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ON THE PROPORTION OF TRANSVERSE-FREE PLANE CURVES

SHAMIL ASGARLI AND BRIAN FREIDIN

Abstract. We study the asymptotic proportion of smooth plane curves over a finite field Fq which
are tangent to every line defined over Fq. This partially answers a question raised by Charles Favre.
Our techniques include applications of Poonen’s Bertini theorem and Schrijver’s theorem on perfect
matchings in regular bipartite graphs. Our main theorem implies that a random smooth plane curve
over Fq admits a transverse Fq-line with very high probability.

1. Introduction

Let C ⊂ P
2 be a plane curve defined over an arbitrary field k. If k is an infinite field, then

we can apply Bertini’s theorem to find a line L defined over k such that L meets C transversely.
By Bézout’s theorem, any line (which is not a component of the curve C) meets C in exactly
d = deg(C) points with coordinates in k counted with multiplicity; by definition, a transverse

line is one which meets C in d distinct points. Equivalently, L is not transverse to C if and only
if L is tangent to C or L passes through a singular point of C.

When k = Fq is a finite field, it is not necessarily true that we can find a line L defined

over Fq such that L meets C transversely. It is possible that each of the q2 + q + 1 lines in P
2

defined over Fq is tangent to C. Indeed, there exist smooth plane curves of degree q + 2 with this
property [Asg19, Example 2.A]. There are also smooth examples in each sufficiently large degree
[Asg19, Example 2.B].

Given a plane curve C ⊂ P
2 defined over a finite field Fq, we say that C is transverse-free if C

admits no transverse line defined over Fq.
In the present paper, we will restrict our attention to smooth plane curves. In order to count the

proportion of smooth transverse-free plane curves, we use the notion of a natural density denoted
by µ. Given a subset of A ⊂ R := Fq[x, y, z], the natural density µ(A) is the limit as d→ ∞ of the
fraction of elements of degree d in A among all degree d homogeneous polynomials in R. Note that
counting homogeneous polynomials and curves of the same degree differ by a factor arising from
scaling, so that the limiting proportion for both counts coincide. Our main result is the following.

Theorem 1.1. Let F ⊂ Fq[x, y, z] be the set of polynomials defining smooth transverse-free plane
curves. Then

e−(q2+q+1) ·

(
1

q
+

1

q2
−

1

q3

)q2+q+1

≤ µ(F) ≤ 7.5 ·

(
1

q
+

1

q2
−

1

q3

)q2+q+1

where e = 2.71828... is Euler’s number.
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2. Overview of the paper

In this section, we discuss notation used in the paper, interpret our main theorem, and explain
how the paper is organized.

We will work with the finite fields Fq where q is a fixed prime power. We set R := Fq[x, y, z] and
denote by Rd the vector space spanned by degree d homogeneous polynomials in R. By convention,
0 is considered a homogeneous polynomial in each degree. As a shorthand, we also define

Rhomog =
⋃

d≥1

Rd

to be the set of non-constant homogeneous polynomials. By definition, elements of Rhomog define

projective plane curves in P
2. Elements of R1 correspond to lines defined over Fq, also referred to

as Fq-lines. Similarly, the points in P
2(Fq) will be called Fq-points.

As mentioned in the introduction, we can ask for the asymptotic proportion of a given subset of
the ring R. More precisely, given a subset A ⊂ R, we first define Ad = A ∩ Rd and µd(A) = #Ad

#Rd

for each d ≥ 1. The natural density of A is defined by

µ(A) = lim
d→∞

µd(A) = lim
d→∞

#Ad

#Rd

provided that the limit exists. Similarly, we define

µ(A) = lim inf
d→∞

#Ad

#Rd

and µ(A) = lim sup
d→∞

#Ad

#Rd

as lower and upper densities, respectively. If upper and lower densities agree, then the natural
density exists, and we have the equality µ(A) = µ(A) = µ(A). As an example with geometric
flavour, let Rsmooth ⊂ R denote the subset of polynomials defining smooth plane curves. As a
special case of Poonen’s Theorem [Poo04, Theorem 1.1], we obtain

µ(Rsmooth) = ζ
P
2(3)−1 =

(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

.(2.1)

Thus, the quantity above can interpreted as the probability that a random plane curve defined
over Fq is smooth. As mentioned in the introduction, we are counting homogeneous polynomials
of degree d instead of plane curves of degree d. The limiting proportions are the same, because

# plane curves defined by polynomials of degree d in A

# all plane curves of degree d
=

(#Ad − 1)/(q − 1)

(#Rd − 1)/(q − 1)

=
#Ad − 1

#Rd − 1
,

which agrees with µd(A) in the limit as d→ ∞.
The aim of the present paper is to investigate the density of the subset

F := {f ∈ Rhomog | C = {f = 0} is a smooth plane curve

such that all Fq-lines are tangent to C}.

A smooth plane curve C = {f = 0} does not admit any transverse Fq-lines if and only if f ∈ F .
Hence, F corresponds to precisely the collection of smooth transverse-free plane curves over Fq.

We remark that a smooth plane curve C is transverse-free if and only if the dual curve C∗ is
space-filling in the sense that C∗ passes through all Fq-points of the dual projective plane (P2)∗.
Indeed, the dual curve C∗ is the plane curve whose points correspond to tangent lines to C, and
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the condition that C is transverse-free is equivalent to asserting that each Fq-line L is tangent to

C, that is, C∗(Fq) = (P2)∗(Fq). With this remark in mind, we can also define the set F as

F = {f ∈ Rhomog | C = {f = 0} is smooth and C∗ is space-filling}.

It is not clear that µ(F) actually exists as a limit. We will prove that this is the case in Section 6.
Let us interpret the upper bound given in Theorem 1.1 as a probabilistic version of the Bertini’s

theorem. Using the notation of conditional probability, we have

P (C is tangent to each Fq -line | C is smooth) =
P (C is smooth, and tangent to each Fq -line)

P (C is smooth)

=
µ(F)

µ(Rsmooth)

≤
7.5
(
q−1 + q−2 − q−3

)q2+q+1

(1− q−1)(1 − q−2)(1− q−3)

using the upper bound for µ(F) in Theorem 1.1 and (2.1). Thus the probability that a random
smooth plane curve C defined over Fq satisfies the conclusion of Bertini’s theorem (that is, C admits
a transverse Fq-line) can be bounded below.

P (C admits a transverse Fq -line | C is smooth) ≥ 1−
7.5
(
q−1 + q−2 − q−3

)q2+q+1

(1− q−1)(1− q−2)(1− q−3)
.(2.2)

The lower bound in (2.2) approaches 1 as q gets larger, and it is already very close to 1 even for
small values of q. For example, for q = 3

1−
7.5
(
3−1 + 3−2 − 3−3

)32+3+1

(1− 3−1)(1− 3−2)(1− 3−3)
= 0.99988803...

In other words, a random smooth plane curve over F3 admits a transverse F3-line with probability
at least 0.9998. For larger values of q, this probability is even closer to 1. However, for q = 2, the
bound (2.2) only gives about 0.1485 as a lower bound for the probability of a random smooth curve
over F2 to admit a transverse F2-line.

The paper is organized as follows. In Section 3, we obtain the lower bound for µ(F), which will
prove the first half of Theorem 1.1 once we show µ(F) exists. The key inputs here are Poonen’s
Bertini theorem [Poo04] and Schrijver’s lower bound on the number of perfect matchings in a regular
bipartite graph [Sch98]. In Section 4, we compute the density of curves with various singularity
and tangency conditions. This section provides many examples of sets A where the natural density
µ(A) can be computed explicitly. In addition, we show in Lemma 4.7 that the density of an
intersection can often be computed by taking a product of densities. In Section 5, we borrow the
results developed in Section 4 to obtain the upper bound for µ(F). The proof of the upper bound
is achieved via reduction to the case where the tangency points have bounded degree, together with
a combinatorial technique to partition the desired set based on the locations of tangency points.
Section 6 is devoted to the proof that the natural density of F exists.

3. Proof of the lower bound

The objective of this section is to prove the following.

Theorem 3.1. Let F ⊂ R = Fq[x, y, z] denote the subset defining smooth transverse-free plane
curves. Then

µ(F) ≥ e−(q2+q+1) ·

(
1

q
+

1

q2
−

1

q3

)q2+q+1

.
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Our task is to produce a positive proportion of smooth transverse-free curves of degree d. Recall
that a smooth plane curve C is transverse-free if each of the q2 + q + 1 lines defined over Fq is

tangent to C at some geometric point (i.e. a point defined over Fq). By requiring each of the
tangency points to be an Fq-point of C, we will already obtain a required positive proportion.

Our strategy consists of two steps:

(1) We can order Fq-points {Pi}
q2+q+1
i=1 and Fq-lines {Li}

q2+q+1
i=1 in P

2 so that Pi ∈ Li for each
1 ≤ i ≤ q2 + q + 1.

(2) We use [Poo04, Theorem 1.2] to compute the natural density of smooth plane curves whose
tangent line at Pi is Li for each 1 ≤ i ≤ q2 + q + 1. These curves are transverse-free by
construction.

Section 3.1 is devoted to understanding (1), which is a purely combinatorial statement about P2(Fq).
In Section 3.2, we explain how to carry out the procedure described in (2).

3.1. Permanent of the projective plane. An enumeration of Fq-points {P1, . . . , Pq2+q+1} and

Fq-lines {L1, . . . , Lq2+q+1} such that Pi ∈ Li for each 1 ≤ i ≤ q2 + q + 1 will be called a perfect

point-line correspondence. One can use Hall’s matching theorem to prove that such a corre-
spondence exists [DCR04, Theorem 1.1]. More generally, in the paper [DCR04], De Concini and
Reichstein study nesting maps of Grassmannians of complementary dimensional subspaces.

In order to produce many transverse-free smooth plane curves, we are interested in constructing
many different perfect point-line correspondences. We are naturally lead to the following purely
combinatorial question.

Question 3.2. How many perfect point-line correspondences are there in P
2(Fq)?

We can phrase Question 3.2 in terms of perfect matchings of a certain bipartite graph known
as the Levi graph or incidence graph. The Levi graph of P2(Fq) is the bipartite graph whose

vertices correspond to the q2+q+1 points and q2+q+1 lines of P2(Fq), and vertices corresponding
to point P and line L are adjacent if P ∈ L. It follows that a perfect point-line correspondence is
precisely the same as a perfect matching in the Levi graph. Note that the Levi graph is regular
since each vertex has degree q + 1.

The number of perfect matchings in a bipartite graph can be computed by taking the permanent
of the incidence matrix. Recall that the permanent of an n× n square matrix M = (mij) is

per(M) :=
∑

σ∈Sn

n∏

i=1

miσ(i).

In the case of the Levi graph, the incidence matrix Mq2+q+1 is a (q2 + q + 1)× (q2 + q + 1) matrix

where the rows are indexed by points and columns are indexed by lines of P2(Fq). The (i, j)-th
entry of Mq2+q+1 is 0 or 1, depending on whether the i-th point lies on the j-th line. It follows
that the permanent per(Mq2+q+1) exactly counts the number of perfect point-line correspondences

in P
2(Fq). We refer to per(Mq2+q+1) as the permanent of the projective plane of order q.

One can calculate these permanents for q = 2, 3, 4 and 5 in a computer, and the results are:

per(M7) = 24

per(M13) = 3852

per(M21) = 18534400

per(M31) = 4598378639550.

This sequence appears as A000794 in Sloane’s on-line encyclopedia of integer sequences [OEI20]
under the name of “Permanent of projective plane of order n”. To our knowledge, these permanents
beyond the case q = 5 have not been calculated explicitly.
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While the exact answer to Question 3.2 seems to be known only for q ∈ {2, 3, 4, 5}, we can
provide the following lower bound that works for all q ≥ 2.

Proposition 3.3. Let q be a prime power. The permanent of the projective plane of order q is at
least

(
q + 1

e

)q2+q+1

.

In particular, this is a lower bound on the number of perfect point-line correspondences in P
2(Fq).

Before we discuss the proof, we recall van der Waerden’s conjecture on permanents. A matrix
is called doubly-stochastic if it has non-negative entries and each row and column sums up
to 1. Van der Waerden’s conjecture was that if A is an n × n doubly-stochastic matrix then
per(A) ≥ n!/nn. The conjecture was proved independently by Gyires [Gyi80], Egorychev [Ego81]
and Falikman [Fal81]. Almost three decades later, Gurvitz [Gur08] gave a simpler proof, and his
proof technique was explored further by Laurent and Schrijver [LS10]. In particular, Laurent and
Schrijver gave a short proof of the following theorem.

Theorem 3.4. Suppose that A is an n×n integer matrix with non-negative entries. If all row and
column sums of A are equal to k, then

per(A) ≥

(
(k − 1)k−1

kk−2

)n

.

The above theorem and its proof appear in [LS10, Corollary 1C]. We remark that Theorem 3.4
was first proved by Schrijver [Sch98] using a different argument.

Proof of Proposition 3.3. Let Mq2+q+1 be the incidence matrix of the projective plane of order q.
Since each point is contained in q + 1 lines, and each line contains q + 1 points, it follows that all
row and column sums of Mq2+q+1 equal to q + 1. By applying Theorem 3.4, we obtain the lower
bound

per(Mq2+q+1) ≥

(
qq

(q + 1)q−1

)q2+q+1

= (q + 1)q
2+q+1

(
q

q + 1

)q(q2+q+1)

≥

(
q + 1

e

)q2+q+1

where we used the fact that
(

q
q+1

)q

≥ e−1. �

3.2. Constructing transverse-free curves. The Proposition 3.3 provides us with plenty of per-
fect point-line correspondences in P

2(Fq). As explained in the beginning of the section, each perfect
point-line correspondence gives rise to a positive proportion of smooth transverse-free plane curves.

Lemma 3.5. Given a perfect point-line correspondence {Pi}
q2+q+1
i=1 and {Li}

q2+q+1
i=1 , the natural

density of smooth plane curves which are tangent to Li at the point Pi is:
(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

q−2(q2+q+1).

Proof. We use Poonen’s Bertini Theorem with Taylor conditions [Poo04, Theorem 1.2], which com-
putes the density of smooth plane curves over Fq with any given finitely many tangency conditions.
Given Pi = [ai : bi : ci], consider the subscheme Zi ⊂ P

2 defined by

Zi = Spec

(
Fq[x, y, z]

(cix− aiz, ciy − biz)2

)
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for each 1 ≤ i ≤ q2 + q + 1. In other words, Zi is a subscheme whose support is the point
Pi = [ai : bi : ci], and the non-reduced structure keeps track of the first order tangent information.
Next, we consider the subscheme Z ⊂ P

2 defined by

Z =

q2+q+1
∐

i=1

Zi.

Note that the global sections H0(Z,OZ) can be expressed as a direct sum:

H0(Z,OZ) =

q2+q+1
⊕

i=1

H0(Zi,OZi
).

Since H0(Zi,OZi
) is a 3-dimensional vector space over Fq, it follows that H

0(Z,OZ) has dimension
3(q2 + q + 1) as an Fq-vector space.

For each 1 ≤ i ≤ q2 + q + 1, let Ti ⊂ H0(Zi,OZi
) denote the linear subspace corresponding to

picking the particular line Li to be the tangent direction at Pi. Note that Ti has codimension 2 inside

H0(Zi,OZi
). In particular, dimFq

Ti = 1. Letting T =
⊕q2+q+1

i=1 Ti, we see that T ⊂ H0(Z,OZ )

and dimFq
T = q2 + q + 1. Finally, consider the set described in the statement of the lemma,

P = {f ∈ Fq[x, y, z] | C = {f = 0} is smooth, and has tangent line Li at Pi}.

By [Poo04, Theorem 1.2], we have

µ(P) =
#T

#H0(Z,OZ)
ζ
P
2(3)−1 =

(
q

q3

)q2+q+1

ζ
P
2(3)−1

=

(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

q−2(q2+q+1)

as desired. �

Before we proceed with the proof of Theorem 3.1, we establish the following technical inequality.

Lemma 3.6. For each q ≥ 2, we have

(q + 1)q
2+q+1

(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

≥ q2(q
2+q+1)

(
1

q
+

1

q2
−

1

q3

)q2+q+1

.

Proof. After rearranging the terms, the desired inequality is equivalent to
(
q + 1

q

)q2+q+1(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

≥

(

1 +
1

q
−

1

q2

)q2+q+1

.

After writing 1 + 1
q
− 1

q2
= q2+q−1

q2
, the previous inequality becomes

(
q + 1

q

)q2+q+1(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

≥

(
q2 + q − 1

q2

)q2+q+1

.

After rearranging the terms again, we need to prove that

h(q) :=

(

1 +
1

q2 + q − 1

)q2+q+1(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

≥ 1.(3.1)

Our goal has been reduced to showing that h(q) ≥ 1 for each q ≥ 2. For q = 2, one can check that

h(2) =

(
6

5

)7(1

2

)(
3

4

)(
7

8

)

=
91854

78125
= 1.1757312 ≥ 1

6



as claimed. So, we will assume q ≥ 3. Using the first two terms of the binomial theorem, we have

h(q) ≥

(

1 +
q2 + q + 1

q2 + q − 1

)(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

.

To prove h(q) ≥ 1 for q ≥ 3, it therefore suffices to prove the stronger inequality,
(

1 +
q2 + q + 1

q2 + q − 1

)(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

≥ 1,(3.2)

which rearranges into

2(q2 + q)(q − 1)(q2 − 1)(q3 − 1) ≥ (q2 + q − 1)q6.

After simplification, we need to prove

2(q2 − 1)2(q3 − 1) ≥ (q2 + q − 1)q5

for q ≥ 3. This last inequality is equivalent to

q7 − q6 − 3q5 − 2q4 + 2q3 + 4q2 − 2 ≥ 0.(3.3)

It is clear that 2q3 + 4q2 − 2 ≥ 0. Since we are assuming q ≥ 3, we have

q7 ≥ 3q6 = q6 + 2q6 ≥ q6 + 6q5.

Thus,

q7 − q6 − 3q5 − 2q4 ≥ (q6 + 6q5)− q6 − 3q5 − 2q4 = 3q5 − 2q4 > 0.

This proves the inequality (3.3) for q ≥ 3. Consequently, (3.2) follows, and hence also (3.1). �

We are now ready to establish the lower bound for µ(F).

Proof of Theorem 3.1. By Lemma 3.5, each perfect point-line correspondence gives rise to a collec-
tion of smooth transverse-free curves with natural density equal to

(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

q−2(q2+q+1).

Now, there are at least
(
q+1
e

)q2+q+1
perfect point-line correspondences by Proposition 3.3. Since we

are considering smooth curves, two different perfect point-line correspondences give rise to disjoint
sets of transverse-free curves. Thus

µ(F) ≥

(
q + 1

e

)q2+q+1

︸ ︷︷ ︸

number of correspondences

·

(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

q−2(q2+q+1)

︸ ︷︷ ︸

contribution from each correspondence

.(3.4)

By Lemma 3.6,

(q + 1)q
2+q+1

(

1−
1

q

)(

1−
1

q2

)(

1−
1

q3

)

≥ q2(q
2+q+1)

(
1

q
+

1

q2
−

1

q3

)q2+q+1

(3.5)

By combining (3.4) and (3.5), we obtain

µ(F) ≥ e−(q2+q+1) ·

(
1

q
+

1

q2
−

1

q3

)q2+q+1

as desired. �
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4. Computing natural density with examples

In this section, we investigate the natural densities of various subsets of Rhomog. These results
will be used in Section 5.

The following three subsets and their properties will be the focus of this section. The first few
lemmas will compute the densities of these subsets. Given a point Q ∈ P

2(Fq), we define

SQ = {f ∈ Rhomog | C = {f = 0} is singular at Q}.

Given a line L and a point P ∈ P
2(Fq) with P ∈ L, we define

TL,P = {f ∈ Rhomog | C = {f = 0} is tangent to L at P}.

Note that the condition that C is tangent to L at P includes the possibility that C is singular at
P ∈ L. Similarly, we define,

TL :=
⋃

P∈L

TL,P = {f ∈ Rhomog | C = {f = 0} is not transverse to L}

Note that polynomials in TL correspond to those plane curves C for which L is tangent to C
somewhere, or L passes through a singular point of C.

To compute the density of the set TL, we first need a precise count on the number of binary forms
(homogeneous polynomials in two variables) that have a repeated root on P

1. In other words, we
need to count the binary forms over Fq that are not square-free. Note that, for convenience, we
view 0 as a binary form in every degree, and 0 is not square-free.

Lemma 4.1. Let d ≥ 3. Let Fq[x, y]d denote the vector space of degree d binary forms in variables
x and y. Consider the subset

Bd = {f ∈ Fq[x, y]d | f has a double root in P
1(Fq)}.

Then #Bd = qd + qd−1 − qd−2.

Proof. Let us partition Bd as

Bd \ {0} =
d⊔

i=0

Bi
d

where

Bi
d = {f ∈ Bd | f = aix

d−iyi + ai+1x
d−i−1yi+1 + · · ·+ ady

d with ai 6= 0}.

It is well-known that the number of square-free monic polynomials of degree d in Fq[t] is q
d − qd−1.

Thus, the number of monic polynomials in Fq[t] of degree d with a repeated root is qd−1. As a
result, the number of binary forms,

a0x
d + a1x

d−1y + · · ·+ ady
d

with a0 6= 0 and with a repeated root is exactly qd−1 · (q − 1), where the factor of (q− 1) is needed
for scaling by a0 ∈ F

∗
q. This proves that #B

0
d = qd − qd−1. When a0 = 0, we have

a1x
d−1y + · · ·+ ady

d

If a1 6= 0, we are looking at the elements of B1
d . After factoring out y, we apply previous argument

to get #B1
d = qd−2 · (q − 1) = qd−1 − qd−2, where we used the assumption that d ≥ 3.

Note that if a0 = 0 and a1 = 0, then the binary form is not square-free for d ≥ 2, because it
would already have a factor of y2. As a result, we have

#

(

{0} ∪
d⊔

i=2

Bi
d

)

= qd−1.

8



Therefore for d ≥ 3,

#Bd = (qd − qd−1)
︸ ︷︷ ︸

#B0
d

+(qd−1 − qd−2)
︸ ︷︷ ︸

#B1
d

+qd−1 = qd + qd−1 − qd−2

as desired. �

Remark 4.2. While have computed the exact formula for #Bd for each d ≥ 3, we will only need
this result for d sufficiently large. For the sake of completeness, let us say a few words about the
cases d = 1 and d = 2. We have B1 = {0} and so #B1 = 1. Moreover, #B2 = q2 because B2

consists of all quadratic forms a(sx+ ty)2 where a ∈ F
∗
q and [s : t] ∈ P

1(Fq) together with 0. This

gives a total of (q − 1)(q + 1) + 1 = q2 many quadratic forms that have a repeated root.

Lemma 4.3. Let L be an Fq-line. Then µd(TL) = q−1 + q−2 − q−3 for d ≥ 3. In particular,
µ(TL) = q−1 + q−2 − q−3.

Proof. Without loss of generality, we may assume that L = {z = 0}. Given a plane curve C =
{F (x, y, z) = 0}, the condition that L is not transverse to C is equivalent to the assertion that
F (x, y, 0) is a binary form with a repeated root on P

1. Consider the linear map

φd : Fq[x, y, z]d → Fq[x, y]d

F 7→ F (x, y, 0)

for each degree d ≥ 1. Let m = dimFq[x, y, z]d − dimFq[x, y]d =
(
d+2
2

)
− (d + 1). Since φd is a

surjective linear map, every fiber φ−1
d (f) consists of qm many polynomials in Fq[x, y, z]d.

Let Bd ⊂ Fq[x, y]d denote the subset consisting of binary forms of degree d with a repeated root
as in Lemma 4.1. By the observation in the first paragraph,

TL =
⊔

d≥1

φ−1
d (Bd).

Using Lemma 4.1 we deduce that for d ≥ 3,

µd(TL) =
#φ−1

d (Bd)

#Rd

=
#Bd · q

m

#Fq[x, y]d · qm
=

#Bd

#Fq[x, y]d
=
qd + qd−1 − qd−2

qd+1
=

1

q
+

1

q2
−

1

q3

as desired. �

The following general result explains how to obtain the densities of SQ and TL,P and intersections

of such sets for distinct points. In particular, we get µd(SQ) = q−3 and µd(TL,P ) = q−2 deg(P ) for
sufficiently large d.

Lemma 4.4. Let P1, . . . , Pn be a collection of distinct points, and L1, . . . , Ln be a collection of
Fq-lines (possibly with repetition) so that Pi ∈ Li for each 1 ≤ i ≤ n. Furthermore, let Q1, . . . , Qs

be a collection of Fq-points such that no Qj is on any Li. Then, for d sufficiently large, the events
of being tangent to Li at Pi, and being singular at each Qj are independent. More precisely,

µd





n⋂

i=1

TLi,Pi
∩

s⋂

j=1

SQj



 = q−3s−
∑n

i=1 2 deg(Pi)

for all sufficiently large d.

Proof. For each Pi, consider the subscheme of P2 defined by

Yi = Spec

(

Fq[x, y, z]

m
2
Pi

)

,
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where mPi
is the maximal ideal consisting of polynomials vanishing at Pi. Note that the support of

Yi consists of only the point Pi, and the non-reduced structure on Yi keeps track of the first order
tangent information. Similarly, for each Qj, define

Zj = Spec

(

Fq[x, y, z]

m
2
Qj

)

.

By taking the disjoint union of these schemes, we define

Y =

(
n∐

i=1

Yi

)
∐





s∐

j=1

Zj



 .

The natural restriction map,

φd : H0(P2,OP2(d))
︸ ︷︷ ︸

=Rd

→ H0(Y,OY (d)),

is surjective for d ≥ dimH0(Y,OY (d)) − 1 by [Poo04, Lemma 2.1].
Next, there is a codimension 2 deg(P ) linear space Wi ⊂ H0(Yi,Od) which parametrizes the

condition that the tangent direction at Pi is given by the line Li. Thus, the condition that the
given curve C = {F = 0} is tangent to Li at the point Pi for 1 ≤ i ≤ n and is singular at Qj for
1 ≤ j ≤ s is equivalent to asserting that

φd(F ) ∈W1 ×W2 × · · · ×Wn × {0} × {0} × · · · × {0}
︸ ︷︷ ︸

s copies

⊂ H0(Y,OY (d)).

Since
∏n

i=1Wi×
∏s

j=1{0} has codimension 3s+
∑n

i=1 2 deg(Pi) inside the vector spaceH
0(Y,OY (d)),

and codimension is preserved under surjective linear maps, it follows that

µd





n⋂

i=1

TL,Pj
∩

s⋂

j=1

SQj



 =
#φ−1

d (
∏n

i=1Wi ×
∏s

j=1{0})

#Rd

=

n∏

i=1

q−2 deg(Pi) ·

s∏

j=1

q−3

= q−3s−
∑n

i=1 2 deg(Pi)

for sufficiently large d. As an immediately corollary, we also get

µ





n⋂

i=1

TL,Pi
∩

s⋂

j=1

SQj



 = lim
d→∞

µd





n⋂

i=1

TL,Pi
∩

s⋂

j=1

SQj



 = q−3s−
∑n

i=1
2 deg(Pi)

as desired. �

Remark 4.5. If we impose tangency conditions to more than one line at the same point, these
conditions are no longer independent. For instance if two lines L1, L2 meet at a point Q, then

TL1,Q ∩ TL2,Q = SQ

Now, using Lemma 4.4, we have

q−3 = µ(SQ) = µ
(
TL1,Q ∩ TL2,Q

)
6= µ(TL1,Q) · µ(TL2,Q) = q−4.
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While Remark 4.5 shows that the exact independence cannot be guaranteed in general, Lemma 4.6
below tells us that we can at least bound the density of the intersection by the product of the den-
sities of individual events.

Let Q ∈ P
2(Fq) and let L1, . . . , Lq+1 be all the q+1 distinct Fq-lines containing Q. Let A0(Q) be

the collection of polynomials defining plane curves that are tangent to none of the Li at Q, namely

A0(Q) := Rhomog\

(
q+1
⋃

i=1

TLi,Q

)

.

And for 1 ≤ j ≤ q+1, let Aj be the collection of curves tangent to Lj at Q but not tangent to any
other Li at Q, namely

ALj
(Q) := TLj ,Q\




⋃

i 6=j

TLi,Q



 .

Recall that a curve is tangent to two different lines at Q if and only if it is singular at Q. As a
result, ALj

(Q) is precisely equal to TLj ,Q \ SQ. In general, given an Fq-line L passing through an
Fq-point Q, we define

AL(Q) := TL,Q \ SQ

Lemma 4.6. Let Q ∈ P
2(Fq). Consider all the Fq-lines L1, . . . , Lq+1 containing Q. Then, for

sufficiently large d,

µd(A0(Q)) ≤
1

1− q−2

q+1
∏

i=1

µd
(
Rhomog\TLi,Q

)
,(4.1)

where the product runs over all Fq-lines passing through Q. Moreover, for each 1 ≤ j ≤ q + 1,

µd(ALj
(Q)) ≤ µd(TL,Q)

∏

i 6=j

µd
(
Rhomog\TLi,Q

)
.(4.2)

Consequently, the inequalities (4.1) and (4.2) also hold with µd replaced by µ.

Proof. Let us begin with the set ALj
for 1 ≤ j ≤ q + 1. From the point of view of the point Q,

the lines LL1
, . . . , LLq+1

are indistinguishable, so µ(AL1
) = · · · = µ(ALq+1

). Hence we may focus
on AL1

.
Since AL1

= TL1,Q\SQ and SQ ⊂ TL1,Q, we have that for sufficiently large d,

µd(AL1
(Q)) = µd(TL1,Q)− µd(SQ) = q−2 − q−3,(4.3)

using Lemma 4.4.
Meanwhile, we have

µd(TL1,Q)

q+1
∏

i=2

µd
(
Rhomog\TLi,Q

)
= q−2(1− q−2)q.

for all sufficiently large d. Let us investigate the ratio,

µd(TL1,Q)

q+1
∏

i=2

µd
(
Rhomog\TLi,Q

)

µd(A1)
=
q−2(1− q−2)q

q−2 − q−3
=

(1− q−2)q

1− q−1
.(4.4)

We claim that

ψ(q) :=
(1− q−2)q

1− q−1
≥ 1(4.5)
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for each q ≥ 2. We compute the derivative of ψ with respect to q:

ψ′(q) =
(1− q−2)q

q2 − 1

(

1 + q(q + 1) log(1− q−2)
)

.

The fraction (1−q−2)q

q2−1
is positive, while

1 + q(q + 1) log(1− q−2) ≤ 1− q(q + 1) · q−2 = −q−1 < 0.

Thus, the fraction ψ(q) is decreasing with q. Moreover, it is straightforward to check that

lim
q→∞

ψ(q) = lim
q→∞

(1− q−2)q

1− q−1
= 1.

This completes the proof of (4.5). Combining (4.4) and (4.5), we deduce that

µd(TL1,Q)

q+1
∏

i=2

µd
(
Rhomog\TLi,Q

)

µd(A1(Q))
=

(1− q−2)q

1− q−1
≥ 1.

which rearranges into (4.2). To analyze the density of A0(Q), we first consider the complementary
set Rhomog\A0(Q). A plane curve defined by an element of Rhomog\A0(Q) is either singular at
Q, or else tangent to exactly one of the lines L1, . . . , Lq+1. In other words, Rhomog\A0(Q) can be
partitioned into

Rhomog\A0(Q) = SQ

⊔
(

q+1
⊔

i=1

ALi
(Q)

)

.

Using Lemma 4.4 and (4.3), we deduce that

µd(A0(Q)) = 1− q−3 − (q + 1)µd(AL1
(Q)) = 1− q−3 − (q + 1)(q−2 − q−3).

for sufficiently large d. On the other hand,

q+1
∏

i=1

µd

(

Rhomog\TLi,Q

)

= (1− q−2)q+1.

for sufficiently large d. We examine the ratio

q+1
∏

i=1

µd
(
Rhomog\TLi,Q

)

µd(A0(Q))
=

(1− q−2)q+1

1− q−3 + (q + 1)(q−3 − q−2)
=

(1− q−2)q+1

1− q−1
.

Using (4.5), this quantity can be bounded below as follows.

(1− q−2)q+1

1− q−1
= (1− q−2)

(1 − q−2)q

1− q−1
≥ 1− q−2.

Hence for all q ≥ 2, we have

q+1
∏

i=1

µd
(
Rhomog\TLi,Q

)

µd(A0(Q))
=

(1− q−2)q+1

1− q−3 + (q + 1)(q−3 − q−2)
≥ 1− q−2.

which justifies (4.1). �

Our final proposition in this section is an independence result that essentially states that the
events TL,P ,SQ,A0(Q),AL(Q), and their complements are independent in sufficiently large degree.
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Lemma 4.7. Consider any finite collection of sets Dj , where each Dj is one of TLj ,Pj
, SQj

, A0(Qj),
ALj

(Qj), or the complement of one of the above within Rhomog. Here, Pi are arbitrary points of

P
2, and Qj are arbitrary Fq-points of P2. If the Pi’s and Qj’s are all distinct, then for sufficiently

large d,

µd

(⋂

Dj

)

=
∏

j

µd(Dj).

Proof. First, note that if each Dj is either of the form TLj ,Pj
or SPj

then the result was established
in Lemma 4.4. We first show that if

µd





m⋂

j=1

Dj



 =

m∏

j=1

µd(Dj),

holds for all subsets of {D1,D2,D3, . . .}, then

µd





(

Rhomog\D1

)

∩





m⋂

j=2

Dj







 = µd(Rhomog\D1)

m∏

j=2

µd(Dj).

Since each µd is a probability measure on Rd, we have µd(Rhomog\D1) = 1 − µd(D1). Writing
⋂m

j=2Dj =
(
⋂m

j=1Dj

)

∪
((

Rhomog\D1

)

∩
(
⋃m

j=2Dj

))

as a disjoint union, we have

µd





(

Rhomog\D1

)

∩





m⋃

j=2

Dj







 = µ





m⋂

j=2

Dj



− µd





m⋂

j=1

Dj





=
(

1− µd(D1)
)

µd





m⋂

j=2

Dj





= µd(Rhomog\D1)

m∏

j=2

µd(Dj).

Inductively one may extend this procedure to any number of complements among the Dj.
To deal with sets of the form ALj

(Qj), we will write ALj
(Qj) = TLj ,Qj

\SQj
. For example, if

D1 = AL1
(Q1), and the remainder of the Dj ’s are of the form Dj = TLj ,Pj

or Dj = SQj
, then write

µd





m⋂

j=1

Dj



 = µd



TL1,Q1
∩





m⋂

j=2

Dj







− µd



SQ1
∩





m⋂

j=2

Dj









= µd(TL1,Q1
)

m∏

j=2

µd(Dj)− µd(SQ1
)

m∏

j=2

µd(Dj)

= µd(AL1
(Q1))

m∏

j=2

µd(Dj) =

m∏

j=1

µd(Dj).

One can induct on the number of times sets of the form ALj
(Qj) appears on the list to allow any

number of instances.
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Finally, we explain how to deal with the case when Dj is of the form A0(Qj). As in the proof of
Lemma 4.6, we can express

A0(Qj) = Rhomog\



SQj
∪




⊔

Qj∈L

AL(Qj)







 ,

where the union inside the parenthesis runs over all Fq-lines L such that Qj ∈ L. By the observation
made in the beginning of the proof, it suffices to deal with the case when Dj is a complement of
A0(Qj) for some Fq-point Qj. For example, assume that D1 = Rhomog\A0(Q1), and the remainder
of the Dj are of the other forms considered earlier. Since D1 can be written as a disjoint union,

µd





m⋂

j=1

Dj



 = µd







SQ1
∩

m⋂

j=2

Dj



 ∪
⊔

Q1∈L



AL(Q1) ∩
m⋂

j=2

Dj









= µd



SQ1
∩

m⋂

j=2

Dj



+
∑

Q1∈L

µd



AL(Q1) ∩

m⋂

j=2

Dj





=



µd(SQ1
) +

∑

Q1∈L

µd(AL(Q1))





m∏

j=2

µd(Dj)

= µd(D1) ·

m∏

j=2

µd(Dj) =

m∏

j=1

µd(Dj).

As before, inducting on the number of times a set of the form A0(Qj) appears in the list allows for
any number of instances. �

5. Proof of the upper bound

In this section, our goal is to prove the following result.

Theorem 5.1. Let F ⊂ R = Fq[x, y, z] denote the subset defining smooth transverse-free plane
curves. Then

µ(F) ≤ (1− q−2)−(q2+q+1) ·

(
1

q
+

1

q2
−

1

q3

)q2+q+1

.

Let us explain how the upper bound in Theorem 5.1 is stronger than the upper bound given in
Theorem 1.1. It suffices to show that

(1− q−2)−(q2+q+1) ≤ 7.5(5.1)

for all q ≥ 2. The function ξ(q) := (1 − q−2)−(q2+q+1) is decreasing for q ≥ 2, and in fact,
lim
q→∞

ξ(q) = e. In particular, we have ξ(q) ≤ ξ(2). Consequently,

ξ(q) = (1− q−2)−(q2+q+1) ≤ ξ(2) =

(
4

3

)7

≈ 7.4915409 < 7.5

justifying (5.1).
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5.1. Reduction to the bounded degree case. Our ultimate goal is to understand the upper
density of F . By definition, f ∈ F defines a smooth plane curve C such that all Fq-lines are tangent
to C. If C = {f = 0} and L is an Fq-line tangent to C, let P be a point of tangency. The only
control on the degree of P is deg(P ) ≤ d/2 by Bézout’s theorem. In this subsection, we will explain
a reduction argument that allows us to consider the case where all the points of tangencies satisfy
deg(P ) ≤ r for some fixed integer r > 0.

Let L1, L2, . . . , Lq2+q+1 be the Fq-lines in P
2. For each 1 ≤ i ≤ q2 + q + 1, consider the set

Mi
t = {f ∈ Rd | C = {f = 0} is tangent to the line Li

at a point P ∈ Li with t ≤ degP ≤ d/2}.

By Poonen’s result [Poo04, Lemma 2.4] on the medium degree singularities, we have

lim
t→∞

µ(Mi
t) = 0.(5.2)

Let ε > 0. By (5.2), there exists a large enough integer r = r(ε) > 0 such that

µ(Mi
t) <

ε

q2 + q + 1

for all t > r. Note that the value of r does not actually depend on i, because of the symmetry
among the Fq-lines. As a result,

µ





q2+q+1
⋃

i=1

Mi
t



 < ε(5.3)

for all t > r. We can summarize (5.3) as stating that there exists a positive integer r (depending
on ε) so that the collection of curves with any tangency along an Fq-line at a point of degree t > r
has natural density less than ε. Now, let us partition the set F in Theorem 1.1 as

F = F≤r ∪ (F \ F≤r)(5.4)

where

F≤r := {f ∈ F | C = {f = 0} is a smooth plane curve such

that all its tangency points along Fq-lines

have degree ≤ r}.

Combining (5.3) with the inclusion

F \ F≤r ⊂

q2+q+1
⋃

i=1

Mi
r+1

we obtain µ(F \ F≤r) < ε. Consequently, the partition in (5.4) yields

µ(F) < µ(F≤r) + ε.(5.5)

To prove Theorem 5.1, it suffices to show the following inequality.

µ(F≤r) ≤ (1− q−2)−(q2+q+1) ·
(
q−1 + q−2 − q−3

)q2+q+1
(5.6)

Indeed, combining (5.5) and (5.6) and letting ε → 0, we obtain the conclusion of Theorem 5.1.
Thus, our goal has been reduced to proving the following theorem.

Theorem 5.2. Let F≤r ⊂ R = Fq[x, y, z] denote the subset defining smooth transverse-free plane
curves, where the tangency point(s) along each Fq-line have degree at most r. Then

µ(F≤r) ≤ (1− q−2)−(q2+q+1) ·
(
q−1 + q−2 − q−3

)q2+q+1
.
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5.2. The key decomposition. As a preparation for the proof of Theorem 5.2, we explain how to
include F≤r into a finite union of sets indexed by the location of tangency points. The advantage
of doing so is that the density of each piece will be easier to compute. A finer version of this
decomposition will be used again in Section 6.

Notation 5.3. Given an Fq-line L, let L
r denote the set of points on L of degree ≤ r.

Let L1, L2, . . . , Lq2+q+1 be all of the Fq-lines in P
2. Given a line Li and a set Ei ⊆ Lr

i , consider
the collection AEi

of curves tangent to Li at all the points of Ei and at no other points of Lr
i . In

symbols,

AEi
:=




⋂

P∈Ei

TLi,P



 \




⋃

P∈Lr
i \Ei

TLi,P



 =
⋂

P∈Lr
i

{

TLi,P P ∈ Ei

Rhomog\TLi,P P 6∈ Ei

.

Observe that if f ∈ F≤r then for each Fq-line Li there is a non-empty set Ei ⊆ Lr
i of points

where the curve C = {f = 0} is tangent to Li. Moreover, by smoothness assumption on C, no
point can appear in more than one Ei. Thus, we may write

F≤r ⊆
⋃

∅6=Ei⊆Lr
i , 1≤i≤q2+q+1

Ei∩Ej=∅, i 6=j





q2+q+1
⋂

i=1

AEi



 .(5.7)

5.3. Proof of Theorem 5.2. Using the decomposition given in (5.7), we are now ready to prove
Theorem 5.2. First, given an Fq-point Q, let

A(Q) :=
⋂

Q∈Li

{

TLi,Q Q ∈ Ei

Rhomog\TLi,Q Q 6∈ Ei

This is consistent with the notation used in Lemma 4.6. Indeed, A(Q) is either A0(Q) or AL(Q)
for a unique Fq-line L containing Q. Then

q2+q+1
⋂

i=1

AEi
=

q2+q+1
⋂

i=1

⋂

P∈Lr
i

{

TLi,P P ∈ Ei

Rhomog\TLi,P P 6∈ Ei

=




⋂

Q∈P2(Fq)

A(Q)



 ∩





q2+q+1
⋂

i=1

⋂

P∈Lr
i \P

2(Fq)

{

TLi,P P ∈ Ei

Rhomog\TLi,P P 6∈ Ei



 .

By Lemma 4.7, for d sufficiently large we may write

µd





q2+q+1
⋂

i=1

AEi



 =




∏

Q∈P2(Fq)

µd(A(Q))





q2+q+1
∏

i=1

∏

P∈Lr
i \P

2(Fq)

{

µd(TLi,P ) P ∈ Ei

µd(Rhomog\TLi,P ) P 6∈ Ei

.(5.8)

We will now use Lemma 4.6 to give an upper bound for each µd(A(Q)), which will provide an upper
bound for (5.8). If Q ∈ Ek for some k, then Q 6∈ Ej for all j 6= k by the hypothesis. In this case,
we have A(Q) = ALk

(Q) and Lemma 4.6 yields

µd(A(Q)) = µd(ALk
(Q)) ≤

q2+q+1
∏

i=1

{

µd(TLi,Q) Q ∈ Ei

µd(Rhomog\TLi,Q) Q 6∈ Ei

.(5.9)

16



If Q /∈ Ei for all 1 ≤ i ≤ q2 + q + 1, then A(Q) = A0(Q) and Lemma 4.6 yields,

µd(A(Q)) = µd(A0(Q)) ≤
1

1− q−2

q2+q+1
∏

i=1

{

µd(TLi,Q) Q ∈ Ei

µd(Rhomog\TLi,Q) Q 6∈ Ei

.(5.10)

Substituting (5.9) and (5.10) into (5.8), we obtain the following upper bound:

µd





q2+q+1
⋂

i=1

AEi



 ≤

(
1

1− q−2

)#

(

P
2(Fq)\

⋃q2+q+1

i=1
Ei

)

q2+q+1
∏

i=1

∏

P∈Lr
i

{

µd(TLi,P ) P ∈ Ei

µd(Rhomog\TLi,P ) P 6∈ Ei

.

After bounding the exponent of (1 − q−2)−1 by #P
2(Fq) = q2 + q + 1 and using Lemma 4.4, we

deduce that

µd





q2+q+1
⋂

i=1

AEi



 ≤

(
1

1− q−2

)q2+q+1




q2+q+1
∏

i=1




∏

P∈Ei

q−2 deg(P )
∏

P∈Lr
i \Ei

(1− q−2 deg(P ))









holds for d sufficiently large. Now, we use the previous inequality to bound the union in (5.7).

µd(F≤r) ≤

(
1

1− q−2

)q2+q+1

·
∑

∅6=Ei⊆Lr
i

Ei∩Ej=∅, i 6=j





q2+q+1
∏

i=1




∏

P∈Ei

q−2 deg(P )
∏

P∈Lr
i \Ei

(1− q−2 deg(P ))









≤

(
1

1− q−2

)q2+q+1

·

q2+q+1
∏

i=1




∑

∅6=Ei⊆Lr
i




∏

P∈Ei

q−2deg(P )
∏

P∈Lr
i \Ei

(1− q−2 deg(P ))









=
(

1− q−2
)−(q2+q+1)

·




∑

∅6=E1⊆Lr
1




∏

P∈E1

q−2deg(P )
∏

P∈Lr
1
\E1

(1− q−2deg(P ))









q2+q+1

.

Going from the first to the second line, we added terms where some points appear in more than one
Ei, which makes the sum bigger. Going from the second to the third line, we used the symmetry
among the Fq-lines L1, . . . , Lq2+q+1.

Finally, since the sum on the last line represents all the ways a curve can be tangent to the line
L1 at a point of degree at most r, we apply Lemma 4.3 to bound this sum by q−1 + q−2 − q−3.
Indeed, as r → ∞, the sum approaches q−1 + q−2 − q−3 from below. We deduce that

µd(F≤r) ≤ (1− q−2)−(q2+q+1) · (q−1 + q−2 − q−3)q
2+q+1

for all sufficiently large d. Taking the limit supremum as d→ ∞, we obtain

µ(F≤r) ≤ (1− q−2)−(q2+q+1) · (q−1 + q−2 − q−3)q
2+q+1

as desired.
This completes the proof of Theorem 5.2. As explained in Section 5.1, this implies Theorem 5.1.

6. Existence of the natural density

In this section, we prove that µ(F) exists as a limit. As a consequence, µ(F) = µ(F) = µ(F).

Proposition 6.1. The subset

F = {f ∈ Rhomog | C = {f = 0} is a smooth plane curve

such that all Fq-lines are tangent to C}

has a well-defined natural density µ(F).
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Proof. As explained in Section 5.1, we can write

F =

∞⋃

r=1

F≤r.

We will show that µ(F≤r) exists for each r ≥ 1. Let us first explain how this will prove the
proposition. The sequence (µ(F≤r))

∞
r=1 is clearly increasing and also bounded by Theorem 5.2, and

hence converges. Using inequality (5.5), for each ε > 0 there exists a positive integer r(ε) such that
for all r > r(ǫ)

µ(F≤r) ≤ µ(F) ≤ µ(F) ≤ µ(F≤r) + ε.

Letting r → ∞,

lim
r→∞

µ(F≤r) ≤ µ(F) ≤ µ(F) ≤ lim
r→∞

µ(F≤r) + ε.

As observed above, the limit lim
r→∞

µ(F≤r) exists. Finally, letting ε→ 0 shows that µ(F) exists and

equals lim
r→∞

µ(F≤r).

In order to show that µ(F≤r) exists, we will decompose F≤r as a finite union similar to the
inclusion in (5.7) but with an equality. As before, let L1, . . . , Lq2+q+1 be the Fq-lines in P

2. For
each subset Ei ⊂ Li, let

Asm
Ei

= {f ∈ Rhomog | C = {f = 0} is a smooth plane curve such that C is tangent to

Li at each point of Ei and at no point of Li \Ei}.

Then we have the following decomposition

F≤r =
⋃

∅6=Ei⊆Lr
i , 1≤i≤q2+q+1

Ei∩Ej=∅, i 6=j





q2+q+1
⋂

i=1

Asm
Ei



 .(6.1)

Since the union in (6.1) is a disjoint union,

µd (F≤r) =
∑

∅6=Ei⊆Lr
i , 1≤i≤q2+q+1

Ei∩Ej=∅, i 6=j

µd





q2+q+1
⋂

i=1

Asm
Ei



 .(6.2)

If we can show that the limit

µ





q2+q+1
⋂

i=1

Asm
Ei



 = lim
d→∞

µd





q2+q+1
⋂

i=1

Asm
Ei



(6.3)

exists, then we can take the limit as d → ∞ in (6.2) which will show that µ(F≤r) = lim
d→∞

µd(F≤r)

also exists.
In order to prove the limit in (6.3) exists, we appeal to Poonen’s Bertini theorem with Taylor

conditions [Poo04, Theorem 1.2]. The proof here is similar to those of Lemma 3.5 and Lemma 4.4.
Since r is fixed and each Ei is finite, membership in the intersection of Asm

Ei
is described by finitely

many local conditions. In other words, there is a finite subscheme Z ⊂ P
2 and a finite subset

T ⊂ H0(Z,OZ ) such that a given polynomial f ∈ Rd satisfies

f ∈

q2+q+1
⋂

i=1

Asm
Ei

18



if and only if φd(f) ∈ T , where

φd : H0(P2,OP2(d))
︸ ︷︷ ︸

=Rd

→ H0(Z,OZ (d))

is the natural restriction map. By [Poo04, Theorem 1.2], it follows that

µ





q2+q+1
⋂

i=1

Asm
Ei



 =
#T

#H0(Z,OZ)
ζ
P
2(3)−1,

and in particular the natural density in (6.3) exists. This completes the proof of the proposition. �

Finally, we prove our main result.

Proof of Theorem 1.1. Combine Theorem 3.1, Theorem 5.1 and Proposition 6.1. �
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