.

Developing w2, w3, . . . , wn will be based on the data of D, not of w. The only feature of w
which could be considered relevant is w−1(1), but Lemma 3.1 means that this is forced by
D itself.

Consider k ≥ 1 and assume w1, . . . , wk have already been defined. Set ik+1 = max{i ∈
[n] : (i, k + 1) ∈ D} if the latter set is non-empty, and ik+1 = 0 otherwise. Let Ak+1 be the
set of r ∈ [n] such that:

• r > ik+1,
• r ≡ εk+1 (mod 2),
• (r, s) /∈ D if k + 1 < s ≤ n, and
• r /∈ {w−1

k (i) : i ∈ [k]}.

Informally, Ak+1 is the set of admissible positions for an element in column k + 1 of the
graph of a permutation equivalent to wk, and for which the values 1, . . . , k have the same
positions that they had in wk. In particular, w−1

k (k + 1) ∈ Ak+1, so this set is non-empty.
Let b = minAk+1. If b = w−1

k (k+1) then wk+1 := wk. Otherwise, set c := w−1

k (k+1). By
definition, b < c and b ≡ c (mod 2). We set wk+1 := wk(b c). It is clear that wk+1 satisfies
properties (i) and (ii). To show that wk+1 ∼ wk it is enough to show that (b c) is a legal
transposition for wk, using Theorem 4.3.

• (R1) follows from the parity condition in Ak+1.
• (R2) translates to showing that wk(x) < wk(c) for all x ∈ {b + 1, b + 3, . . . , c − 1}.
Indeed, if wk(x) > wk(c) = k + 1 for such an x then (x, k + 1) ∈ D, which would
contradict the maximality of ik+1.

• (R3) translates to showing that wk(y) /∈ [wk(c), wk(b)] for all y ∈ {c+1, c+3 . . .}. If,
instead, wk(y) ∈ [wk(c), wk(b)] then (b, wk(y)) ∈ D, which would contradict b ∈ Ak+1.

Therefore wk+1 ∼ wk.
The last permutation of the sequence u := wn is the minimal element of Permn(D). �

An analogue of the above result can be used to construct the maximal permutation in a
class, as stated in the following.

Theorem 6.5. Fix an odd diagram D. There exists v ∈ Permn(D) such that, for all
w ∈ Permn(D), v ≥ w in Bruhat order.
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∗ ∗ ∗
∗

∗ ∗

∗

(a) G(w) and Do(w)

∗ ∗ ∗
∗

∗ ∗

∗

(b) Admissible positions

∗ ∗ ∗
∗

∗ ∗

∗

(c) Min (◦) and max (�)

Figure 6. Building the minimal and maximal elements of Perm7(Do(7461325)).

Proof. The proof follows similar lines to those of Theorem 6.4. Here the idea is to construct
the maximal element by choosing, in every column, the largest admissible position. Keeping
notation as in Theorem 6.4, we define the sequence of permutations w1, . . . , wn such that

(i) wk+1 ≥ wk in Bruhat order,
(ii) w−1

k+1
(i) = w−1

k (i) for all i, except for (at most) two values of i ∈ [k + 1, n], and
(iii) wk ∼ wk+1.

At each step wk+1 is defined as in Theorem 6.4 except here we take b = maxAk+1. Arguing
as in the previous theorem shows that v := wn is the maximal element of Permn(D). �

We demonstrate these results with an example.

Example 6.6. Let w = 7461325 ∈ S7. The graph G(w) and odd diagram D = Do(w)
are depicted in Figure 6(a). Figure 6(b) illustrates a step in the construction of the mini-
mal element of Perm7(D). The shaded grey cells are the admissible positions in the third
column (A3 in the proof of Theorems 6.4 and6.5). Figure 6(c) depicts the graphs of the
minimal (5431627, whose graph is represented by ◦) and maximal (7461523, whose graph is
represented by �) elements in the class. Perm7(D) is a Bruhat interval of size 18 and rank 5.

Theorems 6.4 and 6.5 imply that the minimal (“bottom”) and maximal (“top”) elements,
u and v, of the class are unique and that Permn(D) ⊆ [u, v].

We now show that given an odd diagram class Permn(D) and its bottom and top elements
u and v, there is a maximal chain (in Bruhat order) from u to v of elements within the class.
We start by showing that given any permutation w 6= v, we can always find an element of
Permn(D) covering w. We will sometimes call such a permutation a legal cover of w.

Proposition 6.7. Let w ∈ Sn and D = Do(w). Let the bottom and top elements of
Permn(D) be u and v, respectively. Then there exists a maximal chain of elements in the
class Permn(D) connecting u to v.

Our proof will rely on the following.

Lemma 6.8. Let v denote the top element of Permn(D) and assume w 6= v. Then there
exists a transposition t such that w ↔ wt is a legal Bruhat edge and w ⊳ wt.

Proof. Since w ∼ v and w 6= v, Definition 4.6 and Theorem 4.8 ensure that there exists
wv ∼ w which is obtained from w by applying a single (legal) transposition, say r. If k is
the minimum column index in which w and v differ, then r = (b c), where b = w−1(k) and
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c = v−1(k). Since (b c) is legal for w, b ≡ c (mod 2). Since v is the longest element of the
class, ℓ(vw) < ℓ(v) and therefore ℓ(wv) > ℓ(w) so b < c. If ℓ(wv)− ℓ(w) = 1 we are done.

If ℓ(wv)− ℓ(w) > 1, that is ℓ(wv)− ℓ(w) ≥ 3, then w(c) = k + i for some i ≥ 2, c− b ≥ 2
and there exists j ∈ [k + 1, k + i − 1] such that d := w−1(j) ∈ [b + 1, c − 1]. At the
level of the graph G(w) this means that the points (b, w(b)) and (c, w(c)) are sufficiently far
away from each other and that there is at least one point of the graph inside the rectangle
they determine. Let m := min{d ∈ [n] : (d, w(d)) ∈ [b + 1, c − 1] × [k + 1, k + i − 1]} so
(m,w(m)) is the “highest” such dot. We claim that t = (bm) is a legal transposition for w
such that w ⊳ wt. The transposition (b c) is legal for w, so, by Theorem 4.3 w(x) < w(b)
for all x ∈ {b + 1, b + 3, . . . , c − 1}. Since w(b) < w(m) this implies that m ≡ b (mod 2),
showing that both (R1) and (R2) from Theorem 4.3 hold. Finally, conditions (R2) and
(R3) for w ↔ w(b c) imply that w(y) < w(b) if y ∈ {m + 1, m + 3, . . . , c − 1} and that
w(y) /∈ [w(b), w(m)] if y ∈ {c+ 1, c+ 3, . . .} so (R3) holds for w ↔ w(bm).

Clearly, by minimality of m, the transposition t is also such that w ⊳ wt. This proves
the result. �

Proof of Proposition 6.7. Our result follows by repeated application of Lemma 6.8 noting
that, since wt ∈ Permn(D), wt ≤ v by Theorem 6.5. �

We now show that any saturated 3-chain in an odd diagram class completes to a square
in the same class.

Proposition 6.9. Let D be an odd diagram, with x ⊳ y ⊳ z all in Permn(D). Then
[x, z] ⊆ Permn(D).

Proof. It is well known (see, e.g., [2, Lemma 2.7.3]) that [x, z] is isomorphic, as a poset, to
a Boolean algebra of rank 2.

Write y = x(a b) for some a < b and z = y(c d) for some c < d. We claim that at least
one of the following holds:

(1) the transposition (c d) is legal for x and x ⊳ x(c d);
(2) the transposition (a b) is legal for z and z(a b) ⊳ z.

We need to consider several cases, depending on |{a, b, c, d}|, parities, and the relative order
of positions and values involved in the transpositions.

Case 1: Suppose |{a, b, c, d}| = 4, that is (a b) and (c d) commute. We claim that in this
case (c d) is a legal transposition for x such that w := x(c d) covers x. Clearly, the
parity condition (R1) from Theorem 4.3 holds. By our assumption, x(a) < x(b) and
x(c) < x(d). To show that x ↔ w is a legal Bruhat edge, we need to show that (R2)
and (R3) hold.

• If a ≡ c (mod 2) then x, y, w and z coincide in all positions i ∈ [n] with i 6≡ a
(mod 2). But these are the only values involved in the requirements for the
legality of the relevant moves. So (R2) and (R3) for y ↔ z imply the analogous
conditions for x ↔ w independently of the relative order of a, b, c and d. The
fact that y ⊳ z easily implies that x ⊳ w.

• For a 6≡ c (mod 2), we will consider a < c (all other cases work similarly).
If a < b < c < d then clearly (R2) and (R3) hold for y ↔ z if and only if they
hold for x ↔ w, since positions and values involved in the swaps are the same.
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The case in which the two transpositions interlace, that is a < c < b < d, cannot
occur. Indeed, for (a b) to be legal for x, x(c) < x(a) should hold, and for (c d)
to be legal for y, x(b) < x(c) should hold.
Finally, suppose a < c < d < b. Our assumptions and condition (R2) for x ↔ y
imply x(c) < x(d) < x(a) < x(b). This in turn shows that both (R2) and (R3)
hold for x ↔ w in this case as well. It is easy to see that x ⊳ w.

Case 2: Suppose |{a, b, c, d}| = 3. We want to show that at least one of x ⊳ x(c d) or
z(a b) ⊳ z is a legal cover. The parity condition is clearly always satisfied in this
case.
Suppose a < b = c < d. By assumption, we have x(a) < x(b) and x(a) < x(d)

(since x ≤ y ≤ z).
• If x(a) < x(b) < x(d), then (R2) and (R3) for y ↔ z imply (R2) and (R3) for x ↔
x(c d). This is because min{x(a), x(d)} < min{x(b), x(d)} and max{x(b), x(d)} =
max{x(a), x(d)}. Moreover, y ⊳ z easily implies x ⊳ x(b d).

• If x(a) < x(d) < x(b) then we claim that z is a legal cover of z(a b), or, equiva-
lently, that x ↔ x(a d) is legal and x(a d)✄x. We show the latter. Condition (R2)
for x ↔ y and for y ↔ z implies x(i) < x(a) for all i ∈ {a+ 1, a+ 3, . . . , d− 1};
that is, (R2) holds for x ↔ x(a d). Similarly, condition (R3) for y ↔ z implies
(R3) for x ↔ x(a d). The statement about the length follows from the fact that
x✁ y ✁ z.

The proof of all other cases is analogous, and is therefore omitted. �

Let C := (x0, . . . , xd) be a saturated chain. Let i ∈ [d− 1], and let yi ∈ Sn be the unique
element such that xi−1 ✁ yi ✁ xi+1 and yi 6= xi. Following [1, §6] we define the flip of C at i
to be

flipi(C) := (x0, . . . , xi−1, yi, xi+1, . . . , xd).

Note that flipi(flipi(C)) = C. The following result is essentially known. However, for lack of
an adequate reference, and for completeness, we include its proof here.

Proposition 6.10. Let u, v ∈ Sn, u ≤ v. Then any two maximal chains in [u, v] are related
by a sequence of flips.

Proof. It is well known (see, e.g., [9, Proposition 4.3]) that there is a unique increasing
maximal chain Z in [u, v], and that it is lexicographically first among all maximal chains
in [u, v]. Let C = (x0, . . . , xd) be a maximal chain in [u, v]. It is enough to show that C
and Z are connected by a sequence of flips. We prove this by induction on the number of
maximal chains that are lexicographically smaller than C. If C 6= Z then there is i ∈ [d− 1]
such that λ(xi−1, xi) ≻ λ(xi, xi+1). Let (x0, . . . , xi−1, yi, xi+1, . . . , xd) := flipi(C). Then,
since in [xi−1, xi+1] there is a unique increasing maximal chain, λ(xi−1, yi) ≺ λ(yi, xi+1), and
since this increasing maximal chain is lexicographically first among all maximal chains in
[xi−1, xi+1], λ(xi−1, yi) ≺ λ(xi−1, xi). Hence flipi(C) is lexicographically smaller than C, and
this concludes the proof. �

Proof of Theorem 6.1. By Theorems 6.4 and 6.5, there exist u, v ∈ Permn(D) such that
Permn(D) ⊆ [u, v]. By Proposition 6.7 there is a maximal chain C in [u, v] such that
C ⊆ Permn(D). By Proposition 6.9 the flip of any maximal chain in [u, v] that is contained
in Permn(D) is still contained in Permn(D). Hence, by Proposition 6.10, all maximal chains
in [u, v] are contained in Permn(D), so [u, v] ⊆ Permn(D). �
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Figure 7. The partition of the symmetric group S4 into odd diagram classes.
Solid edges connect permutations within an odd diagram class. Each class in
S4 is either a singleton or a rank 1 Bruhat interval.

Figure 7 shows the partition of S4 into Bruhat intervals arising as odd diagram classes.

We conclude with a curious consequence of Theorem 6.1 that is, in a sense, dual to it, and
with a conjecture. It is clear from the parity condition in Theorem 4.3 that no legal cover
in Bruhat order is a covering relation in right weak order, as these are given by adjacent
transpositions. Theorem 6.1 has the following stronger consequence.

Corollary 6.11. Every odd diagram class Permn(D) is an antichain in right weak order.

Computations with SageMath [16] suggest that few isomorphism types of Bruhat intervals
arise as odd diagram classes. Moreover, based on evidence for n ≤ 10, we formulate the
following.

Conjecture 6.12. Permn(D) is rank-symmetric for any odd diagram D.

Bruhat intervals arising as odd diagram classes are not, however, self-dual in general. For
example, if D = {(1, 1), (1, 2), (1, 3), (1, 5), (2, 4), (3, 1), (3, 2), (3, 3), (5, 2), (5, 3), (7, 3)} and
n = 9 then Perm9(D) = [654172839, 958172634] and one can check that this interval is not
self-dual.
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