RIGID COMMUTATORS AND A NORMALIZER CHAIN

RICCARDO ARAGONA, ROBERTO CIVINO, NORBERTO GAVIOLI, AND CARLO MARIA SCOPPOLA

Abstract

The novel notion of rigid commutators is introduced to determine the sequence of the logarithms of the indices of a certain normalizer chain in the Sylow 2-subgroup of the symmetric group on 2^{n} letters. The terms of this sequence are proved to be those of the partial sums of the partitions of an integer into at least two distinct parts, that relates to a famous Euler's partition theorem.

Introduction

In a recent paper [ACGS20], the authors observed a rather surprising coincidence between the sequence of integers

$$
1,2,4,7,11,16,23,32,43,57 \ldots
$$

representing the partial sums of the famous sequence $\left\{b_{j}\right\}$ of the number of partitions of the integer j into at least two distinct parts, already studied by Euler [Eul48], and a sequence of group-theoretical invariants. Our sequence arises in connection with a problem in algebraic cryptography, namely the study of the conjugacy classes of affine elementary abelian regular subgroups of the symmetric group on 2^{n} letters [CDVS06, CCS17, ACGS19]. This is relevant in the cryptanalysis of block ciphers, since it may trigger a variation of the well-known differential attack [BS91]: a statistical attack which allows to recover information on the secret unknown key by detecting a bias in the distribution of the differences on a given set of ciphertexts when the corresponding plaintext difference is known. In particular, if \mathbb{F}_{2}^{n} serves as the message space of a block cipher (see e.g. [DR13]) which has been proven secure with respect to differential cryptanalysis [NK95] and if T represents the translation group on \mathbb{F}_{2}^{n}, any conjugate of T can be potentially used to define new alternative operations on \mathbb{F}_{2}^{n} for a successful differential attack [CBS19]. In [ACGS20], on the basis of the aforementioned interest, the authors studied a chain of normalizers, which begins with the normalizer N_{n}^{0} of T in a suitable Sylow 2 -subgroup Σ_{n} of $\operatorname{Sym}\left(2^{n}\right)$ and whose i-th term N_{n}^{i} is defined as the normalizer in Σ_{n} of the previous one. After providing some experimental as well as theoretical evidence, the authors conjectured [ACGS20, Conjecture 1] the number $\log _{2}\left|N_{n}^{i}: N_{n}^{i-1}\right|$ to be independent of n for $1 \leq i \leq n-2$, and to be equal to the

[^0]$(i+2)$-th term of the sequence of the partial sums of the sequence $\left\{b_{j}\right\}^{1}$ previously mentioned [OEI, https://oeis.org/A317910].

In this paper we completely settle this conjecture. The first attempts to solve this problem were based on theoretical techniques which clashed with their own growing computational complexity. For this reason, we develop here a novel framework to approach the problem from a different point of view. In this new approach, indeed, we take into account both the imprimitivity and the nilpotence of the Sylow 2-subgroup Σ_{n} to represent its elements in terms of a special family of left-normed commutators, that we call rigid commutators, in a fixed set of generators. Any such commutator $[X]$ can be identified with a subset X of $\{1, \ldots, n\}$. The subgroups of Σ_{n} that can be generated by rigid commutators are called here saturated subgroups. A careful inspection led us to prove that the normalizers N_{n}^{i} are saturated subgroups. In particular, a set of generators of N_{n}^{i} can be obtained from a set of generators of N_{n}^{i-1} by adding the rigid commutators of the form $[X]$ for all X such that the elements of the complementary set of X in $\{1, \ldots, k\}$, where $k=\max X \leq n$, yield a partition of $i+2-n+k$ into at least two distinct parts. This is the key to prove the conjecture.

The advantage of adopting rigid commutators is twofold. In the first place, they prove to be handy in calculations with the use of the rigid commutator machinery, a dedicated set of rules which we develop in this paper. Secondly, rigid commutators can be seen as factors in a unique factorization formula for the elements of any given saturated subgroup. This representation is crucial in showing that the normalizers N_{n}^{i} are saturated. By means of this result and of the machinery, we derive an algorithm which efficiently computes the normalizer chain.

The paper is organized as follows: in Section 1 some basic facts on the Sylow 2-subgroup Σ_{n} of $\operatorname{Sym}\left(2^{n}\right)$ are recalled. Section 2 is totally devoted to the introduction and the study of rigid commutators and to the construction of the rigid commutator machinery. In Section 3 the rigid commutator machinery is used to prove the conjecture on the normalizer chain previously mentioned [ACGS20, Conjecture 1]. In Section 4 it is shown that each term of the normalizer chain is a saturated group and an efficient procedure to determine the rigid generators of the normalizers is derived. An explicit construction of the normalizer chain in a specific case is provided in Section 5, and some open problems arising from computational evidence are discussed. Finally, some hints for future investigations are presented in Section 6.

1. The Sylow 2 -Subgroup of $\operatorname{Sym}\left(2^{n}\right)$

Let n be a non-negative integer. We start recalling some well-known facts about the Sylow 2 -subgroup Σ_{n} of the symmetric group on 2^{n} letters.

[^1]

Figure 1. The action of Σ_{n} on the subtree $\bigcup_{i=0}^{n} \mathcal{T}_{i}$.

Let us consider the set

$$
\mathcal{T}_{n}=\left\{w_{1} \ldots w_{n} \mid w_{i} \in\{0,1\}\right\}
$$

of binary words of length n, where \mathcal{T}_{0} contains only the empty word. The infinite rooted binary tree \mathcal{T} is defined as the graph whose vertices are $\bigcup_{j \geq 0} \mathcal{T}_{j}$ and where two vertices, say $w_{1} \ldots w_{n}$ and $v_{1} \ldots v_{m}$, are connected by an edge if $|m-n|=1$ and $w_{i}=v_{i}$ for $1 \leq i \leq \min (m, n)$. The empty word is the root of the tree and it is connected with both the two words of length 1 .
We can define a sequence $\left\{s_{i}\right\}_{i \geq 1}$ of automorphisms of this tree. Each s_{i} necessarily fixes the root, which is the only vertex of degree 2 . The automorphism s_{1} changes the value w_{1} of the first letter of every non-empty word into $\bar{w}_{1} \stackrel{\text { def }}{=}\left(w_{1}+1\right) \bmod 2$ and leaves the other letters unchanged. If $i \geq 2$, we define

$$
\left(w_{1} \ldots w_{n}\right) s_{i} \stackrel{\text { def }}{=} \begin{cases}\text { empty word } & \text { if } n=0 \tag{1.1}\\ w_{1} \ldots \bar{w}_{i} \ldots w_{n} & \text { if } n \geq i \text { and } w_{1}=\cdots=w_{i-1}=0 \\ w_{1} \ldots w_{n} & \text { otherwise }\end{cases}
$$

In general, s_{i} leaves a word unchanged unless the word has length at least i and the letters preceding the i-th one are all zero, in which case the i-th letter is increased by 1 modulo 2 . If $i \leq n$ and the word $w_{1} \ldots w_{n} \in \mathcal{T}_{n}$ is identified with the integer $1+\sum_{i=1}^{n} 2^{n-i} w_{i} \in\left\{1, \ldots, 2^{n}\right\}$, then s_{i} acts on \mathcal{T}_{n} as the the permutation whose cyclic decomposition is

$$
\prod_{j=1}^{2^{n-i}}\left(j, j+2^{n-i}\right)
$$

which has order 2 . In particular, the group $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ acts faithfully on the set \mathcal{T}_{n}, whose cardinality is 2^{n}, as a Sylow 2 -subgroup Σ_{n} of the symmetric group $\operatorname{Sym}\left(2^{n}\right)$ (see also Fig. 1).

It is also well known that

$$
\Sigma_{n}=\left\langle s_{n}\right\rangle\left\langle\Sigma_{n-1}=\left\langle s_{n}\right\rangle\left\langle\cdots \imath\left\langle s_{1}\right\rangle \cong \imath_{i=1}^{n} C_{2}\right.\right.
$$

is the iterated wreath product of n copies of the cyclic group C_{2} of order 2 .
The support of a permutation is the set of the letters which are moved by the permutation. We say that two permutations σ and τ are disjoint if they have disjoint supports; two disjoint permutations always commute.

The closure

$$
S_{i} \stackrel{\text { def }}{=}\left\langle s_{i}\right\rangle^{\left\langle s_{1}, \ldots, s_{i}\right\rangle}
$$

is generated by disjoint conjugates of s_{i}, hence S_{i} is an elementary abelian 2-group which is normalized by S_{j} if $j \leq i$. Moreover, $\Sigma_{n}=S_{1} \ltimes \cdots \ltimes S_{n} \cong \Sigma_{n-1} \ltimes S_{n}$.

2. Rigid commutators

The commutator of two elements h and k in a group G is defined as $[h, k] \stackrel{\text { def }}{=}$ $h^{-1} k^{-1} h k=h^{-1} h^{k}$. The left-normed commutator of the m elements $g_{1}, \ldots, g_{m} \in G$ is the usual commutator if $m=2$ and is recursively defined by

$$
\left[g_{1}, \ldots, g_{n-1}, g_{m}\right] \stackrel{\text { def }}{=}\left[\left[g_{1}, \ldots, g_{m-1}\right], g_{m}\right]
$$

if $m \geq 3$. It is well known that the commutator subgroup G^{\prime} of a finitely generated nilpotent group G can be generated by left-normed commutators involving only generators of G [Hup67, III.1.11]. From now on, we will focus on left-normed commutators in s_{1}, \ldots, s_{n}. For the sake of simplicity, we write $\left[i_{1}, \ldots, i_{k}\right]$ to denote the left-normed commutator $\left[s_{i_{1}}, \ldots, s_{i_{k}}\right.$], when $k \geq 2$, and we also write $[i]$ to denote the element s_{i}.
Definition 1. A left-normed commutator $\left[i_{1}, \ldots, i_{k}\right]$ is called rigid, based at i_{1} and hanging from i_{k}, if $i_{1}>i_{2}>\cdots>i_{k}$. Given a subset $X=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$ such that $i_{1}>i_{2}>\cdots>i_{k}$, the rigid commutator indexed by X, denoted by $[X]$, is the left-normed commutator $\left[i_{1}, \ldots, i_{k}\right]$. We set $[X] \stackrel{\text { def }}{=} 1$ when $X=\emptyset$. The set of all the rigid commutators of Σ_{n} is denoted by \mathcal{R} and we let $\mathcal{R}^{*} \stackrel{\text { def }}{=} \mathcal{R} \backslash\{[\emptyset]\}$.

At the end of this section we prove that every permutation in the Sylow 2subgroup Σ_{n} can be expressed, in a unique way, as a product of the objects previously defined. To this purpose, we develop below a set of rules to perform computations with (rigid) commutators.
2.1. Rigid commutator machinery. Let $1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n$ be integers and let us consider the commutator $\left[i_{1}, \ldots, i_{k}\right]$. The following facts are easily checked.

Fact 1. Denoting by $i=\max \left\{i_{1}, \ldots, i_{k}\right\}$, the commutator $\left[i_{1}, \ldots, i_{k}\right]$ is a product of conjugates of s_{i} by way of elements in $\left\langle s_{i_{1}}, \ldots, s_{i_{k}}\right\rangle$ and thus it belongs to S_{i}. Any two such conjugates commute, since they belong to the same S_{i}.

Fact 2. As a direct consequence of Fact 1, if $\max \left\{i_{1}, \ldots, i_{k}\right\}=\max \left\{j_{1}, \ldots, j_{l}\right\}$ then $\left[i_{1}, \ldots, i_{k}\right]$ and $\left[j_{1}, \ldots, j_{l}\right]$ commute.
Note that if $g \in S_{i}$ and $h \in S_{j}$, then $[g, h] \in S_{k}$, where $k=\max \{i, j\}$, so $[g, h]^{2}=1$ since S_{k} is elementary abelian. It follows that $[g, h, h]=[g, h]^{2}[g, h, h]=\left[g, h^{2}\right]=$ $[g, 1]=1$. As a consequence we have:
Fact 3. If $k \geq 2$ and $i_{j}=i_{j+1}$ for some $1 \leq j \leq k-1$, then $\left[i_{1}, \ldots, i_{k}\right]=1$.

The following result is crucial since it allows us to rewrite every commutator as a rigid commutator.

Lemma 2. Let $k \geq 2$ and $l \geq 1$ be integers. If

$$
c \stackrel{\text { def }}{=}\left[\left[i_{1}, \ldots, i_{k}\right],\left[j_{1}, \ldots, j_{l}\right]\right]
$$

is the commutator of the two rigid commutators $\left[i_{1}, \ldots, i_{k}\right]$ and $\left[j_{1}, \ldots, j_{l}\right]$, then
(1) the order of c divides 2 , so $c=\left[\left[j_{1}, \ldots, j_{l}\right],\left[i_{1}, \ldots, i_{k}\right]\right]$;
(2) if $i_{1}=j_{1}$, then $c=1$;
(3) if $l \geq 2$ and $i_{k}>j_{l}$, then j_{l} can be dropped, i.e.

$$
c=\left[\left[i_{1}, \ldots, i_{k}\right],\left[j_{1}, \ldots, j_{l-1}\right]\right] ;
$$

(4) if $i_{1}>j_{1},\left\{i_{1}, \ldots, i_{k}\right\} \cap\left\{j_{1}, \ldots, j_{l}\right\}=\emptyset$, and $s \stackrel{\text { def }}{=} \max \left\{h \mid i_{h}>j_{1}\right\}$, then

$$
c=\left[i_{1}, \ldots, i_{s}, j_{1}\right]
$$

(5) if $l \geq 2$ and $i_{k}=j_{l}$, then

$$
c=\left[\left[i_{1}, \ldots, i_{k-1}\right],\left[j_{1}, \ldots, j_{l-1}\right], j_{l}\right] ;
$$

(6) if $i_{s}>j_{1} \geq i_{s+1}$, then

$$
c=\left[i_{1}, \ldots, i_{s}, j_{1}, h_{1}, \ldots, h_{t}\right]
$$

where $h_{1}>\cdots>h_{t}$ and $\left\{h_{1}, \ldots, h_{t}\right\} \stackrel{\text { def }}{=}\left\{i_{1}, \ldots, i_{k}\right\} \cap\left\{j_{1}, \ldots, j_{l}\right\}$. Moreover, $c=1$ if $j_{1} \in\left\{i_{1}, \ldots, i_{k}\right\}$.

Proof. Let us prove each claim separately.
(1) The claim $c^{2}=1$ depends on the fact that $c \in S_{i}$, where the index i is defined as $i \stackrel{\text { def }}{=} \max \left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{l}\right\}$.
(2) If $i_{1}=j_{1}$, then both of $\left[i_{1}, \ldots, i_{k}\right]$ and $\left[j_{1}, \ldots, j_{l}\right]$ belong to $S_{i_{1}}$ which is abelian, thus the claim follows.
(3) Assume that $l \geq 2$ and $j_{l}<i_{k}$. In this case

$$
\begin{aligned}
c & =\left[i_{1}, \ldots, i_{k}\right]\left[i_{1}, \ldots, i_{k}\right]^{\left[j_{1}, \ldots, j_{l-1}\right] s_{j_{l}}}\left[j_{1}, \ldots, j_{l-1}\right] s_{j_{l}} \\
& =\left[i_{1}, \ldots, i_{k}\right]\left(\left[i_{1}, \ldots, i_{k}\right]^{\left[j_{1}, \ldots, j_{l-1}\right]}\right)^{s_{j_{l}}\left[j_{1}, \ldots, j_{l-1}\right] s_{j_{l}}} .
\end{aligned}
$$

The permutations $s_{j_{l}}\left[j_{1}, \ldots, j_{l-1}\right] s_{j_{l}}$ and $\left[i_{1}, \ldots, i_{k}\right]^{\left[j_{1}, \ldots, j_{l-1}\right]}$ are disjoint: the first one has support contained in $\left\{2^{n-j_{l}}+1, \ldots, 2^{n-j_{l}+1}\right\}$ and the support of the second one is contained in

$$
\left\{1, \ldots, 2^{n-\min \left(i_{k}, j_{l-1}\right)+1}\right\} \subseteq\left\{1, \ldots, 2^{n-j_{l}}\right\}
$$

Hence

$$
c=\left[i_{1}, \ldots, i_{k}\right]\left[i_{1}, \ldots, i_{k}\right]^{\left[j_{1}, \ldots, j_{l-1}\right]}=\left[\left[i_{1}, \ldots, i_{k}\right],\left[j_{1}, \ldots, j_{l-1}\right]\right]
$$

which proves the claim.
(4) The claim follows by a repeated applications of items (3) and (1).
(5) For every $x, y \in G \stackrel{\text { def }}{=}\left\langle s_{n}, \ldots, s_{i_{l}+1}\right\rangle$ the permutations x and $y^{s_{j_{l}}}$ are disjoint and so they commute. In particular, if $x^{2}=1$, then $\left[x, s_{j_{l}}\right]^{2}=$ $\left(x x^{s_{j_{l}}}\right)^{2}=x^{2}\left(x^{2}\right)^{s_{j_{l}}}=1$. If $a, b \in G$ are such that $a^{2}=b^{2}=1$, then

$$
\begin{aligned}
{\left[[a, b], s_{j_{l}}\right] } & =\left[a b a b, s_{j_{l}}\right] \\
& =a b a b a^{s_{j_{l}}} b^{s_{j_{l}}} a^{s_{j_{l}}} b^{s_{j_{l}}}=a a^{s_{j_{l}}} b b^{s_{j_{l}}} a a^{s_{j_{l}}} b b^{s_{j_{l}}} \\
& =\left[a, s_{j_{l}}\right]\left[b, s_{j_{l}}\right]\left[a, s_{j_{l}}\right]\left[b, s_{j_{l}}\right] \\
& =\left[a, s_{j_{l}}\right]^{-1}\left[b, s_{j_{l}}\right]^{-1}\left[a, s_{j_{l}}\right]\left[b, s_{j_{l}}\right]=\left[\left[a, s_{j_{l}}\right],\left[b, s_{j_{l}}\right]\right] .
\end{aligned}
$$

For $a \stackrel{\text { def }}{=}\left[i_{1}, \ldots, i_{k-1}\right]$ and $b \stackrel{\text { def }}{=}\left[j_{1}, \ldots, j_{l-1}\right]$, we have

$$
\left[\left[i_{1}, \ldots, i_{k-1}, j_{l}\right],\left[j_{1}, \ldots, j_{l-1}, j_{l}\right]\right]=\left[\left[i_{1}, \ldots, i_{k-1}\right],\left[j_{1}, \ldots, j_{l-1}\right], j_{l}\right]
$$

as required.
(6) An iterated use of items (1), (3) and (5) yields

$$
c=\left[\left[i_{1}, \ldots, i_{s}\right],\left[j_{1}, \ldots, j_{v}\right], h_{1}, \ldots, h_{t}\right]
$$

if $j_{1}>i_{s+1} \geq h_{1}$, where the intersection $\left\{i_{1}, \ldots, i_{s}\right\} \cap\left\{j_{1}, \ldots, j_{v}\right\}=\emptyset$ is trivial, while, if $j_{1}=h_{1}=i_{s+1}$, then $c=\left[\left[\left[i_{1}, \ldots, i_{s}, h_{1}\right], h_{1}\right], \ldots, h_{t}\right]$. By Fact 3, the commutator $\left[\left[i_{1}, \ldots, i_{s}, h_{1}\right], h_{1}\right]$ is trivial, and so $c=1$. We may then assume that $j_{1}>i_{s+1} \geq h_{1}$. By (4), we obtain the equality $\left[\left[i_{1}, \ldots, i_{s}\right],\left[j_{1}, \ldots, j_{v}\right]\right]=\left[i_{1}, \ldots, i_{s}, j_{1}\right]$, therefore

$$
c=\left[i_{1}, \ldots, i_{s}, j_{1}, h_{1}, \ldots, h_{t}\right]
$$

as claimed.
A repeated application of Lemma 2 shows that every left-normed commutator $\left[i_{1}, \ldots, i_{k}\right]$ can be written as a commutator $\left[j_{1}, \ldots, j_{l}\right]$, where $\left\{j_{1}, \ldots, j_{l}\right\} \subseteq$ $\left\{i_{1}, \ldots, i_{k}\right\}$ and $j_{h} \geq j_{h+1}$ for all $1 \leq h \leq l-1$. If $j_{h}=j_{h+1}$ for some h, then Fact 3 shows that $\left[j_{1}, \ldots, j_{h}, j_{h+1}\right]=1$, which in turn implies $\left[j_{1}, \ldots, j_{l}\right]=1$. This fact is summarized in the following result.

Proposition 3. Any left-normed commutator $\left[i_{1}, \ldots, i_{k}\right]$ can be written as a rigid commutator $\left[j_{1}, \ldots, j_{l}\right]$, for a suitable subset $\left\{j_{1}, \ldots, j_{l}\right\} \subseteq\left\{i_{1}, \ldots, i_{k}\right\}$.

It is worth noticing here that rigid commutators are the images of P. Hall's basic commutators [Hal34] under the presentation of the group Σ_{n} as a factor of the n-generated free group, once the order of the generators is reversed.
2.2. Saturated subgroups. In this section we give a representation of the elements of Σ_{n} in terms of rigid commutators.

Lemma 4. The set of all the rigid commutators $[X] \in \mathcal{R}$, where X varies among the subsets of $\{1, \ldots, n\}$ such that $\max (X)=i$, is a basis for S_{i}.

Proof. Let $1 \leq i \leq n$. To prove the claim, we look at S_{i} as a 2^{i-1}-dimensional vector space over \mathbb{F}_{2}. Proceeding by backward induction on j, for $i \geq j \geq 1$, we show that the set of all the rigid commutators based at i and hanging from h, for some $h \geq j$, is linearly independent. When $j=i$ there is nothing to prove. Assume

$$
\begin{equation*}
\prod_{i>i_{1}>\cdots>i_{t} \geq j}\left[i, i_{1}, \ldots, i_{t}\right]^{e_{i, i_{1}}, \ldots, i_{t}}=1 \tag{2.1}
\end{equation*}
$$

where the exponents are in \mathbb{F}_{2}. We aim at proving that all the exponents are 0. From Eq. (2.1) we have

$$
\prod_{i>i_{1}>\cdots>i_{t}>j}\left[i, i_{1}, \ldots, i_{t}\right]^{e_{i, i_{1}}, \ldots, i_{t}} \prod_{i>i_{1}>\cdots>i_{t-1}>i_{t}=j}\left[i, i_{1}, \ldots, i_{t-1}, j\right]^{e_{i, i_{1}}, \ldots, i_{t-1}, j}=1,
$$

and so

$$
\begin{align*}
& \prod_{i>i_{1}>\cdots>i_{t}>j}\left[i, i_{1}, \ldots, i_{t}\right]^{e_{i, i_{1}, \ldots, i_{t}}}= \\
& {\left[\left(\prod_{i>i_{1}>\ldots>i_{t-1}>i_{t}=j}\left[i, i_{1}, \ldots, i_{t-1}\right]^{e_{i, i_{1}}, \ldots, i_{t-1}, j}\right), j\right] . } \tag{2.2}
\end{align*}
$$

Note that if the permutation on the right-hand side of Eq. (2.2) is non-trivial, then it moves some x with $x>2^{n-j}$, which is fixed by the one on the left-hand side. Hence the permutations on both sides are trivial. By induction, the exponents in the left-hand side of Eq. (2.2) are all 0. Now, the commutator map

$$
\left[\cdot, s_{j}\right]:\left\langle s_{j+1}, \ldots, s_{n}\right\rangle \rightarrow\left\langle s_{j}, \ldots, s_{n}\right\rangle
$$

is injective, hence the equality

$$
\left[\left(\prod_{i>i_{1}>\cdots>i_{t-1}>i_{t}=j}\left[i, i_{1}, \ldots, i_{t-1}\right]^{e_{i, i_{1}, \ldots, i_{t-1}, j}}\right), j\right]=1
$$

implies

$$
\prod_{i>i_{1}>\cdots>i_{t-1}>i_{t}=j}\left[i, i_{1}, \ldots, i_{t-1}\right]^{e_{i, i_{1}, \ldots, i_{t-1}, j}}=1
$$

Again, by the inductive hypothesis, we find $e_{i, i_{1}, \ldots, i_{t-1}, j}=0$ for every choice of $i_{1}>\cdots>i_{t-1}$. As the number of rigid commutators based at i equals the dimension of S_{i}, the proof is complete.

We can now state our first main result as a straightforward consequence of Lemma 4. Let us call a proper order \prec on \mathcal{R}^{*} any total order refining the partial order defined by $\left[i_{1}, \ldots, i_{t}\right] \prec\left[j_{1}, \ldots, j_{l}\right]$ if $i_{1}<j_{1}$. Here we denote by \mathcal{P}_{n} the power set of $\{1, \ldots, n\}$.

Theorem 5. Given a proper order \prec in \mathcal{R}^{*}, every element $g \in \Sigma_{n}$ can be uniquely represented in the form

$$
g=\prod_{Y \in \mathcal{P}_{n} \backslash\{\emptyset\}}[Y]^{e_{g}(Y)},
$$

where the factors are ordered with respect to \prec and $e_{g}: \mathcal{P}_{n} \backslash\{\emptyset\} \rightarrow\{0,1\}$ is a function depending on g.

Proof. Since $\Sigma_{n}=S_{1} \ltimes \cdots \ltimes S_{n}$, the claim is a straightforward consequence of Lemma 4.

Some of the following corollaries are straightforward and their proof will be omitted.

Corollary 6. If G is a subgroup of Σ_{n} containing k distinct rigid commutators, then $|G| \geq 2^{k}$.

We now need a new concept which plays a key role in the remainder of this work.

Definition 7. A subset \mathcal{G} of \mathcal{R} is called saturated if $\mathcal{G} \cup\{[\emptyset]\}$ is closed under taking commutators and the subgroup $G \stackrel{\text { def }}{=}\langle\mathcal{G}\rangle \leq \Sigma_{n}$ is called a saturated subgroup.

Remark 1. A subgroup $G \leq \Sigma_{n}$ is saturated if and only if it can be generated by some subset \mathcal{X} of \mathcal{R} : indeed G is also generated by the smallest saturated subset of $\mathcal{G} \cap \mathcal{R}$ containing \mathcal{X}.

Corollary 8. Let $G \leq \Sigma_{n}$ be a saturated subgroup generated by a saturated set $\mathcal{G} \subseteq \mathcal{R}^{*}$ and let \prec be any given proper order on \mathcal{G}. Every element $g \in G$ has a unique representation

$$
g=\prod_{c \in \mathcal{G}} c^{e_{c}(g)},
$$

where the commutators in the product are ordered with respect to \prec and $e_{c}(g) \in$ $\{0,1\}$. In particular $|G|=2^{|\mathcal{G}|}$.
Corollary 9. Let $G \leq \Sigma_{n}$ be a saturated subgroup generated by a saturated set $\mathcal{G} \subseteq \mathcal{R}^{*}$ and let \prec any given proper order on \mathcal{G}. If the product $c_{1} \cdots c_{k} \in G$, where $c_{i} \in \mathcal{R}^{*}$, and $c_{1} \supsetneqq c_{2} \supsetneqq \cdots \supsetneqq c_{k}$, then $c_{i} \in \mathcal{G}$ for all $1 \leq i \leq k$.
Proof. Note that since every rigid commutator belongs to some S_{i}, the group G has the semidirect product decomposition $G=\left(G \cap S_{1}\right) \ltimes \cdots \ltimes\left(G \cap S_{n}\right)$. In particular every element of G can be written as an ordered product of elements of \mathcal{G}. Write $c_{1} \cdots c_{k}=g_{1} \cdots g_{t}$ where $g_{i} \in \mathcal{G}$ and $g_{1} \supsetneqq \cdots \supsetneqq g_{t}$. By Theorem 5 , we have $k=t$ and $c_{i}=g_{i} \in \mathcal{G}$.

The next statement follows immediately from Corollary 9.
Corollary 10. Let $G \leq \Sigma_{n}$ be a saturated subgroup. If $g=g_{1} \cdots g_{n}$, where $g_{i} \in S_{i}$ for $1 \leq i \leq n$, then $g \in G$ if and only if $g_{i} \in G \cap S_{i}$ for $1 \leq i \leq n$. Moreover if $g=h_{1} \cdots h_{n}$, where $h_{i} \in S_{i}$ for $1 \leq i \leq n$, then $h_{i}=g_{i}$ for $1 \leq i \leq n$.

3. Elementary abelian regular 2-groups and their chain of NORMALIZERS

A vector space T of dimension n over \mathbb{F}_{2} acts regularly over itself as a group of translations. By way of this action, T can be seen as a regular elementary abelian subgroup of $\operatorname{Sym}\left(2^{n}\right)$, and any other regular elementary abelian subgroup of $\operatorname{Sym}\left(2^{n}\right)$ is conjugate to T in $\operatorname{Sym}\left(2^{n}\right)$ [Dix71]. The normalizer of T in $\operatorname{Sym}\left(2^{n}\right)$ is the affine group $\operatorname{AGL}(T)$, where T embeds as the normal subgroup of translations. For this reason, we refer to any of the conjugates of T as a translation subgroup of $\operatorname{Sym}\left(2^{n}\right)$. Every chief series $\mathfrak{F}=\left\{T_{i}\right\}_{i=0}^{n}$ of T, where $1=T_{0}<T_{1}<\cdots<T_{n}=T$, is normalized by exactly one Sylow 2-subgroup $U_{\mathfrak{F}}$ of $\mathrm{AGL}(T)$. In [Lei88, Theorem p. 226] it is proved that every chief series \mathfrak{F} of T corresponds to a Sylow 2-subgroup $\Sigma_{\mathfrak{F}}$ of $\operatorname{Sym}\left(2^{n}\right)$ containing T and having a chief series that intersects T in \mathfrak{F}. The correspondence $\mathfrak{F} \mapsto \Sigma_{\mathfrak{F}}$ is a bijection between the sets of the chief series of T and the set of Sylow 2-subgroups of $\operatorname{Sym}\left(2^{n}\right)$ containing T. In [ACGS20] it is also pointed out that $U_{\mathfrak{F}}=N_{\Sigma_{\mathfrak{F}}}(T)=\Sigma_{\mathfrak{F}} \cap \operatorname{AGL}(T)$. From now on the chief series \mathfrak{F} will be fixed, and so, without ambiguity, we will write Σ_{n} and U_{n} to denote respectively $\Sigma_{\mathfrak{F}}$ and $U_{\mathfrak{F}}$. In [ACGS19] it is proved that U_{n} contains, as normal subgroups, exactly two conjugates of T, namely T and $T_{U_{n}}=T^{g}$, for some $g \in \operatorname{Sym}\left(2^{n}\right)$. It is also shown that the normalizer $N_{n}^{1}=N_{\operatorname{Sym}\left(2^{n}\right)}\left(U_{n}\right)$ interchanges by conjugation these two subgroups and that N_{n}^{1} contains U_{n} as a subgroup of index 2. In particular,
$N_{n}^{1} \leq \Sigma_{n}$. In the following section we will extend these results on T, U_{n}, N_{n}^{1} to the entire chain of normalizers, which is defined below.
3.1. The normalizer chain. The normalizer chain starting at T is defined as

$$
N_{n}^{i} \stackrel{\text { def }}{=} \begin{cases}U_{n}=N_{\Sigma_{n}}(T) & \text { if } i=0 \tag{3.1}\\ N_{\Sigma_{n}}\left(N_{n}^{i-1}\right) & \text { if } i \geq 1\end{cases}
$$

In [ACGS20] the authors proved that $N_{\Sigma_{n}}\left(N_{n}^{i}\right)=N_{\operatorname{Sym}\left(2^{n}\right)}\left(N_{n}^{i}\right)$, for all $i \geq 0$, computed the normalizer chain for $n \leq 11$ by way of the computer algebra package GAP [GAP20], and conjectured that the index $\left|N_{n}^{i+1}: N_{n}^{i}\right|$ does not depend on n for $n \geq i+3$ [ACGS20, Conjecture 1]. In this section we prove this conjecture arguing by induction, by means of the rigid commutator machinery developed in Section 2.1. We start by defining

$$
T \stackrel{\text { def }}{=}\left\langle t_{1}, \ldots, t_{n}\right\rangle
$$

where

$$
t_{i} \stackrel{\text { def }}{=}\left[s_{i}, s_{i-1}, \ldots, s_{1}\right]=[i, i-1, \ldots, 1] \in \mathcal{R}^{*}
$$

Lemma 11. T is an elementary abelian regular subgroup of Σ_{n}. In particular, T is a translation subgroup of $\operatorname{Sym}\left(2^{n}\right)$.

Proof. T is a subgroup of Σ_{n} as it is generated by elements belonging to Σ_{n}. By item 6 of Lemma 2 it follows that $\left[t_{i}, t_{j}\right]=1$, so that T is abelian. Note that $t_{i}^{2}=1$ as $t_{i} \in S_{i}$, and so T is elementary abelian of order at most 2^{n}. Let us now prove that T is transitive. Let $1 \leq x \leq 2^{n}$ be an integer represented as $x=1+\sum_{i=1}^{n} 2^{n-i} w_{i}$ in binary form and let $t=\prod_{i=1}^{n} t_{i}^{w_{i}}$. A direct check shows that t moves 1 to x. Since T has an orbit with 2^{n} elements and it has order at most 2^{n}, it follows that $|T|=2^{n}$ and that every point stabilizer is trivial, therefore T is a regular permutation group on $\left\{1, \ldots, 2^{n}\right\}$.

Let us now determine the permutations in Σ_{n} normalizing T. For $1 \leq j<i \leq n$ let us define $X_{i j} \stackrel{\text { def }}{=}\{1, \ldots, i\} \backslash\{j\}$ and

$$
u_{i j} \stackrel{\text { def }}{=}\left[X_{i j}\right]=[i, \ldots, j+1, j-1, \ldots, 1] \in \mathcal{R}^{*} .
$$

From now on we will set

$$
\mathcal{U}_{n} \stackrel{\text { def }}{=}\left\{t_{1}, \ldots, t_{n}, u_{i j} \mid 1 \leq j<i \leq n\right\} \subseteq \mathcal{R}^{*}
$$

Proposition 12. The group $\left\langle\mathcal{U}_{n}\right\rangle$ is the normalizer of T in Σ_{n}, i.e.

$$
U_{n}=\left\langle T, u_{i j} \mid 1 \leq j<i \leq n\right\rangle
$$

Proof. Let us set $U \stackrel{\text { def }}{=}\left\langle T, u_{i j} \mid 1 \leq j<i \leq n\right\rangle$ and let us prove that $U=U_{n}=$ $N_{\Sigma_{n}}(T)$. By Lemma 2 we have

$$
\left[t_{h}, u_{i j}\right]= \begin{cases}1 & \text { if } h \neq j \\ t_{i} & \text { if } h=j\end{cases}
$$

This shows that $U \leq N_{\Sigma_{n}}(T)=U_{n}$ and that \mathcal{U}_{n} is a saturated set. Therefore, from Corollary $8,|U|=2^{\left|\mathcal{U}_{n}\right|}=2^{\frac{n(n+1)}{2}}=\left|U_{n}\right|$, which proves the claim.

We aim at proving our second main result, providing the generators of the normalizer N_{n}^{i} in terms of rigid commutators. The result is proved by induction on $i \geq 1$.

Induction basis. Let us denote by η_{n} the rigid commutator based at n and hanging from 3 such that no intermediate integer is missing, i.e.

$$
\begin{equation*}
\eta_{n} \stackrel{\text { def }}{=}[n, n-1, \ldots, 3] . \tag{3.2}
\end{equation*}
$$

We now prove that we can generate N_{n}^{1} by appending η_{n} to the list \mathcal{U}_{n} of the rigid commutators generating U_{n}.

Proposition 13. If $n \geq 3$, then the group $\left\langle\mathcal{U}_{n}, \eta_{n}\right\rangle$ is the normalizer N_{n}^{1} of U_{n} in Σ_{n}, i.e.

$$
N_{n}^{1}=\left\langle T, u_{i j}, \eta_{n} \mid 1 \leq j<i \leq n\right\rangle .
$$

Moreover, $\left|N_{n}^{1}: U_{n}\right|=2$.
Proof. By Lemma 2,

$$
\left[t_{i}, \eta_{n}\right]=\left\{\begin{array}{ll}
u_{n, 2} & \text { if } i=1 \\
t_{n} & \text { if } i=2 \\
1 & \text { otherwise }
\end{array} \quad \text { and } \quad\left[u_{i j}, \eta_{n}\right]= \begin{cases}u_{n, 1} & \text { if } i=2 \text { and } j=1 \\
1 & \text { otherwise }\end{cases}\right.
$$

Thus the rigid commutator η_{n} belongs to $N_{\Sigma_{n}}\left(U_{n}\right)$, hence $\left\langle U_{n}, \eta_{n}\right\rangle \leq N_{\Sigma_{n}}\left(U_{n}\right)$. Moreover $U_{n} \cap S_{n}=\left\langle t_{n}, u_{n, 1}, \ldots, u_{n, n-1}\right\rangle$ and so η_{n}, which is based at n, is such that $\eta_{n} \notin U_{n}$. The claim now follows from $\left|N_{\Sigma_{n}}\left(U_{n}\right): U_{n}\right|=2$ [ACGS19, Theorem 7].

Inductive step. Let $1 \leq b \leq n$ and let I be a (possibly empty) subset of $\{1,2, \ldots, b-1\}$. We define the rigid commutator based at b and punctured at I as

$$
\begin{equation*}
\vee[b ; I] \stackrel{\text { def }}{=}[\{1, \ldots, b\} \backslash I] \in \mathcal{R}^{*} \tag{3.3}
\end{equation*}
$$

and, if $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ we also denote $\vee[b ; I]$ by $\vee\left[b ; i_{1}, i_{2}, \ldots, i_{k}\right]$.
For example, the permutation η_{n} defined in Eq. (3.2) is equal to $\vee[n ; 2,1]$.
We also define

$$
\begin{equation*}
\mathcal{W}_{i j} \stackrel{\text { def }}{=}\left\{\vee[i ; I] \in \mathcal{R}^{*}\left|I \subseteq\{1,2, \ldots, i-1\},|I| \geq 2, \sum_{x \in I} x=j\right\}\right. \tag{3.4}
\end{equation*}
$$

for each $1 \leq i \leq n$ and j, and

$$
\mathcal{N}_{n}^{i} \stackrel{\text { def }}{=} \begin{cases}\mathcal{U}_{n} & \text { if } i=0 \tag{3.5}\\ \mathcal{N}_{n}^{i-1} \dot{\cup}\left(\dot{\bigcup}_{j=1}^{i} \mathcal{W}_{n+j-i, j+2}\right) & \text { for } i>0\end{cases}
$$

Note that, if $j \leq i-2$, then $\left|\mathcal{W}_{i, j}\right|=b_{j}$, i.e. the number of partitions of j into at least two distinct parts. Our next goal is to prove that $N_{n}^{i}=\left\langle\mathcal{N}_{n}^{i}\right\rangle$ for each $0 \leq i \leq n-2$, where N_{n}^{i} is defined as in Eq. (3.1). Propositions 12 and 13 show that this is actually the case when $i \in\{0,1\}$.

In order to prove the general result, we need the following reformulation of item 6 of Lemma 2 to compute commutators of rigid commutators written in punctured form.

Proposition 14. Let $1 \leq a, b \leq n$ and let I and J subsets of $\{1,2, \ldots, a-1\}$ and $\{1,2, \ldots, b-1\}$ respectively. Then

$$
[\vee[a ; I], \vee[b ; J]]= \begin{cases}\vee[\max (a, b) ;(I \cup J) \backslash\{\min (a, b)\}] & \text { if } \min (a, b) \in I \cup J \\ 1 & \text { otherwise } .\end{cases}
$$

Proof. Let $c \stackrel{\text { def }}{=}[\vee[a ; I], \vee[b ; J]]$. If $a=b$, then $c=1$. Without loss of generality, we can assume that $a>b$. By Lemma 2, if $b \notin I$, then $c=1$. If $b \in I$, the claim follows from item 6 of Lemma 2.

In the following facts, we summarize some properties that will be useful in the proof of the conjecture.

Fact 4. A commutator $\vee[a ; J]$ such that $1 \leq a \leq n$ and $J \subseteq\{1,2, \ldots, a-1\}$ belongs to \mathcal{N}_{n}^{i} if and only if one of the following conditions is satisfied:
(1) $J=\emptyset$, and so $\vee[a ; J]=t_{a}$;
(2) $|J|=1$, and so $\vee[a ; J]=u_{a j}$ where $J=\{j\}$;
(3) $|J| \geq 2$, and $\sum_{j \in J} j \leq i+2-(n-a)$.

Fact 5. Note that for $2 \leq i \leq n-2$ the set $\mathcal{N}_{n}^{i} \cap\left(S_{1} \ltimes \cdots \ltimes S_{n-1}\right)$ is equal to \mathcal{N}_{n-1}^{i-1}. Indeed, at the i-th iteration, the newly generated elements of \mathcal{N}_{n}^{i}, which are those in $\mathcal{N}_{n}^{i} \backslash \mathcal{N}_{n}^{i-1}$, are constructed by lifting the elements of $\mathcal{N}_{n}^{i-1} \backslash \mathcal{N}_{n}^{i-2}$, i.e. by replacing a rigid commutator based at j with the rigid commutator obtained by removing its left-most element, for $j \leq n$, and by adding some new rigid commutators based at n, in accordance with Eq. (3.5). Proceeding in this way it is easy to check that, disregarding all the commutators based at n in \mathcal{N}_{n}^{i}, the lifted elements are exactly the elements of \mathcal{N}_{n-1}^{i-1}. The reader is referred to Section 5 for explicit examples.

Fact 6. In the proof of Proposition 13 we showed that $\left[\mathcal{N}_{n}^{1}, \mathcal{N}_{n}^{0}\right] \subseteq \mathcal{N}_{n}^{0} \cup\{[\emptyset]\}$. Assuming by induction on $2 \leq i \leq n-2$ that $\left[\mathcal{N}_{n-1}^{i-1}, \mathcal{N}_{n-1}^{i-2}\right] \subseteq \mathcal{N}_{n-1}^{i-2} \cup\{[\emptyset]\}$ and using Fact 5, we can conclude that

$$
\begin{aligned}
& {\left[\mathcal{N}_{n}^{i} \cap\left(S_{1} \ltimes \cdots \ltimes S_{n-1}\right), \mathcal{N}_{n}^{i-1} \cap\left(S_{1} \ltimes \cdots \ltimes S_{n-1}\right)\right]=} \\
& \quad\left[\mathcal{N}_{n-1}^{i-1}, \mathcal{N}_{n-1}^{i-2}\right] \subseteq \mathcal{N}_{n-1}^{i-2} \cup\{1\}=\mathcal{N}_{n}^{i-1} \cap\left(S_{1} \ltimes \cdots \ltimes S_{n-1}\right) \cup\{[\emptyset]\} .
\end{aligned}
$$

Similarly,
$\left[\mathcal{N}_{n}^{i} \cap\left(S_{1} \ltimes \cdots \ltimes S_{n-1}\right), \mathcal{N}_{n}^{i} \cap\left(S_{1} \ltimes \cdots \ltimes S_{n-1}\right)\right] \subseteq \mathcal{N}_{n}^{i} \cap\left(S_{1} \ltimes \cdots \ltimes S_{n-1}\right) \cup\{[\emptyset]\}$.
From the previous fact we have that, in order to prove by induction on i that $\left[\mathcal{N}_{n}^{i}, \mathcal{N}_{n}^{i-1}\right] \subseteq \mathcal{N}_{n}^{i-1} \cup\{[\emptyset]\}$ and that $\left[\mathcal{N}_{n}^{i}, \mathcal{N}_{n}^{i}\right] \subseteq \mathcal{N}_{n}^{i} \cup\{[\emptyset]\}$, it suffices to show that $\left[\mathcal{W}_{n, i+2}, \mathcal{N}_{n}^{i-1}\right] \subseteq \mathcal{N}_{n}^{i-1} \cup\{[\emptyset]\}$ and that $\left[\mathcal{W}_{n, i+2}, \mathcal{N}_{n}^{i}\right] \subseteq \mathcal{N}_{n}^{i} \cup\{[\emptyset]\}$. This is accomplished in the following result.

Lemma 15. If $i \leq n-2$, then $\left[\mathcal{N}_{n}^{i}, \mathcal{N}_{n}^{i-1}\right] \subseteq \mathcal{N}_{n}^{i-1} \cup\{[\emptyset]\}$ and $\left[\mathcal{N}_{n}^{i}, \mathcal{N}_{n}^{i}\right] \subseteq \mathcal{N}_{n}^{i} \cup\{[\emptyset]\}$.
Proof. If $\vee[n ; I] \in \mathcal{W}_{n, i+2} \subseteq \mathcal{N}_{n}^{i} \backslash \mathcal{N}_{n}^{i-1}$ and $\vee[a ; J] \in \mathcal{N}_{n}^{i-1}$ then, by Proposition 14,

$$
c \stackrel{\text { def }}{=}[\vee[n ; I], \vee[a ; J]]= \begin{cases}\vee[n ;(I \cup J) \backslash\{a\}] & \text { if } a \in I \\ 1 & \text { otherwise } .\end{cases}
$$

We may assume $a \in I$. From Fact 4 , if $\vee[a ; J]$ is as in case (3), we have

$$
\begin{aligned}
\sum_{x \in(I \cup J) \backslash\{a\}} x & \leq \sum_{x \in J} x+\sum_{x \in I} x-a \\
& \leq i+1-(n-a)+i+2-(n-n)-a \\
& =i+2-(n-i-1) \\
& \leq i+2-1=i+1,
\end{aligned}
$$

and so $c \in \mathcal{N}_{n}^{i-1}$. If $\vee[a ; J]$ is as in case (1), i.e. $\vee[a ; J]=t_{a}$, then we have

$$
\sum_{x \in(I \cup J) \backslash\{a\}} x=\sum_{x \in I} x-a=i+2-a \leq i+1
$$

and so, also in this case, $c \in \mathcal{N}_{n}^{i-1}$. Finally, if $\vee[a ; J]$ is as in case (2), i.e. $\vee[a ; J]=$ $u_{a, j}$, we have

$$
\sum_{x \in(I \cup J) \backslash\{a\}} x \leq \sum_{x \in I} x-a+j=i+2-(a-j) \leq i+1
$$

and again $c \in \mathcal{N}_{n}^{i-1}$. Similar computations prove that, if $\vee[a ; J] \in \mathcal{N}_{n}^{i}$, then also $c \in \mathcal{N}_{n}^{i}$.

The following result is now straightforward.
Proposition 16. The set \mathcal{N}_{n}^{i} is a saturated set of rigid commutators and $\left\langle\mathcal{N}_{n}^{i}\right\rangle \leq$ $N_{\Sigma_{n}}\left(\left\langle\mathcal{N}_{n}^{i-1}\right\rangle\right)$. Moreover, $\left|\left\langle\mathcal{N}_{n}^{i}\right\rangle\right|=2^{\left|\mathcal{N}_{n}^{i}\right|}$.
Proof. The claim follows from Lemma 15, Fact 6 and Corollary 8.
We conclude this section with our main result showing that the i-th term of the normalizer chain is actually generated by the set \mathcal{N}_{n}^{i} of rigid commutators defined in Eq. (3.5). We prove, indeed, that the inclusion $\left\langle\mathcal{N}_{n}^{i}\right\rangle \leq N_{\Sigma_{n}}\left(\left\langle\mathcal{N}_{n}^{i-1}\right\rangle\right)$ shown in the previous proposition is actually an equality.

Theorem 17. For $i \leq n-2$, the group $\left\langle\mathcal{N}_{n}^{i}\right\rangle$ is the i-th term N_{n}^{i} of the normalizer chain.

Proof. The cases $i=0$ and $i=1$ has been addressed respectively in Propositions 12 and 13. We assume by induction on $i \geq 2$ that $N_{m}^{j}=\left\langle\mathcal{N}_{m}^{j}\right\rangle$ for all $m \leq n$ whenever $j<i \leq m-2$. In particular

$$
N_{m}^{j} \cap \Sigma_{m-1}=N_{m-1}^{j-1}=\left\langle\mathcal{N}_{m-1}^{j-1}\right\rangle
$$

Notice that

$$
\begin{aligned}
\left\langle\mathcal{N}_{n}^{i}\right\rangle \cap \Sigma_{n-1} & =\left\langle\mathcal{N}_{n-1}^{i-1}\right\rangle \\
& =N_{n-1}^{i-1}=N_{\Sigma_{n-1}}\left(N_{n-1}^{i-2}\right) \\
& =N_{\Sigma_{n-1}}\left(N_{n}^{i-1} \cap \Sigma_{n-1}\right) \\
& =N_{\Sigma_{n-1}}\left(N_{n}^{i-1} \cap \Sigma_{n-1}\right) \cap N_{\Sigma_{n-1}}\left(N_{n}^{i-1} \cap S_{n}\right)=N_{\Sigma_{n-1}}\left(N_{n}^{i-1}\right)
\end{aligned}
$$

where the first equality in the last line holds since the following inclusions

$$
\left[\mathcal{N}_{n-1}^{i-1}, \mathcal{N}_{n}^{i-1}\right] \subseteq\left[\mathcal{N}_{n}^{i}, \mathcal{N}_{n}^{i-1}\right] \subseteq \mathcal{N}_{n}^{i-1} \cup\{[\emptyset]\}
$$

imply that $N_{\Sigma_{n-1}}\left(N_{n}^{i-1} \cap \Sigma_{n-1}\right) \subseteq N_{\Sigma_{n-1}}\left(N_{n}^{i-1} \cap S_{n}\right)$. As S_{n} is abelian, we have

$$
\begin{align*}
N_{n}^{i} & =N_{\Sigma_{n}}\left(N_{n}^{i-1}\right)=N_{\Sigma_{n-1} \ltimes S_{n}}\left(N_{n}^{i-1}\right) \\
& =N_{\Sigma_{n-1}}\left(N_{n}^{i-1}\right) N_{S_{n}}\left(N_{n}^{i-1}\right)=\left\langle\mathcal{N}_{n-1}^{i-1}\right\rangle N_{S_{n}}\left(N_{n}^{i-1}\right) . \tag{3.6}
\end{align*}
$$

We are then left to determine $N_{S_{n}}\left(N_{n}^{i-1}\right)=\left\{x \in S_{n} \mid\left[x, \mathcal{N}_{n-1}^{i-1}\right] \subseteq N_{n}^{i-1} \cap S_{n}\right\}$. Let us point out that, by Eq. (3.4) and Eq. (3.5), the groups

$$
A \stackrel{\text { def }}{=}\left\langle\mathcal{N}_{n}^{i} \cap S_{n}\right\rangle \text { and } B \stackrel{\text { def }}{=}\left\langle\bigcup_{j \geq i+1} \mathcal{W}_{n, j+2}\right\rangle
$$

have trivial intersection and that $S_{n}=A \times B$. By Lemma 15 we have that A is a subgroup of $N_{n}^{i} \cap S_{n}$, for $1 \leq j \leq i$, so that $N_{n}^{i}=A \times H$ where

$$
H \stackrel{\text { def }}{=}\left\{x \in\left\langle\bigcup_{j \geq i+1} \mathcal{W}_{n, j+2}\right\rangle \mid\left[x, \mathcal{N}_{n-1}^{i-1}\right] \subseteq N_{n}^{i-1} \cap S_{n}\right\}
$$

We denote a generic element of H by

$$
x \stackrel{\text { def }}{=} \prod_{I \in \mathcal{I}} \vee[n ; I]^{e_{I}},
$$

where the product is taken over the set \mathcal{I} of all the subsets $I \subseteq\{1, \ldots, n-1\}$ such that $\sum_{y \in I} y \geq i+3$. For $1 \leq l \leq n$ let $\mathcal{I}_{l}=\{I \in \mathcal{I} \mid \min (I)=l\}$. Let $u=u_{l, l-1}$ if $l>1$, or $u=t_{1}=[1]$ if $l=1$. Since $x \in H$, we have that

$$
[x, u]=\left\{\begin{array}{lc}
\prod_{I \ni l} \vee[n ;(I \cup\{l-1\}) \backslash\{l\}]^{e_{I}} & \text { if } l>1 \\
\prod_{I \ni 1} \vee[n ; I \backslash\{1\}]^{e_{I}} & \text { if } l=1
\end{array}\right.
$$

belongs to \mathcal{N}_{n}^{i-1}, and in particular $e_{I} \neq 0$ implies

$$
\sum_{y \in(I \cup\{l-1\}) \backslash\{l\}} y \leq i+1
$$

If $I \in \mathcal{I}_{l}$ then

$$
\sum_{y \in(I \cup\{l-1\}) \backslash\{l\}} y=\sum_{y \in I} y-l+(l-1)=\sum_{y \in I} y-1 \geq i+2,
$$

so that $e_{I}=0$ for $I \in \mathcal{I}_{l}$. As $\mathcal{I}=\bigcup_{l=1}^{n} \mathcal{I}_{l}$, we have $H=\{1\}$. This finally shows that $N_{S_{n}}\left(N_{i-1}^{n}\right)=A=N_{i}^{n} \cap S_{n}=\left\langle\mathcal{N}_{n}^{i} \cap S_{n}\right\rangle$ and, by Eq. (3.6), that

$$
\begin{aligned}
N_{i}^{n}=N_{\Sigma_{n}}\left(N_{i-1}^{n}\right) & =\left\langle\mathcal{N}_{n-1}^{i-1}\right\rangle N_{S_{n}}\left(N_{n}^{i-1}\right)=\left\langle\mathcal{N}_{n-1}^{i-1} \cup\left(\mathcal{N}_{n}^{i} \cap S_{n}\right)\right\rangle \\
& =\left\langle\left(\mathcal{N}_{n}^{i} \cap \Sigma_{n-1}\right) \cup\left(\mathcal{N}_{n}^{i} \cap S_{n}\right)\right\rangle=\left\langle\mathcal{N}_{n}^{i}\right\rangle
\end{aligned}
$$

as claimed.
3.2. Partitions into at least two distinct parts. This work was motivated by the computational evidence that the number $c_{i} \stackrel{\text { def }}{=} \log _{2}\left|N_{n}^{i-2}: N_{n}^{i-3}\right|$ does not depend on n, if $3 \leq i \leq n$ [ACGS20]. The first terms of the sequence $\left\{c_{i}\right\}$ coincide with those of the sequence $\left\{a_{i}\right\}$ defined in [OEI, https://oeis.org/A317910], where a_{i} is the i-th partial sum of the sequence $\left\{b_{i}\right\}$, where b_{i} is the number of partitions of i into at least two distinct parts. Some values of the aforementioned sequences are displayed in Table 1.

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
b_{i}	0	0	0	1	1	2	3	4	5	7	9	11	14	17	21
a_{i}	0	0	0	1	2	4	7	11	16	23	32	43	57	74	95

TABLE 1. First values of the sequences a_{i} and b_{i}

We have developed the rigid commutator machinery as a theoretical tool of investigation. It is not surprising anymore that the equality $b_{i}=\left|\mathcal{W}_{n, i}\right|$, where $\mathcal{W}_{n, i}$ is defined by Eq. (3.4), is the link with the mentioned sequence. This combinatorial
identity, Eq. (1.1), Proposition 16 and Theorem 17 give at last a positive answer to Conjecture 1 in [ACGS20].
Corollary 18. For $1 \leq i \leq n-2$, the number $\log _{2}\left|N_{n}^{i}: N_{n}^{i-1}\right|$ is independent of n. It equals the $(i+2)$-th term of the sequence $\left\{a_{j}\right\}$ of the partial sums of the sequence $\left\{b_{j}\right\}$ counting the number of partitions of j into at least two distinct parts.

4. Normalizers of saturated subgroups

In this section we will prove that the normalizer $N \stackrel{\text { def }}{=} N_{\Sigma_{n}}(G)$ of a saturated subgroup G of Σ_{n} is also saturated, provided that $T \leq N$, and thus we can use our rigid commutator machinery in the computation of N. In particular, for $i \leq n-2$, the machinery could be used as an alternative tool to derive the theoretical description of N_{n}^{i} as in Theorem 17. Even if we do not have such a description when $i>n-2$, the machinery can be anyway used to efficiently compute via GAP the complete normalizer chain.

We denote below by N_{i} the intersection $N \cap S_{i}$.
Proposition 19. If G is a saturated subgroup of Σ_{n}, and $N=N_{\Sigma_{n}}(G)$ is its normalizer in Σ_{n}, then

$$
N=N_{1} \ltimes \cdots \ltimes N_{n}=\ltimes_{i=1}^{n} N_{S_{i}}(G) .
$$

In particular if $x \in N$ and $x=x_{1} \cdots x_{n}$, with $x_{i} \in S_{i}$ for all $1 \leq i \leq n$, then $x_{i} \in N_{i}$ for all $1 \leq i \leq n$.
Proof. Let $x \in N$ and write $x=x_{i_{1}} \ldots x_{i_{k}}$ where $1 \leq i_{1}<\cdots<i_{k} \leq i_{k+1} \stackrel{\text { def }}{=} n$ and $x_{i_{j}} \in S_{i_{j}}$, for $1 \leq j \leq k$. In order to prove our claim we first show that $\left[x_{i_{1}}, c\right] \in G$ for every non-trivial rigid commutator c of G. Since G is generated by its own non-trivial rigid commutators, it will follow that $x_{i_{1}} \in N$. As a consequence, also $x_{i_{2}} \ldots x_{i_{k}} \in N$. Thus, we may argue by induction on k to obtain that $x_{i_{j}} \in N$ for all $1 \leq j \leq k$.

Let i be such that $c \in G \cap S_{i}$. Suppose first that $i<i_{1}$. If $\left[c, x_{i_{1}}\right]=1$, then $\left[c, x_{i_{1}}\right] \in G$. If $\left[c, x_{i_{1}}\right] \neq 1$, then $[c, x]=\left[c, x_{i_{1}}\right] h \in G$, where $\left[c, x_{i_{1}}\right] \in S_{i_{1}}$ and $h \in \prod_{t>i_{1}} S_{t}$. By Corollary 10 we obtain that $\left[c, x_{i_{1}}\right] \in G \cap S_{i_{1}} \leq G$. If $i=i_{1}$, then trivially $\left[c, x_{i_{1}}\right]=1 \in G$. The last possibility is $i_{1}<\cdots<i_{m}<i \leq i_{m+1}$ for some $m \leq k$. Suppose that $\left[x_{i_{1}}, c\right] \neq 1$. In this case

$$
\begin{aligned}
G \ni[x, c] & =\left[x_{i_{1}} \ldots x_{i_{k}}, c\right]=\left[x_{i_{1}}, c\right]^{x_{i_{2}} \cdots x_{i_{k}}} \cdot\left[x_{i_{2}} \ldots x_{i_{k}}, c\right] \\
& =\left(\left[x_{i_{1}}, c\right]^{x_{i_{2}} \cdots x_{i_{m}}}\right)^{x_{i_{m+1}} \cdots x_{i_{k}}} \cdot\left[x_{i_{2}} \ldots x_{i_{k}}, c\right] \\
& =\left[x_{i_{1}}, c\right]^{x_{i_{2}} \cdots x_{i_{m}}} \cdot\left[\left[x_{i_{1}}, c\right]^{x_{i_{2}} \cdots x_{i_{m}}}, x_{i_{m+1}} \cdots x_{i_{k}}\right] \cdot\left[x_{i_{2}} \ldots x_{i_{k}}, c\right] .
\end{aligned}
$$

Let us consider the commutators

$$
\begin{aligned}
{\left[x_{i_{1}}, c\right]^{x_{i_{2}} \cdots x_{i_{m}}} } & =\left[x_{i_{1}}, c\right]\left[\left[x_{i_{1}}, c\right], x_{i_{2}} \cdots x_{i_{m}}\right]=d_{1} \cdots d_{t}, \\
{\left[\left[x_{i_{1}}, c\right]^{x_{i_{2}} \cdots x_{i_{m}}}, x_{i_{m+1}} \cdots x_{i_{k}}\right] } & =m_{1} \cdots m_{r}, \\
{\left[x_{i_{2}} \cdots x_{i_{m}} \cdot x_{i_{m+1}} \cdots x_{i_{k}}, c\right] } & =f_{1} \cdots f_{s} \cdot l_{1} \cdots l_{u}
\end{aligned}
$$

written as ordered product of distinct rigid commutators

$$
d_{1}, \ldots, d_{t}, f_{1}, \ldots, f_{s} \in G \cap S_{i}
$$

and

$$
m_{1}, \ldots, m_{r}, l_{1}, \ldots, l_{u} \in G \cap\left(S_{i+1} \ltimes \cdots \ltimes S_{n}\right) .
$$

Notice that $\left\{d_{1}, \ldots, d_{t}\right\} \cap\left\{f_{1}, \ldots, f_{s}\right\}=\emptyset$ since the commutators d_{i} are of the form $[X]$ for some set X with $i_{1} \in X$, whereas the commutators f_{j} are of the form $[Y]$ for some set Y with $i_{1} \notin Y$. This yields $\left[x_{i_{1}}, c\right]^{x_{i_{2}} \cdots x_{i_{m}}} \in G \cap S_{i}$ and so $\left[x_{i_{1}}, c\right] \in G \cap S_{i} \leq G$.

Lemma 20. Suppose that G is a saturated subgroup of Σ_{n} normalized by T. If $x_{1}, \ldots, x_{k} \in S_{j}$ are distinct rigid commutators such that $x=x_{1} \cdots x_{k} \in N$, then $x_{i} \in N$ for all $1 \leq i \leq k$.

Proof. Let $c_{1}, \ldots, c_{h} \in \mathcal{R}^{*}$ such that $G=\left\langle c_{1}, \ldots, c_{h}\right\rangle$ and let us write every c_{s} and x_{t} in punctured form: $c_{s}=\vee\left[m_{s} ; C_{s}\right]$ and $x_{t}=\vee\left[j ; X_{t}\right]$.

Suppose first that $m_{s}<j$, so that

$$
\begin{equation*}
\left[c_{s}, x\right]=\prod_{t=1}^{k} d_{s, t} \in G \cap S_{j} \tag{4.1}
\end{equation*}
$$

where $d_{s, t} \stackrel{\text { def }}{=}\left[c_{s}, x_{t}\right]=\vee\left[j ; C_{s} \cup\left(X_{t} \backslash\left\{m_{s}\right\}\right)\right]$. Notice that if the commutator $d_{s, t}$ appears only once in the product, then, by Corollary $9, d_{s, t} \in G$. If $C_{s} \cap X_{t}=\emptyset$ for all $1 \leq t \leq k$, then all the non-trivial $d_{s, t}$ appearing in the product are distinct and hence they appear only once in the product, so that $d_{s, t} \in G$ for all $1 \leq t \leq k$. If $C_{s} \cap X_{t} \neq \emptyset$, then the commutator $d_{s, t}$ may appear more than once in the product displayed in Eq. (4.1). Let $l \in C_{s} \cap X_{t}$ and consider the commutator $c_{s, l}=\left[c_{s}, t_{l}\right]=\vee\left[m_{s} ; C_{s} \backslash\{l\}\right] \in G$ as $t_{l}=[l, \ldots, 1] \in T \leq N_{\Sigma_{n}}(G)$. Notice that

$$
\left[c_{s, l}, x_{t}\right]=\vee\left[j ;\left(C_{s} \backslash\{l\}\right) \cup\left(X_{t} \backslash\left\{m_{s}\right\}\right)\right]=\vee\left[j ; C_{s} \cup\left(X_{t} \backslash\left\{m_{s}\right\}\right)\right]=\left[c_{s}, x_{t}\right]=d_{s, t}
$$

Let $C=C_{s} \backslash\{l\}$. We have determined a new rigid commutator $c=c_{s, l}=\vee\left[m_{s} ; C\right] \in$ G such that $\left|C \cap X_{t}\right|<\left|C_{s} \cap X_{t}\right|$, that $|C|<\left|C_{s}\right|$ and that $d_{s, t}=\left[c, x_{t}\right]$ appears in the expansion of $[c, x]$. Using the same strategy, after a finite number of steps, we obtain $c=\vee\left[m_{s} ; C\right] \in G$ such that $C \cap X_{t}=\emptyset$. If $d_{s, t}=\left[c, x_{t}\right]=\left[c, x_{t_{1}}\right]=d_{s, t_{1}}$, for some $t_{1} \neq t$, then $C \cap X_{t_{1}} \neq \emptyset$, since otherwise $X_{t}=X_{t_{1}}$ and consequently $x_{t}=x_{t_{1}}$ with $t \neq t_{1}$, contrary to the hypotheses. Thus we may proceed in the same way with $d_{s, t_{1}}$. Since at each step the cardinality of C is strictly decreasing, after a finite number of steps we find a $c \in G$ and $x_{t_{r}}$ such that $d_{s, t}=d_{s, t_{1}}=\cdots=d_{s, t_{r}}$ appears only once in $[c, x]$ giving $d_{s, t} \in G$. This finally shows that $d_{s, t} \in G$ for all $1 \leq t \leq k$.

If $j=m_{s}$ then x_{i} and c_{s} commute for all i and there is nothing to prove.
We are left with the case when $m_{s}>j$. As above, we have

$$
\left[c_{s}, x\right]=\prod_{t=1}^{k} d_{s, t} \in G \cap S_{j}
$$

where $d_{s, t} \stackrel{\text { def }}{=}\left[c_{s}, x_{t}\right]=\vee\left[m_{s} ;\left(C_{s} \backslash\{j\}\right) \cup X_{t}\right]$. Reasoning as we did for $m_{s}<j$, we obtain that $d_{s, t} \in G$ for all $1 \leq t \leq k$.

In all the cases we have proved that $x_{i} \in N$ for all $1 \leq i \leq k$, which is our claim.

As an easy consequence of Proposition 19 and Lemma 20 we find the following result.

Theorem 21. The normalizer N in Σ_{n} of a saturated subgroup of Σ_{n} is also saturated, provided that N contains T.

Remark 2. Let \mathcal{A} and \mathcal{B} be two subsets of \mathcal{R} such that $\left\{t_{1}, \ldots, t_{n}\right\} \subseteq \mathcal{A} \subseteq \mathcal{B}$, let $A=\langle\mathcal{A}\rangle$ and $B=\langle\mathcal{B}\rangle$ be the corresponding saturated subgroups. It is easy to recognize that $N_{B}(A)=\langle b \in \mathcal{B} \mid[b, \mathcal{A}] \subseteq \mathcal{A} \cup\{[\emptyset]\}\rangle$. Similarly, the normal closure A^{B} of A in B is the subgroup generated by the intersection of all the subsets \mathcal{C} of \mathcal{R} such that $\mathcal{A} \subseteq \mathcal{C} \subseteq \mathcal{B}$ and $[\mathcal{C}, \mathcal{B}] \subseteq \mathcal{C} \cup\{[\emptyset]\}$. In particular, both the normalizer $N_{B}(A)$ and the normal closure A^{B} are saturated.

Remark 3. The condition that T is contained in the normalizer $N=N_{\Sigma_{n}}(G)$ of a saturated subgroup G cannot be removed from the hypotheses of Theorem 21. Indeed, if $G=\langle[n, \ldots, 3]\rangle$, then the product $[2] \cdot[2,1]$ is contained in the centralizer of A, and hence also in the normalizer N of A, but none of the two rigid commutators $[2]$ or $[2,1] \in T$ normalizes G. In particular, by Corollary 10, the subgroup N cannot be saturated.

Remark 4. Another proof of Theorem 17 can be obtained by Theorem 21. Indeed, it is not difficult, but rather tedious, to check that

$$
\mathcal{N}_{n}^{i}=\left\{c \in \mathcal{R}^{*} \mid\left[c, \mathcal{N}_{n}^{i-1}\right] \subseteq \mathcal{N}_{n}^{i-1} \cup\{[\emptyset]\}\right\}
$$

for $0 \leq i \leq n-2$. The result then follows by Proposition 16 .
From Theorems 17 and 21 and from Remark 4 we derive a straightforward corollary resulting in an algorithm whose GAP implementation is publicly available at GitHub ${ }^{2}$. This script allows a significant speed-up in the computation of the normalizer N of a saturated subgroup provided that N contains T. We could easily apply this script to compute our normalizer chain up to the dimension $n=22$. For example, whereas the standard libraries required one month on a cluster to compute the terms of the normalizer chain in $\operatorname{Sym}\left(2^{10}\right)$, our implementation of the rigid commutator machinery gives the result in a few minutes, even on a standalone PC. With a similar approach, we can also use rigid commutators to compute the normal closure of a saturated subgroup. Some explicit calculations are shown below in Section 5 . Let \mathcal{M}_{n}^{i} be the set of all the rigid commutators belonging to N_{n}^{i}. From Theorem 21, the subgroups N_{n}^{i} are saturated, hence $N_{n}^{i}=\left\langle\mathcal{M}_{n}^{i}\right\rangle$ for all $i \geq 1$.

Corollary 22. The set \mathcal{M}_{n}^{i} is the largest subset of \mathcal{R} that normalizes \mathcal{M}_{n}^{i-1}, i.e.

$$
\mathcal{M}_{n}^{i}=\left\{c \in \mathcal{R} \mid\left[c, \mathcal{M}_{n}^{i-1}\right] \subseteq \mathcal{M}_{n}^{i-1}\right\}
$$

Moreover, $\mathcal{N}_{n}^{i}=\mathcal{M}_{n}^{i} \backslash\{[\emptyset]\}$ for $1 \leq i \leq n-2$.
The construction of the terms of the normalizer chain is then reduced to the determination of the sets \mathcal{M}_{n}^{i}, a task which turns out to be way faster than computing the terms of the normalizer chains as subgroups of Σ_{n} via the Normalizer command provided by GAP.

5. A computational supplement

In this section we show an explicit construction of the first four groups in the normalizer chain when $n=6$, i.e. in $\operatorname{Sym}(64)$. Let us start with determining the

[^2]generators of T in terms of rigid commutators:
\[

$$
\begin{array}{rll}
t_{1}= & {[1]} & =(1,33)(2,34)(3,35) \ldots(30,62)(31,63)(32,64), \\
t_{2}= & {[2,1]} & =(1,17)(2,18)(3,19) \ldots(46,62)(47,63)(48,64), \\
t_{3}= & {[3,2,1]} & =(1,9)(2,10)(3,11) \ldots(54,62)(55,63)(56,64), \\
t_{4}= & {[4,3,2,1]} & =(1,5)(2,6)(3,7) \ldots(58,62)(59,63)(60,64), \\
t_{5}= & {[5,4,3,2,1]} & =(1,3)(2,4)(5,7) \ldots(58,60)(61,63)(62,64), \\
t_{6}= & {[6,5,4,3,2,1]} & =(1,2)(3,4)(5,6) \ldots(59,60)(61,62)(63,64) .
\end{array}
$$
\]

We have that $T=\left\langle t_{1}, t_{2}, \ldots, t_{6}\right\rangle$ and, from Proposition 12, its normalizer in Σ_{n} is $N_{6}^{0}=U_{6}=\left\langle\mathcal{U}_{6}\right\rangle=\left\langle T, u_{i j} \mid 1 \leq j<i \leq 6\right\rangle$. Thus the generators of N_{6}^{0}, besides those of T, are

$$
\begin{aligned}
& \vee[6 ; 5], \vee[6 ; 4], \vee[6 ; 3], \vee[6 ; 2], \vee[6 ; 1], \\
& \vee[5 ; 4], \vee[5 ; 3], \vee[5 ; 2], \vee[5 ; 1], \\
& \vee[4 ; 3], \vee[4 ; 2], \vee[4 ; 1], \\
& \vee[3 ; 2], \vee[3 ; 1] \text {, } \\
& \vee[2 ; 1],
\end{aligned}
$$

consequently $\left|N_{6}^{0}\right|=2^{21}$. Now, in accordance with Eq. (3.5) and Theorem 17, the normalizer N_{6}^{1} is generated by the rigid commutators previously listed and by η_{6}, the only element of $\mathcal{W}_{6,3}$ (see Eq. (3.4)). The commutator η_{6} is the punctured rigid commutator based at 6 and missing the integers 1 and 2, i.e.

$$
\begin{equation*}
\eta_{6}=[6,5,4,3]=\vee[6 ; 2,1] \tag{5.1}
\end{equation*}
$$

where 1 and 2 indeed represent the sole partition of 3 into at least two distinct parts. From this, $\log _{2}\left|N_{6}^{1}: N_{6}^{0}\right|=1=a_{3}$. Again from Eq. (3.5) and Theorem 17, the normalizer N_{6}^{2} is generated, along with the elements already mentioned, by the rigid commutators in $\mathcal{W}_{5,3}$ and $\mathcal{W}_{6,4}$, i.e.

$$
\begin{align*}
{[5,4,3] } & =\vee[5 ; 2,1] \tag{5.2}\\
{[6,5,4,2] } & =\vee[6 ; 3,1] \tag{5.3}
\end{align*}
$$

The commutator of Eq. (5.2), which belongs to $\mathcal{W}_{5,3}$, is the punctured rigid commutator based at 5 and missing the integers 1 and 2. The commutator of Eq. (5.3) instead, which belongs to $\mathcal{W}_{6,4}$, is based at 6 and misses the integers 1 and 3 , composing the sole partition of 4 into at least two distinct parts. Notice that $[5,4,3]=[6,5,4,3]$. Indeed, as discussed in Fact. 5, the commutator of Eq. (5.2) is obtained by lifting the one of Eq. (5.1), i.e. by removing 6, the left-most element of η_{6}. We have $\log _{2}\left|N_{6}^{2}: N_{6}^{1}\right|=2=a_{4}$. Similarly, N_{6}^{3} is generated by adding the new rigid commutators

$$
\begin{align*}
{[\not \mathscr{}, 4,3]=\quad[4,3] } & =\vee[4 ; 2,1], \tag{5.4}\\
{[\not 6,5,4,2]=\quad[5,4,2] } & =\vee[5 ; 3,1], \tag{5.5}\\
{[6,5,3,2] } & =\vee[6 ; 4,1], \tag{5.6}\\
{[6,5,4,1] } & =\vee[6 ; 3,2], \tag{5.7}
\end{align*}
$$

where the commutators of Eq. (5.4) and Eq. (5.5) are respectively obtained by lifting those of Eq. (5.2) and Eq. (5.3), and the commutators of Eq. (5.6) and Eq. (5.7)
belong to $\mathcal{W}_{6,5}$, respectively corresponding to the partitions $4+1$ and $3+2$ of 5 . At this stage, we have that $\log _{2}\left|N_{6}^{3}: N_{6}^{2}\right|=4=a_{5}$. Ultimately, the commutators

$$
\begin{array}{rll}
{[4,3]=} & {[3]} & =\vee[3 ; 2,1] \\
{[\not b, 4,2]=} & {[4,2]} & =\vee[4 ; 3,1] \\
{[6,5,3,2]=\quad[5,3,2]} & =\vee[5 ; 4,1] \\
{[6,5,4,1]=\quad[5,4,1]} & =\vee[5 ; 3,2] \\
{[6,4,3,2]} & =\vee[6 ; 5,1] \\
{[6,5,3,1]} & =\vee[6 ; 4,2] \\
{[6,5,4]} & =\vee[6 ; 3,2,1]
\end{array}
$$

complete the set of rigid generators of N_{6}^{4}, and $\log _{2}\left|N_{6}^{4}: N_{6}^{3}\right|=7=a_{6}$.
Using Corollary 22, we can find a saturated set of rigid generators for all the elements of the chain. Notice that for $i>5$, the sequence $\log _{2}\left|N_{6}^{i}: N_{6}^{i-1}\right|$ does not fit the pattern of the sequence $\left\{a_{j}\right\}$. Although we do not have a general formula to calculate the values of the relative indices between two consecutive terms in the normalizer chain, they can be explicitly determined by the algorithm in GitHub. Computational results are summarized in Table 2, where we list all the relative indices of the normalizer chain. In the second column, the logarithms of the sizes of the intersections of each term with each of the subgroups S_{6}, \ldots, S_{1} are displayed.

6. Problems for future Research

We conclude this work by highlighting some further properties and structures of the set \mathcal{R} of rigid commutators and providing some hints for future research.
Algebras of rigid commutators. The operation of commutation in \mathcal{R} is commutative and [Ø] represents the zero element. Moreover, for every $x, y \in \mathcal{R}$ the following identity is satisfied

$$
[[x, x, y], x]=[[x, x],[y, x]] \quad \text { (Jordan identity) }
$$

Let \mathbb{F} be any field of characteristic 2 and let \mathfrak{r} be the vector space over \mathbb{F} having the set \mathcal{R}^{*} of the non-trivial rigid commutators as a basis. The space \mathfrak{r} is endowed with a natural structure of an algebra. The product $x \star y$ of two rigid commutators $x, y \in \mathcal{R}$ is defined as

$$
x \star y \stackrel{\text { def }}{=} \begin{cases}{[x, y]} & \text { if }[x, y] \neq[\emptyset] \\ 0 & \text { otherwise } .\end{cases}
$$

This operation is then extended to the whole \mathfrak{r} by bilinearity and turns \mathfrak{r} into a Jordan algebra, since it is commutative and $x \star x=0$ for all $x \in \mathfrak{r}$. Moreover, if \mathcal{H} is a saturated subset of \mathcal{R}^{*}, then, on the one hand the group $H=\langle\mathcal{H}\rangle$ is a saturated subgroup of Σ_{n} and, on the other hand, the \mathbb{F}-linear span \mathfrak{h} of \mathcal{H} is a subalgebra of \mathfrak{r}. The property $[\mathcal{R}, \mathcal{H}] \subseteq \mathcal{H} \cup\{[\emptyset]\}$ is a necessary and sufficient condition for H to be a normal subgroup of Σ_{n} and for \mathfrak{h} to be an ideal of \mathfrak{r}. We point out that the fact that \mathcal{R} is closed under commutation is crucial to check the previous statement. If c is the nilpotency class of Σ_{n}, then the product of $c+1$ elements of \mathfrak{r} is always zero, so that \mathfrak{r} is nilpotent. The study of the properties and the representations of this algebra seems to be a problem of independent interest, in connection with the study of the saturated subgroups of Σ_{n}.

i	$\operatorname{dim}\left(N_{6}^{i} \cap S_{j}\right)$ $j=6,5,4,3,2,1$	$\log _{2}\left\|N_{6}^{i}\right\|$	$\log _{2}\left\|N_{6}^{i}: N_{6}^{i-1}\right\|$
0	$6,5,4,3,2,1$	21	15
1	$7,5,4,3,2,1$	22	1
2	$8,6,4,3,2,1$	24	2
3	$10,7,5,3,2,1$	28	4
4	$13,9,6,4,2,1$	35	7
5	$14,10,6,4,2,1$	37	2
6	$16,11,7,4,2,1$	41	4
7	$18,12,8,4,2,1$	45	4
8	$19,12,8,4,2,1$	46	1
9	$20,12,8,4,2,1$	47	1
10	$21,13,8,4,2,1$	49	2
11	$22,14,8,4,2,1$	51	2
12	$23,15,8,4,2,1$	53	2
13	$24,16,8,4,2,1$	55	2
14	$25,16,8,4,2,1$	56	1
15	$26,16,8,4,2,1$	57	1
16	$27,16,8,4,2,1$	58	1
17	$28,16,8,4,2,1$	59	1
18	$29,16,8,4,2,1$	60	1
19	$30,16,8,4,2,1$	61	1
20	$31,16,8,4,2,1$	62	1
21	$32,16,8,4,2,1$	63	1

Table 2. The normalizer chain for $n=6$

Again on the normalizer chain. We have obtained from Theorem 17 an explicit description of the non-trivial rigid generators of the i-th term of the normalizer chain when $1 \leq i \leq n-2$, i.e. the set \mathcal{N}_{n}^{i}. We have seen that \mathcal{N}_{n}^{i} has a nice description by way of Eq. (3.4) and Eq. (3.5), i.e. it is generated by some rigid commutators either belonging to \mathcal{U}_{n} or having a punctured form corresponding to suitable partitions into at least two distinct parts. Although we can efficiently compute all the normalizers in the chain, as described in the lines following Corollary 22, it is an interesting problem to find a similar combinatorial formula for the generating set \mathcal{M}_{n}^{i} of N_{n}^{i} when $i>n-2$. Moreover, as already mentioned in Section 5, the values of the sequence $\log _{2}\left|N_{n}^{i}: N_{n}^{i-1}\right|$ do not seem to belong to any special known pattern when $i>n-2$. Table 3 contains the values of $\log _{2}\left|N_{n}^{i}: N_{n}^{i-1}\right|$ for $1 \leq i \leq 14$ and $3 \leq n \leq 15$. It is an open problem to determine the general behavior of the sequence.

An odd generalization. It appears natural to ask whether a similar rigid commutator machinery can be developed in a Sylow p-subgroup of the symmetric group $\operatorname{Sym}\left(p^{n}\right)$ when p is an odd prime. This looks as an entirely different problem in terms of techniques and results. For example, a rigid commutator could contain repetitions. Although such a machinery might have a weaker cryptographic application, it may turn out interesting on a computational point of view.

n	$\log _{2}\left\|N_{n}^{i}: N_{n}^{i-1}\right\|$ for $1 \leq i \leq 14$													
3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	2	1	1	0	0	0	0	0	0	0	0	0	0
5	1	2	4	1	2	2	1	1	1	1	0	0	0	0
6	1	2	4	7	2	4	4	1	1	2	2	2	2	1
7	1	2	4	7	11	4	7	3	4	2	2	4	4	4
8	1	2	4	7	11	16	7	5	6	2	6	6	3	3
9	1	2	4	7	11	16	23	4	9	4	11	4	12	9
10	1	2	4	7	11	16	23	32	4	14	5	20	7	19
11	1	2	4	7	11	16	23	32	43	5	22	7	32	4
12	1	2	4	7	11	16	23	32	43	57	7	32	12	43
13	1	2	4	7	11	16	23	32	43	57	74	12	42	18
14	1	2	4	7	11	16	23	32	43	57	74	95	8	24
15	1	2	4	7	11	16	23	32	43	57	74	95	121	8

TABLE 3. Values of $\log _{2}\left|N_{n}^{i}: N_{n}^{i-1}\right|$ for small i and n. For $i \leq n-2$ these numbers do not depend on n and in the table are represented by highlighted digits.

Acknowledgment

We thank the staff of the Department of Information Engineering, Computer Science and Mathematics at the University of L'Aquila for helping us in managing the HPC cluster CALIBAN, which we extensively used to run our simulations (caliband.disim.univaq.it). We are also grateful to the Istituto Nazionale d'Alta Matematica - F. Severi for regularly hosting our research seminar Gruppi al Centro in which this paper was conceived.

References

[ACGS19] Riccardo Aragona, Roberto Civino, Norberto Gavioli, and Carlo Maria Scoppola, Regular subgroups with large intersection, Ann. Mat. Pura Appl. (4) 198 (2019), no. 6, 2043-2057. MR 4031838
[ACGS20] Riccardo Aragona, Roberto Civino, Norberto Gavioli, and Carlo Maria Scoppola, A Chain of Normalizers in the Sylow 2-subgroups of the symmetric group on 2^{n} letters, preprint published electronically at https://arxiv.org/abs/2008.13423, 2020, to appear in The Indian Journal of Pure and Applied Mathematics.
[And94] George E. Andrews, Number theory, Dover Publications, Inc., New York, 1994, Corrected reprint of the 1971 original [Dover, New York; MR0309838 (46 \#8943)]. MR 1298627
[And07] , Euler's "De Partitio numerorum", Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. $4,561-573$. MR 2338365
[Bes94] Christine Bessenrodt, A bijection for Lebesgue's partition identity in the spirit of Sylvester, Discrete Math. 132 (1994), no. 1-3, 1-10. MR 1297366
[BME97] Mireille Bousquet-Mélou and Kimmo Eriksson, Lecture hall partitions, Ramanujan J. 1 (1997), no. 1, 101-111. MR 1607531
[BS91] Eli Biham and Adi Shamir, Differential cryptanalysis of DES-like cryptosystems, Journal of CRYPTOLOGY 4 (1991), no. 1, 3-72.
[CBS19] Roberto Civino, Céline Blondeau, and Massimiliano Sala, Differential attacks: using alternative operations, Des. Codes Cryptogr. 87 (2019), no. 2-3, 225-247. MR 3911201
[CCS17] Marco Calderini, Roberto Civino, and Massimiliano Sala, Translation groups of the affine general linear group over prime fields, arXiv preprint arXiv:1702.00581 (2017).
[CDVS06] Andrea Caranti, Francesca Dalla Volta, and Massimiliano Sala, Abelian regular subgroups of the affine group and radical rings, Publ. Math. Debrecen 69 (2006), no. 3, 297-308. MR 2273982
[Dix71] John D. Dixon, Maximal abelian subgroups of the symmetric groups, Canad. J. Math. 23 (1971), 426-438. MR 0281782
[DR13] Joan Daemen and Vincent Rijmen, The design of Rijndael: AES-the advanced encryption standard, Springer Science \& Business Media, 2013.
[ES14] Thomas Enkosky and Branden Stone, A sequence defined by M-sequences, Discrete Math. 333 (2014), 35-38. MR 3233404
[Eul48] Leonhard Euler, Introductio in analysin infinitorum, vol. 1, MM Bousquet, Lausanne, 1748.
[Fin88] Nathan J. Fine, Basic hypergeometric series and applications, Mathematical Surveys and Monographs, vol. 27, American Mathematical Society, Providence, RI, 1988, With a foreword by George E. Andrews. MR 956465
[GAP20] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.11.0, 2020.
[Hal34] P. Hall, A Contribution to the Theory of Groups of Prime-Power Order, Proc. London Math. Soc. (2) $\mathbf{3 6}$ (1934), 29-95. MR 1575964
[Hup67] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967. MR 0224703
[KY99] Dongsu Kim and Ae Ja Yee, A note on partitions into distinct parts and odd parts, Ramanujan J. 3 (1999), no. 2, 227-231. MR 1703261
[Lei88] Felix Leinen, Chief series and right regular representations of finite p-groups, J. Austral. Math. Soc. Ser. A 44 (1988), no. 2, 225-232. MR 922606
[NK95] Kaisa Nyberg and Lars Ramkilde Knudsen, Provable security against a differential attack, Journal of Cryptology 8 (1995), no. 1, 27-37.
[OEI] The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, Accessed: 2020-03-01.
[SF82] James J. Sylvester and Fabian Franklin, A Constructive Theory of Partitions, Arranged in Three Acts, an Interact and an Exodion, Amer. J. Math. 5 (1882), no. 1-4, 251-330. MR 1505328
[Str16] Armin Straub, Core partitions into distinct parts and an analog of Euler's theorem, European J. Combin. 57 (2016), 40-49. MR 3508005
(R. Aragona, R. Civino, N. Gavioli and C.M. Scoppola) Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, via Vetoio, I-67100 Coppito (AQ), Italy

Email address, Riccardo Aragona: riccardo.aragona@univaq.it
Email address, Roberto Civino: roberto.civino@univaq.it
Email address, Norberto Gavioli: norberto.gavioli@univaq.it
Email address, Carlo Maria Scoppola: carlo.scoppola@univaq.it

[^0]: 2020 Mathematics Subject Classification. 20B30, 20B35, 20D20, 11P81, 05 A17.
 Key words and phrases. Symmetric group on 2^{n} elements; Elementary abelian regular subgroups; Sylow 2-subgroups; Normalizers; Euler's Partition Theorem.

 All the authors are members of INdAM-GNSAGA (Italy) and of the group "Crittografia e Codici" of the Italian Matematical Union. R. Civino is partially funded by the Centre of Excellence EX-EMERGE at University of L'Aquila. N. Gavioli is a member of the Centre of Excellence EXEMERGE at University of L'Aquila.

[^1]: 1 The sequence $b_{j}+1$ appears in several others areas of mathematics, from number theory to commutative algebra [ES14]. In particular, it was already known to Euler that $b_{j}+1$ corresponds to the number of partitions of j into odd parts (see [Eul48, Chapter 16] and [And07, §3]). Several proofs of this Euler's partition theorem have been offered ever since [SF82, And94, KY99], and several important refinements have been obtained [SF82, Fin88, Bes94, BME97, Str16].

[^2]: 2 See https://github.com/ngunivaq/normalizer-chain

