
Dimensional reduction of higher-point

conformal blocks

Sarah Hoback1∗ & Sarthak Parikh2†

1Department of Physics and Astronomy, Pomona College, Claremont, CA 91711, USA

2Division of Physics, Mathematics and Astronomy, California Institute of Technology,

Pasadena, CA 91125, USA

Abstract

Recently, with the help of Parisi-Sourlas supersymmetry an intriguing relation was found
expressing the four-point scalar conformal block of a (d − 2)-dimensional CFT in terms of
a five-term linear combination of blocks of a d-dimensional CFT, with constant coefficients.
We extend this dimensional reduction relation to all higher-point scalar conformal blocks
of arbitrary topology restricted to scalar exchanges. We show that the constant coefficients
appearing in the finite term higher-point dimensional reduction obey an interesting factor-
ization property allowing them to be determined in terms of certain graphical Feynman-like
rules and the associated finite set of vertex and edge factors. Notably, these rules can be fully
determined by considering the explicit power-series representation of just three particular
conformal blocks: the four-point block, the five-point block and the six-point block of the
so-called OPE/snowflake topology. In principle, this method can be applied to obtain the
arbitrary-point dimensional reduction of conformal blocks with spinning exchanges as well.
We also show how to systematically extend the dimensional reduction relation of conformal
partial waves to higher-points.
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1 Introduction

Conformal field theories (CFTs) are important to study as they provide a useful framework

for describing a variety of physical phenomena in nature, and offer an insightful window

into quantum gravity via the AdS/CFT correspondence. By charting out fixed points of

renormalization group flows they also serve as natural guideposts in the space of quantum

field theories. A revival of the bootstrap program [1,2] has led to impressive recent progress

and powerful new constraints on the space of CFTs in spacetime dimension d > 2 [3] (see

e.g. the review [4] and the references therein).

An important ingredient in the bootstrap program is the knowledge of conformal blocks,

which is crucial for setting up the crossing equations. Conformal blocks are central objects

in CFTs as they form a basis for local observables, and via the AdS/CFT correspondence

also provide a position space basis for Witten diagrams. Early foundational work [2, 5–8]

and the seminal works of Dolan and Osborn [9, 10] established the theory of conformal

blocks. In this paper will focus on global conformal blocks, which are associated with the

global conformal group SO(d + 1, 1). Global conformal blocks are eigenfunctions of the

conformal Casimir operator of the global conformal group, satisfying appropriate boundary

conditions [9, 10]. They also satisfy several interesting mathematical properties [11], for

example various recursion relations (see e.g. [10, 12, 13]), integrability properties (see e.g.
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[14]), and a geometric interpretation (see e.g. [15]). Closed-form expressions in terms of

hypergeometric functions are also available when d is even [10]. However, until recently,

much of the focus has been restricted to four-point blocks which provide a basis for four-

point conformal correlators.

It is useful to go beyond four-point blocks and study higher-point conformal blocks as

they are one of the central components of a potential higher-point conformal bootstrap

program [16], and they provide a canonical direct-channel basis in position-space for all

higher-point tree-level Witten diagrams, which are useful for investigating higher-loop effects

in AdS/CFT [17]. Over the past two years a spate of new results have appeared in the

literature related to higher-point blocks in d dimensions. The techniques often used include

the shadow formalism [16], embedding space OPEs [18–25],1 geodesic Witten diagrams [27–

29] and Mellin space methods [30]. Most of the explicit results obtained in literature have

been for scalar conformal blocks with scalar exchanges. The program to determine all higher-

point scalar blocks recently culminated in a simple graphical Feynman rules-like prescription

for directly writing down any n-point block in an arbitrary topology [24,30,31].

Still, in contrast to the four-point blocks, only power series expansions in powers of

cross-ratios are available and no closed-form expressions for higher-point blocks are known

in d > 2. Furthermore no explicit results are available for d dimensional conformal blocks

involving spinning exchanges.2 One of the objectives of the present work is to step towards

filling these gaps.

Despite being seemingly more complicated objects fixed entirely by conformal symme-

try, higher-point blocks share several features and properties with their simpler four-point

cousins. For one, just like the four-point block they admit a power series description dic-

tated by a Feynman-like prescription, which can essentially be read off simply from its unique

unrooted binary tree graphical representation [30]. For another, they satisfy dimensional re-

duction relations that are very similar to those obeyed by four-point blocks. Just as in the

four-point block case, such relations may be hinting at the existence of as yet unknown

closed-form expressions for higher-point blocks at higher d, e.g. for all even d. While it is not

known whether scalar blocks with spinning exchanges also admit a Feynman-like prescrip-

tion or satisfy dimensional reduction relations, it is strongly suspected that they do, in which

case finding such relations may make it possible to explicitly construct all possible conformal

1See also [26].
2Approaches to generalizing the Feynman-rules to include spins may potentially involve the use of weight-

shifting operators [32], recursive techniques or the embedding space formalism [20, 22]. Recently all higher-
point spinning blocks in 2 dimensions were obtained in ref. [25].
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blocks in higher d (with or without spinning exchanges) in terms of a small number of basic

building blocks.

An indication that such dimensional relations exist at higher-points can be deduced from

recent work on Parisi-Sourlas SCFT [33, 34]. The SCFT is defined on the superspace Rd|2

and transforms under the superconformal group OSp(d + 1, 1|2). Restricting to a Rd−2

subspace breaks the superconformal symmetry to SO(d − 1, 1) × OSp(2|2) and restricting

further to the OSp(2|2)-singlet sector gives rise to a local CFTd−2. It can then be shown that

the supermultiplets of the original SCFTd are in one-to-one correspondence with conformal

multiplets of the dimensionally reduced CFTd−2.
3 Moreover, using the Casimir equation in

super-embedding space, it is possible to establish an exact equivalence between the corre-

sponding four-point superconformal block of the SCFT and the the four-point conformal

block of the CFTd−2. Since the superconformal block can be written in components in terms

of ordinary (non-supersymmetric) d dimensional conformal blocks, this immediately leads

to a (finite term) relation between ordinary conformal blocks in d dimensions and (d − 2)

dimensions:

g
(d−2)
∆,ℓ = g

(d)
∆,ℓ + c2,0 g

(d)
∆+2,ℓ + c1,−1 g

(d)
∆+1,ℓ−1 + c0,−2 g

(d)
∆,ℓ−2 + c2,−2 g

(d)
∆+2,ℓ−2 , (1.1)

where ci,js are known constants that depend on the external dimensions, the dimension and

spin of the exchanged operator and spacetime dimension d. From the representation theory

point of view, the terms on the right hand side above correspond to various Grassmann even

components of the traceless graded symmetric representation of OSp(d|2) of dimension ∆

and spin ℓ, transforming under SO(d).

The equivalence between the four-point superconformal block and the (d−2) dimensional

conformal block can be extended to higher-point blocks as well. Following the work of ref. [34]

for the four-point block, the proof by conformal Casimir equation of the equivalence of

higher-point blocks should be for the most part automatic. From the representation theory

standpoint, one now needs to consider direct product representations over all exchanged

supermultiplets in the intermediate channels. Viewing the direct product in components,

instead of five terms as in (1.1), one gets in total 5n−3 terms for an n-point block. For

instance, if we write (1.1) schematically as:

(d− 2)(0,0) ∼ (d)(0,0) + (d)(2,0) + (d)(1,−1) + (d)(0,−2) + (d)(2,−2) , (1.2)

3Up to certain subtleties; see ref. [34] for details.
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where the subscripts denote the shifts in the exchanged dimension and spin, then the dimen-

sional reduction for the five-point block features 25 terms and takes the form

(d− 2)(0,0),(0,0) ∼ (d)(0,0),(0,0) + (d)(0,0),(2,0) + (d)(0,0),(1,−1) + (d)(0,0),(0,−2) + (d)(0,0),(2,−2)

+ (d)(2,0),(0,0) + (d)(2,0),(2,0) + (d)(2,0),(1,−1) + (d)(2,0),(0,−2) + (d)(2,0),(2,−2)

+ (d)(1,−1),(0,0) + · · ·+ (d)(1,−1),(2,−2)

+ (d)(0,−2),(0,0) + · · ·+ (d)(0,−2),(2,−2)

+ (d)(2,−2),(0,0) + · · ·+ (d)(2,−2),(2,−2) ,

(1.3)

where we now have two pairs of subscripts corresponding to the two intermediate exchange

operators. The precise coefficients, the analogs of ci,js in (1.1), which make the dimensional

reduction for an n-point block of arbitrary topology possible remain non-trivial to determine.

In this paper we will be restricting focus to conformal blocks with scalar exchanges. For

the four-point block it turns out when we set ℓ = 0 several coefficients in (1.1) vanish,

such that the scalar exchange sector in fact decouples and yields a simpler dimensional

reduction [34]

(d− 2)(0,−) ∼ (d)(0,−) + (d)(2,−) . (1.4)

In the scalar exchange sector, as expected from direct product representations, the n-point

block dimensional reduction will now involve 2n−3 terms. For instance for the five-point

block, we will have

(d− 2)(0,−),(0,−) ∼ (d)(0,−),(0,−) + (d)(0,−),(2,−) + (d)(2,−),(0,−) + (d)(2,−),(2,−) . (1.5)

An alternate way to motivate the form of higher-point dimensional reduction (in the scalar

exchange sector) is via the dimensional reduction relations obeyed by four-point conformal

partial waves [35]. Conformal partial waves admit a simple, iterative integral prescription

for constructing higher-point partial waves from lower-point ones. Thus starting from the

four-point dimensional reduction, one can iteratively construct the five-point and higher

dimensional reductions. The relations take the same form as in the case of conformal blocks

but the precise coefficients appearing in the relations differ. The fact that the conformal

partial waves obey dimensional reductions then suggests that conformal blocks might too.

Returning back to the dimensional reduction of an arbitrary n-point conformal block

with scalar exchanges, determining the coefficients in general which make the dimensional

reductions such as (1.5) possible remains a non-trivial challenge for two reasons. Firstly,
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these coefficients are topology dependent and the number of inequivalent conformal block

topologies grows rapidly with n. Secondly, the number of terms (2n−3) in each relation itself

grows rapidly with n.

Notwithstanding, recent work on Feynman rules for higher-point conformal blocks [30]

will allow us in this paper to establish these relations and obtain the exact coefficients.

Notably, in this paper we will derive a remarkably simple set of Feynman-like rules for writing

down the coefficients which appear in the dimensional reduction of any scalar conformal block

of any topology with scalar exchanges. The novelty of this result is the existence of a compact

set of vertex and edge factors which can be used as building blocks to generate arbitrary

coefficients for arbitrary conformal blocks. Interestingly, we will be able to determine the full

set of rules (i.e. vertex and edge factors) just by looking at three specific conformal blocks:

the four-point block, the five-point block and the six-point block in the OPE/snowflake

channel. These rules are suggestive of the existence of, and pave the way for determining

similar rules for the more general higher-point dimensional reduction relations which admit

spinning exchanges.

The outline for the rest of the paper is as follows: In section 2.1 we begin by reviewing

the four-point dimensional reduction, and in section 2.2 we introduce a convenient graphi-

cal notation for writing down precise dimensional reduction relations for any scalar block.

In particular we propose a set of Feynman-like rules for working out every coefficient in

the dimensional reduction of an arbitrary n-point block, which we proceed to prove in sec-

tion 2.3. We provide various consistency checks of our results, including consistency with

the OPE limit and the unit operator limit in section 2.4. We conclude with final remarks

and future directions in section 3. In appendix A we expand on our comments above on

the dimensional reduction of higher-point conformal partial waves. In appendix B we re-

visit earlier work on dimensional reduction of four-point conformal blocks [36] in light of

the (finite term) dimensional reduction relations of ref. [34], and in appendix C we present

some additional illustrative examples of higher-point dimensional reduction relations and list

various topologies on which we tested our results as non-trivial consistency checks.

2 Dimensional reduction of higher-point blocks

In this section we begin by reviewing the relevant dimensional reduction results for four-

point conformal blocks. Subsequently, we will present the generalization to all higher-point

conformal blocks. Finally, we will prove this novel proposal with help of the recently proposed
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Feynman rules for constructing higher-point scalar conformal blocks in arbitrary topologies,

and end with various consistency checks.

2.1 Review of four-point dimensional reduction

Using conformal invariance, one can write the four-point function of scalar primary operators

as

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ = W0(xi) f(u, v) (2.1)

where the kinematic leg-factor W0(xi) accounts for the correct behaviour of the four-point

function under conformal transformations and is given by

W0(xi) =

(
x2
24

x2
14

)∆1−∆2
2
(

x2
14

x2
13

)∆3−∆4
2

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

, (2.2)

whereas f(u, v) is an undetermined function of conformal cross-ratios

u =
x2
12x

2
34

x2
13x

2
24

v =
x2
14x

2
23

x2
13x

2
24

, (2.3)

which captures the dynamics of the theory. It takes the general form,

f(u, v) =
∑
∆,ℓ

c12Oc34O g∆,ℓ(u, v) , (2.4)

where the sum is over primaries O with dimension ∆ and spin ℓ, which appear in the

spectrum of the CFT, and the cijks are the associated OPE coefficients. The expansion

above is organized such that the function g∆,ℓ packages the contribution to the four-point

function originating from the exchange of the highest-weight representation labeled by (∆, ℓ)

and its full conformal family in the (12)(34) exchange channel.

We refer to g∆,ℓ as the bare conformal block, which is proportional to the conformal block

W∆,ℓ(xi) = W0(xi) g∆,ℓ(u, v) via the leg factor.4 Diagrammatically, we represent the block

as shown in figure 1. For the remainder of this paper we will include a superscript on the

(bare) conformal block to denote the spacetime dimension of the CFT, that is from here on

we will writeW
(d)
∆,ℓ = W0g

(d)
∆,ℓ, where for brevity we have suppressed the coordinate/cross-ratio

dependence.

4Sometimes it is also useful to think of the four-point conformal block as an eigenfunction of the quadratic
conformal Casimir operator with appropriate eigenvalues and boundary conditions [9, 10].
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W∆,ℓ = W0 g∆,ℓ =
∆1

∆2 ∆3

∆4
(∆, ℓ)

Figure 1: Scalar four-point conformal block.

As discussed in the introduction, the four-point block satisfies a beautiful dimensional

reduction relation with a finite number of terms [34]. When the bare blocks are normalized

using the normalization conventions of refs. [9,10] this relation takes the form (1.1), repeated

below for convenience

g
(d−2)
∆,ℓ = g

(d)
∆,ℓ + c2,0 g

(d)
∆+2,ℓ + c1,−1 g

(d)
∆+1,ℓ−1 + c0,−2 g

(d)
∆,ℓ−2 + c2,−2 g

(d)
∆+2,ℓ−2 , (2.5)

where ci,js are known constants that the depend on quantities such as ∆1−∆2,∆3−∆4,∆, ℓ

and spacetime dimension d. For example,

c2,0 =
−(∆− 1)∆

(
∆+∆1−∆2+ℓ

2
∆+∆2−∆1+ℓ

2
∆+∆3−∆4+ℓ

2
∆+∆4−∆3+ℓ

2

)
(∆ + ℓ− 1)(∆ + ℓ)2(∆δ1 + ℓ+ 1)(∆δ1 − d

2
+ 1)(∆δ1 − d

2
+ 2)

. (2.6)

Since the conformal block is proportional to the bare block via the kinematic factor in (2.2),

the blocks themselves satisfy the relation (2.5).

The relation (2.5) is surprising from two points of view. When dimensionally reducing

a d-dimensional CFT (say, to a d′ < d dimensional theory), each multiplet of SO(d + 1, 1)

rearranges into an infinite family of multiplets of SO(d′ + 1, 1) [36].5 Thus the four-point

block in d dimensions splits into an infinite series of d′-dimensional blocks. Generically,

one would expect that inverting this relation to express d′-dimensional blocks in terms of

d-dimensional ones would yield an infinite series as well. Surprisingly when d−d′ is even, this

is not the case. This observation came as a result of a precise relation between Parisi-Sourlas

SCFTs in d dimensions and a local non-supersymmetric CFT in d − 2 dimensions [33, 34],

which implies that there exists a one-to-one correspondence between certain multiplets of the

SCFT and the dimensionally reduced CFT [34]. In hindsight, from the point of view of the

infinite series expansion of ref. [36], one can operationally attribute the finite term inverse

relation to the fact that the series coefficients satisfy remarkable recursion relations. These

recursion relations are responsible for miraculous cancellations that allow us to invert the

5Generically, the CFT in d′ dimensions is non-local with no conserved stress-tensor.
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infinite series expansion to obtain a finite series. In appendix B, we present these recursion

relations and show that using these relations one obtains a finite series upon inverting the

infinite series expansion.

Furthermore, Dolan and Osborn found an interesting relation between d-dimensional

and (d− 2)-dimensional four-point blocks [10, eq. (5.4)], which looks similar to (2.5) but is

distinct in important ways. For one, the Dolan-Osborn relation provides a dimensional uplift,

which produces a representation of the d-dimensional block in terms of a linear combination

of five (d − 2)-dimensional ones, with the dimension and spin of the intermediate operator

shifted in the opposite direction. The opposite sign shifts are expected for dimensional

uplifts. However, in contrast to the dimensional reduction, the linear combination of (d−2)-

dimensional blocks gives the d-dimensional block up to an overall factor of cross-ratios.

Moreover, in the dimensional reduction relation the scalar exchange sector decouples as noted

in section 1. However, the scalar exchange sector does not decouple in the dimensional uplift

relation.6

In this paper we will focus on the scalar exchange sector mentioned above. When ℓ = 0,

the coefficients in the final three terms of (2.5) vanish to give the simplified relation

g
(d−2)
∆δ1

= g
(d)
∆δ1

+
−∆δ11,2 ∆δ12,1 ∆δ13,4 ∆δ14,3

∆δ1(∆δ1 + 1)(∆δ1 − d
2
+ 1)(∆δ1 − d

2
+ 2)

g
(d)
∆δ1

+2 , (2.7)

where we have suppressed the ℓ = 0 subscript in the bare blocks and have relabeled the

exchanged conformal dimension ∆δ1 . Note that spinning exchanges have completely dropped

out from the dimensional reduction.7 Here and below we will be using the following shorthand

for conformal dimensions:

∆i1...ij ,ij+1...ik :=
∆i1 + · · ·+∆ij −∆ij+1

− · · · −∆ik

2
. (2.8)

6Notwithstanding, it turns out it is still possible to obtain (2.5) starting from various identities and
relations of ref. [10].

7This is also expected from the Parisi-Sourlas SCFT representation theory point of view [34].

8



2.2 Higher-point dimensional reduction

For generalization of (2.7) to higher-point blocks of arbitrary topology, it is convenient to

introduce a graphical notation for the coefficients. For example, we rewrite (2.7) as

g
(d−2)
∆δ1

=
∆1

∆2 ∆3

∆4
∆δ1

g
(d)
∆δ1

+
∆1

∆2 ∆3

∆4
∆δ1

g
(d)
∆δ1

+2 . (2.9)

The coefficients above are represented by shaded rectangular boxes depicting the topology

of the conformal block. All internal vertices are shown as blue dots, and for terms where

the internal dimension of the block is shifted up by 2 (e.g. the second term of (2.9)), the

corresponding internal edge in the graphical representation of the coefficient is distinguished

with a dashed-red line. Of course, comparing (2.9) with (2.7) we have

∆1

∆2 ∆3

∆4
∆δ1

= 1 ,
∆1

∆2 ∆3

∆4
∆δ1

=
−∆δ11,2 ∆δ12,1 ∆δ13,4 ∆δ14,3

∆δ1(∆δ1 + 1)(∆δ1 − d
2
+ 1)(∆δ1 − d

2
+ 2)

.

(2.10)

It turns out the graphical notation admits a natural generalization to all higher-point

blocks in arbitrary topologies. One can write down a set of graphical rules for reconstructing

the mathematical expression associated with each graphical coefficient appearing in dimen-

sional reduction relations. These rules associate a simple multiplicative factor to each inter-

nal vertex and edge in the graphical coefficient. The full coefficient is obtained by taking a

product over all associated vertex and edge factors.

The precise factors take the following form: To each internal vertex, depending on how

9



many incident edges are dashed-red, assign the corresponding factor of:

∆3

∆1 ∆2

= 1 ,

∆3

∆1 ∆2

= −∆31,2 ∆32,1

∆3

∆1 ∆2

= −∆12,3 (∆12,3 + 1)

(
∆123, −

d

2
+ 1

)(
∆12,3 −

d

2
+ 2

)

∆3

∆1 ∆2

= ∆12,3 ∆23,1 ∆31,2

(
∆123, −

d

2
+ 1

)(
∆123, −

d

2
+ 2

)
(∆123, − d+ 3) .

(2.11)

To each internal edge assign a factor of

∆δ1

= 1
∆δ1

=
−1

∆δ1(∆δ1 + 1)(∆δ1 − d
2
+ 1)(∆δ1 − d

2
+ 2)

, (2.12)

depending on whether the edge is dashed-red or not. The origin of these rules will be

discussed in the next subsection.

Applying these rules to the four-point coefficients in (2.9), we get

∆1

∆2 ∆3

∆4
∆δ1

=

∆δ1

∆1 ∆2

∆δ1

∆3 ∆4

∆δ1

= 1

∆1

∆2 ∆3

∆4
∆δ1

=

∆δ1

∆1 ∆2

∆δ1

∆3 ∆4

∆δ1

=
−∆δ11,2 ∆δ12,1 ∆δ13,4 ∆δ14,3

∆δ1(∆δ1 + 1)(∆δ1 − d
2
+ 1)(∆δ1 − d

2
+ 2)

,

(2.13)

which reproduces (2.10) as desired. For illustrative purposes, we also present a higher-point

example, which will later appear as a coefficient in the dimensional reduction of the six-point
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W∆δ1
,∆δ2

=
∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

Figure 2: Five-point conformal block with scalar exchanges.

block in the OPE/snowflake channel:

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

=

∆δ1

∆1 ∆2

∆δ2

∆3 ∆4

∆δ3

∆5 ∆6

∆δ1

∆δ2 ∆δ3

∆δ1 ∆δ2 ∆δ3

=
−∆δ23,4 ∆δ24,3 ∆δ35,6 ∆δ36,5∆δ2δ3,δ1∏3

i=2∆δi(∆δi + 1)(∆δi − d
2
+ 1)(∆δi − d

2
+ 2)

× (∆δ2δ3,δ1 + 1)

(
∆δ2δ3δ1, −

d

2
+ 1

)(
∆δ2δ3,δ1 −

d

2
+ 2

)
.

(2.14)

Setting up the graphical notation merely for the four-point example is admittedly overkill,

but as mentioned previously it affords significant payoff at higher points. For example, the

scalar five-point block with scalar exchanges shown in figure 2 satisfies an elegant dimensional

reduction, whose schematic form was presented in (1.5),

g
(d−2)
∆δ1

,∆δ2
=

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

g
(d)
∆δ1

,∆δ2
+

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

g
(d)
∆δ1

+2,∆δ2

+
∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

g
(d)
∆δ1

,∆δ2
+2 + ∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

g
(d)
∆δ1

+2,∆δ2
+2 ,

(2.15)

where the coefficients are determined using the simple rules stated above.8

The general pattern should hopefully be evident from the four- and five-point exam-

ples (2.9) and (2.15):

8Just like in the four-point case, the full five-point conformal block also satisfies the same relation since
it is proportional to the bare block up to known kinematic leg-factors.

11



For an n-point block of a given topology, the (d−2)-dimensional block will be given

by a linear combination of d-dimensional blocks of the same topology and same

external dimensions, where each of the (n− 3) internal dimensions is either shifted

up by two or remains unchanged. This gives rise to 2n−3 possible combinations, and

each of these appear in the linear combination weighted by a constant coefficient.

This coefficient is given graphically by an unrooted binary tree representation of

the conformal block with the edges corresponding to all shifted internal dimensions

shaded dashed-red. The coefficient factorizes into a product over its constituent

internal vertex and edge factors which are given by (2.11)-(2.12).

These dimensional relations hold both for the bare blocks as well as for the full conformal

blocks.

W∆δ1
,∆δ2

,∆δ3
=

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

Figure 3: Six-point conformal block in OPE/snowflake channel.

For example, the six-point block in the OPE/snowflake channel shown in figure 3, for

which an explicit power series representation in d dimensions was first obtained in ref. [23],

satisfies:

g
(d−2)
∆δ1

,∆δ2
,∆δ3

=

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

g
(d)
∆δ1

,∆δ2
,∆δ3

+

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

g
(d)
∆δ1

+2,∆δ2
,∆δ3

+

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

g
(d)
∆δ1

,∆δ2
+2,∆δ3

+

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

g
(d)
∆δ1

,∆δ2
,∆δ3

+2
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+

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

g
(d)
∆δ1

+2,∆δ2
+2,∆δ3

+

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

g
(d)
∆δ1

,∆δ2
+2,∆δ3

+2

+

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

g
(d)
∆δ1

+2,∆δ2
,∆δ3

+2 +

∆1

∆2

∆3 ∆4

∆5

∆6
∆δ1

∆δ2

∆δ3

g
(d)
∆δ1

+2,∆δ2
+2,∆δ3

+2 . (2.16)

The constant coefficients are determined using the rules above; one of them was worked out

in (2.14).

For the reader’s reference, a few more explicit higher-point examples are presented in

appendix C. We will now prove the rules for obtaining the coefficients of the dimensional

reduction.

2.3 Determining the higher-point coefficients

As noted previously, Parisi-Sourlas theory suggests the following general form for the di-

mensional reduction of an n-point conformal block of a fixed topology (restricted to scalar

exchanges),

g
(d−2)
∆δ1

,...,∆δi
,...,∆δn−3

=

n−3∏
i=1

∑
mi∈{0,1}

λ(t)
m1m2...mn−3

g
(d)
∆δ1

+2m1,...,∆δi
+2mi,...,∆δn−3

+2mn−3
, (2.17)

where the 2n−3 constants λ
(t)
m1...mn−3 are to be determined. The superscript (t) on the con-

stants emphasizes the dependence on the topology of the block. Naively, determining these

constants for every n-point topology appears to be a hopeless task, even if the conformal

blocks entering into (2.17) are known, since the number of inequivalent topologies grows

rapidly with n.9

A similar obstacle arose in a related context [24, 30]. Until recently, only a few isolated

examples of d-dimensional higher-point conformal blocks were known, in terms of power

series representations. These representations were worked out one block or topology at a

time. However for the eventual goal of finding all blocks, working them out one topology at a

time is both inefficient and impractical. To get around this, a more attractive approach was

9There are no known closed-form expressions for the number of inequivalent topologies; see the integer
sequence [37] for the first few terms in the sequence as well as an iterative prescription.
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conjectured in the form of a set of constructive “Feynman rules” [30], similar to Feynman

rules for Mellin amplitudes [38, 39].10 These rules furnish a power series representation of

any conformal block in terms of local graph theoretic data (such as vertex and edge factors),

to be reviewed below. This approach provides a simple and straightforward way to write

down an explict series representation of any conformal block in any topology involving scalar

exchanges directly from its binary tree representation.

The previous discussion suggests a method for determining the constants in (2.17). One

can substitute the power series expansions of the blocks prescribed by the Feynman rules

on both sides of (2.17) and hope to solve for the undetermined coefficients. Notably, due to

the fact that the conformal blocks in (2.17) are specified by local graph theoretic Feynman

rules, the coefficients which solve (2.17) themselves turn out to obey local Feynman-like rules

with their own (finite) set of yet-to-be-determined vertex and edge factors. It turns out it

is sufficient to explicitly work out a handful of cases to completely fix all vertex and edge

factors once and for all. Having fixed the factors these rules yield the dimensional reduction

of all higher-point blocks. These are precisely the rules proposed in (2.11)-(2.12) in the form

of a compact set of vertex and edge factors. We will now show how to obtain these factors

in the remainder of this section. Before proceeding we will briefly review the most pertinent

aspects of the aforementioned Feynman rules for conformal blocks [30]. Subsequently, we

will use these rules to obtain the vertex and edge factors.

Any n-point scalar conformal block with scalar exchanges labeled by dimensions ∆δi in

any given topology takes the following form,

W (xi) = W0(xi) g
(d)(u, 1− v) , (2.18)

where W0 is the n-point kinematic leg-factor which accounts for the appropriate scaling and

behavior under conformal transformations, and the bare block takes the form of a power

series in powers of cross-ratios:11

g(d)(u, 1− v) =

(
n−3∏
i=1

u
∆δi

/2

i

)
∞∑

ki,jrs=0

(n−3∏
i=1

uki
i

ki!

)(n−2
2 )∏

(rs)

(1− vrs)
jrs

jrs!

(n−3∏
i=1

Ei

)(
n−2∏
i=1

Vi

)
(2.19)

10See also ref. [24]. The conjectured rules were later proven rigorously in ref. [31].
11A notational remark: In ref. [30], the function g(u, 1 − v) refers to (2.19) without the overall factor of(∏n−3
i=1 u

∆δi
/2

i

)
.
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where ui, vrs form a set of appropriate n(n − 3)/2 independent cross-ratios. The precise

prescription for the cross-ratios is not important here – it is sufficient to note that there

exists one which admits an expansion of the form (2.19) [31].

To understand the main ingredients which go into (2.19), first note that each n-point

conformal block has a unique unrooted binary tree representation with n leaves which comes

with (n − 3) internal edges and (n − 2) internal vertices. The internal edges and internal

vertices of the binary tree representation correspond one-to-one with (n− 3) edge-factors Ei

and (n−2) vertex factors Vi in (2.19), respectively. Each internal line carrying the dimension

∆δi is associated with a unique integral parameter ki, while ki = 0 for all external legs. The

edge factor associated to each internal line is then given by

Ei :=
(∆δi − h+ 1)ki
(∆δi)2ki+ℓδi

, (2.20)

where h := d/2 and (a)b := Γ(a + b)/Γ(a). For a given vertex, the vertex factor Vi is

determined by looking at the binary tree representation and determining the dimension

labels on the three edges incident on the vertex. Let these dimensions be ∆a,∆b, and ∆c

and let the associated parameters for the edges be ka, kb, and kc. Then the corresponding

vertex factor is given by

Vi := (∆ab,c)kab,c+ 1
2
ℓab,c

(∆ac,b)kac,b+ 1
2
ℓac,b

(∆bc,a)kbc,a+ 1
2
ℓbc,a

× F
(3)
A [∆abc, − h; {−ka,−kb,−kc}; {∆a − h+ 1,∆b − h+ 1,∆c − h+ 1} ; 1, 1, 1] ,

(2.21)

where F
(3)
A is the Lauricella function of three variables.12 Here we are using the convention,

ki1...im,im+1...in := ki1 + · · ·+ kim − kim+1 − · · · − kin

ℓi1...im,im+1...in := ℓi1 + · · ·+ ℓim − ℓim+1 − · · · − ℓin ,
(2.23)

which is notably missing an overall factor of half compared to the convention for conformal

dimensions (2.8). The precise knowledge of the ℓa symbols will be unnecessary for our

purposes and it suffices to say they are given by positive linear combinations of the dummy

parameters jrs and can be determined iteratively from the local graph structure of the

12The Lauricella function is a multi-variable generalized hypergeometric function defined via

F
(ℓ)
A

[
g; {a1, . . . , aℓ}; {b1, . . . , bℓ};x1, . . . , xℓ

]
:=

[
ℓ∏

i=1

∞∑
ni=0

]
(g)∑ℓ

i=1 ni

ℓ∏
i=1

(ai)ni

(bi)ni

xni
i

ni!
. (2.22)

See ref. [30, appendix A] for its relation to other familiar functions when all its arguments xi = 1.
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binary tree representation. Note that in total three types of (cubic) vertices are possible:

one with all incident edges internal, one with exactly two incident edges internal (and one

external), or one with exactly one incident edge internal (and the remaining two external).

In the latter two cases the ka parameters associated to external legs are set to zero and the

Lauricella function of three variables in (2.21) reduces to the Lauricella function of two or

one variable(s), respectively.

Having reviewed the Feynman Rules for conformal blocks, we return back to the calcu-

lation of the coefficients in (2.17) for an n-point conformal block of any topology. We start

by substituting the expression for the blocks on the left and right hand sides of (2.17) using

the Feynman rules described above. Note that the dependence on coordinates in (2.17) is

via the exponents of the cross-ratios in (2.19), which depend solely on the exchanged di-

mensions ∆δi . The dependence of the blocks on the spacetime dimension d = 2h is only via

the position-independent edge and vertex factors (2.20)-(2.21). Thus the shift d → d − 2

on the left hand side of (2.17) does not formally affect the coordinate dependence. On the

right hand side since internal dimensions get shifted up by two in all possible combinations,

one may naively expect the coordinate dependence in each term is altered. However, any

such integral shift in the internal dimensions ∆δi can be compensated for by shifting the

associated dummy variables ki in (2.19) down by one. This shift does not affect the limits

of the ki sums in (2.19) due to the factor of ki! in the denominator. Conveniently, it restores

the overall scaling of the cross-ratios ui on the right hand side to make it manifestly match

the scaling on the left hand side. Then, bringing everything in (2.17) to one side we set the

coefficient at each order in powers of
∏

i u
ki
i to zero. Doing this we obtain an infinite set of

linear equations with constant coefficients, one for each combination of non-negative integral

values for the set {k1, k2, k3, . . . , kn−3}, which we can solve to obtain the position-independent

coefficients λ(t)
... .

13

Since the conformal blocks are given by Feynman rules, each term in (2.17) is given

by a product of local vertex and edge factors depending on the topology and labeling of

the binary graph representation of the block. Shifting the internal exchanged dimensions

or the spacetime dimension rescales each of these factors appropriately. The product over

the rescaled factors resulting from these shifts maintains the local product structure of the

Feynman rules. Consequently, the linear equations obtained above inherit the Feynman rules-

like structure. Thus their solution is given in terms of λ(t)
... coefficients which themselves obey

13In the calculation explained here, we need only focus on the (n−3)-dimensional sum over the kis in (2.19);
the

(
n−2
2

)
-dimensional sum over the jrs parameters remains unaffected through the entire calculation and

does not play any role.
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Feynman-like rules that are closely tied to the binary graph representations of the individual

blocks on the right hand side of (2.17).

The discussion above leads naturally to the following ansatz for λ(t)
... :

• The coefficients are fully determined in terms of the associated (labeled) binary graph

representation of the conformal blocks in (2.17).

Note that the topology of each conformal block appearing in (2.17) is the same; the

only feature distinguishing one block from another is the precise set of exchanged

dimensions in the intermediate channels. Thus the coefficient λ(t)
... will be fully specified

by its labeled binary graph representation, and for brevity, instead of labeling a shifted

internal line with a dimension ∆δ + 2, we will draw all shifted intermediate legs as

dashed-red lines and simply label them with the original unshifted dimension ∆δ in

red. See e.g. (2.16).

• These coefficients satisfy a factorization property: They can be written as a product

of local terms, one for each internal vertex and internal edge in the binary graph. See

e.g. the first equality in (2.14).

Our task now is to determine these associated vertex and edge factors. Note that there are

only four possible types of vertex factors and two types of edge factors which can appear in

the binary graph representation of any higher-point conformal block with scalar exchanges.

In the graphical convention described above they are given by (2.11)-(2.12). Thus we will

only need to consider a finite number of examples to completely fix them.

We begin with the relation (2.9), where the coefficients are already known to be given

by (2.10) [34]. Imposing the ansatz above yields the following constraints:

∆δ1

∆1 ∆2

∆δ1

∆3 ∆4

∆δ1

!
= 1

∆δ1

∆1 ∆2

∆δ1

∆3 ∆4

∆δ1

!
=

−∆δ11,2 ∆δ12,1 ∆δ13,4 ∆δ14,3

∆δ1(∆δ1 + 1)(∆δ1 − d
2
+ 1)(∆δ1 − d

2
+ 2)

.

(2.24)
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We assign the simplest rules for the vertex and edge factors which reproduces (2.24):14

∆δ1

∆1 ∆2

= 1

∆δ1

∆1 ∆2

= −∆δ11,2 ∆δ12,1

∆δ1

= 1
∆δ1

=
−1

∆δ1(∆δ1 + 1)(∆δ1 − d
2
+ 1)(∆δ1 − d

2
+ 2)

.

(2.25)

Moving on to the five-point relation (2.15), we begin by determining the coefficients that

appear in the dimensional reduction. We first substitute (2.19) into (2.17) and do the change

of variables as described above to obtain an infinite set of linear equations with constant

coefficients for the λ(t)
... coefficients at each order in powers of the cross-ratios. Solving the

first few linear equations (e.g. those obtained at the first few orders in powers of uk1
1 uk2

2 ) we

obtain

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

= 1

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

=
∆1

∆2 ∆3

∆δ2
∆δ1

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

=
∆δ1

∆3 ∆4

∆5
∆δ2

,

(2.26)

and

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

=
−∆δ11,2∆δ12,1∆δ1δ2,3(∆δ1δ2,3 + 1)(∆δ1δ23, − h+ 1)(∆δ1δ2,3 − h+ 2)∆δ24,5∆δ25,4

∆δ1(∆δ1 + 1)(∆δ1 − h+ 1)(∆δ1 − h+ 2)∆δ2(∆δ2 + 1)(∆δ2 − h+ 1)(∆δ2 − h+ 2)
.

(2.27)

As a non-trivial check of the ansatz above, the solution above is indeed independent of the

dummy parameters ki, jrs. This observation justifies why we could solve (2.17) order by

order in powers of the cross-ratios. In fact while these coefficients were obtained by solving

linear equations extracted from the first few orders in powers of cross-ratios uk1
1 uk2

2 (say for

14The overall minus signs in (2.25) are included for consistency with higher-point examples which we will
turn to next.
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values of k1, k2 up to 3), they satisfy (2.17) to arbitrary orders in powers of cross-ratios.15

Interestingly, the new five-point coefficients in (2.26) are given solely in terms of vertex

and edge factors already determined in (2.25). It is satisfying to see that the simple as-

signment of vertex and edge factors chosen in (2.25) manifestly reproduces the five-point

coefficients in (2.26). On the other hand, factorizing the coefficient on the left hand side

of (2.27) using the ansatz above,

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

=

∆δ1

∆1 ∆2

∆3

∆δ1 ∆δ2

∆δ2

∆4 ∆5

∆δ1 ∆δ2

(2.28)

and substituting in (2.25) we can solve for the undetermined vertex factor with two dashed-

red edges attached, to obtain

∆3

∆δ1 ∆δ2

= −∆δ1δ2,3 (∆δ1δ2,3 + 1) (∆δ1δ23, − h+ 1) (∆δ1δ2,3 − h+ 2) . (2.29)

Finally, we can repeat the same exercise for the six-point block in the OPE/snowflake

channel, which satisfies (2.16). Note that all but one of the eight coefficients on the right

hand side of (2.16) are fully determined in terms of previously fixed edge and vertex factors.

We can check that the solution obtained from solving the linear equations is consistent with

these constituent factors. Thus the exercise of determining seven of the coefficients serves

as a consistency check of the ansatz, as well as of the previously obtained edge and vertex

factors. Upon factorization, the final coefficient includes the undetermined vertex with three

dashed-red edges attached to it, which we can solve for using previously determined vertex

and edge factors to obtain

∆δ3

∆δ1 ∆δ2

= ∆δ1δ2,δ3 ∆δ2δ3,δ1 ∆δ3δ1,δ2 (∆δ1δ2δ3, − h+ 1) (∆δ1δ2δ3, − h+ 2) (∆δ1δ2δ3, − 2h+ 3) .

(2.30)

It is trivial to check that these factors solve (2.17) to any order in powers of cross-ratios.16

15We checked this statement analytically by verifying that (2.17) is solved by (2.26)-(2.27) order by order
in power of cross-ratios uk1

1 uk2
2 to very high values of {k1, k2}.

16In practice, we checked this to very large values of the integral parameters k1, k2 and k3 which appear
as exponents of the cross-ratios uk1

1 uk2
2 uk3

3 in (2.19).
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Let’s take stock of the calculations and results above: We determined all the edge and

vertex factors, presented earlier in (2.11)-(2.12), which collectively form the building blocks

of the coefficients in the dimensional reduction relation (2.17) for any n-point conformal

block in an arbitrary topology. These factors were determined by solving linear equations

obtained from (2.17) order by order in powers of cross-ratios, and we needed to consider

only three explicit cases to fix all factors: the four-point block, the five-point block and

the six-point block in the OPE/snowflake topology.17 Particularly, it was sufficient to only

consider a finite set of linear equations to fix the factors; the full, infinite set of linear

equations corresponding to arbitrary powers of cross-ratios in (2.17) furnished a system

of over-constrained linear equations, providing infinitely many consistency checks of the

solution. In practice we tested the solutions to a high but finite order.

Having determined the rules for the full set of building blocks, all other higher-point

blocks (for any choice of topology) are guaranteed to satisfy dimensional reduction rela-

tion (2.17) with coefficients given by the previously determined rules, since we have exhausted

the full set of building blocks. Without the benefit of hindsight afforded by the proof above,

this is a surprising consequence. It also serves as a highly non-trivial consistency require-

ment since no adjustable vertex or edge factors remain to ensure that all higher-point blocks

satisfy the proposed dimensional reduction relations. As a non-trivial consistency check, we

can test whether the rules for the coefficients correctly reproduce the coefficients in (2.17)

for other toplogies not used in determining the rules: E.g. the six-point block in the comb

topology, the two seven-point topologies, and all four eight-point topologies. We find that

they do. In appendix C we write down some of these explicit dimensional reduction relations

and show all the topologies we explicitly tested.

2.4 OPE and unit operator limits

Finally, we close this section by performing two more consistency checks, namely we show

that the dimensional reduction relation is consistent with the OPE limit and the unit operator

limit. As we’ll see, the graphical Feynman-like structure of the coefficients in the dimensional

reduction relation simplifies the proofs considerably.

For the OPE limit, it is helpful to start with a concrete example for intuition. Consider

the five-point dimensional reduction (2.15), more precisely, the conformal block version of

17Explicitly, we used the Feynman rules to substitute in the blocks in (2.17).
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it,

W
(d−2)
∆δ1

,∆δ2
=

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

W
(d)
∆δ1

,∆δ2
+

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

W
(d)
∆δ1

+2,∆δ2

+
∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

W
(d)
∆δ1

,∆δ2
+2 + ∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

W
(d)
∆δ1

+2,∆δ2
+2 ,

(2.31)

and take the OPE limit x2 → x1 on both sides. The left hand side is simply given by

LHS
x2→x1→ (x2

12)
∆δ1,12 W

(d−2)
∆δ2

(2.32)

where the external dimensions of the resulting four-point conformal block W
(d)
∆δ2

are ∆δ1 ,∆3

on one side of the exchanged operator ∆δ2 and ∆4,∆5 on the other side. On the right hand

side of (2.15), the OPE limit results in

RHS
x2→x1→

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

(x2
12)

∆δ1,12 W
(d)
∆δ2

+
∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

(x2
12)

∆δ1,12
+1 W

(d)
∆δ2

+
∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

(x2
12)

∆δ1,12 W
(d)
∆δ2

+2 + ∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

(x2
12)

∆δ1,12
+1 W

(d)
∆δ2

+2 .

(2.33)

We see that in the limit x2 → x1, the second and fourth terms on the right hand side contain

an extra overall factor of x2
12, and thus are sub-leading in the vanishing limit and can be

dropped. Then equating the left and right hand sides, we get

W
(d−2)
∆δ2

=
∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

W
(d)
∆δ2

+
∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

W
(d)
∆δ2

+2

=
∆δ1

∆3 ∆4

∆5
∆δ2

W
(d)
∆δ2

+
∆δ1

∆3 ∆4

∆5
∆δ2

W
(d)
∆δ2

+2 ,

(2.34)

where in the second equality we used the Feynman-like factorization of the coefficients and

the fact that a vertex factor with no dashed-red edges attached as well as a non-dashed-

red internal edge factor simply contribute a factor of unity, and thus can be dropped. For
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example,

∆1

∆2 ∆3 ∆4

∆5
∆δ1 ∆δ2

=

∆δ1

∆1 ∆2

∆δ1 ∆δ1

∆3 ∆4

∆5
∆δ2

=
∆δ1

∆3 ∆4

∆5
∆δ2

.

(2.35)

The relation (2.34) precisely reproduces the four-point dimensional reduction (2.9) (with

appropriate relabeling).

More generally, the same steps can be applied to any pair of external legs incident at

a common vertex in an n-point conformal block of arbitrary topology. The blocks on both

sides of the dimensional reduction reduce to (n − 1)-point conformal blocks times overall

factors of the form (x2
ab)

# under the OPE limit xb → xa. In the dimensional reduction

relation, half of the 2n−3 terms on the right hand side have the internal exchanged dimension

incident at the vertex in question shifted up by two. Thus under the OPE limit, such terms

vanish due to an extra overall factor of x2
ab arising from the shifted dimension. The remaining

half of the terms are the ones where in the associated coefficient, the vertex under question

has no incident dashed-red edges (i.e. the incident internal dimension is unshifted), thus

the corresponding vertex and internal edge factors contribute a factor of unity and can be

safely dropped to manifestly reproduce the correct graphical representations of the desired

(n − 1)-point coefficients.18 This completes the check that the OPE limit acts consistently

on the dimensional reduction.

Now let’s discuss the unit operator limit. Once again it is useful to first consider the

five-point dimensional reduction (2.15). We will study two inequivalent unit operator limits:

(a) ∆1 = 0 with ∆δ1 = ∆2, and (b) ∆3 = 0 with ∆δ1 = ∆δ2 .

In case (a), the left hand side of (2.15) becomes the four-point block g
(d−2)
∆δ2

with external

labels ∆2,∆3 and ∆4,∆5,

LHS = g
(d−2)
∆δ2

. (2.36)

18The last step is what was done in the second equality of (2.34).
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On the right hand side we get

RHS =
0

∆2 ∆3 ∆4

∆5
∆2 ∆δ2

g
(d)
∆δ2

+
0

∆2 ∆3 ∆4

∆5
∆2 ∆δ2

[
g
(d)
∆δ1

+2,∆δ2

]
∆1=0

∆δ1
=∆2

+
0

∆2 ∆3 ∆4

∆5
∆2 ∆δ2

g
(d)
∆δ2

+2 +
0

∆2 ∆3 ∆4

∆5
∆2 ∆δ2

[
g
(d)
∆δ1

+2,∆δ2
+2

]
∆1=0

∆δ1
=∆2

.

(2.37)

The four-point blocks in the first and third terms above have external dimensions ∆2,∆3

and ∆4,∆5. Now we can use the Feynman factorization of the coefficients into edge and

vertex factors to evaluate the coefficients. Using the rules (2.11)-(2.12), observe that

∆2

0 ∆2

= 0

∆2

0 ∆2

∆2

= 1 , (2.38)

from which we conclude that the second and fourth terms on the right hand side vanish, and

the first and third terms simplify to give

RHS =
∆2

∆3 ∆4

∆5
∆δ2

g
(d)
∆δ2

+
∆2

∆3 ∆4

∆5
∆δ2

g
(d)
∆δ2

+2 . (2.39)

Together, (2.36) and (2.39) recover the four-point dimensional reduction (2.9).

In case (b), setting ∆3 = 0 with ∆δ1 = ∆δ2 , the left hand side of (2.15) reduces to the

four-point block g
(d−2)
∆δ2

with external dimensions ∆1,∆2 and ∆4,∆5,

LHS = g
(d−2)
∆δ2

. (2.40)
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On the right hand side, we get

RHS =
∆1

∆2 0 ∆4

∆5
∆δ2 ∆δ2

g
(d)
∆δ2

+
∆1

∆2 0 ∆4

∆5
∆δ2 ∆δ2

[
g
(d)
∆δ1

+2,∆δ2

]
∆3=0

∆δ1
=∆δ2

+
∆1

∆2 0 ∆4

∆5
∆δ2 ∆δ2

[
g
(d)
∆δ1

,∆δ2
+2

]
∆3=0

∆δ1
=∆δ2

+
∆1

∆2 0 ∆4

∆5
∆δ2 ∆δ2

g
(d)
∆δ2

+2 .

(2.41)

Once again using the Feynman factorization of the coefficients and the identities (2.38),

we notice that the second and third terms vanish, while the first term can be rewritten

suggestively to give

RHS =
∆1

∆2 ∆4

∆5
∆δ2

g
(d)
∆δ2

+
∆1

∆2 0 ∆4

∆5
∆δ2 ∆δ2

g
(d)
∆δ2

+2 . (2.42)

The second coefficient above can be simplified further by using (2.11)-(2.12) and noting that

0

∆δ2 ∆δ2

∆δ2 ∆δ2

=
−∆δ2 (∆δ2 + 1) (∆δ2 − h+ 1) (∆δ2 − h+ 2)

(∆δ2(∆δ2 + 1)(∆δ2 − h+ 1)(∆δ2 − h+ 2))2

=
∆δ2

.

(2.43)

Thus we can rewrite the right hand side as

RHS =
∆1

∆2 ∆4

∆5
∆δ2

g
(d)
∆δ2

+
∆1

∆2 ∆4

∆5
∆δ2

g
(d)
∆δ2

+2 , (2.44)

which together with (2.40) recovers the four-point dimensional reduction.

Returning to a general n-point block, the unit operator limit at any external leg is

equivalent to removing that leg to get an (n − 1)-point block. At any vertex with incident

edges of dimensions, say ∆1,∆2 and ∆3 where ∆1 is external and at least one of ∆2 and

∆3 is internal, mathematically this limit corresponds to setting ∆1 = 0 and simultaneously

setting ∆2 = ∆3.
19

19We will not worry about coordinate dependence in this discussion since it goes through as expected
trivially.
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∆2∆1

∆3
∆1=0,∆2=∆3→

∆3

Figure 4: The unit operator limit, ∆1 = 0 with ∆2 = ∆3 of an n-point block. The shaded
blob admits an arbitrary topology. We have suppressed the position coordinates.

Let’s first consider the case when ∆2 is also external, so that ∆3 is an internal leg (see

figure 4). Then taking the unit operator limit in the dimensional reduction formula, the left

hand side will reduce trivially to an (n− 1)-point bare conformal block in (d− 2) spacetime

dimensions. On the right hand side, half of the 2n−3 terms come with coefficients with the

∆3 leg shaded dashed-red, corresponding to a shifted exchanged dimension. In the Feynman

representation of precisely these coefficients, there is always a factor of

∆3

∆1 ∆2

∆1=0,∆2=∆3
= 0 , (2.45)

where we used the vertex factor from (2.11) to evaluate the limit. Since the vertex factor

vanishes, half of the terms in the dimensional reduction relation vanish. It is now trivial to

check that the other half of the terms are precisely the ones which arise in the dimensional

reduction of the (n− 1)-point obtained from taking the unit operator limit.20

Now let’s consider the other case when both ∆2 and ∆3 label internal legs and we take

the unit operator limit ∆1 = 0 with ∆2 = ∆3 (see figure 5). Once again on the left hand

side we get the appropriate (n − 1)-point block in (d − 2) dimensions. We will now show

that the right hand side also reduces to the appropriate linear combination of d-dimensional

(n − 1)-point blocks. The 2n−3 terms on the right hand side of the n-point dimensional

reduction can be partitioned into four sets of equal cardinality as shown in table 1. In the

table, ∅ is the set of terms where neither ∆2 nor ∆3 got shifted up by two, while the other

three sets correspond to sets where one or both dimensions were shifted.

20Just like in the discussion of the OPE limit, the vertex factor under question as well as the associated
internal edge factor evaluate to unity and can be safely dropped. Doing this manifestly recovers the desired
(n− 1)-point coefficients.
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∆1

∆2

∆3

∆1=0,∆2=∆3→ ∆3

Figure 5: The unit operator limit, ∆1 = 0 with ∆2 = ∆3 of an n-point block. The shaded
blobs admit arbitrary topologies.

shifted dimensions ∅ {∆2} {∆3} {∆2,∆3}
cardinality 2n−5 2n−5 2n−5 2n−5

Table 1: Splitting the 2n−3 terms into four sets of equal cardinality.

Each of the terms where ∆2 is shifted up (hence shaded dashed-red) but not ∆3, has a

coefficient which by the Feynman rules contains a vertex (refer to figure 5)

∆2

∆1 ∆3

∆1=0,∆2=∆3
= 0 , (2.46)

which vanishes for the same reason (2.45) did. Likewise the terms where ∆3 is shifted up

but not ∆2 also vanish. Thus one-half of the total 2n−3 terms vanish in the unit operator

limit.

For terms where neither ∆2 nor ∆3 is shifted, each coefficient contains the following

vertex and edge factors (refer to figure 5)

∆1

∆2 ∆3

∆2 ∆3

∆1=0,∆2=∆3
= 1 =

∆3

(2.47)

where the second trivial equality emphasizes that in the unit operator limit, when we remove

the external leg ∆1, in the resulting (n − 1)-point block the original vertex disappears and
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we are left with a single exchanged operator (or internal leg) labeled ∆3 as shown in figure 5.

Thus this set of 2n−5 terms exactly reproduces half of the terms appearing in the dimensional

reduction of the reduced (n− 1)-point block.

The remaining terms come from the final set of n-point terms where both ∆2 and ∆3

have been shifted. Here, each coefficient contains the following factors at the vertex where

the unit operator limit is taken:

∆1

∆2 ∆3

∆2 ∆3

∆1=0,∆2=∆3
=

−∆3 (∆3 + 1)
(
∆3 − d

2
+ 1
) (

∆3 − d
2
+ 2
)(

∆3(∆3 + 1)(∆3 − d
2
+ 1)(∆3 − d

2
+ 2)

)2
=

∆3

(2.48)

where we used (2.11)-(2.12) to substitute in the vertex and edge factors. The second equality

and Feynman representation of the coefficients guarantees that these terms reproduce the

remaining terms of the (n− 1)-point dimensional reduction.

This concludes our proof of the fact that OPE limit and the unit operator limit act

consistently on the higher-point dimensional reduction relations.

3 Discussion

The close relation between the Parisi-Sourlas SCFTd and a dimensionally reduced CFTd−2

led to the discovery of a remarkable finite series relation between ordinary d-dimensional and

(d−2)-dimensional four-point conformal blocks [34]. In this paper we extended this relation

to all scalar arbitrary-point blocks restricted to scalar exchanges. This relation is captured

in (2.17) and summarized in the boxed text below (2.15). One of the novel results of this

paper is that the constant coefficients which appear as weights in the dimensional reduction

relation for any conformal block are factorizable and completely specified by a compact set

of Feynman-like rules (2.11)-(2.12). The derivation of these rules was greatly facilitated by

recent work on determining an explicit power-series expansion for arbitrary scalar conformal

blocks with the help of a set of Feynman rules of their own [30]. In fact, in order to

determine the rules obeyed by the constant coefficients of dimensional reduction relations

for any higher-point block, we needed the knowledge of merely three basic conformal blocks:

the four-point block, the five-point block and the six-point block in the OPE/snowflake

channel. These three topologies are the simplest conformal block topologies which together
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contain all three types of vertices in their unrooted binary tree representations: a vertex

with exactly one incident internal edge, a vertex with exactly two incident internal edges,

and a vertex with all three incident internal edges. These vertices in turn give rise to

Lauricella functions of one, two or three variables in the power-series expansion of conformal

blocks, respectively [30]. Consequently, vestiges of the Lauricella functions appear in the

explicit factors in (2.11). While deriving the vertex and edge factors for the coefficients of

dimensional reductions, we performed a variety of consistency checks at every step. Notably,

we showed that the OPE limit and unit operator limit act consistently on these dimensional

relations, and explicitly verified that the vertex and edge factors – completely fixed with the

help of the three conformal blocks mentioned above, with no residual adjustable parameters

– do indeed correctly reproduce the dimensional reduction of all other n-point conformal

blocks of all inequivalent typologies, at least for all n ≤ 8. Finally, in appendix A we also

presented a simple, systematic method for determining the precise dimensional reduction

relations obeyed by higher-point conformal partial waves.

This work suggests various interesting directions to further pursue. It would be interesting

to generalize the higher-point dimensional reduction relations to allow for spinning exchanges.

The explicit form of the coefficients in the four-point dimensional reduction (1.1) [34], and

the Feynman-like structure of the coefficients discovered in this paper for blocks with scalar

exchanges strongly suggests that the coefficients in the more general spinning dimensional re-

duction relation will also satisfy nice factorization properties and Feynman-like rules. In fact,

just as for scalar exchanges, one should be able to fully determine the complete set of such

rules simply by looking at four-point, five-point and six-point blocks in the OPE/snowflake

channels, this time allowing for spinning exchanges.

One could ask whether it is possible to invert the dimensional reduction relations of this

paper to find the higher-point analogs of the Dolan-Osborn dimensional uplift relations [10].

These relations give a finite series expansion of the d-dimensional conformal block in terms

of (d−2)-dimensional conformal blocks (up to an overall cross-ratio dependent factor). Such

relations are more practical from the point of view of finding closed-form expressions for

conformal blocks, as they reduce the problem to finding closed-form expressions for conformal

blocks in sufficiently low dimensions.

It would also be interesting to consider the implications of the higher-point dimensional

reduction relations for higher-point Witten diagrams, along the lines recently discussed for

the four-point case [35]. In particular this might uncover new recursion relations and other

interesting mathematical properties obeyed by higher-point bulk diagrams and perhaps make
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it possible to obtain closed-form expressions.

Finally, we would like to end with a comment on the relation of the present work to

p-adic AdS/CFT [40, 41]. In p-adic CFTs studied by Melzer [42], there are no descendants

in the spectrum so that the conformal blocks are given simply by scaling blocks, i.e. the

simplest possible power-laws [28,43]. From the point of view of the bare block in real CFTs,

the p-adic bare block is obtained by collapsing all ki, jrs sums in (2.19) to the leading/zeroth

order term. In such a case, the block is independent of the spacetime dimension d, so

that the dimensional reduction relations are trivial: Solely the coefficient in (2.17) with all

mi = 0 survives (and equals unity), while all other coefficients vanish. This reaffirms that

the non-trivial and interesting structure of dimensional reduction relations in conventional

(real) CFTs studied in this paper is due in large parts to the presence and interplay of

descendants in every conformal multiplet. It would be interesting to explore this point

further to see whether there is a compelling physical explanation for the existence of finite

term dimensional reductions which does not rely on Parisi-Sourlas supersymmetry.
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A Dimensional reduction of conformal partial waves

In this appendix we demonstrate how to obtain higher-point dimensional reduction relations

for conformal partial waves. The d-dimensional four-point conformal partial associated with

the conformal multiplet of dimension ∆δ1 and spin ℓ = 0 is defined by the following conformal

integral [6, 7, 44–46]

Ψ
(d)[∆1,∆2,∆3,∆4]
∆δ1

(x1, x2, x3, x4) :=

∫
y1∈∂AdSd+1

⟨⟨O1(x1)O2(x2)O∆δ1
(y1)⟩⟩⟨⟨Õ∆δ1

(y1)O3(x3)O4(x4)⟩⟩ ,

(A.1)

where we use ⟨⟨·⟩⟩ to denote the purely kinematic part of the three-point function, i.e. devoid

of the OPE coefficient, and Õ∆ is the shadow operator of O∆ in d dimensions, defined by

Õ∆(x) :=

∫
y∈∂AdSd+1

1

(x− y)2(d−∆)
O∆(x) . (A.2)
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It can be shown that the partial wave and conformal block are related via

Ψ
(d)[∆1,∆2,∆3,∆4]
∆δ1

= K
(d)∆3,∆4

∆̃δ1

W
(4)
0 g

(d)
∆δ1

+K
(d)∆1,∆2

∆δ1
W

(4)
0 g

(d)

∆̃δ1

, (A.3)

where ∆̃δ1 = d−∆δ1 is the shadow dimension, and

K
(d)∆3,∆4

∆̃δ1

=
πd/2Γ(d

2
−∆δ1)Γ(∆δ13,4)Γ(∆δ14,3)

Γ(∆δ1)Γ(∆δ̃13,4
)Γ(∆δ̃14,3

)
. (A.4)

The four-point conformal partial wave satisfies a dimensional reduction schematically

of the same form as the conformal block [35]. The precise coefficients differ from those

appearing in (1.1) but are trivial to obtain starting from (1.1) and the relation between

conformal blocks and partial waves (A.3). In this appendix we will not be interested in

the coefficients but just the schematic structure. Schematically, we write the dimensional

reduction relation (restricted to scalar exchanges) as

Ψ
(d−2)[∆1,∆2,∆3,∆4]
∆δ1

∼ Ψ
(d)[∆1,∆2,∆3,∆4]
∆δ1

+Ψ
(d)[∆1,∆2,∆3,∆4]
∆δ1

+2 . (A.5)

Now recall that the five-point partial wave can be expressed as an integral over the

four-point partial wave as follows:

Ψ
(d)[∆1,∆2,∆3,∆4,∆5]
∆δ1

,∆δ2
(x1, x2, x3, x4, x5)

:=

∫
y2∈∂AdSd+1

Ψ
(d)[∆1,∆2,∆3,∆δ2

]

∆δ1
(x1, x2, x3, y2)⟨⟨Õ∆δ2

(y2)O4(x4)O5(x5)⟩⟩ .
(A.6)

We can consider the (d− 2)-dimensional five-point partial wave and use (A.5) to obtain,

Ψ
(d−2)[∆1,∆2,∆3,∆4,∆5]
∆δ1

,∆δ2
(x1, . . . , x5)

=

∫
y2∈∂AdSd−1

Ψ
(d−2)[∆1,∆2,∆3,∆δ2

]

∆δ1
(x1, x2, x3, y2)⟨⟨

ˆ̃O∆δ2
(y2)O4(x4)O5(x5)⟩⟩

∼
∫
y2∈∂AdSd−1

Ψ
(d)[∆1,∆2,∆3,∆δ2

]

∆δ1
(x1, x2, x3, y2)⟨⟨

ˆ̃O∆δ2
(y2)O4(x4)O5(x5)⟩⟩

+

∫
y2∈∂AdSd−1

Ψ
(d)[∆1,∆2,∆3,∆δ2

]

∆δ1
+2 (x1, x2, x3, y2)⟨⟨

ˆ̃O∆δ2
(y2)O4(x4)O5(x5)⟩⟩ ,

(A.7)

where
ˆ̃O∆ denotes the shadow operator of O∆ in (d− 2) dimensions. Now substituting the

integral representation (A.1) above, we recognize the (d − 2)-dimensional y2-integral over
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∂AdSd−1 to be a (d− 2)-dimensional four-point partial wave. Thus we get

Ψ
(d−2)[∆1,∆2,∆3,∆4,∆5]
∆δ1

,∆δ2
(x1, . . . , x5)

∼
∫
y1∈∂AdSd+1

Ψ
(d−2)[d−∆δ1

,∆3,∆4,∆5]

∆δ2
(y1, x3, x4, x5)⟨⟨O1(x1)O2(x2)O∆δ1

(y1)⟩⟩

+

∫
y1∈∂AdSd+1

Ψ
(d−2)[d−∆δ1

−2,∆3,∆4,∆5]

∆δ2
(y1, x3, x4, x5)⟨⟨O1(x1)O2(x2)O∆δ1

+2(y1)⟩⟩ .

(A.8)

We can now use (A.5) again to get a four-term relation

Ψ
(d−2)[∆1,∆2,∆3,∆4,∆5]
∆δ1

,∆δ2
(x1, . . . , x5)

∼
∫
y1∈∂AdSd+1

Ψ
(d)[d−∆δ1

,∆3,∆4,∆5]

∆δ2
(y1, x3, x4, x5)⟨⟨O1(x1)O2(x2)O∆δ1

(y1)⟩⟩

+

∫
y1∈∂AdSd+1

Ψ
(d)[d−∆δ1

,∆3,∆4,∆5]

∆δ2
+2 (y1, x3, x4, x5)⟨⟨O1(x1)O2(x2)O∆δ1

(y1)⟩⟩

+

∫
y1∈∂AdSd+1

Ψ
(d)[d−∆δ1

−2,∆3,∆4,∆5]

∆δ2
(y1, x3, x4, x5)⟨⟨O1(x1)O2(x2)O∆δ1

+2(y1)⟩⟩

+

∫
y1∈∂AdSd+1

Ψ
(d)[d−∆δ1

−2,∆3,∆4,∆5]

∆δ2
+2 (y1, x3, x4, x5)⟨⟨O1(x1)O2(x2)O∆δ1

+2(y1)⟩⟩ .

(A.9)

Using (A.6) we recognize each term above as a d-dimensional five-point conformal partial

wave, thus yielding the relation

Ψ
(d−2)[∆1,∆2,∆3,∆4,∆5]
∆δ1

,∆δ2
(x1, . . . , x5)

∼Ψ
(d)[∆1,∆2,∆3,∆4,∆5]
∆δ1

,∆δ2
(x1, . . . , x5) + Ψ

(d)[∆1,∆2,∆3,∆4,∆5]
∆δ1

,∆δ2
+2 (x1, . . . , x5)

+Ψ
(d)[∆1,∆2,∆3,∆4,∆5]
∆δ1

+2,∆δ2
(x1, . . . , x5) + Ψ

(d)[∆1,∆2,∆3,∆4,∆5]
∆δ1

+2,∆δ2
+2 (x1, . . . , x5) ,

(A.10)

which is precisely the partial wave analog of (2.15).

The derivation of the five-point partial wave relation makes it clear how to proceed

systematically to obtain higher-point partial wave dimensional reduction relations. One can

repeat the previous calculations, this time starting with the integral representation of the six-

point partial wave in terms of the five-point partial wave, and so on. It should be clear that

just like in the case of conformal blocks, there will be 2n−3 terms in the dimensional reduction,

corresponding to all possible permutations of intermediate exchanged dimensions shifted up

by two or not.21 One can also systematically obtain all the proportionality constants in

21To obtain higher-point dimensional reduction relations which include spinning exchanges using the it-
erative procedure of this appendix, one would first need to generalize dimensional reduction relations for
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the dimensional reduction relations by carefully tracking all factors in the calculation above.

Moreover, it is likely that there exist Feynman-like rules for determining the coefficients

for arbitrary n-point partial waves of arbitrary topologies, although we do not pursue this

direction here.

B Dimensional reduction of four-point blocks redux

In ref. [36] a relation was derived for expressing d-dimensional four-point scalar conformal

blocks in terms of an infinite series of blocks in a (d − 1)-dimensional CFT. For simplicity,

let’s first focus on conformal blocks with identical external dimensions and scalar exchanges,

in which case it was found that

g
(d)
∆δ

=
∞∑
n=0

A(d)
n (∆δ) g

(d−1)
∆δ+2n , (B.1)

where the coefficients are fixed by conformal invariance and given by

A(d)
n (∆δ) =

(1/2)n
4nn!

(∆δ/2)
3
n

(∆δ − d/2 + 1)n(∆δ − d/2 + 1/2 + n)n((∆δ + 1)/2)n
. (B.2)

Applying the dimensional lift twice, one can express a d-dimensional block as a doubly-

infinite series over (d − 2)-dimensional blocks. However, after a simple shift in one of the

dummy variables, one can isolate a cross-ratio independent sum, evaluating which one gets

g
(d)
∆δ

=
∞∑
n=0

B(d)
n (∆δ) g

(d−2)
∆δ+2n , (B.3)

where

B(d)
n (∆δ) =

1

4n
(∆δ/2)

3
n

(∆δ − d/2 + 1)2n((∆δ + 1)/2)n
. (B.4)

Now observe that the B coefficients satisfy an extremely simple recursion relation:

B(d)
n+1(∆δ) = B(d)

1 (∆δ) B(d)
n (∆δ + 2) , (B.5)

four-point partial waves to allow at least one external spinning operator.
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such that shifting ∆δ → ∆δ + 2 in (B.3) and multiplying by an overall factor, we obtain

B(d)
1 (∆δ) g

(d)
∆δ+2 =

∞∑
n=1

B(d)
n (∆δ) g

(d−2)
∆δ+2n . (B.6)

Adding and subtracting g
(d−2)
∆δ

and recognizing the d-dimensional block using (B.3), we get

B(d)
1 (∆δ) g

(d)
∆δ+2 = −g

(d−2)
∆δ

+ g
(d)
∆δ

. (B.7)

Thus the recursion relation (B.5) enables miraculous cancellations and produces the (finite

series) inverse of (B.3), which is a special case of (2.5)-(2.6) with ∆1 = ∆2,∆3 = ∆4 and

ℓ = 0.

Now let’s consider the case when the exchanged operator has spin ℓ ̸= 0. Then the

d− 1 → d lift, for external dimensions ∆1 = ∆2,∆3 = ∆4 is given by [36]

g
(d)
∆δ,ℓ

=
∞∑
n=0

∑
j

A(d)
n,j(∆δ, ℓ) g

(d−1)
∆δ+2n,j , (B.8)

where the j sum runs over j = ℓ, ℓ−2, . . . , ℓ−2 mod 2, and the series coefficients are known.

Applying the lift twice, we get

g
(d)
∆δ,ℓ

=
∞∑
n=0

∑
j

A(d)
n,j(∆δ, ℓ)

∞∑
m=0

∑
k

A(d−1)
m,k (∆δ + 2n, j)g

(d−2)
∆δ+2n+2m,k , (B.9)

where the k sum runs over k = j, j − 2, . . . , j − 2 mod 2. One can freely send m → m− n,

change the lower limit of the new m sum to 0 and switch the order of summation to obtain

g
(d)
∆δ,ℓ

=
∞∑

m=0

∞∑
n=0

∑
j

∑
k

A(d)
n,j(∆δ, ℓ)A(d−1)

m−n,k(∆δ + 2n, j)g
(d−2)
∆δ+2m,k . (B.10)

Now, rearranging the finite j, k sums, we get

g
(d)
∆δ,ℓ

=
∞∑

m=0

∑
k

(
∞∑
n=0

∑
j

A(d)
n,j(∆δ, ℓ)A(d−1)

m−n,k(∆δ + 2n, j)

)
g
(d−2)
∆δ+2m,k

=:
∞∑

m=0

∑
k

B(d)
m,k(∆δ, ℓ) g

(d−2)
∆δ+2m,k ,

(B.11)

where the k sum is now over k = ℓ, ℓ − 2, . . . , ℓ − 2 mod 2 and the j sum now runs over
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j = ℓ, ℓ − 2, . . . , k. The series coefficients Bm,k are defined by the equation above, which

allows us to write the d − 2 → d dimension lift in terms of a single infinite series. We

can compute these coefficients explicitly. Their exact form is tedious and unilluminating to

include here.22 For special values of its parameters, it takes the form

B(d)
m,ℓ(∆δ, ℓ) =

1

4m
(∆δ/2)m((∆δ − 1)/2)m((∆δ + ℓ)/2)2m

(∆δ − d/2 + 1)2m((∆δ + ℓ+ 1)/2)m((∆δ + ℓ− 1)/2)m

B(d)
0,k(∆δ, ℓ) =

1

2ℓ−k

(−ℓ)ℓ−k

(2− d/2− ℓ)ℓ−k

.

(B.12)

These coefficients satisfy recursion relations

B(d)
m+1,ℓ(∆δ, ℓ) = B(d)

1,ℓ (∆δ, ℓ) B(d)
m,ℓ(∆δ + 2, ℓ)

B(d)
0,k(∆δ, ℓ) = B(d)

0,ℓ−2(∆δ, ℓ) B(d)
0,k(∆δ, ℓ− 2) .

(B.13)

Just as in the ℓ = 0 case, we will consider variants of (B.11) with the dimension and

spin of the exchanged operator shifted variously. We can then add and subtract appropriate

terms and make free use of (B.13) to obtain resummations which will help us invert (B.11)

eventually. For instance, one of the terms involved is,

B(d)
1,ℓ (∆δ, ℓ)g

(d)
∆δ+2,ℓ = B(d)

1,ℓ (∆δ, ℓ)
∞∑

m=0

∑
k

B(d)
m,k(∆δ + 2, ℓ)g

(d−2)
∆δ+2m+2,k

=
∞∑

m=1

B(d)
m,ℓ(∆δ, ℓ)g

(d−2)
∆δ+2m,ℓ + B(d)

1,ℓ (∆δ, ℓ)
∞∑

m=0

∑
k=ℓ−2,...

B(d)
m,k(∆δ + 2, ℓ)g

(d−2)
∆δ+2m+2,k

= −g
(d−2)
∆δ,ℓ

+
∞∑

m=0

B(d)
m,ℓ(∆δ, ℓ)g

(d−2)
∆δ+2m,ℓ

+ B(d)
1,ℓ (∆δ, ℓ)

∞∑
m=0

∑
k=ℓ−2,...

B(d)
m,k(∆δ + 2, ℓ)g

(d−2)
∆δ+2m+2,k ,

(B.14)

where the sum with k = ℓ− 2, . . . denotes a shifted lower limit in the finite sum. Likewise,

one can consider other terms corresponding to the bare blocks with dimensions and spins

shifted appropriately. Then using the recursion relations (B.13) and the following non-trivial

22The precise expression was found to be in terms of specific generalized hypergeometric functions 8F7, 9F8

and 10F9. It is possible this can be simplified further, but we did not invest time on this exercise.
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recursion relation,

B(d)
m,k(∆δ, ℓ) = B(d)

0,ℓ−2(∆δ, ℓ)B(d)
m,k(∆δ, ℓ− 2)− B(d)

0,ℓ−2(∆δ, ℓ)B(d)
1,ℓ−2(∆δ, ℓ− 2)B(d)

m−1,k(∆δ + 2, ℓ− 2)

+ B(d)
1,ℓ (∆δ, ℓ)B(d)

m−1,k(∆δ + 2, ℓ)− B(d)
1,ℓ (∆δ, ℓ)B(d)

0,ℓ−2(∆δ + 2, ℓ)B(d)
m−1,k(∆δ + 2, ℓ− 2)

+ B(d)
1,ℓ−2(∆δ, ℓ)B(d)

m−1,k(∆δ + 2, ℓ− 2)

(B.15)

for m = 1, 2, . . . and k = ℓ − 2, ℓ − 4, . . . , ℓ − 2 mod 2, which can be checked numerically

using the explicit form of the B(d)
m,k coefficients, one obtains(

B(d)
1,ℓ−2(∆δ, ℓ)− B(d)

0,ℓ−2(∆δ, ℓ)B(d)
1,ℓ−2(∆δ, ℓ− 2)− B(d)

1,ℓ (∆δ, ℓ)B(d)
0,ℓ−2(∆δ + 2, ℓ)

)
g
(d)
∆δ+2,ℓ−2

+ B(d)
1,ℓ (∆δ, ℓ)g

(d)
∆δ+2,ℓ + B(d)

0,ℓ−2(∆δ, ℓ)g
(d)
∆δ,ℓ−2 = −g

(d−2)
∆δ,ℓ

+ g
(d)
∆δ,ℓ

.

(B.16)

Equation (B.16) is precisely the d → d − 2 dimensional reduction (2.5) of ref. [34] for

∆1 = ∆2,∆3 = ∆4. This provides a precise relation between the coefficients of the infinite

series expansion (B.11) and the coefficients of its finite inverse (2.5):23

c2,0 = −B(d)
1,ℓ (∆δ, ℓ) c0,−2 = −B(d)

0,ℓ−2(∆δ, ℓ)

c2,−2 = −B(d)
1,ℓ−2(∆δ, ℓ) + B(d)

0,ℓ−2(∆δ, ℓ)B(d)
1,ℓ−2(∆δ, ℓ− 2) + B(d)

1,ℓ (∆δ, ℓ)B(d)
0,ℓ−2(∆δ + 2, ℓ) ,

(B.17)

which can be easily verified.

C More examples

In this appendix we write down the explicit dimensional reduction relations for some more

higher-point examples. The coefficients are determined using the vertex and edge fac-

tors (2.11)-(2.12).

The six-point block in the comb channel shown in figure 6a, for which an explicit power

series representation in d dimensions was first obtained in refs. [21, 29], satisfies:

g
(d−2)
∆δ1

,∆δ2
,∆δ3

=
∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

g
(d)
∆δ1

,∆δ2
,∆δ3

+
∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

g
(d)
∆δ1

+2,∆δ2
,∆δ3

23When ∆1 = ∆2,∆3 = ∆4, the coefficient c1,−1 in (2.5) vanishes, which is consistent with (B.16) where
the corresponding term did not appear.
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∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

(a)

∆1

∆2 ∆3 ∆4 ∆5 ∆6

∆7
∆δ1 ∆δ2 ∆δ3 ∆δ4

(b)

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

(c)

Figure 6: (a) Six-point conformal block in the comb channel, and seven-point conformal
blocks in the (b) comb channel and (c) “mixed”/“extended snowflake” channel.

+
∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

g
(d)
∆δ1

,∆δ2
+2,∆δ3

+
∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

g
(d)
∆δ1

,∆δ2
,∆δ3

+2

+
∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

g
(d)
∆δ1

+2,∆δ2
+2,∆δ3

+
∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

g
(d)
∆δ1

,∆δ2
+2,∆δ3

+2

+
∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

g
(d)
∆δ1

+2,∆δ2
,∆δ3

+2 +
∆1

∆2 ∆3 ∆4 ∆5

∆6
∆δ1 ∆δ2 ∆δ3

g
(d)
∆δ1

+2,∆δ2
+2,∆δ3

+2.

(C.1)

The seven-point block in the mixed channel depicted in figure 6c, for which an explicit

power series representation in d dimensions was first obtained in refs. [24, 30], satisfies a

dimensional reduction with 24 terms,

g
(d−2)
∆δ1

,∆δ2
,∆δ3

,∆δ4

=

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

,∆δ2
,∆δ3

,∆δ4
+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

+2,∆δ2
,∆δ3

,∆δ4

+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

,∆δ2
+2,∆δ3

,∆δ4
+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

,∆δ2
,∆δ3

+2,∆δ4

+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

,∆δ2
,∆δ3

,∆δ4
+2 +

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

+2,∆δ2
+2,∆δ3

,∆δ4
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∆δ1 ∆δ2 ∆δ3 ∆δ4 ∆δ5 ∆1
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∆3 ∆4 ∆5 ∆6
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∆δ3

∆δ4

∆δ5

∆1

∆2

∆4 ∆5

∆3 ∆6 ∆7
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∆δ3

∆δ4∆δ2 ∆δ5

∆1

∆2 ∆3 ∆4

∆5 ∆6

∆7

∆8
∆δ1 ∆δ2 ∆δ3

∆δ4

∆δ5

Figure 7: Eight-point conformal blocks in the four inequivalent topologies.

+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

+2,∆δ2
,∆δ3

+2,∆δ4
+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
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(d)
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+
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∆4 ∆5

∆6
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∆δ3

∆δ4
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(d)
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+2,∆δ3

+2,∆δ4
+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
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∆δ3

∆δ4

g
(d)
∆δ1

,∆δ2
+2,∆δ3

,∆δ4
+2

+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

,∆δ2
,∆δ3

+2,∆δ4
+2 +

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

+2,∆δ2
+2,∆δ3

+2,∆δ4

+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

+2,∆δ2
+2,∆δ3

,∆δ4
+2 +

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4
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(d)
∆δ1

+2,∆δ2
,∆δ3

+2,∆δ4
+2

+

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

,∆δ2
+2,∆δ3

+2,∆δ4
+2 +

∆1

∆2 ∆3

∆4 ∆5

∆6

∆7
∆δ1 ∆δ2

∆δ3

∆δ4

g
(d)
∆δ1

+2,∆δ2
+2,∆δ3

+2,∆δ4
+2 .

(C.2)

We also checked that the seven-point comb channel shown in 6b and first obtained in

refs. [21, 29] satisfies its own dimensional reduction with 24 terms. Moreover, we explicitly

checked that eight-point blocks of all four inequivalent topologies, shown in figure 7 and

first written down in ref. [30] with the help of Feynman rules, also satisfy the expected

dimensional reductions with 25 terms each.
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