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An Asymptotic Expansion for the Number of 2-Connected Chord Diagrams

Ali Assem Mahmoud

Abstract. We derive a functional relation between the generating functions of connected chord dia-
grams and 2-connected chord diagrams. This relation enables us to calculate an asymptotic expansion
for the number of 2-connected chord diagrams on n chords. The asymptotic information obtained from
this expansion refines the last established results and provides a simple alternative for calculating the
asymptotic behaviour of certain Green functions in Quenched QED and Yukawa theory in the context
of quantum field theory.

1. Introduction

k-Connected chord diagrams (also known in the literature as k-irreducible linked diagrams) have
been studied in many research areas including combinatorics, quantum field theory and bioinformatics
[16, 33, 20], and, in particular, this research is motivated by the related applications in quenched
quantum electrodynamics (QQED) in [4] and which the author develops here and in [25]. Namely, the
integer sequence 1, 1, 7, 63, 729, 10113, . . . appeared in [7] and [4] as the coefficients of some renormal-
ization counterterms in QQED. Unlike [4], the asymptotic analysis presented here is used to calculate
the asymptotic behaviour of these counterterms without the need of singularity analysis, and depending
only on the combinatorial interpretation.

In this paper we shall study the asymptotic behaviour of the number of 2-connected chord diagrams.
Informally speaking, these are chord diagrams which require the removal of at least two chords to get
them disconnected. Here we obtain an asymptotic expansion for (C>2)n, the number of 2-connected
chord diagrams on n chords. As we have mentioned earlier, in [30], it is shown that the proportion
of connected chord diagrams approaches e−1 as the number of chords goes to infinity. The work of
Stein and Everett in [30] addresses a special case of a more general result by Kleitman in [20], where
the argument was less detailed. Kleitman argues that the proportion of k-connected chord diagrams
goes to e−k. In [5], M. Borinsky showed that the asymptotic behaviour of connected chord diagrams is
approximated by a series expansion, in which the first term corresponds to the e−1 obtained by Stein
and Everett, and earlier by Kleitman; whereas the infinitely many extra terms provide higher precision
as needed. Our result here will extend Kleitman’s result in very much the same way, this time for the
case of 2-connected chord diagrams. Namely, we obtain an asymptotic expansion for 2-connected chord
diagrams, in which the first term corresponds to the e−2 in Kleitman’s argument. However, to be able
to extract such information about this class of chord diagrams, we will need to work on producing a
recursion that relates 2-connected chord diagrams with connected chord diagrams.

2. k-Connected Chord Diagrams

Definition 2.1 (Chord diagrams). A chord diagram on n chords (i.e. of size n) is geometrically
perceived as a circle with 2n nodes that are matched into disjoint pairs, with each pair corresponding
to a chord.

Definition 2.2 (Rooted chord diagrams). A rooted chord diagram is a chord diagram with a
selected node. The selected node is called the root vertex, and the chord with the root vertex is called
the root chord. In other words, a rooted chord diagram of size n is a matching of the set {1, . . . , 2n}.
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For an algebraic definition, this is the same as a fixed-point free involution in S2n. Then the generating
series for rooted chord diagrams is

(2.1) D(x) :=
∑

n=0

(2n− 1)!! xn

All chord diagrams considered here are going to be rooted and so, when we say a chord diagram we
tacitly mean a rooted one.

Now, a rooted chord diagram can be represented in a linear order, by numbering the nodes in
counterclockwise order, starting from the root which receives the label ‘1’. A chord in the diagram may
be referred to as c = {a < b}, where a and b are the nodes in the linear order.

Definition 2.3 (Intervals). In the linear representation of a rooted chord diagram, an interval is
the space to the right of one of the nodes in the linear representation. Thus, a rooted diagram on n
chords has 2n intervals.

For example, this includes the space to the right of the last node (in the linear order).

intervals

the root

the root

Figure 1. A rooted chord diagram and its linear representation

As may be expected by now, the crossings in a chord diagram encode much of the structure and so
we ought to give proper notation for them. Namely, in the linear order, two chords c1 = {v1 < v2} and
c2 = {w1 < w2} are said to cross if v1 < w1 < v2 < w2 or w1 < v1 < w2 < v2. Tracing all the crossings
in the diagram leads to the following definition:

Definition 2.4 (The Intersection Graph). Given a (rooted) chord diagram D on n chords, consider
the following graph GD: the chords of the diagram will serve as vertices for the new graph, and there
is an edge between the two vertices c1 = {v1 < v2} and c2 = {w1 < w2} if v1 < w1 < v2 < w2

or w1 < v1 < w2 < v2, i.e. if the chords cross each other. The graph so constructed is called the
intersection graph of the given chord diagram.

Remark 2.1. A labelling for the intersection graph can be obtained as follows: give the label 1 to
the root chord; order the components obtained if the root is removed according to the order of the first
vertex of each of them in the linear representation, say the components are C1, . . . , Cn; and then recur-
sively label each of the components. It is easily verified that a rooted chord diagram can be uniquely
recovered from its labelled intersection graph.

Definition 2.5 (Connected Chord Diagrams). A (rooted) chord diagram is said to be connected if
its intersection graph is connected (in the graph-theoretic sense). A connected component of a diagram
is a subset of chords which itself forms a connected chord diagram. The term root component will refer
to the connected component containing the root chord.

Example 2.1. The diagram D below is a connected chord diagram in linear representation, where
the root node is drawn in black.
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D

The generating function for connected chord diagrams (in the number of chords) is denoted by C(x).
Thus C(x) =

∑
n=0 Cnx

n, where Cn is the number of connected chord diagrams on n chords. The first
terms of C(x) are found to be

C(x) = x+ x2 + 4x3 + 27 x4 + 248 x5 + · · · ;
the reader may refer to OEIS sequence A000699 for more coefficients. The next lemma lists some classic
decompositions for chord diagrams (see [14] for example).

Lemma 2.1. If D(x), C(x) are the generating series for chord diagrams and connected chord dia-
grams respectively, then

(i) D(x) = 1 + C(xD(x)2),
(ii) D(x) = 1 + xD(x) + 2x2D′(x), and
(iii) 2xC(x)C′(x) = C(x)(1 + C(x)) − x.

Proof. We sketch the underlying decompositions as follows:

(i) The ‘one’ term is for the empty chord diagram. Now, given a nonempty chord diagram, we
see that for every chord in the root component there live two chord diagrams to the right of
its two ends. This gives the desired decomposition.

(ii) There are three situations for a root chord: it is either non-existent (empty diagram); or it is
concatenated with a following diagram; or the root chord has its right end landing in one of
the intervals of a diagram. These situations correspond respectively with the terms in (ii).

(iii) Can be derived from (i) and (ii). Nevertheless, it can be also shown as follows: if we remove the
root chord what is left is a sequence of connected components, with each component having a
special interval (through wich the root used to pass) which cannot be the last interval (see the
figure below). Thus each of these components is counted according to the generating function
2xC′(x) − C(x).

This decomposition gives that

C(x) =
x

1− (2xC′(x)− C(x))
,

and the result follows.

�

The main object we use throughout is chord diagrams with certain degrees (strengths) of connec-
tivity.

Definition 2.6 (k-Connected Chord Diagrams). A chord diagram on n chords is said to be k-
connected if there is no set S of consecutive endpoints, with |S| < 2n − k, S is paired with less
than k endpoints not in S (here we assume the endpoints are consecutive in the sense of the linear
representation). In other words, the diagram requires the deletion of at least k chords to become
disconnected. A k-connected diagram which is not k + 1-connected will be said to have connectivity k.

Example 2.2. The diagram in Figure 2 is 3-connected since it can not be disconnected with the
removal of fewer than 3 chords, but it is not 4-connected.

https://oeis.org/A000699
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Figure 2. A diagram that is 3-connected but not 4-connected

Definition 2.7 (Cuts and Reasons for Connectivity-k). Given a connectivity-k diagram, a set of
size k of chords is called a cut if its removal disconnects the diagram. Equivalently, a set T of k chords
in a connectivity-k diagram is a cut if there exists a sequence S of consecutive end points such that
|S| < 2n− k and all the end points in S are paired together except for k endpoints from the k chords
in T . Such a sequence S will be called a reason for connectivity-k. See Figure 3 below for illustration.

Figure 3.

Notation 2.1. For the generating functions we shall use the following notation: C>k(x) (or C>k)
will denote k-connected diagrams whereas Ck(x) (or Ck) denotes diagrams with connectivity k. So for
example C(x) = C1(x) + C>2(x).

A computation of the first coefficients gives

C(x) = x+ x2 + 4x3 + 27x4 + 248x5 + 2830x6 + · · ·
C1(x) = x+ 3x3 + 20x4 + 185x5 + 2101x6 + · · ·
C>2(x) = x2 + x3 + 7x4 + 63x5 + 729x6 + · · ·

(2.2)

3. Functional Recurrence for 2-Connected Diagrams

In [5], the (classic) functional relation D(x) = 1 + C(xD2) provided the suitable grounds for
deriving information about the asymptotic behaviour of Cn, the number of connected chord diagrams
on n chords. The composition of maps in the second term in this relation transforms nicely into a
product when taking the alien derivative A2

1/2 (see Appendix A for definitions). In the aftermath of our

meeting in the Canadian Mathematical Society session about chord diagrams (Dec. 2019), M. Borinsky
suggested to the author that it may be possible to obtain similar functional relations for the higher
connectivity diagrams. This was motivated by the asymptotic pattern shown in Kleitman’s results [20].
In this section we derive such a functional relation for 2-connected chord diagrams, and will use it later
to study the asymptotic behaviour of the number of 2-connected chord diagrams. However, just as the
case for general graphs, it is not clear whether 3-connected diagrams and k- connected diagrams in
general do follow similar relations.

Proposition 3.1. The following functional relation between connected and 2-connected diagrams
holds:

(3.1) C =
C2

x
− C>2

(
C2

x

)
.
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Proof. Assume that a connected chord diagram C is given. We can determine the maximal
sequences of consecutive end points that are reasons for connectivity-1. A sequence S = s1s2 . . . sm of
consecutive end points is of this type if and only if

(1) S is a reason of connectivity-1 corresponding to a cut chord c that has exactly one end point
inside S, say this is si where 1 < i < m.

(2) S is not contained in any other reason for connectivity-1.

However, these reasons for connectivity-1 may overlap (see Figure 4), and so we will need to devise
a canonical way for partitioning our diagram in terms of these maximal sequences.

Figure 4.

Case 1: C is the single chord diagram. In this case we do nothing, and the contribution to the
generating function is just x.

In the next cases we generally assume C is not the single chord diagram.
Case 2: The root endpoint r0 (left endpoint of the root chord of C) is not contained in any reason

for connectivity-1. In this case we determine the maximal reasons for connectivity-1 that are obtained
through the next procedure by moving from left to right. Such a diagram generally looks like the
example in Figure 5 below.

Figure 5. An illustration for Case 2

Consider the diagram C× obtained from C as follows:

(1) Starting from the left, determine the first endpoint that is included in some reason for connectivity-
1. Let’s denote it temporarily by s1. Move to step 5 if the diagram is 2-connected and no such
endpoint exists.

(2) Determine the maximal reason S = s1s2 . . . sm for connectivity-1 that contains s1 by consecu-
tively trying to include the next endpoints to the right. Assume S corresponds to a cut chord
c that has the end point si, say.

(3) Let C× be the diagram obtained by removing the sub-diagram induced by S − si, i.e. we
remove S without removing c.

(4) Update by setting C = C×, and go back to step 1.

(5) Output C×.
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Observation 1: Notice that in the process of extracting C× the diagram remains connected, this
is because any of the removed sub-diagrams has been connected to the rest of C through a single cut
chord which is not removed.

Clearly, C× will not preserve any original reason for connectivity-1 in C. Moreover, notice that
again since each sub-diagram removed has only been connected to the rest of C through a single cut
chord (which is kept), the process should not affect the connectivity of the rest of C neither will create
new cuts.

Observation 2: Also, step 1 is exclusive throughout the procedure. Indeed, if there is no such
endpoint in a connected diagram (Observation 1) then the diagram is either 2-connected or is the single
chord diagram (it can’t be empty). The latter however never occurs: Initially the diagram is not the
single chord diagram by our assumption. Further, C is not reduced to a single chord diagram at any
iteration since this should imply that the root endpoint r0 is contained in a reason for connectivity-1.
Therefore the procedure eventually halts and the output is 2-connected.

Observation 3: It is important to note that also the last endpoint in C is not included in any
reason for connectivity-1, for this will imply the same for r0.

To summarize the procedure above, we are removing maximal reasons of connectivity-1 that appear
in a certain order when moving from left to right, without removing their corresponding cuts. This is
illustrated in Figures 6 and 7.

This gives a reversible decomposition into a 2-connected where each endpoint, except the first and
last endpoints, is assigned to a connected chord diagram counted by one less chord. In other words,
we will count each middle chord (i.e. whose endpoints are not the root nor the last endpoint) in C×

when counting the connected diagram for its right endpoint by keeping it as a root for this diagram,
while on the other hand, the diagram for the left endpoint will be counted by one less chord to avoid
overcounting.

This can also be viewed as follows:
Given a connected chord diagram C (which is not the single chord) we undergo the described

procedure to get

(1) a 2-connected chord diagram C×,
(2) the root chord cr corresponds to a connected chord diagram that consists of cr and the diagram

attached to the right endpoint of the root, in which we will keep the root.
(3) the chord cl carrying the last endpoint of C corresponds to a connected chord diagram that

consists of cl kept as a root for whatever the diagram attached to the left endpoint.
(4) Every middle chord c can be replaced with a pair of diagrams corresponding to right and left

endpoints. The diagram for the left endpoint has its root a copy of c that is not going to be
counted and is connected; while the diagram for the right endpoint keeps c and is connected
as well.

In terms of generating functions the contribution of Case 2 is seen now to be:

(3.2) C(x)2

[
C>2(t)

t2

∣∣∣∣
t=C(x)2/x

]
,

where we divide by t2 to account for the fact that two of the chords are treated differently (namely cr
and cl). Each of these two chords contributes with C(x) as shown above.

Case 3: The root endpoint r0 (left endpoint of the root chord of C) is contained in a reason for
connectivity-1. In this case we determine the maximal reason for connectivity-1 containing r0, donted
by S, by consecutively checking every endpoint to the right of r0. Let c∗ be the corresponding cut
for S. Now, by the maximality of S it must be that none of the reasons for connectivity-1 that come
later could be extended to contain S. This means that the diagram obtained by removing S (without
removing c∗) is of the type considered in Case 2 above. The diagram will generally be structured as in
Figure 8. Then the contribution to the generating function is
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Figure 6. A diagram C with cuts highlighted (red).

C
×

Figure 7. Maximal reasons obtained through the procedure (underlined), C× (bold).

(3.3)
C(x) − x

x
. C(x)2

[
C>2(t)

t2

∣∣∣∣
t=C(x)2/x

]
,

where the factor of
C(x) − x

x
corresponds to the sub-diagram induced by S together with cr: the

(C − x) since S is always nonempty in this case, and we divide by x since cr is counted with the rest of
the diagram.

Figure 8. S is the maximal reason containing r0, and so the rest of the diagram should
be covered with a 2-connected sub-diagram (blue).
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Thus, by combining the findings of the three cases we have

C(x) = x+ C(x)2

[
C>2(t)

t2

∣∣∣∣
t=C(x)2/x

]
+
C(x) − x

x
. C(x)2

[
C>2(t)

t2

∣∣∣∣
t=C(x)2/x

]

= x+
C(x)3

x
.

[
C>2(t)

t2

∣∣∣∣
t=C(x)2/x

]

= x+
x

C(x)
.

(
C(x)2

x

)2

.

[
C>2(t)

t2

∣∣∣∣
t=C(x)2/x

]

= x+
x

C(x)
. C>2

(
C(x)2

x

)
,

and the result now follows.
�

For future reference, we include the first terms of the expressions involved in the previous decompo-
sition. The reader can check that the sum of x plus lines 3 and 4 in the next table gives the first terms
of C(x).

x0 x x2 x3 x4 x5 x6

1 C2/x 0 1 2 9 62 566 6372

2
C>2(t)

t2

∣∣∣∣
t=C(x)2/x

1 1 9 100 1323 20088 342430

3 C(x)2
[ C>2(t)

t2

∣∣∣∣
t=C(x)2/x

]
0 0 1 3 20 189 2232

4
C(x) − x

x
. C(x)2

[ C>2(t)

t2

∣∣∣∣
t=C(x)2/x

]
0 0 0 1 7 59 598

Table 1. The first coefficients of the series involved in the terms of the decomposition of C>2.

4. Asymptotics of the number of 2-connected chord diagrams

In this section we will see how to successfully estimate the number (C>2)n of 2-connected diagrams
when n is large. The asymptotic behaviour obtained here will extend Kleitman’s result [20] and will
shed light on an unexplained pattern for the images of the alien derivative. It turns out that A2

1
2

C>2

takes the form of a rational function in C>2 times the exponential of a quadratic expression in the
reciprocal of that rational function. This was exactly the same case for A2

1
2

C (as well as monolithic

diagrams and simple permutations). We will proceed now by applying a suitable alien derivative as was
done before for connected chord diagrams.

In the previous section we have seen that

C =
C2

x
− C>2

(
C2

x

)
.

We will start by applying the alien derivative A2
3
2

, which is allowed since C(x) ∈ R[[x]]21
2

⊂ R[[x]]23
2

by Corollary A.4.
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(
A2

3
2
C
)
(x) = A2

3
2

(
C(x)2

x

)
−A2

3
2

(
C>2

(
C(x)2

x

))
(x)

= A2
1
2

(
C(x)2

)
−A2

3
2

(
C>2

(
C(x)2

x

))
(x)

= 2C
(
A2

1
2
C
)
(x) −A2

3
2

(
C>2

(
C(x)2

x

))
(x),

by the linearity of A2
3
2

and by Proposition A.5. Rearrange and use Proposition A.3 to get

(2C − x)
(
A2

1
2
C
)
(x) = A2

3
2

(
C>2

(
C(x)2

x

))
(x).

Now to get rid of the decomposition on the right we appeal to Theorem A.7:

(2C − x)
(
A2

1
2
C
)
(x) = C′

>2

(
C2

x

)
A2

3
2

(
C2

x

)
+

(
x2

C2

) 3
2

e
C2/x−x

2xC2/x

(
A2

3
2
C>2

)(C2

x

)

= 2C
(
A2

1
2
C
)
(x) C′

>2

(
C2

x

)
+
x3

C3
e

C2/x−x

2xC2/x

(
A2

3
2
C>2

)(C2

x

)
.

Equation (3.1) and Lemma 2.1 give that

C′ =
2xCC′ − C2

x2

[
1− C′

>2

(
C2

x

)]

=
C2 + C − x− C2

x2

[
1− C′

>2

(
C2

x

)]

=
C − x

x2

[
1− C′

>2

(
C2

x

)]
.

Substituting into our equation we get

(
2x2CC′

C − x
− x

) (
A2

1
2
C
)
(x) =

x3

C3
e

C2/x−x

2xC2/x

(
A2

3
2
C>2

)(C2

x

)
.

Now, by [3],
(
A2

1
2

C
)
(x) =

1√
2π

x

C(x)
e

−1
2x (C2+2C), and hence

(
A2

3
2
C>2

)(C2

x

)
=
C3

x3

(
2x2CC′

C − x
− x

)(
A2

1
2
C
)
(x) e

x−C2/x

2xC2/x

=
C3

x3
· x(C

2 + C − x)− xC + x2

C − x
·
(
A2

1
2
C
)
(x) · e

x−C2/x

2xC2/x

=
C3

x3
· xC2

C − x
· 1√

2π

x

C(x)
e

−1
2x (C2+2C) · e

x−C2/x

2xC2/x .

Since the LHS is a function in
C2

x
, applying Proposition A.3 gives that
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(
A2

3
2
C>2

)(C2

x

)
=
C2

x
·
(
A2

1
2
C>2

)(C2

x

)
.

Back to our equation, we thus have

(4.1)
(
A2

1
2
C>2

)(C(x)2
x

)
=

1√
2π

· C2

C − x
· e−1

2x (C2+2C) · e
x−C2/x

2xC2/x =
1√
2π

· C2

C − x
· e

−1
2x [C2+2C+1− x2

C2 ].

Since the power series
C(x)2

x
is invertible, we let y(x) be such that

C(y)2

y
= x. In that case equation

(3.1) gives

C(y) = x− C>2(x),

and hence

y(x) =
(x− C>2(x))

2

x
.

Substituting y(x) for x in equation (4.1) we get

(
A2

1
2
C>2

)
(x) =

1√
2π

· (x− C>2)
2

(
(x− C>2)−

(x− C>2)
2

x

) · e
−1
2

[

x+ 2x
(x−C>2)

+ x
(x−C>2)2

− 1
x

]

=
1√
2π

· x (x− C>2)

(x− x+ C>2)
· e

−1
2x

[

x2+ 2x
(1−C>2/x)

+ 1
(1−C>2/x)2

−1

]

=
1√
2π

· x2(
C>2

(1− C>2/x)

) · e
−1
2x

[(

1
(1−C>2/x)+x

)2

−1

]

.

In other words,

(4.2)
(
A2

1
2
C>2

)
(x) =

1√
2π

· x2

C>2S
· e−1

2x [(S+x)
2−1],

where S(x) =
1

(
1− C>2(x)

x

) is the generating series for sequences of 2-connected chord diagrams

counted by one less chord.
Finally it is noteworthy to see that the image A2

1
2

C>2 of C>2(x) under the alien derivative is of

the form of a rational function of C>2 times the exponential of a quadratic expression in the rational
function. The same pattern has been observed in the case of connected chord diagrams. From another
point of view, one can see that xS(x) also counts connectivity-1 diagrams in which only the root chord
is a cut.

The evaluation of A2
1
2

C>2 will enable us to derive information about the asymptotic behaviour

which strongly extend the result by Kleitman in [20]. First let us list the first few terms of the functions
involved.

Note that we are willing to display the factor of e−2 that comes from exp
{−1

2x

[
(S + x)2 − 1

] }
and

that is why the last row in Table 2 is multiplied by e2.
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x0 x x2 x3 x4 x5 x6 x7

1 S(x) = 1/
(
1− C>2(x)

x

)
1 1 2 10 82 898 12018

2 (S + x)2 1 4 8 28 208 2164 28056

3
1

2x

[
(S + x)2 − 1

]
2 4 14 104 1082 14028

4 C>2 · S 0 0 1 2 10 82 898 12018

5
x2

C>2 · S
1 -2 -6 -50 -574 -8082

6 e2 · exp
{−1

2x

[
(S + x)2 − 1

] }
1 -4 -6 −176

3
−2008

3
−46636

5

Table 2. The first terms of the series involved in calculating A2
1
2

C>2(x).

The computation then gives
(
A2

1
2
C>2

)
(x) =

1√
2π

· x2

C>2S
· e−1

2x [(S+x)
2−1]

=
e−2

√
2π

[
1− 6x− 4x2 − 218

3
x3 − 890x4 − 196838

15
x5 − · · ·

]
(4.3)

Now, by Definition A.1 of factorially divergent power series and Definition A.2 of the alien derivative
A2

1
2

, and since Γ2
1
2

(n) =
√
2π(2n−1)!!, we obtain that, for all R ∈ N0, the number (C>2)n of 2-connected

diagrams on n chords satisfies

(C>2)n =

R−1∑

k=0

[xk]
(
A2

1
2
C>2

)
(x) · Γ2

1
2
(n− k) +O(Γ2

1
2
(n−R))

=
√
2π

R−1∑

k=0

[xk]
(
A2

1
2
C>2

)
(x) · (2(n− k)− 1)!! +O((2(n−R)− 1)!!),

and hence the first few terms in this asymptotic expansion are given by

(C>2)n = e−2

(
(2n− 1)!!− 6(2n− 3)!!− 4(2n− 5)!!− 218

3
(2n− 7)!!−

− 890(2n− 9)!!− 196838

15
(2n− 11)!!− · · ·

)

= e−2(2n− 1)!!

(
1− 6

2n− 1
− 4

(2n− 3)(2n− 1)
− 218

3

1

(2n− 5)(2n− 3)(2n− 1)
−

− 890

(2n− 7)(2n− 5)(2n− 3)(2n− 1)
− 196838

15

1

(2n− 9) · · · (2n− 1)
− · · ·

)
.

(4.4)

The result by Kleitman [20] corresponds to the first term in this expansion. By the above approach,
any precision can be achieved and an arbitrary number of terms can be produced.

Equation 4.4 also shows that a randomly chosen chord diagram on n chords is 2-connected with a
probability of

1

e2

(
1− 3

n

)
+O(1/n2).

In the next section we will see that this expansion also corresponds to the asymptotics of the
number of skeleton quenched QED vertex diagrams [4]. In that context the first five terms of the above
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expansion were conjectured by D. J. Broadhurst on a numerical evidence (see page 38 in [4]) in studying
zero-dimensional field theory.

5. Connection with Zero-Dimensional QFT

In the next part of the paper we will see that some of the integer sequences produced in studying 2-
connected chord diagrams appear in the context of zero-dimensional quantum field theory. Note that in
this situation the partition function transforms into a series of graphs since no actual Feynman integral
shall remain. On another level, the Feynman rules will be represented as a character from H to the
algebra R[[~]] [5]. We managed to establish the relation between 2-connected chord diagrams and some
of the observables in quenched QED. In [4] the asymptotics for these sequences are obtained through
a singularity analysis approach. We will be able to get the same asymptotics through an enumerative
approach. Factorially divergent power series are, as expected, used in both approaches, and hence we
will regularly appeal to theorems from Section A. First we will briefly set-up the context in perturbation
theory. In most parts we follow the notation in [4].

Recall the basic path integral formulation of QFT and notice that for zero-dimensional QFT the
path integral for the partition function becomes an ordinary integral given for example by

Z(~) :=

∫

R

1√
2π~

e
1
~

(

−x2

2a +V (x)
)

dx,

where V (x) ∈ x3R[[x]] is the potential and the exponent −x2

2a + V (x) is the action and denoted by S.
As known, this integral generally has singularities, and even as a series expansion it generally have a
singularity at zero. In [4], the expansion is treated as a formal power series and the focus is on studying
the asymptotics of the coefficients.

Recall that Gaussian integrals satisfy∫

R

1√
2π~

e−
x2

2a~x2ndx =
√
a(a~)n(2n− 1)!!,

were only the even powers are considered since the integral vanishes for odd powers. This enables us to
work with a well-defined power series instead of the path integral (actually this is the path integral in
dimension 0):

Definition 5.1 ([4]). For a general formal action S(x) = −x2

2a + V (x) ∈ x2R[[x]] we define the
corresponding perturbative partition function to be the power series in ~ given by

F [S(x)](~) =
√
a

∞∑

n=0

(a~)n(2n− 1)!![x2n]e
1
~
V (x).

This is a well-defined power series in ~ since the coefficient [x2n]e
1
~
V (x) is a polynomial in ~−1 of

degree less than n because V ∈ x3R[[x]]. Just as the path integral, this map also has a diagrammatic
meaning in terms of Feynman diagrams [10]:

Proposition 5.1. If S(x) = −x2

2a +
∑∞
k=3

λk

k! x
k with a > 0, then

F [S(x)](~) =
√
a
∑

Γ

~|E(Γ)|−|V (Γ)| a|E(Γ)|Πv∈V (Γ)λnv

|Aut Γ| ,

where the sum runs over all multigraphs Γ in which the valency nv of every vertex v is at least 3,
and where |E(Γ)|, |V (Γ)|, and |Aut Γ| are the sizes of the edge set, the vertex set, and the automorphism
group of Γ respectively.

So, in terms of Feynman diagrams, to compute the nth coefficient of F [S(x)] we do the following

(1) Draw all multigraphs Γ with |E(Γ)| − |V (Γ)| = n. Note that this is one less than the loop
number, it is the number of independent cycles in the graph (remember that independent
cycles can be obtained by starting with a spanning tree and adding one edge at a time). The
loop number is also known as the Betti number of the graph. The number |E(Γ)|− |V (Γ)| will
be referred to as the excess of Γ.
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(2) Each vertex contributes with a factor that corresponds to its valency, that’s how we get
Πv∈V (Γ)λnv . Then we multiply with the factor a|E(Γ)|. This process simply corresponds to the
Feynman rules. The map that applies the Feynman rules will be denoted by φS .

(3) Divide by the size of the automorphism group of the graph.
(4) Finally sum up all the contributions and multiply by

√
a.

Example 5.1 ([4]). As an example, the action for ϕ3-theory takes the form S(x) = −x2

2 + x3

3! . In
that case

Zϕ
3

(~) =

∞∑

n=0

~n(2n− 1)!![x2n]e
x3

3!~ =

∞∑

n=0

(6n− 1)!!

(3!)2n(2n)!
~n.

In terms of Feynman diagrams only 3-regular graphs will show up in ϕ3-theory, hence we have

Zϕ
3

(~) = φS

(
1 +

1

8
+

1

12
+

1

128
+

1

288
+

1

96
+

+
1

48
+

1

16
+

1

16
+

1

8
+

1

24
+ · · ·

)
.

Then applying the Feynman rules φS does not change the coefficients in the sum since the contri-
bution of any vertex is 1 according to the described potential. Adding up the terms with the same loop
number then gives

Zϕ
3

(~) = 1 +
5

24
~+

385

1152
~2 + · · · ,

which agrees with the first algebraic calculation.

5.1. Zero-Dimensional Scalar Theories with Interaction. We will study such expansions
that arise in QED theories, namely we shall consider quenched QED and Yukawa theory. These are
examples of theories with interaction. It is impossible to completely cover the underlying physics,
nevertheless we should be able to understand as much as needed for our purposes by anticipating the
interrelations between the different entities defined.

In the presence of interaction in the theory, the partition function takes the form

Z(~, j) :=

∫

R

1√
2π~

e
1
~

(

− x2

2 +V (x)+xj
)

dx,

where an additional term is added to the potential, namely xj, j is called the source.
With this extra term we can not directly expand the integral as we did before, but we can still

achieve the same essence after a change of variables. Shift x to x+ xo where xo(j) is the unique power
series solution to xo(j) = V ′(xo(j)) + j. Then we get

Z(~, j) =

∫

R

1√
2π~

e
1
~

(

− (x+xo)2

2 +V (x+xo)+(x+xo)j

)

dx

= e
1
~

(

−
x2
o
2 +V (xo)+xoj

) ∫

R

1√
2π~

e
1
~

(

− x2

2 +V (x+xo)−V (xo)−xV
′(xo)

)

dx

= e
1
~

(

−
x2
o
2 +V (xo)+xoj

)

F
[
−x

2

2
+ V (x+ xo)− V (xo)− xV ′(xo)

]
(~).
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The exponential factor enumerates forests (collections of trees) with the corresponding conditions
on vertices, these diagrams are referred to as the tree-level diagrams. Tree-level diagrams contribute
with negative powers of ~, and therefore we are going to isolate them so that the treatment for the main
expansion remains clear. Remember that Feynman diagrams are labeled, and so in order to restrict
ourselves to connected diagrams we have to take the logarithm of the partition function:

W (~, j) : = ~ logZ(~, j)

= −x
2
o

2
+ V (xo) + xoj + ~ logF

[
−x

2

2
+ V (x+ xo)− V (xo)− xV ′(xo)

]
(~)

generates all connected diagrams and is called the free energy. Note that the extra ~ factor causes
the powers to express the number of loops instead of the excess. Again we are using the notation in [4]
since we are eventually going to compare to parts of the work.

As customary in QFT, to move to the quantum effective action G, which generates 1PI diagrams,
one takes the Legendre transform of W :

G(~, ϕc) :=W − jϕc,(5.1)

where ϕc := ∂jW . The coefficients [ϕnc ]G are called the (proper) Green functions of the theory. Recall
that from a graph theoretic point-of-view, being 1PI (1-particle irreducible) is merely another way
of saying 2-connected. Thus, combinatorially, the Legendre transform, as in [18], is seen to be the
transportation from connected diagrams to 2-connected or 1PI diagrams. In that sense, the order of
the derivative ∂nϕc

G|ϕc=0 = [ϕnc ]G determines the number of external legs.
In the next part of the discussion we shall need the following physical jargon and terminology:

(1) The Green function [ϕ1
c ]G = ∂ϕcG|ϕc=0 generates all 1PI diagrams with exactly one external

leg, which are called the tadpoles of the theory (Figure 9).

Figure 9. A tadpole diagram in QED

(2) The Green function [ϕ2
c ]G = ∂2ϕc

G|ϕc=0 generates all 1PI diagrams with two external legs.
Such a diagram is called a 1PI propagator (can replace an edge in the theory).

Figure 10. A propagator diagram

(3) For n > 2, ∂nϕc
G|ϕc=0 = [ϕnc ]G is called the n-point function.

In quenched QED, some of the quantities that we are going to compare their expansions with the
generating series of 2-connected chord diagrams are the renormalized Green functions with respect to
a chosen residue. We shall therefore recall from Section B.4 the basics of the Hopf-algebraic treatment
of renormalization in the next section before proceeding into the real calculations. For more about this
topic the reader can consult [27], or the original paper by D. Kreimer and A. Connes [9].
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5.2. Hopf-algebraic Renormalization. By the work in [26, 15, 19, 21, 22, 9] we know that,
for a given QFT theory, the superficially divergent 1PI Feynman graphs form a Hopf algebra H. The
product is defined to be the disjoint union, and the coproduct of a connected Feynman graph Γ was
defined according to Definition B.19:

∆(Γ) =
∑

γ⊆Γ

γ product of divergent

1PI subgraphs

γ ⊗ Γ/γ,

and extended as an algebra morphism. The unit, counit, and antipode were denoted by I, Î, and S.
In [33] (and Section 3.1 in [26]) we can see how the Dyson-Schwinger equations can be written in

terms of the elements Xr, where Xr was defined as

Xr = 1±
∑

1PI graphs Γ

with residue r

1

Sym Γ
Γ,

where the negative sign is assumed only when r is edge-type. Also from [24] it is shown that if we
use insertions in case of a theory with a single vertex type we get the equation:

Xr = 1±
∑

k

B
γr,k
+ (XrQk),

where the sum is over all primitive 1PI diagrams with loop number k and residue r, and where Q
is the invariant charge as defined in Section B.7.

The identity

(5.2) ∆Xr =
∞∑

L=0

XrQL ⊗Xr
∣∣
L
,

is of most importance in the context of renormalization [23]. The |L, as used in [4], is the restriction
of the sum to graphs with loop number L.

We have seen in Section B.4 that the Feynman rules are simply characters from H to a commutative
algebra A. For zero-dimensional field theories the Feynman rules will be φ : H −→ R[[~]]:

(5.3) φ{Γ}(~) = ~ℓ(Γ),

where we follow the notation in [4] for putting the arguments from H in curly brackets.
In that case, the Green functions, or the generating function of 1PI Feynman graphs with residue

r are defined as

(5.4) gr(~) := φ{Xr}(~) = 1±
∑

1PI graphs Γ

with residue r

~ℓ(Γ)

Sym Γ
,

where ℓ(Γ) is the loop number as before. If residue r is the k external legs residue, then gr = ∂kϕc
G|ϕc=0

, the kth derivative of the quantum effective action.
In our case of zero-dimensional QFT, the fact that the target algebra for the Feynman rules is R[[~]]

limits the choice for a Rota-Baxter operator1R : R[[~]] −→ R[[~]] that respects the grading of H. The
only choice for a meaningful renormalization scheme in this case is R = id (see [4]).

Thus, by our definitions in Section B.4 (equation B.1), the counterterm map for the renormalization
scheme R = id is given by

Sφ = R ◦ φ ◦ S = φ ◦ S.
Then the renormalized Feynman rules is

1Remember that a Rota-Baxter operator R is used in the renormalization scheme to extract (in terms of an induced
Birkhoff decomposition) the divergent part of the integral. See Section B.4.
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φren := SφR ∗ φ = Sφ ∗ φ = (φ ◦ S) ∗ φ,(5.5)

where ∗ is the convolution product (Definition B.7). However, the action of the last expression on an
arbitrary element of H is:

((φ ◦ S) ∗ φ)(Γ) = m ◦ ((φ ◦ S)⊗ φ) ◦∆(Γ)

=
∑

γ⊆Γ

γ product of divergent

1PI subgraphs

φ(S(γ))φ(Γ/γ)

= φ
(∑

S(γ)(Γ/γ)
)

(since φ is a character)

= φ(I(̂I(Γ)) (by definition of the antipode S),

which is zero for all nonempty elements in H since I ◦ Î maps all elements in H to zero except for the
empty graph, which is mapped to itself.

Thus, equation (5.5) becomes

(5.6) φren = I ◦ Î,
and whence the renormalized Green functions are

(5.7) grren = φren{Xr}(~) = 1± 0 = 1.

Note that in [4] the signs are different since, as mentioned earlier, Xr in their convention is −1
times ours. Finally, what we will care for the most are the counterterms:

(5.8) zr := Sφ{Xr}.
Notice that since H is commutative, the definition of the convolution product together with equation
(5.2) now yield

1 = φren{Xr}(~)(5.9)

= (m ◦ (Sφ ⊗ φ) ◦∆Xr)(~)

= (m ◦ (φ⊗ Sφ) ◦∆Xr)(~)

= (m ◦ (φ⊗ Sφ) ◦ (
∞∑

L=0

XrQL ⊗Xr
∣∣
L
))(~)

=

∞∑

L=0

φ{Xr}(~) (φ{Q}(~))L [~L]Sφ{Xr}(~)

= φ{Xr}(~) Sφ{Xr}(~φ{Q}(~))
= gr(~) zr(~α(~)).

Let ~(y) be the unique power series solution of y = ~(y)α(~(y)). In [4], y is called the renormalized
expansion parameter and is denoted by ~ren. Then, substituting in equation we get

(5.10) zr(~ren) =
1

gr(~(~ren))
.

The following result was proven by M. Borinsky in [6], and we shall depend on it in the combinatorial
treatment in the next section.

Theorem 5.2 ([6]). In a theory with a cubic vertex-type, the numeric coefficients in zr(~ren) count
the number of primitive diagrams if r is vertex-type.
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5.3. QED Theories, Quenched QED, and Yukawa Theory. The two theories that we are
concerned with here are quenched QED and Yukawa theory, which are examples of QED-type the-
ories. In these theories we have two particles: fermion and boson (wiggly and dashed edges) parti-
cles, and we have only three-valent vertices of the type fermion-fermion-boson. We will compute the
asymptotics of zφc|ψc|2(~ren) in quenched QED, as well as the asymptotics of the green functions

∂iφc
(∂ψc∂ψ̄c

)j GYuk
∣∣∣
φc=ψc=0

. Our approach is completely combinatorial and depends on establishing bi-

jections between the diagrams in the combinatorial interpretation of the considered series and different
classes of chord diagrams. Unlike the approach applied in [4], we do not need to refer to singularity
analysis nor the representation of S(x) by affine hyperelliptic curves.

5.4. The Partition Function. The partition function takes the form

(5.11) Z(~, j, η) =

∫

R

1√
2π~

e
1
~

(

− x2

2 +jx+ |η|2

1−x+~ log 1
1−x

)

dx.

We are not going to discuss the physical reasoning behind the above expression, the reader may refer
to QFT books or surveys for more details, e.g. see [5]. We only hint that, combinatorially, ~ log 1

1−x

generates fermion loops, while |η|2

1−x generates a fermion propagator. The special examples of Yukawa
theory and quenched QED will be as follows:

(1) Quenched QED is an approximation of QED where fermion loops are not present. So that
the term ~ log 1

1−x does not appear in the partition function. Thus, the partition function for
quenched QED is given by

ZQQED(~, j, η) =

∫

R

1√
2π~

e
1
~

(

− x2

2 +jx+ |η|2

1−x

)

dx.

(2) For zero-dimensional Yukawa theory the partition function is just the integral in equation
(5.11). That is, the partition function for zero-dimensional Yukawa theory is given by

ZY uk(~, j, η) =

∫

R

1√
2π~

e
1
~

(

− x2

2 +jx+ |η|2

1−x+~ log 1
1−x

)

dx.

6. Quenched QED

For this theory we are interested in the asymptotics of the counterterm zφc|ψc|2(~ren) obtained
in [4] (page 38). By Theorem 5.2, since QQED has only one type of vertices which is three-valent,
this series enumerates the number of primitive quenched QED diagrams with vertex-type residue (see
sequence A049464 of the OEIS for the first entries).

Thus, this is the same as counting the number of all diagrams γ with the following specifications:

(1) two types of edges, fermion and boson (photon) edges, represented as and ,

respectively;

(2) only three-valent vertices with the structure , with one fermion in, one fermion

out, and one photon;
(3) no fermion loops;
(4) the residue res(γ) is vertex-type; and
(5) γ is 1PI primitive, in other words it is edge-connected and contains no subdivergences (Defi-

nition B.20 and Definition B.18).

We let Q be the class of all such diagrams.

Example 6.1. The following diagram in Figure 11 is in Q, whereas the diagrams in Figure 12 are
not in Q.

https://oeis.org/A049464
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Figure 11. An example of a quenched QED diagram in Q

Figure 12. Diagrams not in Q.

In Figure 12, the second diagram is not 1PI, the rest of the first four diagrams are all 1PI, but
they are not primitive. The last two diagrams are not in Q and are not even quenched as they contain
fermion loops.

Theorem 6.1. The generating series zφc|ψc|2(~ren) and z|ψc|2(~ren) count 2-connected chord
diagrams. More precisely,

[~n−1
ren ] zφc|ψc|2(~ren) = [~nren] z|ψc|2(~ren) = [xn] C>2(x).

Proof. As we mentioned above, the class of diagrams counted by zφc|ψc|2(~ren) is to be denoted
by Q. Thus, Q consists of 1PI primitive quenched QED diagrams with two external fermion legs and
one photon leg. By definition, every graph in Q has a (wiggly) photon external leg r, and two directed
fermion external legs f1 and f2. We now start by proving the following claim:

Claim 1: If Γ is a graph in Q, then there exists a unique fermion-only path P from f1 to f2.
Moreover, P passes through the vertex at r and every vertex in the graph is on P . In addition, the loop
number in Γ is equal to the number of internal photon edges, and so either is counted by the power of
~ren in the series.

Proof: Generally, if we remove all photon edges from a graph with the 3-valent vertex residue we
should get a single directed path of fermion edges (because otherwise we will have more than 2 external
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fermion legs if the photon edges are restored) and a set fermion loops. Now, in our case, we can only
get the path, which we denote by P and which should then carry all the vertices in the original graph.
In particular, the number of vertices in a graph Γ ∈ Q will be 1+the number of internal fermion edges.

To see that the rest of the claim is indeed true first recall Euler’s formula

|V (Γ)| − |E(Γ)|+ ℓ(Γ) = 1,

where as usual |V (Γ)| is the number of vertices, |E(Γ)| is the number of internal edges, and ℓ(Γ) is the
number of loops or independent cycles in Γ.

Note that the external legs do not alter this relation. We have two types of edges, photons and
fermions, so let us assume that p is the number of internal photon edges and f is the number of internal
fermion edges, thus |E(Γ)| = p + f . Now, the most useful observation is that, in our case, we should
have p = ℓ(Γ). Indeed, we have seen that

f = |V (Γ)| − 1,

from which it follows that p = ℓ(Γ). This proves Claim 1.
So, we can generally think of graphs in Q as in the figure below, where P is the unique path formed

by all directed fermion edges. P goes from f1 to f2 and passes through the vertex at r. All vertices lie
on P .

rest of the graph

f1

f2

r

This means we can uniquely put any graph Γ ∈ Q in the form of a rooted chord diagram, namely
by straightening P . See Figure 13 for an example.

Figure 13. A primitive quenched QED graph and its representation as a chord diagram

For simplicity of drawing we shall now and forth in the proof use dashed or light lines for photons
and drop the direction on the fermion edges on P . Also, let us agree that, in the chord diagram
representation, we will bring r to the front to play the role of a root, and still carry the information for
the external leg position at its other end. Thus, for example, the graph in Figure 13 is now represented
as follows:



20 ALI ASSEM MAHMOUD

The chord diagram representation of Γ ∈ Q will be denoted by C(Γ). Let us also denote the right end
of the root r by v. The only property of Q that we still haven’t used is that a graph in Q is primitive.

Claim 2: A 1PI quenched QED graph Γ is primitive if and only if it is 2-connected in the chord
diagram representation. Subdivergences are translated into either a disconnection or a bridge.

Case 1: Assume that C(Γ) is disconnected. This means that there exists an isolated component
of chords to the right or left of v. On the original graph this is simply a propagator-type subdivergence
inserted on one of the fermion edges. For an example see Figure 14 below. The converse is also clearly

Figure 14. Disconnections and propagator subdivergences.

true, a propagator subdivergence is translated into an isolated component in C(Γ).
Case 2: Assume that C(Γ) has a reason S for connectivity-1, in the sense of Definition 2.7. Then

the cut c for S is either the root chord r or not.
(A) If c = r, then in Γ, S together with r correspond to a vertex-type subdivergence inserted at the

vertex of the photon edge r.
(B) If c 6= r, then S lies to the right or left of v in C(Γ). On Γ, this is a vertex-type subdivergence

inserted an end of the photon edge c.
Conversely, by the same means, every vertex-type subdivergence in Γ gives a reason for connectivity-

1 in C(Γ). This proves Claim 2. Figure 15 illustrates situations (A) and (B) on one and the same
graph.

Thus, every graph in Q is uniquely represented as a 2-connected chord diagram with the number of
chords equal to the number of internal photon edges and also equal to the loop number of the graph.
The generating series z|ψc|2(~ren) counts the same diagrams, it only differs in not having the external
photon leg r. The removal of the external leg r will not change the argument above: propagator-type
subdivergences correspond to isolated components in the chord diagram representation and vertex-type
subdivergences correspond to reasons for connectivity-1. This completes the proof. �
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r

v c

r
c

vertex-type subdivergences

v

reasons for connectivity-1

Figure 15. Connectivity-1 and vertex-type subdivergences.

This gives A2
1
2

zφc|ψc|2(~ren) =
1

~ren
A2

1
2

z|ψc|2(~ren) = A2
1
2

C>2(x), and by equation (4.4):

[~n−1
ren ] zφc|ψc|2(~ren) = [~nren] z|ψc|2(~ren) = [xn] C>2(x) =

= e−2

(
(2n− 1)!!− 6(2n− 3)!!− 4(2n− 5)!!− 218

3
(2n− 7)!!−

− 890(2n− 9)!!− 196838

15
(2n− 11)!!− · · ·

)

= e−2(2n− 1)!!

(
1− 6

2n− 1
− 4

(2n− 3)(2n− 1)
− 218

3

1

(2n− 5)(2n− 3)(2n− 1)
−

− 890

(2n− 7)(2n− 5)(2n− 3)(2n− 1)
− 196838

15

1

(2n− 9) · · · (2n− 1)
− · · ·

)
,(6.1)

which coincides with the result in [4].

Appendix A. Factorially Divergent Power Series

This section aims to provide the necessary background for factorially divergent power series, as
introduced in Chapter 4 in [5]. In [5, 3], M. Borinsky studied sequences an whose asymptotic behaviour
for large n follows a relation like

(A.1) an = αn+βΓ(n+ β)

(
c0 +

c1
α(n+ β − 1)

+
c2

α2(n+ β − 1)(n+ β − 2)
+ · · ·

)
,

where α ∈ R>0, and β, ck ∈ R. We will need to use the usual big and small o-notation for asymptotic
analysis: Given a sequence an, O(an) will denote the class of sequences bn satisfying lim supn→∞ | bnan | <
∞; whereas o(an) shall denote the sequences bn such that limn→∞

bn
an

= 0. Moreover, an = bn +O(cn)

should mean that an− bn ∈ O(cn). Following [5], we adopt the notation Γαβ(n) := αn+βΓ(n+β), where

Γ(z) =
∫∞

0
xz−1e−xdx for Re(z) > 0 is the gamma function.

Definition A.1 (Factorially Divergent Power Series). For real numbers α and β, with α > 0, the
subset R[[x]]αβ of R[[x]] will denote the set of all formal power series f for which there exists a sequence

(cfk)k∈N of real numbers such that

(A.2) fn =

R−1∑

k=0

cfkΓ
α
β (n− k) +O(Γαβ (n−R)), for all R ∈ N0 (positive integers).

Remark A.1. From the definition it follows that R[[x]]αβ is a linear subspace of R[[x]].
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Remark A.2. Also, by the above definition all real power series with a non-vanishing radius of

convergence belong to R[[x]]αβ , with c
f
k = 0 for all k since in this case fn = o(Γαβ(n−R)) for all R ∈ N0.

The following proposition also follows directly from the definition.

Proposition A.1 ([5], Ch.4). The sequence (cfk)k∈N is unique for every f ∈ R[[x]]αβ ; actually

cfN = limn→∞
fn−

∑N−1
k=0 cfkΓ

α
β (n−k)

(Γα
β (n−N)) for N ∈ N0.

Proposition A.2 ([5], Prop 4.3.1). Given α, β ∈ R, with α > 0, the set R[[x]]αβ is a subring of

R[[x]].

Note that the identity in (A.2) stands for an asymptotic expansion with asymptotic scale αn+βΓ(n+
β) (refer to [11] for a detailed literature on the topic). The ring R[[x]]αβ is referred to as a ring of

factorially divergent power series. Now, given f ∈ R[[x]]αβ , we can associate the coefficients (cfk)k∈N of
the asymptotic expansion with a new ordinary power series:

Definition A.2 ([3]). For α, β ∈ R, with α > 0, let Aα
β : R[[x]]αβ → R[[x]] be the map that has the

following action for every f ∈ R[[x]]αβ

(Aα
βf)(x) =

∞∑

k=0

cfkx
k.

This interpretation allows us to use the coefficients cfk to get various results as we will see later. In
[5] M. Borinsky provides an extensive analysis for the map Aα

β , we will include some of the properties
without proof and will try to include proofs only as much as needed.

Remark A.3. A map of this type is called an alien derivative (operator) in the context of resurgence
theory [28]. We will use this terminology occasionally.

Remark A.4. Form the definition we see that Aα
β is linear. Aα

β is not injective since it vanishes for
power series with nonzero radius of convergence as mentioned above in Remark A.2.

Proposition A.3 ([5], Prop 4.1.1). For m ∈ N0, f ∈ R[[x]]αβ if and only if f ∈ R[[x]]αβ+m and

Aβ+mf ∈ xmR[[x]]. In this case xm
(
Aα
βf
)
(x) =

(
Aα
β+mf

)
(x).

Proof. First note that

Γαβ (n) = αn−m+β+mΓ(n−m+ β +m) = Γαβ+m(n−m).

Now, fn =
R−1∑
k=0

cfkΓ
α
β (n− k) +O(Γαβ (n−R)), for all R ∈ N0, can be re-indexed as

fn =

R′−1∑

k=m

cfk−mΓαβ(n− k +m) +O(Γαβ+m(n−R′)), for all R′ > m.

By the observation at the beginning the latter is equivalent to

fn =
R′−1∑

k=m

cfk−mΓαβ+m(n− k) +O(Γαβ+m(n−R′)), for all R′ > m.

Which proves the first part of the statement. Also, in that case(
Aα
β+mf

)
(x) =

∑∞
k=m c

f
k−mx

k = xm
(
Aα
βf
)
(x) ∈ xmR[[x]]. �

The following corollary now follows.

Corollary A.4. For all m ∈ N0, R[[x]]
α
β ⊂ R[[x]]αβ+m.

Thus we can always assume that β > 0, which is very convenient in deriving many results for the
ring R[[x]]αβ [5].
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Proposition A.5 ([5], Prop 4.1.2). For m ∈ N0, f ∈ R[[x]]αβ ∩ xmR[[x]] if and only if
f(x)

xm
∈

R[[x]]αβ+m. In this case
(
Aα
βf
)
(x) =

(
Aα
β+m

f(x)

xm
)
(x).

Proof. Again, since

Γαβ(n+m) = αn+β+mΓ(n+ β +m) = Γαβ+m(n),

we can argue as follows:

The ‘only if part’ follows by Proposition A.3. For the ‘if’ part, assume that g(x) =
f(x)

xm
∈ R[[x]]αβ+m.

This gives that

fn+m = gn =
R−1∑

k=0

cgkΓ
α
β+m(n− k) +O(Γαβ+m(n−R)), for all R ∈ N0.

By the observation above this is equivalent to

fn+m =

R−1∑

k=0

cgkΓ
α
β(n+m− k) +O(Γαβ (n+m−R)), for all R ∈ N0.

Thus, for all n > m,

fn =

R−1∑

k=0

cgkΓ
α
β(n− k) +O(Γαβ (n−R)), for all R ∈ N0,

which gives the desired result. Also, from the equations above we see that
(
Aα
βf
)
(x) =

(
Aα
β+m

f(x)

xm
)
(x).

�

The next two theorems will be used later in the thesis, the proofs however are lengthy and require
many lemmas, and shall thereby be omitted. The reader can refer to [5] for the complete treatment.

Theorem A.6 ([5], Prop 4.3.1). Let α, β ∈ R, with α > 0. The linear map Aα
β is a derivation over

the ring R[[x]]αβ , that is

(Aα
β (f · g))(x) = f(x)(Aα

βg)(x) + g(x)(Aα
βf)(x),

for all f, g ∈ R[[x]]αβ .

More interestingly, the next theorem serves as a powerful tool for our purposes. For notation, we
set Diffid(R, 0) = ({g ∈ R[[x]] : g0 = 0, g1 = 1}, ◦), the group of formal diffeomorphisms tangent to the
identity, under composition of maps. Similarly, we set Diffid(R, 0)

α
β = ({g ∈ R[[x]]αβ : g0 = 0, g1 = 1}, ◦)

(easily checked to be a monoid).

Theorem A.7 ([5], Th. 4.4.2). Let α, β ∈ R, with α > 0. Then Diffid(R, 0)
α
β is a subgroup of

Diffid(R, 0); moreover, for any f ∈ R[[x]]αβ and g ∈ Diffid(R, 0)
α
β the following statements hold:

(1) f ◦ g and g−1 are again elements in R[[x]]αβ .

(2) The derivation Aα
β satisfies a chain rule, namely

(A.3) (Aα
β (f ◦ g))(x) = f ′(g(x))(Aα

βg)(x) +

(
x

g(x)

)β
e

g(x)−x
αxg(x) (Aα

βf)(g(x)), and

(A.4) (Aα
βg

−1)(x) = −(g−1)′(x)

(
x

g−1(x)

)β
e

g−1(x)−x

αxg−1(x) (Aα
βg)(g

−1(x)).

It is worth mentioning here that this theorem offers more flexibility than the result by E. Bender
in [1].
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Appendix B. The Hopf Algebra of Feynman Diagrams

This section is a quick review of the algebraic treatment of renormalization in terms of Hopf al-
gebras. The definitions in this section will be needed to give sense of some of the expressions that
our results are related to. We have seen what renormalization is about analytically in the overview
of the work by Bogoliubov, Parasiuk, Hepp, and Zimmermann around 1960’s. Almost five decades
later, D. Kreimer [21] showed that the BPHZ scheme is captured by Hopf algebras and the recursive
definition of the antipode. In this approach, the Feynman diagrams are used to define a connected
graded and commutative Hopf algebra. For an extensive treatment of Hopf algebras see [31], and see
[13, 9, 21, 22, 27, 19] for a spectrum of results and developments of the approach in renormalization
in QFT.

B.1. Basic Definitions of Hopf Algebras. We let K be an infinite field (characteristic 0). The
unit of an algebra will be treated as a map in the sense of category theory. L(V,W ) will mean the group
of K-linear maps from the K-vector space V to the K-vector space W .

Definition B.1 (Associative unital algebra). An associative unital K-algebra (A,m, I) is a K-
vector space A together with two linear maps m : A⊗A→ A (product) and I : K → A (unit) such that
:

m ◦ (id⊗m) = m ◦ (m⊗ id)

m ◦ (I⊗ id) = m ◦ (id⊗ I).

Furthermore, the algebra is said to be commutative if m = m◦τ , where τ is the twist map a⊗b 7→ b⊗a.
The image I(1) of 1 under the unit map I will often be denoted also by I with no confusion.
In terms of commutative diagrams, A is an associative unital algebra if the following diagrams

commute

A⊗A⊗A

id ⊗ m

��

m ⊗ id
// A⊗A

m

��

A⊗A m
// A

K⊗A

∼=
))❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

I ⊗ id
// A⊗A

m

��

A⊗K
id ⊗ I

oo

∼=
uu❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

A

The categorical dual then becomes

Definition B.2 (Coassociative counital coalgebra). A coassociative counital K-coalgebra (C,∆, Î)

is a K-vector space C together with two linear maps ∆ : C → C⊗C (coproduct) and Î : C → K (counit)
such that :

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆
(̂I⊗ id) ◦∆ = (id⊗ Î) ◦∆.

Furthermore, the coalgebra is said to be cocommutative if ∆ = τ ◦∆.

In terms of commutative diagrams, A is an associative unital algebra if the following diagrams
commute

C ⊗ C ⊗ C C ⊗ C
∆ ⊗ id

oo

C ⊗ C

id ⊗ ∆

OO

C
∆

oo

∆

OO K⊗ C C ⊗ C
Î ⊗ id

oo
id ⊗ Î

// C ⊗K

C

∼=

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

∆

OO

∼=

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

Sweedler’s notation for the coproduct is often useful: ∆(x) =
∑
x x′ ⊗ x′′.

Definition B.3 (Algebra morphism). Let (A,mA, IA) and (B,mB , IB) be two associative unital
K-algebras. A K-linear map ϕ : A −→ B is an algebra morphism if

ϕ ◦ IA = IB, and

ϕ ◦mA = mB ◦ (ϕ⊗ ϕ).
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Dually, one defines

Definition B.4 (Coalgebra morphism). Let (C,∆C , ÎC) and (D,∆D, ÎD) be two coassociative
counital K-coalgebras. A K-linear map ψ : C −→ D is a coalgebra morphism if

ÎD ◦ ψ = ÎC , and

∆D ◦ ψ = (ψ ⊗ ψ) ◦∆C .

Definition B.5 (Bialgebras). A K-bialgebra (B,m, I,∆, Î) is a K-vector space such that (B,m, I)

is an algebra and (B,∆, Î) is a coalgebra and that the two structures are compatible in the sense that

m (and I) is a coalgebra morphism and ∆ (and Î) is an algebra morphism.
Note that only one of the compatibility conditions is enough; one can verify that m is a coalgebra

morphism if and only if ∆ is an algebra morphism.

Note that in a bialgebra it must be that Î(I) = 1 and vanishes for all other elements.

Definition B.6 (Hopf algebras and the antipode). A Hopf algebra (H,m, I,∆, Î, S) is a K-bialgebra

(H,m, I,∆, Î) together with a linear map S : H → H such that

m ◦ (S ⊗ id) ◦∆ = I ◦ Î = m ◦ (id⊗ S) ◦∆.
The map S is called the antipode of the Hopf algebra.

Diagrammatically this is equivalent to the following diagram being commutative:

H⊗H S ⊗ id
// H⊗H

m

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

H
∆

��

∆

OO

Î // K
I // H

H⊗H id ⊗ S
// H⊗H

m

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠

Definition B.7 (Convolution Product). Let f, g be two linear maps in L(H,H). Then their
convolution product is defined as

f ∗ g := m ◦ (f ⊗ g) ◦∆.
This product gives again a linear map on H. It can be shown that (L(H,H), ∗, I ◦ Î) becomes an

algebra. Moreover, f ◦ S is the inverse of f with respect to the convolution product, and in that sense,
the antipode S may be thought of as the ∗-inverse of the identity map idH.

B.1.1. Filtration and Connectedness of Hopf Algebras.

Definition B.8 (Gradedness and Connectedness). A Hopf algebra H is said to be graded (Z>0-
graded to be precise) if it decomposes into a direct sum H = ⊕∞

n=0Hn, such that

m(Hn ⊗Hm) ⊆ Hn+m,

∆(Hn)) ⊆ ⊕nk=0Hk ⊗Hn−k,

S(Hn) ⊆ Hn.

If, in addition, H0
∼= K, the Hopf algebra is said to be connected.

Given a graded Hopf algebra as above, one finds that ker Î = AugH := ⊕∞
n>1Hn, called the

augmentation ideal.

Definition B.9 (Filtration). A Hopf algebra H is filtered if there exists a tower of subspaces
Hn ⊆ Hn+1, n ∈ N, such that
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H =

∞∑

n=0

Hn,

m(Hn ⊗Hm) ⊆ Hn+m,

∆(Hn)) ⊆
n∑

k=0

Hk ⊗Hn−k,

S(Hn) ⊆ Hn.

Note that every graduation implies a filtration by taking Hn = ⊕nk=0Hk.

Definition B.10 (Primitive and group-like elements). An element x ∈ H is primitive if ∆(x) =
I⊗ x+ x⊗ I. An element x is group-like if ∆(x) = x⊗ x.

B.2. Physical Theories as Combinatorial Classes of Graphs. Now we are ready to define
the renormalization Hopf algebras of Feynman diagrams, but first let us emphasize the combinatorial
rephrasing of the physical setup already seen in the previous sections.

All of the enumerative aspects of QFT considered in this thesis are about Feynman diagrams.
Feynman diagrams and their Hopf algebras will be key ingredients in the later chapters, although not
explicitly affecting the combinatorial problems we consider. We will proceed by defining combinatorial
QFT theories, Feynman graphs, and Feynman rules. Then we will recover some of the concepts of
renormalization. Recommended references for similar treatments are [33, 27, 5].

The building block for Feynman graphs is going to be half edges. An edge is intuitively understood
to be formed from two half edges.

Definition B.11. A graph (or diagram) G is a set of half edges for which there is

(1) a partition V (G) into disjoint classes of half edges, a class v ∈ V (G) will be called a vertex ;
(2) a collection E(G) of disjoint pairs of half edges. E(G) will be called the set of internal edges ;
(3) half edges that are not occurring in any of the pairs in E(G) will be called external edges or

external legs.

The size of a graph will be the size of its set of half edges. Half edges can be labelled or unlabelled,
and sometimes we will use many types of half edges to represent a certain physical theory. We will be
concerned at some point with graphs which have a prescribed set of external legs. The loop number of
a graph is the dimension of its cycle space, or in other words the number of independent cycles. There
exists, in any graph, a family of independent cycles with each cycle having an edge not occurring in any
of the other cycles in the family. The size of the largest such family is the number of independent cycles
in the graph. Such a family of cycles can be obtained by starting with a spanning tree and reading
off the new cycle created by adding one of the edges, one edge at a time (and with removing any edge
added earlier). The loop number will be very important in our later considerations and will express
some sort of size for diagrams with a prescribed scheme of external legs.

By Aut(G) we mean the group of automorphisms (self isomorphisms) of the graph G. In the
perturbative expansions that we will see, a Feynman diagram will have a symmetry factor of 1/|Aut(G)|
(it is more common to write it as 1/Sym(G). We will usually work with unlabelled graphs, nevertheless,
the symmetry factor will allow us to use the exponential relation between connected and disconnected
objects.

The good thing about many of the aspects of quantum field theory is that they can be transformed
into purely combinatorial and enumerative problems.

Definition B.12. A combinatorial physical theory consists of

(1) a dimension of spacetime (nonnegative integer);
(2) a number of half edge types, and a set of pairs of half edge types, with each pair representing an

admissible edge type in the theory (note that the half edge types in one pair are not necessarily
distinct nor identical);

(3) a collection of multisets of half edge types to define the options for a vertex in the theory;
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(4) an integer weight for each edge or vertex type, called a power counting weight.

Thus, a graph in a certain theory T will be a graph whose edges are of the types formed by the
admissible pairs of T , and each of whose vertices is incident to an admissible multiset of half edges.
Note that even oriented and unoriented edges can be formed this way: oriented edges arise from an
admissible pair of half edges in which the two types are different, whereas unoriented ones arise from
pairs with the two types identical.

Example B.1. (1) QED: Quantum electrodynamics. In QED there are 3 half edge types:
a half photon, a front half fermion, and a back half fermion. The admissible combinations of
half edges to form edges are: (1) a pair of two half photons to give a photon edge, drawn as a

wiggly line , with power counting weight 2; and (2) a pair consisting of a front
and back halves fermion to give a directed fermion edge , with power counting
weight 1. There is one type of a vertex, namely, a vertex is 3-valent and is incident to one of
each half edge type, with power counting weight 0. The spacetime dimension is taken to be 4.

(2) Yukawa theory: This theory also has 3 types of half edges: a half meson, a front half fermion,
and a back half fermion. The admissible edges are: (1) a meson edge formed by two half mesons
(front and back), drawn as , and has power counting weight 2; and (2) a pair
of a front and back halves fermion to give a directed fermion edge , with weight 1.
Just as in QED, there is one type of vertices, namely, a vertex is 3-valent and is incident to
one of each half edge type, with power counting weight 0. The spacetime dimension is taken
to be 4. The difference from QED lies in the Feynman rules.

As mentioned earlier, the significance of quantum field theory is the ability to describe how particles
interact and scatter. In an idealized experiment some particles are sent in, they interact and scatter, and
then the outcomes are detected. This picture can be visualized as a diagram in which the edges describe
propagating particles. The idea then is that, on an atomic scale, we never know what exactly happened
and every possible interaction is assigned a probability scattering amplitude. This amounts into a
weighted sum, known as a perturbative expansion. The probabilities in the theory are computed through
what is known as a Feynman integral. These integrals encountered by physicists are often divergent
and have to undergo renormalization to retrieve useful information. As we saw before, Feynman graphs
encode these complicated integrals, and the rules for this encoding in a given QFT are known as Feynman
rules.

Definition B.13 (Feynman Graphs). A Feynman graph in a theory T is combinatorially a graph
structure in which edges fall into certain types and vertices are subject to conditions (pertinent to T ) on
the number of edges of a certain types attached to it. A Feynman graph represents an integral through
the Feynman rules of the theory, which assigns an integrand factor contribution to every internal edge
or vertex. The power counting weights give the degree of an integrated momentum variable.

Example B.2. In the following example (Figure 16) the integral is a divergent Feynman integral
and its corresponding Feynman diagram:

k

k − ℓ

ℓ− q

ℓ+ p

q

p+ q

k + p

p =

∫ ∫
dDℓ

ℓ2(ℓ − q)2(ℓ + p)2
dDk

k2(k − ℓ)2(k + p)2
.

Figure 16. The Feynman integral of a Feynman graph
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B.3. Characters and Cocycles.

Definition B.14 (Characters). Let H be a connected bialgebra and (A, ·, 1A) be a K-algebra. A
character from H to A is defined to be an algebra morphism with the extra property that φ(I) = 1A.
The set of all characters from H to A is denoted by GH

A . Further, if A is commutative, GH
A becomes a

group under convolution product [29]. The inverses are denoted ϕ∗−1 := ϕ ◦ S.
Definition B.15. Let H be a connected bialgebra and A be a commutative algebra that can be

written as a direct sum of two vector spaces. A Birkhoff decomposition of a character φ is a pair of
characters φ+, φ− ∈ GH

A such that

φ = φ∗−1
− ∗ φ+ and φ±(kerÎ) ⊆ A±.

In [8] it was shown that dimensional regularization (viewing the integral over dimension D− 2ǫ and
expanding in ǫ) can be studied in terms of characters into the algebra of meromorphic functions in ǫ.

Theorem B.1 ([27]). Let H be a connected filtered Hopf algebra, and let GH
A be the group of char-

acters with the convolution product. Then any character ϕ ∈ GH
A has a unique Birkhoff decomposition

ϕ = ϕ∗−1
− ∗ ϕ+,

where ϕ−, ϕ+ ∈ GH
A , with ϕ− mapping the augmentation ideal into A−, and with ϕ+ mapping H

into A+. The characters naturally satisfy ϕ−(I) = 1A = ϕ+(I) and are defined recursively over the
augmentation ideal as

ϕ−(x) = −π
(
ϕ(x) +

∑

x

ϕ−(x
′)ϕ(x′′)

)
, and

ϕ+(x) = (id− π)
(
ϕ(x) +

∑

x

ϕ−(x
′)ϕ(x′′)

)
,

where π is the projection of A onto A−, and the sum is making use of Sweedler’s notation for the
coproduct.

Definition B.16 (Bogoliubov map). The Bogoliubov map is the map b : G −→ Hom(H, A) defined
recursively by

b(ϕ)(x) = ϕ(x) +
∑

x

ϕ−(x
′)ϕ(x′′).

In particular, the decomposition in Theorem B.1 is now seen via the Bogoliubov map as

ϕ− = −π ◦ b(ϕ) , and ϕ+ = (id− π) ◦ b(ϕ).
Before starting the next part, it must be noted that this section does not give a full account of the

Hopf-algebraic treatment of renormalization. We are only interested in defining the expressions that we
will encounter in our problems. The reader can refer to [31] for an in depth account on Hopf algebras.
The Hopf algebra of Feynman graphs is also surveyed in the review article of D. Manchon [27].

B.4. The Hopf Algebra of divergent 1PI Diagrams. Let T be a fixed combinatorial physical
theory in the sense of the previous section, and consider the Q-vector space H generated by the set of
disjoint unions of divergent 1PI Feynman graphs in the theory T , including the empty graph which we
denote by I.

We can define a multiplication m on H to be taking the disjoint union, and the unit is the empty
graph I, this makes (H,m, I) a commutative associative algebra.

Now we need to define a compatible coalgebra structure for H.
In the next just note that the residue of a Feynman graph is simply the graph obtained if all internal

edges were contracted. For the sake of a precise general definition of contraction in the new terms we
have

Definition B.17 (Contraction of a Subgraph). Let Γ be a Feynman graph in a theory T , and let
γ ⊆ Γ be a subgraph each of whose connected components is 1PI and divergent. The contraction graph
Γ/γ is constructed as follows:



AN ASYMPTOTIC EXPANSION FOR THE NUMBER OF 2-CONNECTED CHORD DIAGRAMS 29

(1) A component of γ with a vertex residue (external leg structure) is contracted in Γ into a vertex
of the same type as the residue.

(2) A component of γ with an edge residue (external leg structure) is contracted in Γ into an edge
of the same type as the residue.

The superficial degree of divergence ω(Γ) of a graph Γ is defined in many references ([33, 19, 26])
in which it is also shown that ω(Γ) = D ℓ(Γ)−∑a w(a), where the sum is over all the power counting
weights (Definition B.12) of vertices and internal edges in Γ determined by the QFT theory considered,
and where ℓ(Γ) is the number of loops in Γ.

Definition B.18 (Subdivergence). A subgraph γ of Γ with divergent 1PI connected components
is called a subdivergence.

Then we define the coproduct as

Definition B.19. The coproduct ∆ : H −→ H ⊗H is defined for a connected Feynman graph Γ
to be

∆(Γ) =
∑

γ⊆Γ

γ product of divergent

1PI subgraphs

γ ⊗ Γ/γ

and extended as an algebra morphism.

Note that since we are considering graphs that are themselves divergent, the coproduct sum for any
element in H will always start as

∆(Γ) = I⊗ Γ + Γ⊗ I+ ∆̃(Γ).

The part ∆̃(Γ) of the coproduct is called the reduced coproduct.

Definition B.20 (Primitive Elements). An element Γ ∈ H is said to be primitive if ∆̃(Γ) = 0.
That is, ∆(Γ) = I⊗ Γ + Γ⊗ I. In particular, a primitive 1PI graph Γ is a 1PI graph that contains no
subdivergences in the sense of Definition B.18.

For example let us calculate the coproduct

∆

(
−

)

= I⊗
(

−
)
+

(
−

)
⊗ I +

+ ⊗ − 2 ⊗

= I⊗
(

−
)
+

(
−

)
⊗ I− ⊗ .

Finally, let Î : H −→ Q be the map defined on the empty graph by sending qI to q ∈ Q and
sending every other element in H to zero. Then it is not hard to prove the following proposition (see
[33, 2, 32] for a proof)

Proposition B.2. As per the above definitions, (H,m, I,∆, Î) is a bialgebra. Further, if we define
a map S : H −→ H recursively by



30 ALI ASSEM MAHMOUD

S(I) = I , and

S(Γ) = −Γ−
∑

γ⊆Γ

I 6=γ 6=Γ

γ product of divergent

1PI subgraphs

S(γ) Γ/γ,

then (H,m, I,∆, Î, S) becomes a Hopf algebra woth antipode S. (Note that the product in the second
term is the product m abbreviated). Moreover, the Hopf algebra H is commutative and is graded by the
loop number.

Remark B.1. In the next section we will broadly see how renormalization is represented in this
algebraic context of Hopf algebras. Our job ends with learning the meaning of some of the expressions
that will show up again in our problems. It should be noted however that, as expected, this is not
the only meaningful appearance of Hopf algebras in quantum field theory. Namely, if the condition
of divergence is dropped from the elements summed over in the definitions of the coproduct and the
antipode, we get the so-called the core Hopf algebra, denoted Hc. It turns out that Hc interplays with
Cutkosky cuts in graphs, this is related to the unitarity of the S-matrix [2].

B.5. Renormalization in Hopf algebras.
B.5.1. Feynman Rules and Characters of H: Let a theory T be fixed as before, and let H be the

Hopf algebra generated by sets of divergent 1PI Feynman graphs in T . We start by thinking of Feynman
rules as a map φ that assigns formal integrals to elements in H, and we investigate what conditions
should be imposed on φ to fully interpret the Feynman rules.

For the Feynman rules, we need to satisfy certain criteria:

(1) The map φ should be multiplicative on disjoint unions of graphs. Moreover, the map should
also have a multiplicative property for bridges. The latter requirement enables us to start
defining φ over 1PI diagrams. The leap from all Feynman graphs to 1PI graphs is done
through the Legendre transform, which has been redefined recently as a purely combinatorial
map [18, 17].

(2) The map φ, representing Feynman rules, has also to adapt with the combinatorial Dyson-
Schwinger equations. Precisely, it has to interplay nicely with the process of insertion which
we discuss in the next section.

(A) All of this was seen to suggest that the Feynman rules are to be represented by a character
φ ∈ GH

A , where A is a suitably chosen commutative algebra. The target algebra A is usually taken to
be the algebra C[L][[z−1, z]] of Laurent series whose coefficients are polynomials in an energy scale L.
For example, in [19], L = log(q2/µ2) where q and µ are the external momenta and the renormalization
scale respectively.

B.5.2. Rota-Baxter Operators: Let A be an algebra as before. An operator (linear map on A)
R : A −→ A is said to be a Rota-Baxter operator if it satisfies

R[ab] + R[a] R[b] = R
[
R[a] b + a R[b]

]
,

for all a, b ∈ A.
Indeed, it turns out that the truncated Taylor operator Tω(Γ) in the BPHZ scheme is a Rota-Baxter

operator. This relation between renormalization and Rota-Baxter operators has been extensively studied
in [13, 12].

(B) In general, a Rota-Baxter operator will be used to express a map which sends a formal integral
to the evaluation of the integral at the subtraction point in the renormalization scheme. In other words,
R produces the counterterms. If Γ is a divergent graph with no subdivergences, Rφ(Γ) will stand for
the ill part of the integral φ(Γ).

It remains to setup a technology for dealing with subdivergences recursively.

Define a linear map SφR : H −→ A by SφR(I) = 1A and
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(B.1) SφR(Γ) = −R(φ(Γ))−
∑

I 6=γ(Γ

γ product of divergent

1PI subgraphs

SφR(γ) R(φ(Γ/γ)),

and extended to all of H as a morphism of algebras.
(C) Then the renormalized Feynman rules are defined to be

(B.2) φR = SφR ∗ φ.

It can be shown that φR(x) = (SφR ∗ φ)(x) = (idA − R)b(φ)(x), where b is the Bogoliubov map
defined before (Definition B.16) [19].

By (A), (B), and (C), the conclusion is that the approach of renormalization is as follows: (1) We
express Feynman graphs in a graded Hopf algebra H, and interpret the Feynman rules as characters
from H to some commutative algebra A. (2) A renormalization scheme is determined via a Rota-Baxter
operator on A, this also determines a Birkhoff decomposition A = A− ⊕ A+ into two subalgebras. (3)

The renormalized Feynman rules are obtained through the coproduct and the map SφR. For explicit
examples and applications of this approach the reader can refer to [19, 33, 27].

B.6. Combinatorics of Dyson-Schwinger Equations.
B.6.1. Insertions. Definition B.17 introduces the notion of contracting a subgraph within a bigger

graph. One can think of a reverse operation in terms of inserting a graph γ into another graph Γ as a
subgraph, in one of the potential positions (insertion places) in Γ that can host γ. An insertion place
has to be compatible with the external leg structure of the graph being inserted.

Definition B.21 (Insertion). Let γ be a Feynman graph with external leg structure r = res(γ).
Let Γ be a Feynman graph with a vertex or an internal edge of the same type as r.

(1) If r is of edge type, and e is an internal edge in Γ of the same type, then we can insert γ into
Γ as follows:

Break the edge e into two half edges, each of which is identified with one of the two
compatible external legs of γ.

(2) If r is of vertex type, and v is a vertex of the same type in Γ, then we can insert γ into Γ as
follows: Break every edge incident to v, and, in a compatible way, which may not be unique,
attach the external legs of r to the resulting half edges in Γ− v.

The places e or v in the above scenarios are called insertion places. Notice that the way to insert
γ into Γ at a certain insertion place is not unique and depends on the symmetries of the graphs.

We wish now to define an operator BΓ
+ that inserts graphs into a fixed graph Γ.

Definition B.22 ([33]). For a connected 1PI Feynman graph Γ we define

BΓ
+(X) =

∑

G 1PI graph

bij(Γ, X,G)

|X |∗
1

maxf(G)

1

(Γ|G) G,

where

(1) maxf(G) is the number of insertion trees corresponding to G,
(2) |X |∗ is the number of distinct graphs obtained from permuting the external legs in X ,
(3) bij(Γ, X,G) is the number of bijections of the external legs of X which have an insertion place

in Γ so that the insertion gives G.
(4) (Γ|G) is the number of insertion places for X in Γ.

Remark B.2. See [23] Theorem 4 for a justification of this definition. In the case of trees, the
operation B+(T1 · · ·Tm) takes the rooted trees T1, · · · , Tm and attach all of their roots as children of a
new added root, getting a single rooted tree (the name grafting operator makes sense in this case).
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In the case of rooted trees described in the remark above, if HC denotes the Connes-Kreimer Hopf
algebra of rooted trees [8, 33], then the grafting operator B+ is characterized as being a Hochschild
1-cocycle, that is:

∆ ◦B+(t) = (id⊗B+) ◦∆(t) +B+(t)⊗ I.

This property will be highlighted in the next section as it is crucial to the algebraic reconstruction
of renormalization in the approach pioneered by D. Kreimer and his collaborators. For more about this
algebraic treatment and concepts see the original paper by D. Kreimer and A. Connes [8] or [33].

Remark B.3. In order to get a 1-cocycle from the operators Bγ+ it turns out that we can not work
with individual primitive graphs, rather, we should sum over all primitive graphs of a given loop number
[33, 23]

To express the Dyson-Schwinger equations in terms of the operators BΓ
+ we need to know more

about the number of insertion places in a given graph.
Let us assume that the combinatorial theory we are considering now has only one vertex type v, and

let d be the degree of any such vertex. Also set n(e) to be the number of half edges of type e appearing
in the external legs of vertex-type v. By definition we set n(v) = 1.

Proposition B.3 ([33]). Let Γ be a 1PI graph in a QFT theory of the type described above, that
is, the theory has only one vertex type v with d being the degree of such a vertex. Let r = res(Γ), and
ℓ = ℓ(Γ) (the loop number). Also let n(e) be the number of half edges of type e appearing in the external
legs of vertex-type v. Besides, define n(v) = 1. Then

(1) Γ has
2ℓn(s)

d− 2
insertion places for every type s 6= r;

(2) If r is vertex-type, then Γ has 1 +
2ℓn(r)

d− 2
insertion places for type r; and

(3) If r is not vertex-type, then Γ has −1 +
2ℓn(r)

d− 2
insertion places for type r.

Example B.3. In QED (quantum electrodynamics) we have only one vertex type, namely ,

and two edge types: a photon edge , and a fermion edge .
We are going to follow the notation used in [33], namely

• Xvertex is the vertex series, whose nth coefficient is the sum of all 1PI QED diagrams with

residue and loop number n.

• Xphoton is the photon edge series, whose nth coefficient is (−1)×{the sum of all 1PI QED
diagrams with residue and loop number n}.

• X fermion is the fermion edge series, whose nth coefficient is (−1)×{the sum of all 1PI QED
diagrams with residue and loop number n}.

Remark B.4. Notice that the negative signs with the edge series arise as we will be actually
interested in sequences of such diagrams, and so if Y is the original generating function then we are to

get a geometric series
1

1− Y
. Then we use X = 1− Y .
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Then we have

Xvertex = I+
∑

γ primitive with

vertex residue

xℓ(γ) Bγ+

(
(Xvertex)

1+2ℓ(γ)

(Xphoton)
ℓ(γ)

(X fermion)
2ℓ(γ)

)
,(B.3)

Xphoton = I− x B+

(
(Xvertex)

2

(X fermion)
2

)
,(B.4)

X fermion = I− x B+

(
(Xvertex)

2

Xphoton X fermion

)
.(B.5)

These equations are obtained by a direct counting argument. For example, the second equation can
be illustrated through Figure17.

Figure 17. Graphs with photon edge residue

In Figure 17 the blue bubbles represent the two sequences of fermion-type 1PI graphs that can be

inserted along the original two fermion edges, hence the 1/
(
X fermion

)2
; whereas the two larger grey

bubbles represent insertion of a vertex-type 1PI graph and correspond to the (Xvertex)
2
. The minus

sign follows from the definition of Xphoton.

B.7. The Invariant Charge. If we set Q =
(Xvertex)

2

(Xphoton) (X fermion)
2 , then we can rewrite equations

(B.3), (B.4), and (B.5) as

Xvertex = I+
∑

γ primitive with

vertex residue

xℓ(γ) Bγ+

(
XvertexQℓ(γ)

)
,(B.6)

Xphoton = I− x B+

(
XphotonQ

)
,(B.7)

X fermion = I− x B+

(
X fermionQ

)
.(B.8)

The expression Q is to be called the invariant charge. In general, for a theory with only one vertex
type v, the system of Dyson-Schwinger equations takes the form

(B.9) Xr = 1±
∑

k

B
γr,k
+ (XrQk),

where the sum is over k and over all primitive 1PI diagrams γr,k with loop number k and residue r.

(B.10) Q =

(
Xv

√∏
e∈v(X

e)

) 2
d−2

,
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where d is the degree of the vertex-type, and the product is over all half edges making up the vertex.
Note that the orientation of a half edge is ignored in counting the types. In some references, the
convention for the invariant charge is to be the square root of our definition [4]. Also in [4] the Xr is
defined to be the negative of ours in case r is an edge type.
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