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A supersingular coincidence

G.K. Sankaran

September 25, 2020

The list of fifteen primes

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}

known as the supersingular primes (https://oeis.org/A002267) appears
in several different contexts. Here are five of them.

1. p ∈ S if and only if p divides the order of the Monster sporadic simple
group.

2. p ∈ S if and only if g(X0(p)
+) = 0, where X0(p)

+ = H/Γ0(p)
+ is the

modular curve associated with the group Γ0(p)
+ < GL(2,Q)

3. p ∈ S if and only if the supersingular values of the j-invariant all lie
in Fp.

4. p ∈ S if and only if the space Jcusp
2,p of Jacobi cusp forms of weight 2

and index p is of dimension 0.

5. If p 6∈ S then the moduli space Ap of complex abelian surfaces with a
polarisation of type (1, p) is of general type.

Of these, (1)–(3) are described in [Ogg], where the equivalence of the
conditions in (2) and (3) is proved. In [Ogg] a prize (a bottle of Jack Daniels)
is offered for an explanation of why the condition in (1) is equivalent to those
in (2) and (3): it is still unclaimed.

This note is primarily about (5). The proof that Ap is of general type
for p 6∈ S is due to Erdenberger [Er], and specialists in moduli of abelian
surfaces are occasionally asked to explain the apparent coincidence [HMc].
In fact the answer consists of a series of well-known facts, but because they
are not all well known to the same people, the question continues to recur.
The purpose of this note is to set the answer out clearly.
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1 Moduli of abelian surfaces

An abelian surface equipped with a polarisation of type (1, d) (for d ∈ N)
may be thought of as a complex torus C2/Λ, where Λ ⊂ C2 is the subgroup
(lattice) generated by the columns of Ω = (Id, τ) for

Id :=

(

1 0
0 d

)

, τ =

(

τ1 τ2
τ2 τ3

)

∈ H2 = {τ = tτ ∈ M2×2(C) | Im τ > 0}.

The paramodular group

Γd =

{

γ ∈ GL(4,Q) | tγ

(

0 Id
−Id 0

)

γ =

(

0 Id
−Id 0

)}

acts on the Siegel upper half-plane H2 by fractional linear transformations

(

A B
C D

)

: τ −→ (Aτ +B)(Cτ +D)−1.

This group action is properly discontinuous and the quotient Ad := H2/Γd

is a coarse moduli space for (1, d)-polarised abelian varieties. It is a quasi-
projective variety, and one may ask for its Kodaira dimension, or more pre-
cisely, for the Kodaira dimension κ(Yd) of a desingularisation Yd of a projec-
tive compactification Ad. For more on this and related spaces, see [HKW].

In practice one expects that Ad is of general type, i.e. κ(Yd) = 3, except
for some small values of d. Very loosely, this is because k-fold differential
forms on Yd correspond to suitable modular forms of weight 3k for Γd, and
these become abundant as d grows at least for k sufficiently divisible. How-
ever, not every modular form of weight 3k will do: obstructions come from
the boundary Ad \ Ad and from the branching of H2 → Ad.

The obstructions at the boundary may be overcome by using the low-
weight cusp form trick [Gr2]: if we can find a cusp form f2 of weight 2 for
Γd then we may consider modular forms f of weight 3k of the form f = fk

2 fk,
where fk is a modular form of weight k. These are also abundant, if d and
k are large enough, and because they vanish to high order at the boundary,
the associated differential forms extend.

The branching behaviour has to be analysed separately, and it depends
on the factorisation of d. For that reason much work in this direction has
concentrated, for simplicity, on the case d = p prime. The case d = p2 has
some simplifying features and was treated in [OG] and [GS].

By this method it was shown in [Sa] thatAp is of general type for p > 173.
Because of the inefficient compactification used there, the effective constraint
on p came from the branching, so all that was necessary was to verify that
a weight 2 cusp form exists for all p > 173. Such a form may be obtained
by lifting a Jacobi cusp form of weight 2 and index p according to Gritsenko
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([Gr2, Theorem 3], [Gr1]). The dimension of the space of Jacobi cusp forms
is computed in [EZ, SZ] and in this case it takes the form [Gr2, Sa]

dimJcusp
2,p =

p
∑

j=1

⌊

1 + j

6

⌋

− δ6(j) −

⌊

j2

4p

⌋

where δ6(j) = 1 if 6|j and 0 otherwise. This is positive for all p > 173.
Erdenberger [Er] found a better compactification and was able to reduce

the condition imposed by the branching from p > 173 to p ≥ 37, so that
the existence of the Jacobi form becomes the effective constraint. Then it is
easy to compute from the formula above that p ∈ S exactly when no Jacobi
cusp form of weight 2 and index p exists, i.e. when the condition in (4) holds.

It is not necessarily to be expected that Ap is of general type exactly
when p 6∈ S. The method of proof of [Er] fails for p ∈ S, as we shall see, and
it is known that Ad is unirational (so in particular not of general type) for
some small values of d, including all primes p ≤ 11: see [GP]. However, if
p ≥ 13, nothing currently excludes the possibility that Ap is of general type.

On the other hand, Ap being unirational, other than in the known cases
p ≤ 11, is excluded. Gritsenko [Gr1] showed that Ad has non-negative Ko-
daira dimension, so is not uniruled, for all d ≥ 13, prime or not, except pos-
sibly for d = 14, 15, 16, 18, 20, 24, 30, 36. Of these, the cases d = 14, 16, 18, 20
have since been settled in [GP] (such Ad are in fact unirational) and only
for d = 15, 24, 30, 36 is nothing known about the Kodaira dimension of Ad.

2 Modular forms

Since we have now established a connection between (4) and (5), to achieve
a moderately satisfactory explanation of the apparently coincidental appear-
ance of S in (5) we should show, without direct computation, that the con-
ditions in (2) and (4) are equivalent. (A fully satisfactory explanation would
also involve (1): this we are not able to give.) This is well known among
specialists in Jacobi forms, and follows easily from a small part of [SZ].

It is shown in [SZ] that the space Jk,d of Jacobi forms of weight k and in-
dex d is isomorphic (even as a Hecke module) to a certain subspaceM−

2k−2
(d)

of the space M2k−2(d) of modular forms of weight 2k − 2 for Γ0(d). This
subspace is defined by M

−

2k−2
(d) = M−

2k−2
(d) ∩M2k−2(d), where M−

2k−2
(d)

is the space of weight 2k − 2 modular forms for Γ0(d) that satisfy an extra
condition on the behaviour under the Fricke involution w : τ 7→ −1

dτ
, namely

f(
−1

dτ
) = (−1)kdk−1τ2k−2f(τ).

In our case (k = 2 and d = p) this is equivalent to saying that f is a modular
form of weight 2 for the group Γ0(p)

+ < GL(2,Q) generated by Γ0(p) and
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w =

(

0 1
−d 0

)

. See, for example, the definition of automorphic form in [Sh,

Chapter 2]. So if there is a weight 2, index p Jacobi form, then Γ0(p)
+ has

a weight 2 modular form.
Conversely, inspecting the definition of M in [SZ] we find that there

are no other conditions for p prime: simply M2k−2(p) = M2k−2(p). This
can be seen at once, for instance, from [SZ, Equation (4), p. 116], since
M2(1) ⊂ M2(1) = 0. In other words, the space of Jacobi forms in this case
is isomorphic exactly to the space of weight 2 modular forms for Γ0(p)

+.
Moreover, the isomorphism respects cusp forms: see [SZ, Theorem 5].

We remark that for k = 2 and p square-free (in particular for p prime)
there are no Eisenstein series, so the condition (3) is equivalent to the same
statement but with Jcusp

2,p replaced by J2,p.
However, Ogg [Ogg] shows that the modular curve X0(p)

+ corresponding
to Γ0(p)

+ is of genus 0 precisely for p ∈ S, i.e. he shows (2). One can compute
the dimension of the space of weight 2 forms from the formulae given in [Sh,
Theorem 2.23]: it is g + m − 1, where g is the genus of X0(p)

+ and m is
the number of cusps. Because p is prime, the curve X0(p) has two cusps,
which are interchanged by the Fricke involution; so m = 1, and so the space
of modular forms for Γ0(p)

+ has dimension g (i.e. they are all cusp forms,
as one should also expect from the remark above). So for p ∈ S, there can
be no weight 2, index p Jacobi forms; so we definitely cannot prove that Ap

is of general type result by the methods of [Sa] and [Er] for any p ∈ S.
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phic functions. Kanô Memorial Lectures, No. 1. Publications of the
Mathematical Society of Japan 11. Iwanami Shoten, Publishers,
Tokyo; Princeton University Press, Princeton, N.J., 1971.

[SZ] N. Skoruppa & D. Zagier, Jacobi forms and a certain space of mod-
ular forms. Invent. Math. 94 (1988), no. 1, 113–146.

G.K. Sankaran,
Department of Mathematical Sciences,
University of Bath,
Bath BA2 7AY,
England

G.K.Sankaran@bath.ac.uk

5


	1 Moduli of abelian surfaces
	2 Modular forms

