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Dedicated to Dick Askey, our great mentor.

ABSTRACT. A combinatorial theory for type R; orthogonal polynomials is given. The ingre-
dients include weighted generalized Motzkin paths, moments, continued fractions, determi-
nants, and histories. Several explicit examples in the Askey scheme are given.
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1. INTRODUCTION

Ismail and Masson [I1] defined orthogonal polynomials of type R; by generalizing the three-
term recurrence relation that classical orthogonal polynomials satisfy. In this paper we develop
the combinatorial theory of type R; orthogonal polynomials. This theory parallels the Flajolet—
Viennot development [7, 18], for classical orthogonal polynomials, using weighted paths. We
also give type Ry versions of several classical polynomials in the Askey scheme.

The orthogonal polynomials P, (z) of type Ry are defined recursively. Let {P,(z)}n>0 be
defined by P_;(x) =0, Py(z) =1 and for n > 0,

(1.1) Poii(x) = (x = bp) Po(z) — (anx + Ap) Pr—1(2).

This defines P, (z) as a monic polynomial in 2 of degree n and also a polynomial in the recurrence
coefficients, {b;}, {ax}, and {\;}. Let

m
H a;ix+ N;), and Qm(x):=
The orthogonality relation for P, (z) is defined by a linear functional £ on a certain vector space
of rational functions:
L(Pp(2)Qm(z) =0, if 0<n<m.

The motivation for this paper is to explain this orthogonality combinatorially. Our com-
binatorial models for £ and P,(z) have weighted objects, where the weights depend on the
coefficients b,, a,, and \,. Note that a,, = 0 is the classical orthogonal polynomial case. In
this case the objects of weight 0 may be deleted, and Viennot’s theory is recovered.

Throughout this paper we assume that a,, # 0 and P,(—\,/a,) # 0 for all n > 0
unless otherwise stated.

In the classical theory, the orthogonality takes place via a linear functional £ on the vector
space of polynomials. For type R; orthogonality, we will need to extend the definition of £
from the space of polynomials to a larger vector space

V = span{2"Qn(z) : n,m > 0}

of rational functions.

In Section [2] we find several bases of the vector space V. We show that there is a unique
linear functional £ on V' with respect to which the type R; orthogonal polynomials P, (x) are
orthogonal. This is a slight improvement of a result of Ismail and Masson [I1].

In Section [3 we give combinatorial interpretations for up, = L(a"), pnm = L(2"Qm (7)),
tnme = L(a" Py (2)Qe(x)), and pume = L(x"Pp(z)Pi(x)) in terms of lattice paths called
Motzkin-Schroder paths. We find the infinite continued fraction for the moment generating
function. We also give a recursive formula for vy, ., = £ (2" /dn,(2)).

In Section @l we study Laurent biorthogonal polynomials P, (z), which are type R orthogonal
polynomials with \,, = 0. Kamioka [12] combinatorially studied these polynomials. In this case
there is another linear functional F that gives a different type of orthogonality for P, (x). We
find a simple connection between our linear functional £ and the other linear functional F using
inverted polynomials. We then review Kamioka’s results and generalize them.

In Section [l we express the generating function for Motzkin-Schréder paths with bounded
height in terms of inverted polynomials where the indices of the sequences ay,b,, and A, are
shifted. There are finite continued fractions for these rational functions which are explicitly
given by the three-term recurrence coeflicients.

In Section [6] we find determinant formulas for P, (z) and @, (x) using v; ;. We also consider
some Hankel determinants using fiy,.
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In Sections [1l B, and @ we give examples of type R; orthogonal polynomials, including
Askey—Wilson and ¢-Racah polynomials.

In Section [I0] we study combinatorial aspects of some type R; polynomials in the previous
sections.

2. THE ORTHOGONALITY OF TYPE R; POLYNOMIALS
In this section we find several bases of the vector space
(2.1) V :=span{z"Qm(x) : n,m > 0}.
We then give a detailed proof of the following result of Ismail and Masson [11].

Theorem 2.1. [11l Theorem 2.1] There is a unique linear functional L on 'V satisfying L(1) =1
and

L(z"Qm(x)) =0 if 0 <n<m.

We note that Theorem [Z] is stated slightly differently in [I1, Theorem 2.1]. Instead of
stating the uniqueness of L, they write that the values of £ on the elements in the set {z" :
n >0} U{1l/dy(x): m > 1} are uniquely determined. We will show that this set is a basis of
V', hence the two statements are equivalent. In the proof of [I1, Theorem 2.1] they implicitly
use the fact that {2™71Q,, () : m > 2} U{Qm(z) : m > 0} is a basis of V without a proof. In
this section we give a detailed proof of Theorem 2.1 by showing this fact.

Observe that dividing both sides of (1)) by d,(z) gives

(2.2) (an4+17 + Ay 1) Qnr1(7) = (2 — bn)Qu(x) — Qn—1(2).
Let
(2.3) V' .= span{z" /d,(x) : n,m > 0}.

We first find a basis of V'’ and then show that V = V.

Lemma 2.2. The vector space V' has a basis

(2.4) [ 0> 0} U{1/dn(x) : m > 11,

Proof. Let B be the given set. Since the elements in B are linearly independent, it suffices
to show that B spans V’. To do this, it suffices to show that p(z)/d;(z) € span(B) for any

polynomial p(z) and any integer j > 1.
By dividing p(z) by d;(x), we can write

p(z) r(z)
(2.5) =q(x) + :

d;() d;(x)
where ¢(x) and r(z) are polynomials and degr(x) < j. If r(x) is constant, we have p(x)/d;(z) €
span(B). Otherwise, we can write
(2.6) r(x) _ (ajz + Aj)ri(z) + ¢ _ ri(x) 4 € ,

d;(x) d;(x) dj1(z)  dj(x)

where r1(x) is a polynomial with degri(z) < j — 1 and ¢ is a constant. By iterating ([2.6]) we

can express r(z)/d;(x) as a linear combination of the elements in B. Then by ([2.3) we have
p(x)/d;(z) € span(B) as desired. O

Lemma 2.3. We have V =V".
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Proof. By the definitions [2)) and Z3) of V' and V’, it is clear that V. C V' and 2™ € V
for n > 0. By Lemma 22 the set in (24) is a basis of V’. Thus it suffices to show that
1/dy(z) € V for all m > 0. We prove this by induction on m, where the base case m = 0 is
clear.

For m > 1, let Up,—1(x) be the quotient of P, (x) when divided by amz + Ap:

P (x) = (amx + A )Umn—1() + P (= A/ am)-

Then
P () _ Un—1(x) n Pr(=Am/am)
dm () dpm-1(2) dpm () ’
and
I 1 Pp(x)  Un-i(z)
@7) In(®) P~ fm) (dm@c) dml($)> |

Since U,,—1(z) is a polynomial of degree m — 1, by iterating (2.6]), we can write
Um_l(l') _ mz—l C;
dmfl(I) =0 dZ(I)7

for some constants co, ¢, ..., ¢n—1. Then by the induction hypothesis, Uy, —1(x)/dpm—1(z) € V.

Since P, (z)/dpm(z) = Qm(z) € V, (7)) shows that 1/d,,(z) € V, completing the proof. O

Observe that every element of V' is of the form p(x)/d,, (z) for some polynomial p(z) and an
integer m > 0. One can find many bases of V as follows.

Proposition 2.4. Let {t,, : n > 1} be a sequence of nonnegative integers and let { fn,(x) : m > 1}
and {gn(z) : n > 0} be sequences of polynomials satisfying the following conditions:

o deg(fn(z)) =n+t, for alln > 1, and
o deg(gn(x)) < n and gn(—An/an) #0 for all n > 0.

Then V' has a basis given by
B ={fu(x)/ds,(x) : n = 1} U{gn(z)/dn(z) : n = 0}
Proof. We first show that the elements in B are linearly independent. Suppose that

—~ . filz) =, 9@
(2.8) ;adti +;DJ = 0,

(z) dj(x

where C; and D; are constants. We must show that the coefficients C; and D; are all zero.
Dividing both sides of ([Z8) by z™ and taking the limit £ — oo, we obtain

lead(f,(x)) B
"lead(ds, (z))
where lead(p(z)) is the leading coefficient of p(x). This shows C,, = 0. Repeating this process
with 2" replaced by 2%, for i = n —1,n — 2,...,1, we obtain that C; = 0 for all 1 < i < n.
Then (Z8) becomes

(2.9) S b, zﬂgg = 0.
§=0 J

Let k be the number of integers 1 < j < m such that —\;/a; = —Am/am. Multiplying both
sides of (Z9) by (amz + A\yn)F and substituting * = —\,,/a,, we obtain D,, = 0. In this way
one can show that D; = 0 for all 1 < j < m. Then we also have Dy = 0. Therefore the elements
in B are linearly independent.
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Now we show that B spans V. By Lemmas[Z2and [Z3] it suffices to show that 2™,1/d,,(x) €
span(B) for all n > 1 and m > 0.
We claim that, for any m > 0 and any polynomial p(x),

p(z)
dpm ()
We proceed by induction on m, where the base case m = 0 is true because p(x)/do(z) is a

constant and go(z)/do(z) € B is a nonzero constant. Let m > 1 and suppose (2I0) holds for
all integers less than m. Then by the same argument as in the proof of we can write

(2.10)

€ span(B) if degp(z) < m.

=
—
8
~—
3
Y]

= dil®)
for some constants ¢;. By the induction hypothesis, we have ¢;/d;(x) € span(B), and therefore
to show p(z)/d,(z) € span(B), it is enough to show that 1/d,,(z) € span(B). Dividing g.,(z)
by (amz + Am), we have

gn(@) _ @) . gn(—an/n)
dm(z)  dm-1(2) dp () ’

where ¢(z) is a polynomial with degq(z) = deg gm(z) — 1 < m — 1. By the induction hypoth-
esis, we have q(z)/dm—1(x) € span(B). Then (2II) shows that 1/d,,(x) € span(B) because
gm(—am/Am) # 0. Thus [2.I0) is also true for m and the claim is proved.

By (2I0), we have 1/d,,(z) € span(B) for m > 0. Therefore it remains to show that
a™ € span(B) for n > 1. Dividing f,,(z) by di, (x), we have

(2.11)

(2.12) fg—%m+$@,

where ¢, (x) and r,(z) are polynomials with degg,(z) = n and degr,(z) < t,,. By 2I0), we
have r,,(z)/dy, (x) € span(B), and therefore [ZI2)) shows g, (z) € span(B). This implies that

span{z" : n > 0} = span({1} U {gn(z) : n > 1}) C span(B).
Hence we have z" € span(B) for all n > 0, which completes the proof. |

As a corollary of Proposition [2.4] we present three notable bases of V. We use the following
three choices in Proposition 2.4t

fu(z) = 2"d, (2), th =M, gn(z) =1,
fn(x) = Pn(x)dn(:z), tn =m, gn(x) = Pn(z)a
fn(x) = 2" Pyyq (), tp, =n+1, gn(z) = Py(x).

Corollary 2.5. The following are bases of V:
{2" :n > 13U {1/dm(z) : m = 0},
{Pa(2) :n > 1} U{Qm(z) : m > 0},

{2"Qur1(2) 11 > 1} U{Qm(x) : m > 0}

Now we give a detailed proof of Theorem 2.1l Our proof is basically the same as the proof
in [I1] with some details provided.
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Proof of Theorem[21l By Corollary [Z3]
B:={2™'Qu(x) : m > 2} U{Qm(z) : m > 0}.

is a basis of V. Since the values of £ on {1} U {2"Qn(z) : 0 < n < m} are given, and this set
contains B, if £ exists, it is unique. For the existence, we construct £ by defining its values on
the basis B as follows:

L£(1) =1, L(Qm(z)) = L™ Qm(x)) =0, for m > 1.
It suffices to show that L satisfies
(2.13) L(z"Qm(x)) =0 if 0 <n<m.
We prove ([ZI3) by induction on (n,m). The base case n = 0 is true by definition of L. Let
1 < n < m and assume that ZI3) is true all pairs (n’,m’) # (n,m) such that 0 < n’ < m/,

n' <n and m’ < m. We now show that it is also true for (n,m). Since it is true for (m — 1,m)
by definition of £, we may assume 1 <n < m — 2. By (2.2]) we have

(@ + ) Q@) = (2 = bin1) Q1 (%) = Qs (@),
Multiplying both sides of the above equation by ™! we have
am " Qm (%) + Ama™ ' Qm(2) = 2" Qum-1(%) — bp—12" "' Qm-1(z) — 2" Qu—2(x).
Since 0 <n — 1 < m — 3, by the induction hypothesis, taking £ on both sides gives
am L(z"Qm(x)) = 0.

Since a,, # 0, we obtain L(2"Q,,(z)) = 0. Hence [2I3) is also true for (n,m) and the proof is
completed by induction. g

3. MOMENTS OF TYPE R; ORTHOGONAL POLYNOMIALS

Recall from Theorem 1] that there is a unique linear functional £ on V satisfying £(1) =1
and
L(z"Qm(x)) =0 if 0 <n<m.
In this section we give combinatorial interpretations for
tn = L(z™),
Unm = L(x"Qm(2)),
Pnme 2= L(2" P (2)Qe(2)),
Prm = L(z" P (2) Py (2))
in terms of lattice paths called Motzkin-Schroder paths. We also give a recursive formula for
Un.m = L (2" /dp(z)) .
Note that Qn(x)@Qm(z) € V in general, so we do not consider £(Qy(z)Qm (z)).

3.1. Combinatorial interpretations for p, and p, y,.

In this subsection we give combinatorial interpretations for p, and py ., using recursive
formulas.
Note that gy, has the initial conditions given by

(3.1) to,0 = 1, tnm =0 for 0 <n < m.

The following lemma gives a recurrence, which determines py, ,,, since the recurrence decreases
either n or n —m
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Lemma 3.1. Forn,m > 0 with (n,m) # (0,0), we have
0, if n <m,
Hn,m = .
aerl,Un,erl + bm,umfl,m + /Lnfl,mfl + Aerl,unfl,erla an Z m,
where p; ;5 =0 if j <O0.

Proof. We have already seen that i, = 0 for n < m. Suppose n > m. Since (n,m) # (0,0)
we have n > 1. Then

am+1x”Pm+1(x)>
a’m n,m - E - 7 7/ N
FHnmt ( dm+1(2)
iy (I“(amﬂx + A1) Poga (2) Am+1x"1Pm+1<x>)
dmt1 (x) dmt1 (55)
2" (2 = b)) P () — (am@ + M) Py (
(TN = b Pf@) Pun@) _y
dm ()
= Hn,m — bmﬂn—l,m — HPn—-1,m—-1 — )\m—i-lﬂn—l,m-i-l-
Thus
Nn,m - am+1ﬂn,m+1 + bm,umfl,m + /Lnfl,mfl + )\erl,unfl.,qul;
as desired. O

Definition 3.2. A Motzkin path is a path on or above the z-axis consisting of up steps U =
(1,1), horizontal steps H = (1,0), and down steps D = (1,—1). A Schrider path is a path on
or above the z-axis consisting of up steps U = (1,1), horizontal steps H = (1,0), and vertical
step V = (0, —1).

Remark 3.3. A Schroder path is more commonly defined as a path consisting of up steps
(1,1), double horizontal steps (2,0), and down steps (1, —1). One can easily convert from our
definition of a Schréder path to this one by changing each horizontal step (1,0) to a double
horizontal step (2,0), and each vertical step (0,—1) to a down step (1,—1).

Now we define another lattice path, which contains both Motzkin and Schréder paths.

Definition 3.4. A Motzkin-Schréder path is a path on or above the z-axis consisting of up
steps U = (1,1), horizontal steps H = (1,0), vertical down step V = (0,—1), and diagonal
down steps D = (1, —1). For a Motzkin-Schroder path m, the weight wt(m) of 7 is the product
of the weight of each step, where every up step has weight 1, a horizontal step starting at height
k has weight by, a vertical down step (0, —1) starting at height k has weight ay, and a diagonal
down step (1, —1) starting at height k& has weight ;. See Figure[Il

Remark 3.5. In [13,[14], Kim found a combinatorial interpretation for moments of biorthogonal
polynomials using lattice paths. The steps are up steps, horizontal steps, and d types of down
steps. If d = 2, these lattice paths are equivalent to our Motzkin-Schréder paths.

Let MS((a,b) — (c,d)) denote the set of Motzkin-Schrdéder paths from (a,b) to (¢, d) and let
MS,, m := MS((0,0) — (n,m)), MS,, :=MS,, 0.

We also denote by Motz((a,b) — (¢,d)) (resp. Sch((a,b) — (¢, d))) the set of Motzkin (resp. Schroder)
paths from (a,b) to (¢,d). The sets Motz 1, Motz,,, Schy, ., and Sch,, are defined similarly.

Theorem 3.6. For n,m > 0, we have

fnm = L(@"Qm(x)) = Y wit(m).

TEMS,, m
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2 ag a2
a9 as bl
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FIGURE 1. A Motzkin-Schréder path 7 from (0, 3) to (13,1) with wt(7) = ajazbob1 b33 \3.

Proof. Let pj, ,, be the right hand side. Then one can easily check that u, ,, satisfies the
same initial conditions in (B and the recurrence relation in Lemma Bl as iy, m. Therefore

Pn,m = o,y for all m,m > 0. O
Corollary 3.7. We have
T Z wt(m).
TeMS,,

Equivalently,

> " 1

Hnl =
a1z + A 22
n20 1—box — ! ! iy 3
as® x
1— bz — c2h T A2h

Proof. The first statement is the special case m = 0 of Theorem The second statement
follows from the first using Flajolet’s theory [7]. O

For example, by Corollary B.7] the moments u, for n = 0,1,2 can be computed as
Ho = 17
p1 = bo + ax,
2 = b3 + A1 + 2a1b + azar + bray + ai.

Remark 3.8. Lattice paths containing Motzkin-Schroder paths are considered in [B]. The
number of Motzkin-Schréder paths is listed in [I6, A064641]. If b, = a,, = 0 and \,, = 1, then
ton+1 = 0 and po, = C), the nth Catalan number. If b,, = A\,, =0 and a,, = 1, then u, = C,.

By taking a, = b, = A\, = 1 for all n in Corollary 3.7 we obtain the following result, which
also appears in [5].

Proposition 3.9. The generating function for the number of Motzkin-Schréder paths is given

by

= =142z + 72 + 2923 + 1332% + 6502° 4 - - - .
2(x + x2?)

1—2—1—6z— 322

n>0
3.2. Combinatorial interpretations for p, ,, ¢ and p;, m ¢.

In this subsection we give a combinatorial interpretation for P, (x) in terms of tilings (The-
orem [B.10). This allows us to write pinm.e = L(" Py (2)Qe(x)) as a signed sum of fi, ., =
L(x" Py, (x)). We will show that these are positive sums by finding a sign-reversing involution
which cancel all negative terms. Using a similar argument we will also find a positive formula
for ppm,e = L(a™ Py (x)Pe(z)).
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FIGURE 2. A Favard tiling T € FTy with wt(T) = —agagbobgr2. This tile
contributes wt(T")zP™(T)+d(T) — _q,a5bobs Aaz® to Py(z).

Definition 3.10. A (bicolored) Favard tiling of size n is a tiling of a 1 X n square board with
tiles where each tile is a domino or a monomino and is colored black or red. We label the
squares in the 1 x n board by 1,2,...,n from left to right. The set of Favard tilings of size n
is denoted by FT,.

For T € FT,,, we define bm(T) (resp. bd(T"), rm(T"), and rd(T")) to be the number of black
monominos (resp. black dominos, red monominos, and black monominos) in 7. We also define

wt(T) = H wt(7),
T€T

where

1 if 7 is a black monomino,

wh(r) = —b;—1 if 7 is a red monomino with (largest) entry i,
—a;—1 if 7 is a black domino with largest entry ¢,
—Ai—1 if 7 is a red domino with largest entry 4.

For example, see Figure

The recurrence (L)) gives the following combinatorial interpretation for P, (x).
Theorem 3.11. Forn > 0, we have

Pn(:E) _ Z Wt(T)$bm(T)+bd(T).
TEFT,
Proof. Let U, (z) denote the right hand side. Then by definition one can easily check that, for
n > 0, we have
Unt1(z) = (@ = bp)Un(2) = (@nz + An)Un—1(2)
where U_1(z) = 0 and Up(z) = 1. Therefore, by (1)), T,.(z) and P,(z) satisfy the same
recurrence relation and the same initial conditions. This show the theorem. g

Now we give a combinatorial interpretation for fi, m, ¢

Theorem 3.12. For n,m,¢ > 0, we have
Hnm,e = L(xnpm(x)Ql(ID = Z Wt(ﬂ-)'
TeMS((0,m)—(n,l))

Proof. We will find a sign-reversing involution on a larger set whose fixed point set is given by
the Motzkin-Schroéder paths in this theorem.
Applying Theorem BTl to P, (x) and using Theorem B.6 we have

(32)  LE"Pu(@)Qu(x) = > wi(T)L(@"PmOHANQu)) = " wi(m) wi(T),
TEFT,, (m, T)eX

where X is the set of pairs (7,T) of a Motzkin-Schréoder path 7 € MS; ¢ and a Favard tiling
T € FT,, satisfying ¢t = n+ bm(T") 4+ bd(T"). The sign-reversing involution on X will remove or
add a horizontal step or a peak ((U,V) or (U, D)) in 7, and modify T" accordingly.
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Consider (7,T) € X and write 7 = S7 ... S, as a sequence of steps. Suppose that ¢ and j are
the largest integers such that 7 starts with ¢ up steps and T starts with j black monominos.
Case 1: j > i+ 1. In this case we have i +1 < bm(T) < n + bm(T) + bd(T") = t.
Therefore m must have the (i + 1)st step. We define 7/ and T’ in the following three
cases depending on the step S;1.
Case 1-a: S;;1 is a horizontal step. In this case let

, ~
s :Sl...Si+1...ST7

and define 7" to be the Favard tiling obtained from T by replacing the black
monomino at position ¢ + 1 by a red monomino. Here the notation §i+1 means
that S;11 is removed from the sequence. See Figure

Case 1-b: S;; is a vertical step. In this case let

w':Sl...§i§i+1...ST,

and define 7" to be the Favard tiling obtained from T by replacing the two black
monominos at positions 7 and 7 + 1 by a black domino. See Figure @l
Case 1-c: S;11 is a down step. In this case let

w’:Sl...gl-ng...Sr,

and define T” to be the Favard tiling obtained from T by replacing the two black
monominos at positions ¢ and ¢ + 1 by a red domino. See Figure
Case 2: j < i and j < m. In this case T' contains a tile, say A, with entry j + 1. We
define 7’ and 7" in the following three cases depending on the tile A.
Case 2-a: A is a red monomino. In this case let

ﬁ’le...SjHSjJrl...ST,

and define 7" to be the Favard tiling obtained from T by replacing A by a black
monomino. See Figure
Case 2-b: A is a black domino. In this case let

W/:Sl...SjUVSjJrl...ST,

and define T” to be the Favard tiling obtained from T by replacing A by two black
monominos. See Figure [
Case 2-c: A is a red domino. In this case let

F/:Sl...SjUDSj+1...ST,

and define T” to be the Favard tiling obtained from T by replacing A by two black
monominos. See Figure
Case 3: j <i and j = m. In this case define 7’ = 7 and T" = T. See Figure [6l

It is straightforward to verify that (w,T) — (7', T") is a sign-reversing involution on X whose
fixed points are the pairs (7, T) with 7 € MS((0,0) — (m +n,¢)) and T € FT,, such that the
first m steps of 7 are up steps and T consists of m black monominos. Note that if (7,T) is a
fixed point, then wt(7') = 1 and wt(7) = wt(7>, ), where 7>, is the subpath of 7 from (m,m)
to (m + n, ). This shows that

(3.3) > wh(m) wt(T) = > wt () = > wt ().
(m, T)eX TeMS((m,m)—(m+n,L)) TeMS((0,m)—(n,l))

Then the theorem follows from (3.2) and (B.3). O
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] ]

FIGURE 3. A pair (7,T) € X in Case 1-a on the left and the corresponding
pair (7/,T’) in Case 2-a on the right, for (n,m,£¢) = (2,6,2). The horizontal
step starting at (3,3) in 7 is collapsed to a point.

6] 3 4"5 6 |

FIGURE 4. A pair (m,T) € X in Case 1-b on the left and the corresponding
pair (7', T’) in Case 2-b on the right, for (n,m,¥) = (2,6,2). The peak (U, V)
starting at (2,2) in 7 is collapsed to a point.

Now we list a number of special cases of Theorem [3.12]
First of all, if a,, = 0, we obtain Viennot’s result.

Corollary 3.13. [I8 Proposition 17 on page I-15] We have

L(x" Py (z)Pe(x)) = A1 ... Mo Z wt (7).

mE€Motz((0,m)—(n,l))

In the next section we will show that if A\, = 0 and ¢ = 0 in Theorem [3.12] then we obtain
Kamioka’s result [12] Lemma 3.1] on Laurent biorthogonal polynomials.
If m =0 or £ =0 in Theorem B.12] we obtain the following corollary.
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R/J

1=2

J=2

] 0 B

|

FIGURE 5. A pair (m,T) € X in Case 1-c on the left and the corresponding
pair (7', T’) in Case 2-c on the right, for (n,m,¢) = (2,6,2). The peak (U, D)

starting at (2,2) in 7 is collapsed to a point.

FIGURE 6. A pair (7,T) € X in Case 3 for (n,m,¢) = (2,6,2). In this case

(m,T) = (7', T’) is a fixed point.

Corollary 3.14. For n,m > 0, we have

TeMS((0,m)—(n,0))

7EMS((0,0)—(n,m))

If n = 0 in Theorem [3.12] we obtain the following corollary.
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Corollary 3.15. We have
0 ifn <m,
E(Fn(2)Qm () = {am+1am+2 s Gn  ifn>m.
In particular,
L(Pn(2)Qm(x)) = 6n,m, if 0 <n <m,
L(Py(z))
L(Pp(2)(Qm(2) — am+1Qm+1(2))) = 6n,m.

If m=0and n = ¢ orn =0 and m = ¢, we obtain the following corollary, which is
equivalent to [IT, Corollary 2.2].

ajag - - -Gy,

Corollary 3.16. We have
L(z"Qn(x)) = L(P(2)Qn(z)) = 1.
Using Corollary 315 we can find the coefficients in the expansion of an arbitrary polynomial

as a linear combination of P, (z).

Proposition 3.17. Let p(x) be a polynomial in x, and expand

p(x) = Z Cm P ().
m=0

Then
em = L (p(x)(Qm (%) = ami1Qm11(7))) -
Proof. Corollary implies
ﬁ(p(I)QE(I)) = Z CmAmQm—1 " Ag+1,
m>/

and thus

L(p(x)(Qe(x) — ar1Qer1(x))) = ¢,
as desired. O

The following theorem implies that pp m.e = L(2™ Py (z)Pe(z)) is a positive polynomial in
ak,bk, and )\k-

Theorem 3.18. For n,m, ¢ > 0, we have
Prm,e = L(z" Py (x)Pe(x)) = Zwt(w),

where the sum is over all Motzkin-Schroder paths from (0,m) to (n+ ¢,0) such that the last £
steps consist only of vertical steps and down steps.

Proof. By Theorem B.I1] and Theorem B.12] we have
L(@" P (2)Pr(x)) = Y wt(T)L("TomOTADP () = Y wt(m) wt(T),
TeFT, (m, TY)eX
where X is the set of pairs (7, T) of a Motzkin-Schroder path 7 from (0,m) to (n+¢,0) and a
Favard tiling T € FT, satisfying ¢ = n 4+ bm(T') + bd(T').
By the same argument as in the proof of Theorem[B.12] we can find a sign-reversing involution

on X whose fixed points are exactly the Motzkin-Schroder paths described in this theorem.
The only difference in the construction of the sign-reversing involution is that we write 7 =
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SpSp—1...51 and let ¢ be the largest integer such that the last ¢ steps Si,...,S; consist of
vertical and down steps. We omit the details. |

If £ = 0 in Theorem B.I8], we obtain Corollary B.14l If n = 0 in Theorem [B.I8 we obtain the
following corollary.

Corollary 3.19. For m,n > 0, we have
L(Pr(2) P (2)) = ZWt(ﬂ')v

where the sum is over all Motzkin-Schroder paths from (0,m) to (n,0) such that the last n steps
consist only of vertical steps and down steps.

Example 3.20. If (n,m,¢) = (0,1, 1), we have
L(Py(2)Pi(x)) = araz + ar1by + A1

One path is eliminated: the path V H, because the last step is a horizontal step, which is neither
a vertical step nor a down step.
If (n,m,£) =(0,2,1), we have

E(PQ(JJ)Pl (,T)) = a%ag + alag + ajasasz + arazby + arasbs + as Ay + aiXa.

One path is eliminated: the path VV H, because the last step is a horizontal step, which is
neither a vertical step nor a down step.

3.3. The moments v, ;.

We will find a recurrence for vy, ,, = £ (2" /d,(x)) and a generating function for them. We
do not have a combinatorial interpretation for them.
For m > 1, define U,,(x) to be the quotient of P,,(x) when divided by amz + Ap:

P () = (am® + A ) U (@) + Pr(= A /am)-
Let fin,; be the coefficients of U, (z):

m—1
Un(x) = Z fmixi.
i=0

The following Lemma B2T] with v ¢ = 1 allows us to compute vy, », for all n,m > 0.

Lemma 3.21. For n,m > 1 we have

(34) Vn,0 = Un,0 = HUn,
1 m—1
(35) Wm=""FTH 7~ 7 fm,iyi,m—la
P (=Am/am) ;
1 Am
(36) Uhm = —VUn—-1m—-1—" —Vn—-1,m-
(42 Qm

Proof. The first identity is immediate from the definitions of v, ,, and fy, . The second identity

follows from P o) U (2) P (Ao fann)
m\L m T m{—Am/am
0=L =L + .
(dm(x)) (dm—l(x) dm () )
The third identity follows from

n—1 by A n—1
AmVn.m = L (w (a;lnx i m) - m;; ) =Vn—1,m—-1 — )\myn—l,m-
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For m > 0, let

Vin(x) = Z Un,m@™.

n>0
Proposition 3.22. For an integer m > 1, we have

amV0.m 2Vm—1(x)
Vi = : .
(2) A + A A + AT

Proof. By (8.6), for n > 1,
AmVn,m + AmVn—1,m = Vn—1,m—1-
By multiplying both sides by ™ and summing over n > 1, we obtain
W, (Vin () — vo,m) + Ama Vi (2) = 2Vi—1 (),
which is equivalent to the desired equation. O

By iterating the equation in Proposition [3.22]and observing the fact V() =3, < pna™ we
obtain the following corollary. B

Corollary 3.23. For m > 1, we have

2" Y >0 Pt = Vo i
Vm(x) = m = + m : .
172 (a; + Ajz) ; [+ Ajz/aj)

m—1

4. MOMENTS OF LAURENT BIORTHOGONAL POLYNOMIALS

In this section we study Laurent biorthogonal polynomials P, (z), which are type R; or-
thogonal polynomials with A, = 0. Kamioka [I2] combinatorially studied this case. There is
another linear functional F that gives a different type of orthogonality for P, (x). We will first
study the connection between our linear functional £ and Kamioka’s linear functional F. We
then review Kamioka’s results and show that these are special cases of Theorem

In this section we consider the case A, = 0 for all n > 0, so that the polynomials P,(x) are
defined by P_;(z) =0, Py(z) =1, and for n > 0,

(4.1) Poi1(z) = (x — by)Po(z) — anaPr_1(x).

Throughout this section we assume that P,(0) # 0 and a,, # 0 for all n > 0. Since
P,(0) = (=1)"bgb1 . . . by—1, we must have b,, # 0 for all n > 0.

For n > 0, let
Qn(x) = Pn(‘r) g

ai...anpT
where Qo(z) = 1. Then V = span{z"Q,(z) : n,m > 0} is the vector space of Laurent
polynomials.

Kamioka showed the following Favard-type theorem.

Theorem 4.1. [12] Theorem 2.1] There is a unique linear functional F on'V such that F(1) =1
and

F(x™"Pp(x)) =0, 0<n<m.

Remark 4.2. We note that the original statement of [I2] Theorem 2.1] is that there is a unique
linear functional F on V such that F(1) = 1 and

F(x™"Pp(x)) = hnln,m., 0<n<m,
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for some constants h,, # 0. Since span({1} U{z""P,,(z) : 0 <n <m}) =V and 2% Py(x), for
k > 0, is a linear combination of the elements in the spanning set {1}U{z " P, (x) : 0 < n < m},
where the coefficient of 1 is nonzero, the two statements are equivalent.

Using Theorem 2.1] we obtain a slightly different Favard-type theorem.
Theorem 4.3. There is a unique linear functional £ on V such that £L(1) =1 and
L(z7"Py,(z)) =0, 0<n<m.
Proof. By Theorem 2.1, there is a unique linear functional £ on V satisfying the orthogonality
L(z" " Pp(x)/a1...am) =0, 0<n<m.
Replacing n by m — n in the above equation gives the theorem. O

Note that, since P (z) = x — bg, if n =0 and m = 1 in Theorem 1] we obtain

(4.2) F(x) = bo.
Similarly, if n = m = 1 in Theorem [£.9] we obtain
(4.3) Lz =by"

We now show that the linear functionals F and L in the above two Favard-type theorems
have a simple connection.

Proposition 4.4. For all f(z) € V, we have
F(f(x)) =bo- Lz~ f(x)).
Proof. We will show the equivalent statement

(4.4) L(f(2)) =bg " Flaf(x).
Let £'(f(x)) be the right hand side of @4). Then by Theorem it suffices to show that
£'(1) =1 and
L' (27" Py (z)) =0, 0<n<m.
By definition of £’ and ([@2)), we have £/(1) = by ' F(x) = 1. For 0 < n < m, we have
L'z Py (x)) = byt - Fla= ™Y P,, () =0
because 0 < n — 1 < m. This completes the proof. 0

We will find another connection between the linear functionals F and L using inverted
polynomials.

Definition 4.5. The inverted polynomial of P,(x) is defined by P}(x) := 2" P,(x~1)/P,(0).
For any linear functional M on V define M* by

M (f(2)) = M(f(z7).
Using (@1 and P,(0) = (—1)"bgb1 . . . by—1, we have
Pri(z) = (z = by) Py (z) — apa by (2),

n
where )
a
b= —, * = L
" bn n bn—lbn
It is easy to check that the map X — X* is an involution, i.e., X** = X, for each X €

{Pna Ap,y bna M}
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Let P = {P,(x)}n>0 be the sequence of polynomials given by ([@I]). By Theorems F.1] and
[49 there are unique linear functionals, denoted by L£p and Fp, satisfying £(1) = F(1) =1 and
Lp(x™"Pp(z)) =0, 0<n<m,
Fp(z™"Py(x)) =0, 0<n<m.
We will sometime write £ in place of Lp.

Proposition 4.6. Let P = {P,(z)}n>0 be the sequence of polynomials given by (L) and let
P* = {P¥(z)}n>0. Then we have

Fp+ =Lp, Lp« =Fp.
Proof. For 0 < n < m, by the definition of P} (z), we have

Lp(@ " Py, (2)) = Lp(a" Py (e™")) = Lp(a™ " Py(x) /P (0) = 0,

m

where the last equality follows from Theorem [£.9] since 0 < m — n < m. By Theorem [4.1], this
shows the first identity Fp- = L.
Applying the first identity to P*, we have L. = F(p«)«. Then

Lpe = (Lp)" = (Fp)-)" = Fp,
which gives the second identity. O

Kamioka [I12] Lemma 3.1] showed that (in our notation) for n,m > 0,
(4.5) F@P(e) = F@@) > wi(w),
7€Sch((0,m)—(n,0))

(4.6) F(a" P} (x)) = Z wt* (),
w€Sch((0,m)—(n,0))

where wt*(7) is the same weight wt(7) with b,, and a, replaced by b’ and a, respectively.

Remark 4.7. Kamioka’s definition of Schroder paths is different from ours; his definition is
the one explained in Remark B3l In [12, Lemma 3.1] it is written that “both the sums range
over all Schréder paths from (—n, —n) to (2k,0).” Here (—n, —n) is a typo for (—n,n).

By Proposition 4] the first identity (£5) is equivalent to
(4.7) L(x" P, (x)) = > wt ().
m€Sch((0,m)—(n,0))
By Proposition 6], the left hand side of (@6l can be rewritten as
Fi(a" Py (x)) = Lp-(a" Py (),

and therefore the second identity () is also equivalent to (A7) with P replaced by P*.
The following theorem, which is the special case A, = 0 of Theorem [3.12] is a generalization
of A1), hence a generalization of Kamioka’s results (@3] and ([.6]).

Theorem 4.8. For n,m,f >0, we have

L(x" P (2)Qe(z)) = > wh ().

7€Sch((0,m)—(n,£))

We give a similar formula for £(2" Py, (2)Q¢(x)) when n is negative.
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Theorem 4.9. For n,m,{¢ > 0, we have

aj...a;Py(0)P(0)
aj ... ambo

Lz Qm(x) Pe()) =

wt* ().
7€Sch((0,m)—(n,£))

Proof. Since Q¢(x) = 2~ *Py(x)/ay ...ay, applying Theorem Bl to the inverted polynomials
P (x), we obtain

_[P*
(4.8) L (xnp"*L(x) w) " e
aj...aj 7E€Sch((0,m)—(n,£))

Observe that
Lp-(f(2)) = Fp(f(x)) = Fp(f(a™h)) =boLp(a™ " fla™)),
where the first, second, and third equalities follow from Proposition .6 the definition of Fp,
and Proposition [4.4], respectively. Therefore the left hand side of ([A8]) can be rewritten as
A A ai . ..ambo
ai...a; ) ~aj...a;Ppn(0)P(0)

(4.9)  boLp <3:1"P;1(3:1) L (277" Qm(z)Pi(2)),

where the following identities are used:

_ 7um(:E) ag ... aQO({E) - Iiepf(x)
P* (z 1y < — , P*(x 1y
R () Py (0) A )
Using (A.8) and (£9) we obtain the desired identity. O

If m = ¢ = 0 in Theorems 4.8 and [£.9 we obtain the following result of Kamioka.
Corollary 4.10. [12, Theorem 3.1] For n > 0, we have

L(z") = Z wt(m),
mwEeSch,

L™ =b" > wt*(m).

mweSchy,

5. LATTICE PATHS WITH BOUNDED HEIGHT

In this section we express the generating function for Motzkin-Schroder paths with bounded
height as quotients of inverted polynomials where the indices of the sequences b = {b, }n>0,a =
{an}n>0, and A = {\, }n>0 are shifted.

Recall that P,(z) are defined in (II)). We will denote this polynomial by P, (z;b, a, A) to in-
dicate that the three-term recurrence coefficients are taken from the sequences b = {b,, }n>0,a =
{an}n>0, and A = {A, }n>0. The inverted polynomial P} (z) = 2™ P, (1/x) will also be written as
P*(x;b,a,\) = 2™ P, (1/x;b,a,\). Note that P*(z) = 2™ P,(1/z) satisfy P*;(z) =0, Pj(x) =1
and

(5.1) Prii(z) = (1=byx)P)(x) — (anx + Az?)Pr ().

Definition 5.1. For a sequence s = {s,, }n>0 define ds = {sn41}n>0. For P,(z) = P, (x;b,a, ),
we also define

P, (x;b,a,\) = P, (x;b,da, 6N,
P (z;b,a,\) = P} (x; b, da, 6)N).

n

0P, (x) =24
P (x) =0
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Definition 5.2. We denote by MSn +.s the set of Motzkin-Schréder paths from (0,7) to (n, s)
such that the y-coordinate of every point is at most k. Define MS<k MSn 0,0 and

Hins = Y wi(m),

ﬂ'EMSéffw’s
psk = Z wt(m).
weMSE"

The goal of this section is to prove the following theorem, which is a generalization of
Viennot’s results [I8] (27) on page V-19] on orthogonal polynomials (the case a, = 0).
Theorem 5.3. If r < s, then

_ Pr@)ett P (w)
5.2 " = .
( ) Z :un T, s P*

n>0 k+1 (‘T)

s—r

If r > s, then

pP* r+1 px* T T
(53) Zﬂnrs " S( )Pf* Pk*T( ) . H ((Ll—f—)\z.’t)

n>0 k+1( z) i=s+1

If r = s = 0 in Theorem [5.3] we obtain the following corollary.

Corollary 5.4. We have

n>0 k+1( )

On the other hand, using Flajolet’s argument [7], we obtain a continued fraction expression
for the generating function for u=*

Proposition 5.5. We have

Z ,LL<k n _ 1
a1 + A\ z?
n=0 1 —box — ! ! 3
a2 + Ao
1-— b1I —
1—box — . arT + A\pz?
' 1-— bka'
Remark 5.6. Combining Corollary 5.4l and Proposition gives
P} (x) 1
(54) P . ( = 2 ’
k+1 ) ar + M\
1-— box — 3
asx + Ao
1— blx —
L—box — .  apz+ \pa?
. 1-— bka'

which can also be shown using the following fundamental recurrence relations for continued
fractions, see [3, Chapter III, §2].

For the remainder of this section we give a proof of Theorem To do this we give a
combinatorial meaning to
P/:—l—l Z :un T,8 n'

n>0
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First we need a combinatorial interpretation for P¥(x). Similarly to Theorem BIT] the
recurrence (B.1]) gives the following proposition.

Proposition 5.7. Forn > 0, we have

Pi(z)= ) wh(T)abmTmT)F2d(T),
TeFT,

Let
MSZh = | MS;E

*,T,8 n,r,s
n>0

Then by Proposition 5.7 we have

Pip@) Y pshat = 30 Y wHT)wi(m)al D) emD) e 2bd(r),
n>0 TEFTi41 reMSSF

7,8

In what follows we construct a sign-reversing involution on MSEIRS X FT4+1, which can-

cels many terms in the above equation. The basic idea is similar to that in Section Bt for
(m,T) € MSSF % FT),1 we add or remove a horizontal step, a peak ((U,V) or (U, D)), or a

valley ((V, U)7 or (D,U)) in 7 and modify the corresponding tile(s) in T. We first need several
terminologies.
For 7 € MSfﬁs, we define |7| to be n if 7 € MSi’f_)S. A walley of  is a pair (D,U) or (V,U)

of consecutive steps in 7 and a peak of 7 is a pair (U, D) or (U, V) of consecutive steps in .
Let (7,T) € MSE’;S X FTk41 and write 71 = S7....5,, as a sequence of steps. A removable
point of 7 is a point (j,h) on 7 satisfying one of the following conditions:
e 7 has a horizontal step starting at (j, h),
e h > min(r,s) and m has a peak starting at (j, h), or
e h < min(r,s) and 7 has a valley starting at (j, h).

In other words, a removable point of 7 is the starting point of a horizontal step, a peak above
the line y = min(r, s), or a valley below the line y = min(r,s). Let remove(r) denote the
smallest integer ¢ > 0 such that the ending point of S;...S; is a removable point. (If i = 0,
the ending point of S ...S; means the starting point of , which is (0,7).) If there is no such
integer i, we define remove(r) = co. See Figures [ and B

An addable point of (7w, T) is a point (j,h) on 7 satisfying one of the following conditions:

e T has a red monomino containing h + 1,
e h > min(r,s) and T has a (red or black) domino containing h + 1,h + 2, or
e h <min(r,s) and T has a (red or black) domino containing h, h + 1.

In other words, an addable point of (7, T') is an intersection of 7 with the line y = h for some
h such that T has a red monomino with kA + 1, a domino with A4 1, A+ 2 and h > min(r, s), or
a domino with h,h + 1 and h < min(r, s). Let add(m,T) denote the smallest integer 7 > 0 such
that the ending point of Sy ...S; is an addable point. If there is no such integer i, we define
add(m,T) = oo. See Figures[d and

We are now ready to define a map ¢ : MSE’;S X FTpp1 — MSE’;S X FTpi1. Let (m,T) €

MS=F % FTpy1 and write 7 = S;...S,, as a sequence of steps. Then ¢(w,T) = (x/,T") is

*,7,8

defined as follows.

Case 1: remove(w) = add(w,T) = oo. In this case, (7', T") = (w,T).
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FIGURE 7. A Motzkin-Schroder path 7 in MS,E];,S forr=3,s =5 and k = 6.
The dashed line is the line y = min(r, s). The red dots are the removable points
of m. The horizontal step, a peak, or a valley starting at each removable point
is colored red. In this case remove(r) = 1 because the first removable point

occurs after the first step.

FIGURE 8. A Motzkin-Schréder path 7 in MSSF | for r = 5,5 = 2 and k = 5.
The dashed line is the line y = min(r, s). The red dots are the removable points
of m. The horizontal step, a peak, or a valley starting at each removable point
is colored red. In this case remove(m) = 4 because the first removable point

occurs after the fourth step.

4
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1 —by —ao — M\ 1
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FIGURE 9. An element (m,T) € MSSY  x FTyyy for r = 2,5 = 3,k = 5. The
dashed line is the line y = min(r,s). The removable points of 7 are the red
dots and remove(w) = 1. The addable points of (m,T) are circled. Since the

first addable point occurs at the beginning of 7, we have add(w,T) = 0.

21
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2 Y & 6|

FIGURE 10. An element (,T) € MS5Y | x FTyyq for r = 3,5 = 1,k = 5. The
dashed line is the line y = min(r,s). The removable points of 7 are the red
dots and remove(w) = 1. Since there are no addable points, we have add(w, T') =
00.

Case 2: remove(r) > add(w,T). Suppose that ¢ = add(w,T) and Sy ...S; ends at (4, h),
which is an addable point. Let 7 be the tile of T containing i + 1. Then
S1...85HS;11...5n, if 7 is a red monomino,
S1...5UDS;41...5,, if 7is ared domino and h > min(r, s),

7 =<81...5UVSiy1...8m, if7isa black domino and h > min(r, s),
S1...8DUSi1...Sm, if 7is ared domino and h < min(r, s),
S1...5VUSi41...Sm, if 7is a black domino and h < min(r, s),

and T is the tiling obtained from T by replacing 7 by one or two black monomino(s)
according to the size of 7.

Case 3: remove(w) < add(w,T'). Suppose that ¢ = remove(w,T) and S;...S; ends at
(4, h), which is a removable point. Then

;81 S S, if S0 =H
= Si... §i+1§i+2 ... S, otherwise,
T — Bpy1+ Rpga, if Sip1 =
T — Bhy1 — Bryo + Rug1nte,  if (Sig1, Sige )
T'= T — Bui1 — Buya + Briinya, if (Siv1, Sigo ,V) and h > min(r, s
T — By, — Bry1 + Ry ht1, if (Sit1,Sit2 D,U) and h < min(r, s),
T — By, — Bp+1 + Bhp+1, if (Sit1,Si+2) = (D,V) and h < min(r, s).
Here, for example, T'— By, — Bj, 41+ Rp n+1 means the tiling obtained from 7' by removing

a black monomino with h and a black monomino with A 4+ 1 and adding a red domino
with h,h + 1.

U,D) and h > min(r, s),
U (r,s)

3

) (
) =(
) =(

Example 5.8. If (7, T) is the element in Figure[@ then ¢(w,T) is the element in Figure [Tl If
(m,T) is the element in Figure [I0, then ¢(w,T) is the element in Figure

Lemma 5.9. The map ¢ : MS* s X FTry1 — MS* s X FTki1 is a sign-reversing involution,
e, if (m,T) = (7', T") with (7T T) £ (7', T"), then wt(w',T') = —wt(n,T), where

wt(m, T) := wt(T) wt ()7 IHrm(T)+bm(T)+2bd(T)
Moreover, the set of fized points of ¢ is given by
Fix(¢) = {(¢,T) : remove(r) = add(m, T) = oo}.
Proof. This is a straightforward verification using the definition of ¢. We omit the details. [
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FIGURE 11. An element (7,T) € MSEI,ZS X FTgy1 forr =2, =3,k =5. The

dashed line is the line y = min(r, s). The removable points of 7 are the red dots
and remove(w) = 0. The addable points of (7, T) are circled and add(7,T) = 4.

3

2

<

1 ® A

‘ —by 1 —A3 -
0 CEGE e
FIGURE 12. An element (7,7) € MSSF  x FTyyy for r = 3,5 =1,k = 5. The
dashed line is the line y = min(r, s). The removable points of 7 are the red dots

and remove(r) = 1. The removable points of (7, T') are circled and add(w,T) =
1.

as

Now we are ready to prove Theorem
Proof of Theorem[5.3. The theorem can be reformulated as follows:

<k n {P:@)asﬂp,:s(x)x”, ifr <s,

5.5 Pl (x
(55) eral )gu’”’s P (@) Py (@) TTimgy (@i + Niw), i r > s

By Lemma we have

Pip(@) Y ke = 30 Y0 wh(T)wh(m)glrl om0 (D)
n>0 TEFTh1 reMsSh

= Z wt(T) Wt(W)zlﬂ+rm(T)+bm(T)+2bd(T),
(w,T)EFix(¢)

where Fix(¢) is the set of pairs (7,T') € MSfﬁs X FT k41 such that remove(n) = add(7,T') = oo.

We first consider the case r < s. Suppose (m,T) € Fix(¢). It is easy to see that there is a
unique 7 satisfying remove(m) = oo, namely 7 = UU ... U consisting of s — r up steps. This 7
contributes the factor z°~" in ([B.5). Moreover, since add(m, T') = oo, we must have that the tile
in T containing h must be a red monomino for every r+1 < h < s+1. On the other hand, there
is no restriction on the tiles containing ¢ < r and j > s+ 2. If we sum over all (7,T) € Fix(¢),
the part of T consisting of tiles with entries in {1,2,...,r} (resp. {s+2,s+3,...,k+1})
contributes the factor P (z) (resp. 67! P} (x)) in (55). This shows (5.5) when r < s.

Now we consider the case r < s. This can be shown similarly as in the previous case. The
only difference is that 7 is not unique, but 7 can be any path with r — s steps, where each step
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is either U or V. The contribution of such 7’s is the factor [T'_, ., (a; + Aiz) in (E.5). This
completes the proof. O

6. DETERMINANTS FOR TYPE R; POLYNOMIALS

Classically the orthogonal polynomials may be given by a quotient of Hankel determinants:

1 (Hit5)o<i<n—1
(6.1) Paa) = ——det [ T RGE)
det(i+5)i =0 (27)o<i<n

Moreover, we know that ([3] p. 16]) the denominator determinant factors

n

(6.2) Ap = det(pity)fj—o = H AR,
k=1

In this section we find analogues of (6.1) and (G2)) for type R; polynomials P, (z) and Q, ().

One may ask why such determinantal formulas arise. In the classical case the orthogonality
relations may be considered as linear equations for the coefficients of P,(x). These may be
solved by Cramer’s rule to give a quotient of determinants [3} p. 12]. These are exactly the
Hankel determinants in (G.I). The type R; orthogonality relations may also be considered as
linear relations for expansion coefficients of P, (x) and @, (x). The same method would gives the
determinant in this section, but not the product formulas for the denominator determinants.
Thus we do not use Cramer’s rule in this section.

6.1. Quotients of determinants for P,(x) and Q,(z).

We shall give in Theorem [6.1] three quotients of determinants for P, (z) and Q. (x). We also
factor the three denominator determinants in Theorem [6.4], these are

!

Aj, = det(Vigjn)o<ij<n,
1

Ay = det(Vig,j)o<ij<n,
"

Ay = det(vi j)o<ij<n-

Theorem shows that A/, and A!” are always nonzero and A/ is nonzero if A\, # 0 for all
k>1.

Theorem 6.1. We have

VO,n Vl,n e Vn,n
Vin Vom =" Vn+1,n
1 1 (Vitjn)o<i<n—1
(6.3) P,(z) = A det : : : = A det 0<i<n |,
n n (2)o<j<n
Un—1n Vnmn =°°° Yon—1,n
1 T z"
10,0 V11 e Vn,n
V V DY V
1 1,0 2,1 ntln 1 (Vi+j7j)0Si§n—l
. . . . . o 0<j<n
(64) Qn((E) = F det : : . : = F det ( P ) )
n n -z
Vn—1,0 Un e Voan—1,n d;(z) 0<5<n
1 T z"
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V0,0 Vo1t Yonm

1 Lo hro M (Vi,j)o<i<n—1

_ _ 0<j<n
(6.5) Qn(x) = NG det = A det .
n n d;(x) .
Vn—-1,0 Vn—1,1 *°° Vn—1,n 7 0<j<n
1

1 di(z) dn ()

Proof. Let f(z) be the determinant in the right hand side of (63)), which is a polynomial in x
of degree n. Multiplying the last row of the determinant by 27 /d, (z), and applying L, yields
a last row equal to the j + 1 row, so L(f(z)x? /dn(x)) = 0 for 0 < j < n.

Note that P, (z) is uniquely determined, up to a multiple, as the polynomial of degree n such
that L(g(x)P,(z)/dn(x)) = 0 for any polynomial g(z) of degree at most n — 1. Thus there is a
constant ¢ satisfying

(6.6) P,(z) = cf(z).

Multiplying both sides of (6.6) by z™/d,(z) and applying £ yield
L(x"Qn(x)) = cAl.

Since L(z"Qn(x)) = 1, we have ¢ = 1/A! | which proves ([G.3)).

The second and third identities can be proved similarly. O

Since P,(x) is a monic polynomial, the coefficient of 2™ is 1. The only contribution of z"
occurs in the cofactor of 2™ in the determinant in ([G@3]). Thus we have the following corollary.

Corollary 6.2. We have
A, = det(Vigjin)o<ij<n = det(Vitjm)o<ij<n-1-
Dividing both sides of (€3] by d,,(z), we may obtain another formula for Q. (z).

Remark 6.3. We can take special cases of Theorem [6.1] to recover the classical results and
Kamioka’s results.
If ap, =0 for all k£ > 0, then di(z) = A1 ... Ak, vij = i/ A1 ... Aj, and therefore

B _ A " o__
G STy Y

n

(6.7) Al =

In this case P,(z) become the usual orthogonal polynomials and (6.4) reduces to (6.1I).
If A, = 0 for all k > 0, then di(x) = ay ...axz*, v;; = L(2"77)/a; .. .a;, and

68) A — det(L(z"™ " ))ogijsn  am_g am — eHLETT)ogijn

n n+1 ’ n—1 1
(a1...an) atay™" ...ak

In this case the polynomials P, (x) become biorthogonal Laurent polynomials and (635) reduces
to

L wi_j <i<n—
(6.9) Po() = Lo det - _))Oasknl ;
det(L(z"77))o<i,j<n (2" 9)o<j<n

which is slightly different but equivalent to Kamioka’s formula [12], (2.8)].

Here is how the three denominator determinants factor.
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Theorem 6.4. We have

n

, 1

(610) A" B kl;[l (—ak)kpk(—)\k/aky
" o_ . )\Z

(611) A" B kl;[l (—ak)kpk(—)\k/aky

- 1
6.12 Al = _.
( ) kl;[l Pk(—)\k/ak)
Remark 6.5. Note that if a;, = 0, by ([6.1), both ([GI0) and (6.I1]) reduce to the formula (6.2)
for the Hankel determinant of orthogonal polynomials.

If A\, = 0, the constant term of Py (z) is P(0) = (—1)¥bgb; ...bg_1. In this case we have

1 n+1 n 1

I " o__ "o

A" - II akbn—k-i-l’ An =0, An - (_1)( 2 ) I I bn—k-i—l'
k=1 "k"k—1 k=1 "k—1

Since v; ; = L(x'/d;(x)) = L(x"77 /a; ...a;), the above formulas for A/, and A!”" are equivalent
to the following Toeplitz determinant formula due to Kamioka [12] 2.14b):

n n—k+1
(6.13) det(L(x'7))o<i jen = (~1)("F) 11 <&> '

br—
w1 \Ok—1

The rest of this subsection is devoted to proving Theorem We shall use determinantal
facts to reduce the determinant to one involving the orthogonality relations, (GI4]). We need
several lemmas.

Lemma 6.6. Let L be any linear functional defined on the vector space spanned by x*/r;(z)
fori,j >0, where r;(x) is a fized polynomial for each j > 0. Suppose that for k > 0, pi(z) and
qr(x) are given by

k i

k
. T
pe(@) =Y prar’,  qr(@) =) .
i=0

= rila)’

where prr # 0 and qi # 0. Then we have

det (z (ﬂ))_ = o et (L (@)

ri(z) ?:0 Di,iqii

Proof. The proof is similar to that of Lemma [6.121 The matrices P = (pm);szo and Q =
(¢5.4)} j—o are upper and lower triangular, respectively. Thus, letting M = (L(z"7 /r;(x)))}j—o,
we have

det(PMQ)?

,§=0"

det(ﬁ(:t”j/rj(x)))zj:o = TN
i=0 Pi,iqi,i

Since the (k, s)-entry of PMQ is

n

> Lpria'qsia’ [r5(x)) = L(pr(2)gs(x)),

i,7=0

we are done. O
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Lemma 6.7. For any polynomial f(x) of degree n, there are unique numbers Ao, ..., A, sat-
isfying
n ) n
f(z) = ZAixZ H (a;xz + Aj).
=0 Jj=i+1
Moreover,

Ap = (—=an/A0)" f(=An/an).

Proof. The expansion exists because the ith term in the sum has terms from 2 to z™. The
factor (a,z + Ap,) exists for all terms except ¢ = n. So putting x = —\,,/a,, gives only the A,
term. ]

Now we prove the second equation (6.I1) in Theorem The other two equations in
Theorem will be proved using this equation.

Proof of (611)). Let

k k
Pe(x) =) priz’,  Qulz) =) Zk(;) :
i=0 i=0 "

Then by Lemma [6:6] with py(x) = Py(x), qx(x) = Qr(z), and ri(z) = di(z), we have

i+j

(6.14) A" = det (c <%>):j_o = m det (L (P;(2)Q;(2))); j—0 -

Since Py(x) are monic and L(P;(z)Q;(x)) = d; ; for 0 < i < j, we have
(6.15) A =1]ai
i=0

On the other hand, by Lemma [6.7] we can write
k ok
Pk(ft) = ZAkiiEl H (CLjIE + /\j),
i=0 j=it1

where Akk = (—ak/)\k)kPk(—)\k/ak). Then

_ Pe(x) " Ap
Qi(x) = d:(x) _; df@'

Therefore qi x = Ak = (—ar/ )" Pe(—=Ag/ax) and substituting this in (6I5) gives (611). O

%

We will prove (610) by relating the two determinants in ([63]) and ([64). First note that
dividing ([6.3) by d,(z) gives a determinant formula for @, (z) with last row of

(6.16) 1/dn(z),z/dn(x), ... 2" /d,(2),
while the determinant formula (4] for @, (z) has last row
(6.17) Lx/di(x), 2% /da(x),. .., 2" /d,(z),

and the last columns of the two matrices are the same. So the plan is to change the last row
from (617) to ([6I6). To this end we need the following lemma.
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Lemma 6.8. There exists a unique upper triangular matriz (Bi,j)Zj:O such that for all 0 <
k<n,

(6.18) Z By, ;20 [dj(z) = 2* /d, ().
j=k
Moreover, the entries B; ; also satisfy
(6.19) Bk = Mg1--- M), 0<k<n,
(6.20) ZBk,jVerj,j = Vs+k,n, s>0.
j=k

Proof. We can rewrite (G.I8) as
(6.21) 1= ZBk sl R d, () /dj(x).

Since 27*d,,(x)/d;(z) is a polynomial with lowest term 2 ~* with nonzero coefficient Aj41 - - - Ap,
one can uniquely determine By ; for j = k,k 4+ 1,...,n. This proves the first statement of the
lemma. Setting = 0 in (6.2I]) we obtain 1 = By, 1d,(0)/d;(0). Therefore (6€.19) follows from
d;(0) = A; ... \,. Lastly, by ([6.2I)) we have

xs-{-k: S—Hc LL’J
Vst = L d—(;v) = Z kad ZBM ZBkaVsﬂaa

which proves (620). O
We are now ready to prove (G.10]).

Proof of (610). Dividing (63) by d,,(z) and comparing with (6.4]), we obtain

k

(Vitjn)o<isn—1 (Vitjj)o<isn—1

(6.22) —— det S A\ ] = det ;o\
s (e )73 ()

dn(2) ) o<j<n 4(2) ) o<j<n

Let L (resp. R) be the matrix in the left (resp. right) hand side of ([6.22). Let C; be the jth
column of R and (Bm»);szo the upper triangular matrix in Lemma 6.8 For k =0,1,...,n—1
in this order, replace the kth column of R by Z;l:  Br;Cj. Then by Lemma 6.8 the resulting
matrix is L. Therefore

(6.23) det(L) = det(R H Bk
By (6:22), 6:23), and (B19), we have
L=A0TT A
k=1
Then (GI0) follows from (G.IT)). O

We note that the matrices for A and for A!” can be obtained from each other using column
operations using Lemma
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Lemma 6.9. There exists a unique lower triangular matriz (C; ;)7 ;_, such that for all 0 <
k <n,

[~
&
&,

Sy
roum) <.
=

\
IS
Ea
—~| =
8
S~—

(6.24)
j=0

Moreover, the entries C; ; also satisfy

(6.25) Crr = (—ak//\k)k, 0<k<n,
(6.26) > Crjverjj=ver, 520, 0<k<n.

Proof. We can rewrite ([G.24]) as

k
(6.27) 1—20,” II @z + ).

Jj=i+1

By Lemma[6.7] there are unique numbers Cy, o, Ck 1, . . . , Ck, . satistying (6:27) and (6:25) holds.
By ([624)), we have

Vs = £<d:( > chgd ZC;” ( ) ZOkJVSJrJJv

which proves (6.20). O

Finally we prove the last equation (612]) in Theorem

Proof of ([612). The proof is similar to that of (@I0). By (64) and (635), we have

1 (Vij)o<is<n—1 (Vitjj)o<isn—1
(6.28) — det V=I=r ) = — det ;o\
A \(ata) NG
i (@) 0<j<n i (@) 0<j<n

Let L (resp. R) be the matrix in the left (resp. right) hand side of ([G.28). Let D; be the jth
column of R and (C;;)7';—, the upper triangular matrix in Lemma [6.9 For k =0,1,...,n —1

in this order, replace the kth column of R by E?:o C,;Dj. Then by Lemma[6.0] the resulting
matrix is L. Therefore

(6.29) det(L) = det(R H Chk-

By ([@28), (629), and (625), we have

n

AY = AL TT(ar/x).

k=1

Then ([G.12) follows from (G.IT)). O
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6.2. More determinants.

In this subsection we consider more general determinants. Let
A%,s = det (Vs+i+j,s+n):j:0 ;
AZ,S = det (V8+i+j75+j)?,j:0 5
AZ’,S = det (Vi75+j)2j:0 .

Then Aj, = A7, o, A}, = A7 o, and A} = A}, Hence Theorem [6.4] can be restated as follows:

n+l)

(6.30) A= (1
' "0 Tley af Pe(=Ak/ax)’

(—D)("EIANZan

[Tz aiPe(=Ai/ax)’
1

ITizy Pe(=A/ak)’

Letting = 0 in ([€3) and (6.4), we have

(6.31) Al =

(6.32) Ay =

A
(6.33) P(0) = (=1)"——,
n,0
A// 11
(6.34) Qn(o) = (_1)11 A —.
n,0
Since limg, o0 Qn(x) = 1/ay ... ay, letting x — oo in ([G.3)), we have
1 ne11
(6:35) e VA

Theorem 6.10. We have

. (=)B)B(0)
(6.36) Bt = [ B (e fan)”
(=) E)AOAL. .. A1 P,(0)
HZ:I azpk(—/\k/ak) ,

_1)71
6.38 A= — ( .
(6.38) U Ty anPr(—Ae/ak)

Proof. By ([630) and (633), we have the first identity. By (6.31]), (6.34]), we obtain the second
identity. By (6.32)) and (6.33]), we obtain the last identity. O

(6.37) Aii_l,l =

Remark 6.11. If A\, = 0 for all k¥ > 1, then P,(0) = (—=1)"bgb; ...b,—1 and d;(z) = as . ..a,.
In this case (632) and (E3]) reduce to

n n+1l—k
(6.39) det(L(a' ) osizen = (1)) I <b::> ’

n+l1—k
< - >
)
aj...0an el bk—l

which are equivalent to Kamioka’s results [12] 2.14a and 2.14b].

=7

(640) det(£($i7j71))ogi7j§n,1 =
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6.3. Hankel determinants for u,.

Recall from ([6.2) that A,, factors in the classical case (ar = 0). In this subsection we will
show in Theorem that A, always factors if the three-term recurrence coeflicients are all
constants.

We need the following well-known lemma.

Lemma 6.12. Let pi(x) and qi(x) be monic polynomials of degree k for 0 < k <mn. Let L be
any linear functional defined on polynomials. Then we have

det(L(z"7)};_0 = det(L(pi(2)g; (2)))7.jo-

Proof. Let pi(z) = Zfzopk,ﬂi and qx(x) = Ef:o qrir'. Then P = (pi,j);szo is a lower
unitriangular matrix and @ = (‘iji)?,izo is an upper unitriangular matrix. Thus, letting M =
(L(z"))i =g, we have

det(ﬁ(:z;”j));szo = det(PMQ)Zj:O.
Since the (k, s)-entry of PMQ is
SN Llprriaya’) = Lipw()as(@)),
i=0 j=0
we are done. O
We first show that A,, factors if a; and by are constants and A\, = 0.

Lemma 6.13. Ifay =1, by =t, and A\ =0 for all K > 0, then

(6.41) A, =1+,
If ap, = A, by = B, and A\, =0 for all k > 0, then
(6.42) A, = (A2 + AB)("),

Proof. Using the Lindstrom—Gessel-Viennot lemma [15] [10], one obtains that the first iden-
tity (6.41]) is equivalent to the result of Sulanke and Xin [I7, Lemma 2.2] on non-intersecting
Schroder paths where each horizontal step has weight ¢. The second identity ([6.42]) then follows
from the first using the fact that u; is a polynomial in A and B of degree 1. O

Now we show that A,, factors if by, ar, and A\, are constants.
Theorem 6.14. If ap, = A, by = B, Ay = C, for all k > 0, then
A, = (A2 + 4B+ ) ("),
Proof. Let y =z + C/A and P,(y) = P,(z) = P,(y — C/A). Since
Poi1(z) = (x — B)Py(z) — (Az + C) P11 (),
we have _ _ _
Poii(y) = (y— C/A— B)Py(y) — AyPo-1(y).

Moreover, since dy(z) = (Az + C)" and d,,(y) = A"y™, we have d,,(y) = d,(z) and Qn(y) =
Qn(x). Thus the orthogonality

L(27Qn(x)) =0, if 0 < j<mn,
implies that _
L(y'Qn(y)) =0, if0<j<n.
Therefore ]Bn(y) are type Ry orthogonal polynomials with the same linear functional L.
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Now the original Hankel determinant is

et (14379 = det (£(a™) ]y = det (£((y = O/4)"™)

n

ij=0
By Lemma (6.12) with px(y) = qx(y) = (y — C/A)*, we have
det (L((y - C/A)))" = det ()] -
By ([@42]), we have
L n n41
det (L(y™)); o = (A>+ A(C/A+ ("),
which finishes the proof. O

The following proposition provides another proof of Theorem [614] via ([62) because the
A = A2 + AB + C are constant.

Proposition 6.15. Let u, be the moments for the type R; polynomials with ap, = A, by, = B,
and M\ = C. Then u, are also the moments for classical orthogonal polynomials defined by

By=A+B, B,=2A4+B, A,=A>+AB+C, n>1.

Sketch of Proof. Because the type R; coefficients are constant, the type R; continued fraction
for the moment generating function in Corollary B7] satisfies a quadratic equation and may be
solved. This also occurs in the classical case except for the By term. Dealing with this term,
and explicitly solving, shows that each moment generating function is
1— Bz —+1—4Ax — 2Bx + B2x2 — 4Cz2
20(A+ Cx) '
Note that Proposition B9 is the A = B = C' = 1 special case. O

Remark 6.16. Note that in Theorem[G.T4] the entries in the determinant of A,, = det (/‘iﬂ)Zj:O
are positive polynomials in A, B, and C. It would be interesting to prove this theorem using
nonintersecting lattice paths such as the proof of the Aztec diamond theorem due to Eu and
Fu [6]. Brualdi and Kirkland [2] evaluated the Hankel determinant of Schréder numbers using
J-fractions.

If C = B?, we can cancel a crossing of an up step and a down step with a pair of parallel
horizontal steps. Thus we obtain the following corollary.

Corollary 6.17. Ifa, = A, by, = B, A\, = B2, for all k > 0, then
Y wilm) - wi(m) = (A% + AB + B2) (1),
TOsTLyeeyTTm

where the sum is over all nonintersecting Motzkin-Schréder paths my, w1, . .., T, such that m; is
from (—i,0) to (i,0) and there are no pairs of horizontal steps starting at (x,y) and (z,y +1).

Proof. By Theorem [6.14] we have

det (1)), = (A% + AB + B2 ("2,
The left hand side can be written as
(6.43) > sign(o) wh(m) wh(m) - - wh(m),

0,0, Ty

where the sum is over all permutations o of {0, 1, ..., n} and Motzkin-Schréder paths 7o, 71, . . ., 7y
such that m; is from (—4,0) to (0(3),0) for all s € {0,1,...,n}.
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If there are two distinct paths m; and 7; sharing a lattice point (r,s) € Z2, find the
smallest pair (i,7) in lexicographic order and then the smallest pair (r,s) in lexicographic
order. By swapping the parts in m; and 7; after the point (r,s) we obtain a different term
sign(o”) wt(m() wt(nh) - - - wt(77,) in the sum and
(6.44) sign(o) wt(m) wt(my) - - - wt(m,) = —sign(o’) wt () wt(m]) - - - wt ().

n

Canceling these terms, we may assume that no distinct paths m; and 7; share a lattice point
in the sum (6.43). Then if two distinct paths m; and 7; intersect, each intersection must occur
between an up step in one path and a down step in the other path. By replacing the up step and
the down step by a horizontal step and swapping the parts after these steps we similarly obtain
a different term sign(o’) wt(n()) wt(7}) - - - wt(m),) in the sum satisfying (€44]). After canceling
such configurations we obtain the desired formula. 0

Problem 6.18. Find a bijective proof of Corollary .17

7. EXPLICIT TYPE R; POLYNOMIALS

In this section we explain the methods for finding the explicit type R; polynomials later in
Sections [§ and
We need to define a linear functional £ on V. Recall that V is the vector space whose basis
is
{z™:m >0} U{l/d,(z) : n > 1}.

Note that we could replace the monomial ™ by any set of polynomials, one for each degree.
In Section Rl we start by taking a classical £ on the polynomial part of V. We extend L to the
larger space V by explicitly defining £(1/d,,(x)). Good choices of the denominator polynomials
dp(z), found by “gluing” onto a weight function representing £, allow the extension to be
explicitly defined by shifting parameters in the linear functional £. The explicit type Rr
polynomials will be obtained by also shifting parameters.
As an example of this phenomenon, take the classical Jacobi polynomials on [—1, 1],

Fa+b+2)

Lap(f) = (0 T )T T 1) /4 w(z)f(z)de, w(z)=(1-2)"(1+z)"

which includes the parameters a and b. For the integral to converge for all polynomials f(x),
one needs a,b > —1. However one may extend these values to all real numbers by defining L,
on a basis

+ 1k
Lop((—a)fy = b (@F e s
-y =2
The choice of d,(z) = (1 + )™ glues to w(x) so that one defines
b-—n+1),

> 1.

Lop(1/dn(x)) = 27”m, n >

This defines an extension for £, to V by defining it on a basis, without referring to the
integral. We shall see in Section [l that the type Ry polynomials for this £, and d,,(x) are the
corresponding shifted Jacobi polynomials.

Since L extended in this way always has the same moment sequence, we have equality of
their moment generating functions, which are continued fractions. Each of the examples in
Section [§] satisfies this theorem.
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Theorem 7.1. Suppose that P,(x) is a type Ry orthogonal polynomial
Poi1(z) = (x — b)) Po(2) — (anx + M) Po—1(z), P_i(x) =0, Po(x)=1,
whose linear functional extends that for an orthogonal polynomial
Prs1(x) = (& = Ba)pn(x) — Appn-1(z),  p-1(x) =0, po(z) =1.

Then we have the formal power series equality between continued fractions

1
WZZOMnUC - | — by — ax + A\a?
2T + o2
1-— blx - W
1
- Az
1-— BQJJ — A2$2
1-— le - m

In Section [@ our second method for explicit type Ry polynomials chooses d,,(x) = (1 + az)™,
an nth power, for some special orthogonal polynomials. This inserts 1+ az into the three-term
recurrence ([@.2)), which does change the linear functional £. Yet there is a relation between the
type R and classical moment generating functions, see Proposition and Theorem

8. GLUING

We shall show gluing works by considering the Jacobi polynomials pLeb) () on [—1, 1], whose
weight function is (1 —x)*(14 ), and L, defined as before. Then we use the same technique
on classical orthogonal polynomials in the subsections.

The linear functional on the vector space of polynomials is

a 1
(8.1) Lonl ) = gy | (1= (2 )

where

Lap(l) =1, Ea,b(Pfla’b) (x)P,Sf’b) ()) =0, m=#n.
As in Section [1l we extend L, to the vector space V' by defining £, on the basis elements
1/dn(z) = 1/(1 4+ x)™. Even though the integral may not exist, if b < n, we may define the

linear functional by what the integral would give by shifting b to b —n
_, (b=n+1),

8.2 Lap(1/dy =27
(5.2) $(1/dn(a)) = 27
Proposition 8.1. We have for any polynomial p(x)

 o—n (b —n+ 1)77,
(8.3) Lap(p(x)/dn(z)) =2 @tb+2—n),
Proof. Write

p(x) G
8.4 =t
(84) d@) @+ ; ()
for some polynomial ¢(x). Assume that b —n > —1 and a > —1. Then applying L, to (84

may be done integration which is linear, so (83]) holds. Each term is a rational function of a
and b, thus (83) is true in general. O

‘Ca,b—n(p(x))'
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Consider the type Ry orthogonality for a fixed n > 1

£a7b<xk%) =0, 0<k<n-—1

This is by Proposition [8.4]
Lap—n (kan(x)) =0, 0<k<n-1.

If b—n > —1, this is the usual orthogonal polynomial orthogonality, so P, (z) must be a multiple
of the Jacobi polynomial plab=m (x). Note also that P,S“’b*")(—l) # 0, which is required.
Once we know an explicit formula for the type R; polynomials, we can find their three term
recurrence by considering the higher term coeflicients.
To summarize, all we need to do is find the shift in parameters when d,,(z) is glued onto a
known weight w(z). Then apply this shift to the parameters in the usual orthogonal polynomials.
This is carried out on the next 7 subsections. The degeneracy condition P,(—\,/a,) # 0 holds

because the polynomials may be explicitly evaluated at these values.

8.1. Jacobi polynomials on [—1,1].
Recall that the Jacobi polynomials are

(a+ 1), 7 —n,a+b+1| 1—=x
nt 21 a+1 2 ’

In Section [ we took d,(z) = (1 + z)™. Here we record the case d,,(z) = (1 — )", which shifts
a to a — n. The values of the linear functional are given by a beta function evaluation.

P (x) =

Definition 8.2. Let £, be the linear functional on V' such that

T+ eln (b+ 1)
(8:5) to({T57) =2 e 2O

Theorem 8.3. Up to a constant c,, the type Ry polynomials for w(x) = (1 — x)%(1 + z)° on
[-1,1] and d,,(x) = (1 — )™ are shifted Jacobi polynomials

pn(z) = CnPfga_n’b) ().
Proposition 8.4. We have for the monic type Ry polynomials, pn(z),
Prt1(2) = (= by)pn(w) — (1 — 2)AyPp—1(z).

where
b—a+3n+1 2n(n + b)

atbtntl’ T latbtrn)atbtntl)

Remark 8.5. The moments are the same as the moments for the usual Jacobi polynomials
Pff"b)(x) on [—1,1],

n =

" /n a+1)g
Lop(@") =" (S) (—2)Sﬁ'

s=0
The usual three-term recurrence coefficients for the monic Jacobi polynomials are
B (b2 _ a2)
" 2n+a+b)2nt+a+b+2)’
A = dn(n+a)(n+d)(n+a+bd)

@2n+a+b—-1)2n+a+0b)22n+a+b+1)
and Theorem [7.1] holds.
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Remark 8.6. If a = b = 1/2, then the Catalan numbers Cj = %_H (2]5) are moments

{4°C1 )21 2(2%%) = Ci k> 0} = {1,1,2,5,14,42,. .. }.

If a = b= —1/2, then the central binomial coefficients are moments

2k
{4’%1/271/2(1%) = <k> k> 0} ={1,2,6,20,70,...}.
8.1.1. A mized Jacobi formula.
One may alternate inserting (1 — z) with (1 4 z) into the denominator by taking
dp(z) = (1 — )21 (1 + ) /2,
Definition 8.7. Let £, be the linear functional on V' such that

o < 1—a)* ) _ gk-n (@+ Dr—rn/2
PPN (1 —2)[20(1 + z) /2] (b—[n/2] + 1) [ny2)(@a+b+2)—p’

k,n > 0.

Theorem 8.8. Up to a constant, the type Ry polynomials for w(z) = (1—z)%(1+z)® on [-1,1]
and dp,(z) = (1 — )21 (1 + 2)/2] are shifted Jacobi polynomials

_ 1—
(@) = enPa=Tn/21b=1n/2) () — ¢ | ( n,a+b+1 ‘ :z:>

a—[n/2]+1 2
Proposition 8.9. For the monic type Ry polynomials p,(x), we have

ﬁnJrl(I) = (:E - bn)ﬁn(x) - (1 - (_1)n7117))\nﬁn71(x)7

where
b — 1 {x(b—a—i—l), if n is even
" a+b+n+1 | x(b—a), ifn is odd,
and
N = 2n {x(a+n/2), if n is even
" a+b+n)atb+n+1) | x(b+ (n+1)/2), if n is odd.

The moments are again given by Remarks and

8.2. Jacobi polynomials on [0, 1].

The Jacobi polynomials on [0, 1] are

(@b (g _(a+1), —n,n+a+b+1
Pn (1 2$) = 771' 2F1 a+1 X

and have the weight function w(z) = #%(1 — x)° given by the linear functional

Fa+b+2)

1
Ma,b(f(x)) = F(a ¥ 1)F(b+ 1) /0 xa(l - .’L’)bf(ZC)d(E
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8.2.1. dp(z) = (1 —x)".

Let’s choose d,,(z) = (1 — )™ which naturally glues onto the weight w(x). So we see that
the modified weight function w’(z) occurs by replacing b by b — n in w(z).
As before this beta integral may be evaluated.

Definition 8.10. Let M, ; be the linear functional on V' such that

xF (a+ 1)
M, = ) ka > 0.
’b<(1—x)"> b—n+ nlatbt2)nn "

Theorem 8.11. Up to a constant c,, the type Ry polynomials for w(z) = x%(1 —z)® on [0,1]
and d,,(x) = (1 — )™ are shifted Jacobi polynomials

ab—n —n,a+b+1
pa(T) = cu PI )(1—217)—6;12111( a+1 ‘17)

Proposition 8.12. We have for the monic type Ry polynomials, p,(x),
Prt1(x) = (= by)pn () — (1 — 2)AyPr—1(z).

where
a+2n+1 n(n + a)

a+b+n+1’ _(a+b+n)(a+b+n+1)'

Remark 8.13. The moments are the same as the moments for the usual Jacobi polynomials
pie? (x), on [0, 1] instead of [—1, 1], evaluated by beta functions,

(a—i—l)k
(a+b+2)

Remark 8.14. If a = b = 1/2, then the Catalan numbers are moments
{4" M, j21/2(2%) = Chyr 1k > 0} = {1,2,5,14,42,...}.
8.2.2. dp(x) = ™.

n =

M p(z¥) =

Theorem 8.15. Up to a constant the type Ry polynomials for w(x) = 2*(1 —x)® on [0,1] and
dn(z) = a™ are shifted Jacobi polynomials

pn('r) = Cnp'rgain.’b)(l _2I) :C,/n 2F1 <_n7a’+b+ 1 ’ I> '

a—n-+1
Proposition 8.16. We have for the monic type Ry polynomials, p,(x),

Prnt1(z) = (¥ — bn)Pn(2) — TanPr—1().

where
a—n n(b+n)

" atb+tn+l T Gtbtmatbrntl)
‘)

8.3. Laguerre polynomials.
1 * a , —I
Lo(f(x)) = TlasD x%e " f(x)dx.
) Jo

(a+1
Thus the choice of d,,(z) = z™ shifts a.

The Laguerre polynomials

a (CL+ 1)" —-n
Lae) === 1hla 41

have
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Definition 8.17. Extend the linear functional £, to V' by

La (dnl(a:)) = (a—n1+1)n’ nzl

Theorem 8.18. Up to a constant the type Ry polynomials for w(z) = x
dp(x) = a™ are shifted Laguerre polynomials

Proposition 8.19. We have for the monic type Ry polynomials, p,(x),

a,—T

e~ on [0,00) and

_ a—n 7 n
pn(x) = e, L2 ™(z) =, 1 7 (a—n—i—l

Prt1(2) = (& = bp)pn(x) — Tanpn—1(2).
where
bp=a-—n, a,=n.
The monic Laguerre polynomials have
B,=2n+4+a+1, A,=n(n+a).
Remark 8.20. The moments are
L(z") = (a + 1)
8.4. Meixner polynomials.
The Meixner polynomials

—T

MGaibe) = o (71

)
1- =
c
have for their linear functional

L) = (1= Doy
x=0 '
Thus the choice of d,(z) = (x+b—1)(x+b—2)--- (z +b—n) shifts b to b — n.

Definition 8.21. Extend the linear functional £y . to V by

1 (1—c)"
Ly = , > 1.
" (dn<w>> G—nn 7

Theorem 8.22. Up to a constant, the type Ry polynomials for Ly . and dp(x) = (x +b —n),
are shifted Meixner polynomials

1

- _) .
c

Proposition 8.23. We have for the monic type Ry polynomials, p,(x),
Prt1(z) = (2 — bn)Pn(2) — (x +b—n)Anpn_1(z),

—n,—T

pn(x) = enMp(z;0 —n,c) = cp 2 Fy ( b

where
b, — n— (2n+1)c+bc, A, = en_
1-c 1-c
The monic Meixner polynomials have
Bn:n—i—(n—i—b)c, An:n(n—i—b—l)c
1—c¢ (1—c¢)?
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Remark 8.24. The moments are

) =3 sk, (12 )

Jj=1

where S(k, j) are the Stirling numbers of the second kind.
8.5. Little ¢-Jacobi polynomials.
The little g-Jacobi polynomials are
abq

. _ q ", ,
pn($7a7b|q) - 2¢1 ( aq Q7qx) .
The linear functional for the orthogonal polynomial orthogonality is
(aq)oo = (b9)=
8.6 Lov(f(z)) = aq)® f(q").
(36) 1) = s 2 (gp a0 )
Choosing d, (z) = (bz; ¢~ 1), we see that b shifts to bg~"
(bg)x (bql_n)x

n+1

dn(g®) — (bg'™)y
so the next theorem results using the extension

1 > ~ (abg® ")

a = , > 1.
Lap (dn(x) (bg*=")n "

39

Theorem 8.25. Up to a constant, the type Ry polynomials for the little q-Jacobi polynomials
with Lo p given by &8) and d,,(z) = (bx;q 1), are shifted little q-Jacobi polynomials

Pn(®) = cnpn(z30,bg™ " |q).
Proposition 8.26. We have for the type Ry monic polynomials, p,(x),
Prt1(®) = (= bp)pn(z) — An(1 — bquin)ﬁnfl(x)a

where

nl+a—ag" —ag™! (1-¢")(1 —aq")

by, = q An = q2n71

1 — abgnti ’
Remark 8.27. The moments are
Lo y(ah) = 9GOk
W) (abg?; q)r.
8.6. Big ¢-Jacobi polynomials.

The big ¢g-Jacobi polynomials are
abg™ 1,

—n
Py(x;a,b,c:q9) = 302 <q ’aq,cq q;q) :

The linear functional for orthogonality is given by a g-integral

1 aq,bq, ¢q,abq/c; @)oo [ (x/a,2/¢5 q)oo
(8.7) Lono(F(x)) = ( L / ' ) (z/ /. )
GQ(l - q) (Q7 abq ,c/a, GQ/C, Q)oo cq (:I;v b.’L’/C, Q)oo
There are two choices for d,,(z) which shift parameters
dn(x) = (bx/cq; ¢ p, b— bg™ ",

n

dn(z) = (2/a;q)n, a = aq™".

(1 —abg")(1 — abg 1)’

f(@)dy ().
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Extending £, 5 . may be accomplished via

ab 2—n n . _
Las ( 1 ) = <bq17§>;<gbql)*" e i dn(z) = (bz/eqiq™ )nin > 1
" \dn() (abg” M (ag_"/c)n if d,(z) = (z/a;q)n,n > 1.

(ag'=")n(abg' =" /c)nlc/a)n’

Theorem 8.28. Up to a constant, the type Ry polynomials for the big q-Jacobi polynomials
with Lapc given by ®D) and d,(z) = (bz/cq;q 1), are shifted big q-Jacobi polynomials

pn(x) = cnpn(z;a,bg™"; q).
Also choosing dy,(x) = (x/a;q)n we obtain the shifted big q-Jacobi polynomials
pn(x) = cnpn(z;ag™", b; q).
Proposition 8.29. We have for the type Ry monic polynomials, p,(x),
Prs1(x) = (2 = bp)pn (@) — (1= brg " [e)Anpn—1(x), dn(z) = (bx/cq;q™ " )n,

where
b ab — aq™ — cq™ — acq™ + acqg®™ + acg®" !
" 1 — abg™t! ’
A, = —acqrtt (L= €)1~ ag")(1 — cg")

(1 —abg™)(1 — abg"+1)
Proposition 8.30. We have for the type Ry monic polynomials, p,(x),
ﬁn-i—l(x) = (LL' - bn)ﬁn(x) - (1 - anil/a))‘nﬁn—l(x)u dn(x) = (x/a; q)na
where
_n,a+aq—ag"tt —abg" ! — acq™ ! + cg?n
1 — abgntt ’
An = a2g> 2" (1—¢")( —bg")(A —cq")
! (1 — abgm)(1 — abgm*)

8.7. The Askey—Wilson polynomials.

bn:q

Here we consider separately the absolutely continuous case and the purely discrete case.
8.7.1. The continuous case.

The Askey—Wilson polynomials are defined by

(ab, ac, ad; q)n s q ", abedq" Y az,a/z
am 473 ab, ac, ad

Q;q)a

pn(z;0,b,c,dlq) =

z=¢e"% z=cosf=(24+1/2)/2.
Note that

n—1
(Az, A/z )0 = [J (1 — 242¢" + A%¢¥)
§=0
is a polynomial in z of degree n. Thus p,(z;a,b,c,d|q) is a function of x.
The weight function for the Askey—Wilson polynomials is

,ab,ac,ad,be,bd, cd)se [T p —
Lap.cdr(z)) = (g 2 (abed) ) /0 r((e 4+e 9)/2)w(9,a,b,c, d)dd, Lapca(l)=1,
where 90 i
w(#,a,b,c,d) = (e e Jo

(ae®®, ae=19 be' be=10 ceil ce—i0 deil de—10),,"
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Let
n—1
dn(x) = (b2/¢,b/2q;4 ) = [[ (1 = 2bwq™ 7 + 6% ~>7%).
j=0
We next define the extension of L, 4 to V using the Askey—Wilson integral and
w(f,a,b,c,d) _
———" = —w(h,a,bg" ", c,d).
dn(I) ’LU( , @, 0q , Gy )
Definition 8.31. Suppose L, 5 ¢,q is a linear functional on V' such that
(8.8)
Loy <(02,0/Z;q)j(az,a/2;q)k> _ (cd; q);(ac; @)rrj (ad; @)
ST (bzqT bg T 25q)n (abg®="; q)n—k (beg?="; @)n—j (bdq™"; q)n(abed; q)iyj—n
Theorem 8.32. The type Ry polynomials for L cq and denominator polynomials
n—1
dn(z) = [ (1= 2b2g™ 77 + b2 27%)
=0

are shifted Askey—Wilson polynomials
(abg™™, ac,ad; q)n (q”, abed/q,az,a/z
493

am ac,ad,abqg™"

pn(z;a,bg™ " ¢, d|q) =

Q§Q>-

Note that
A (1) dy—1 () = 1 — 2baq ™" + b 2"
which is the factor in the type R recurrence relation.

Proposition 8.33. We have for the monic type Ry polynomials, p,(x),
Prnt1(z) = (2 = bn)Pn () — An(1 — 2bzg™" + b2q_2")ﬁn_1($),

where
bq—n + qn/b ql+2n L L L
bn: — 1—ab ny(1 — b ™ (1 — bd n
2 2b(1 — abedg™—1) (1 —abg ) cq )( q )
— (1 _ qflfn)(l _ abcd/q)(l _ b2q12n)),
v (=00 —acg" (1 — adg" (1 — edg" )

4(1 — abedq™2)(1 — abedg™1)

Sketch of Proof. The value z, = bg~™ puts x, = 1/2(bg™"™ + ¢"/b), and dp(zy)/dn-1(zn) = 0.
For this value of x,,, p,(z,) is evaluable as a product by the 1-balanced 3¢ evaluation. This
choice also allows p,11(2,) to be a sum of 2 terms, using the Sears transformation for a 1-

balanced 4¢3. This determines the value of b,,, and A, can be found by finding the coefficients
of x™. O

8.7.2. The q-Racah case.
For completeness we record the analogous results for the g-Racah polynomials.
Definition 8.34. For 0 < n < N, let p,(X;b,¢,d, N;q) be the polynomial of degree n in
X = p(x) =q " +cdg™*!
q; Q> .

g " bg" N g7 edg™T!
g, bdq, cq

Pn(p(z);b,c,d, N5 q) = 4¢3 <
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Since
j—1

(475 9);(cdq™ 5 q); = [T (1= ¢ (@) + edg' %)
s=0

pr(p(x);b,¢,d, N;q) is a polynomial in p(z) = X of degree n.
Let
n—1
do(X) =[] (1 = X¢//bd + ¢¥ ' ¢/b%d),
§=0

dn(p(x)) = (g~ /bd, g™ /b; @)
Definition 8.35. Let My . 4 n be the linear functional defined on V' by

N

My can(r(X)) = Z vwp(z, b, ¢, d, N)r(u(z)),

=0
where

(dg)n(cq/b)n (cdq)a 1 —cdg' ™ (¢N)a (cq)s (bdg).
(cdg®>)n(1/b)n (@)e 1—cdg (cdgN+2), (dq)s (cq/b)s

See [9, (II-21)]. Here the constants have been chosen, using the very well poised g¢5 summation
theorem, so that My .4 n(1) = 1.

vwp(x, b, ¢,d, N) = (™ /0)".

The classical orthogonal polynomials for M, . 4,y are g-Racah polynomials
My.c.an (pn(X;5b,¢,d, N; @)pm(X;b,¢,d,N;q)) =0 if n # m.
Note that gluing does occur
vwp(z, b, c,d, N)
dn (pu())

for some constant ¢(n, b, ¢,d, N) independent of x.

= C(”? b’ C7 d7 N) X /Uwp(x’ bq_n7 C’ d’ N)7

Theorem 8.36. The polynomials p,(X;bq"",¢,d,N;q), 0 <n < N, are the type Ry polyno-
maals for the g-Racah linear functional My ¢ q,n with

n—1
do(X) =[] (1 = X¢//bd + ¢* T c/b%d),
§=0

dn(u(x)) = (¢~ /bd, cq"* /b5 q)n.
Proposition 8.37. The monic type R; q-Racah polynomials satisfy for 0 <n < N —1
Prt1(X) = (X = bn)pn(X) = Au(1 = X¢" 71 /bd + ¢*" /b d)pp-1(X)
where
by = —(=b+bd(—1+ ¢V " 4 gV N g
Te(g® — 2" — @ 4 gV bedgN L 4 edgN Y /(b — gN)

1—2n (1= ¢")(1 = cg)(A — ¢V ") (1 — dg™ ")
A= A= T 7b)

3

An =dgq
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9. dy(x) AS nTH POWERS

In this section we consider the case b,, = 0 for orthogonal polynomials, so that the polynomi-
als are either even or odd. Hermite polynomials are one example. We choose d,,(z) = (14 az)",
then modify the three term recurrence by inserting the factor 1 + ax, independent of n, for a
type Ry polynomial, see (@.2). The new linear functional £, has new values on the polynomials,
so the moments do change, unlike the previous examples.

General results for the type R; polynomials and their moments, in terms of the original
orthogonal polynomials, are given in Proposition [@.1] Proposition [0.2] and Theorem We
do not know a representing measure for the new linear functional £, in terms of an original
measure, even in the Hermite case.

9.1. General results.

Let p,(x) be orthogonal polynomials defined by
(91) pn-i-l(x) = ,Tpn(w) - )‘npn—l(x)

with non-zero moments g, = L£(z?").
Consider a type R; version of p,

(9.2) Tot1(z) = zrp (@) — A (1 4+ az)rp—1 ().

These polynomials are rescaled versions of the original orthogonal polynomials. Proposition[@.1]
follows easily by rescaling.

Proposition 9.1. We have

x
ro(z) = pp | — 14 ax)™.
(@) =po (= ) (VT a0

Next we see how the moments are related. Let £, be the linear functional for these polyno-
mials. Let u, be the moments for the orthogonal polynomials in ([@.1I), and let 8,, = L,(z™) be
the moments for the type R; polynomials (0.2)).

Proposition 9.2. The moments 6,, = L,(x™) for the above type R; polynomials are given by

n+k/2
9271: Z ( k / >akﬂ2n+ku

k even

n+(k+1)/2
021 = Z ( ( )/ )akﬂ2n+1+k-

k
k odd

Proof. We use the combinatorial interpretation of 6,, as weighted Motzkin-Schréder paths and
waon as weighted Dyck paths, where a Dyck path is a Motzkin path with no horizontal steps.

Take the paths for 0s,, which start at (0,0) end at (2n,0), and stay at or above the z-axis.
There are no horizontal steps, as b,, = 0 in [@2). There are down steps starting at y-coordinate
n with weight \,,, and vertical steps starting at y-coordinate n with weight a\,,. If there are k
vertical steps, where k& must be even, these contribute a weight of a*. We can change these k
steps to down steps to obtain a weighted Dyck path from (0,0) to (2n + k,0). This is a term
in the combinatorial expansion for pig,+r. But each such Dyck path for pso,yr occurs ("+,f/ 2)
times, by choosing which of the n + k/2 down steps are switched to vertical steps.

The proof for 6s,,41 is basically the same. O

These moments may also be connected via Chebyshev polynomials.
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Proposition 9.3. The moments 0, satisfy
On = Lo(2") = L(z"wy(z,a)),

where

won(w,0) = 3 (" +kk/ 2>akxk - (‘”’17; 1' - a2:1c2/4> — Uy (aiz/2),

k even
k+1)/2 —
Wopt1(x,a) = Z <n+( k:+ )/ )akxk =(n+1)azx 4 ( n:’)’72+ 2 ‘ - a2x2/4) .
k odd

The moment generating functions, which are given by the continued fractions in Theorem [7.1]
are related.

Theorem 9.4. As formal power series in t, we have for the usual orthogonal polynomials

- 1 1
2127 = = S
;'M L(l—xt) £<1—:C2t2>’

and for the type Ry polynomials

o 1 1
gent = La (1—:z:t> _E(l—th(a—l-t))'

9.2. Explicit examples.

9.2.1. Chebyshev polynomials.

Proposition 9.5. If b, = b, a,, = a and A\, = A are constant, then the type R; monic
polynomials are

(@) =U ( x—b
n\T) =Un | —F——
b 2vax + A

Note that these are the polynomials we considered in Theorem [6.14]

) (az TN,

9.2.2. Hermite polynomaials.

Proposition 9.6. If b, = 0, a, = an and \, = n, then the type Ry monic polynomials are
pula) satisfy

oo
n(I) " = ext7(1+az)t2/2.

n!
n=0

Also
x
n(x) = He,, | —— 1+ az)",
polo) = tte, (i ) (VT
where Hey, (z) are the monic Hermite polynomials normalized by

He,11(z) = 2He, () — nHe,—1(x), He_i(z) =0, Hep(z) =1.

10. COMBINATORICS

In this section we study combinatorial aspects of some type R; orthogonal polynomials
considered in Section [§ and
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10.1. Hermite polynomials.

The classical Hermite He, () polynomials are the generating functions for matchings (or
involutions) on n points. Their moments count perfect matchings on n points. In this section
we give the corresponding results for the type R; Hermite polynomials in Section

Let H,(x,a) be the type Ry Hermite polynomials given by Proposition The following
result follows from either Theorem BT or the exponential generating function for H,(x,a).

Proposition 10.1. H,(z,a) is the generating function for involutions of length n, where 1-
cycles are weighted by x, and 2-cycles are two colored, with weights —1 and —ax.

The combinatorics of the moments can be given using Proposition
Proposition 10.2. The moments 0, = L(z™) for the type Ry Hermite polynomials are the

generating functions for 2-coloring the edges of the following perfect matchings, red and blue.

(1) If n is even, the perfect matching is on 2n + 2K points, and 2K of these n + K edges
are colored red, each of weight a, for some 0 < K < n.

(2) Ifn is odd, the perfect matching is on 2n+2K +2 points, and 2K +1 of these n+ K +1
edges are colored red, each of weight a, for some 0 < K < n.

Here is a simple linearization result:
min(m,n) n m
H,(z,a)Hp(z,a0) = Z ( ) ( )s!(l + ax) Hppm—2s(z,a).

10.2. Laguerre polynomials.

The classical Laguerre polynomials have moments u, = (a+1), = (A), if A =a+ 1. When
A =1 this is u, = n!, so the number of weighted Motzkin paths is the number of permutations
of length n. Viennot [I8] used Laguerre histories to give a bijection which explained this fact,
and implied many weighted versions.

In Section B3] the type R; Laguerre polynomials are given. The moments remain u, =
(a+1), = (A),, but we now have weighted Motzkin-Schréder paths with different weights,

bpb=a—n, a,=n, A, =0.

Note that since A, = 0, Motzkin-Schréder paths become Schroder paths. In terms of weighted
lattice paths we have the following proposition.

Proposition 10.3. For b, =a —n, a, =n, and A\, =0, we have
Z wt(m) = (a+ 1),.
mwESch,

In this subsection we give a combinatorial proof of Proposition I0.3 using a type R; Laguerre
history.

Let Sch!, denote the set of Schroder paths © € Sch,, that contain no peaks (U,V). For
7 € Sch!, define wt’(7) to be the weight of 7 with respect to b, = a + 1, a,, = n, and A, = 0.

Z wt(m) = Z wt’ (7).

w&Schy, mESch],

Lemma 10.4. We have
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Proof. For m,0 € Sch,, define a relation 7 ~ o if 7 is obtained from o by a sequence of replacing
a peak (U, V) by a horizontal step H or vice versa. Since a peak (U, V) and a horizontal step
H have the same starting and ending points, it is easy to see that ~ is an equivalence relation
on Sch,, and Sch/, is a system of representatives of the equivalence classes. Moreover, for each
7 € Schl,, we have

Z wt(o) = wt'(mr)

o~
because the weight of a peak (U, V') and a horizontal step H starting at height n are, respectively,
n+1 and @ — n, whose sum is @ + 1. Summing the above equation over m € Sch/, gives the
desired identity. O

Definition 10.5. A type R; Laguerre history of length n is a labeled Schroder path from (0, 0)
to (n,0) in which each vertical step starting at height h is labeled by an integer in {1,2,...,h}.
The set of type R; Laguerre histories of length n is denoted by LH,,.

By the definition of a type R; Laguerre history we have

(10.1) Z wt/ () = Z (a + 1)H®),

m&Sch), weLH,
where H(w) is the number of horizontal steps in 7. By Lemma [0.4] and ({I01), to show
Proposition 0.3 it suffices to show the following proposition.

Proposition 10.6. We have
> @+ )T = (a+1),.

weLH,,

To show the above proposition we give a bijection ¢ : LH,, — &,,, where &,, is the set of
permutations on [n].

Let m € LH,. Then ¢(r) is the permutation in &,, constructed as follows. The basic idea is
to create a cycle for each horizontal step of m and the vertical steps following immediately after
that.

e First, consider the leftmost horizontal step. Suppose there are k vertical steps, labeled
v1,. .., U, following this horizontal step. If the horizontal step is between the lines
x =1 — 1 and x =i, create a cycle starting with . Then for j =1,2,...,k, add at the
end of the cycle the v;th smallest integer in [¢] that have not been used. This creates a
cycle of length k + 1 with largest integer 4.

e For each of the remaining horizontal steps, from left to right, repeat the above process.

For example, let m be the type R; Laguerre history in Figure Then the corresponding
permutation ¢(r), in cycle notation, is given by

o(m) = (4,2,3)(8)(9,7,1)(10)(12)(13,5,11,6).

It is easy to check that the map ¢ is a bijection such that if ¢(7) = w, then H(w) is equal
to the number of cycles in w. This proves Proposition [10.6

10.3. Meixner polynomials.

For the Meixner polynomials, the situation is similar to the Laguerre polynomials. The
moments for the classical Meixner polynomials are

(10.2) fn = is(n,j)(b)g‘ (1 i C>j ,




ORTHOGONAL POLYNOMIALS OF TYPE R; 47

o 1 2 3 4 5 6 7 8 9 10 11 12 13
FIGURE 13. A type R; Laguerre history of length 13.

which involves set partitions and permutations as the fundamental combinatorial objects.

The type Ry Meixner polynomials in Section 84 retain these moments, but with different
paths and weights. In this section we develop a type Ry Meixner history to prove ([I0.2)). To
simplify matters we reformulate the formula for the moments. Let d = ¢/(1 — ¢), so that

(10.3) b, =n —dn+bd —d, an = nd, \n = bdn — dn?.
Proposition 10.7. Let b, a,, and X\, be given by (I03). Then

Hn = Zs(nvj)(b)jdj'

In this subsection we give a combinatorial proof of Proposition [0.7}
For m € MS,, define wt(w) to be the weight of m with respect to the weights in Proposi-
tion [I0.71 Then a combinatorial restatement of Proposition [[0.7 is Proposition [T0.8]

Proposition 10.8. We have

Let MS!, denote the set of Motzkin-Schréder paths m € MS,, that contain no peaks (U, V).
For m € MS!,, define wt/(7) to be the weight of m with respect to

b, =n + bd, an = nd, Ap, = bdn — dn?.

Then the following lemma is proved by the same argument as in the proof of Lemma [10.4]

Z wt(m) = Z wt' (7).

TeMS, TEMS!,

Lemma 10.9. We have

Let MS! denote the set of Motzkin-Schréder paths 7 € MS!, that contain no down steps.
Note that MS!, C Sch,,. For 7 € MS,,, define wt” () to be the product of the weight of each
step, where the weight of a step starting at height n is given by

1 if the step is an up step,

nd if the step is a vertical step,

bd + n if the step is a horizontal step not followed by a vertical step, and
bd + b if the step is a horizontal step followed by a vertical step.

By defining a relation m ~ ¢ if 7 is obtained from o by a sequence of replacing a pair (H, V)
with a down step D or vice versa, we similarly obtain the following lemma.
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Lemma 10.10. We have

Z wt'(7) = Z wt” (7).

TEMS!, TEMS!/

Definition 10.11. A type R; Meizner history of length n is a path = € MS!, together with a
labeling such that
e each vertical step starting at height h is labeled by an integer in {1,2,...,h},
e each horizontal step followed by a vertical step is not labeled or is labeled by 0, and
e cach horizontal step not followed by a vertical step and starting at height & is not
labeled or is labeled by an integer in {1,2,...,h}.

Let MH,, denote the set of type R; Meixner histories of length n.
For m € MH,,, define wt(m) to be the product of the weight of each step defined as follows:

An up step has weight 1.

A vertical step has weight d.

A non-labeled horizontal step has weight bd.

A horizontal step labeled 0 has weight b.

A horizontal step labeled i, for i > 1, has weight 1.

By definition it is clear that
(10.4) Z wt' (m) = Z wt(r).
TEMS] mEMHR

By Lemmas [[0.9] and [0.10 and ([I0.4), Proposition [[0.8is equivalent to

n

(10.5) > wt(m) =Y S(n,j)(b);d.

TE€MH,, j=1

Let S,, denote the set of pairs (P,o) of a set partition P = {Bi,..., By} of [n] and a
permutation o of the blocks By, ..., By of P. For (P,0) € Sy, define

wt(P, o) = b glP’l,

where cyc(o) is the number of cycles in ¢ and |P| is the number of blocks in P. Since
Zween peve(m™) = (b)n, we have

(10.6) Z S(n,j)(b);d = > wt(P,0).

Using (I0.6) we can rewrite (I0.5) as
(10.7) o owt(m) = > wt(Po).

wT€MH,, (P,o)eSy

To prove ([I0.7) we find a weight-preserving bijection ¢ : MH,, — S,,.

Let m € MH,,. Then there are n non-vertical steps in 7, say Ai,..., A, from left to right.
Note that the ending point of A; has z-coordinate i. We create available blocks and cycles of
blocks as follows. We will use the convention that once an available block is used as an element
of a cycle the block is no longer available. Moreover, if there are several available blocks, these
are ordered by their smallest elements.

e Initially there are no available blocks and no cycles of blocks.
e Fori=1,2,...,n, do the following procedure:
— If A; is an up step, create a new available block containing a single element 7.
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O 4
3 9 2 0
1 2 2 9

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIGURE 14. A type R; Meixner history of length 14.

— If A; is a non-labeled horizontal step and if it is not followed by a vertical step,
then create a new available block containing a single element ¢ and make a cycle
consisting only of this block.

— If A; is a horizontal step labeled by j > 1, then insert the integer 4 in the j-th
available block.

— If A; is a non-labeled horizontal step followed by a vertical step, then create a new
available block containing a single element ¢ and make a cycle starting with this
block. Suppose that A; is followed by k vertical steps labeled r1, 73, ..., 7. Then
add the r;-th available block at the end of the cycle, add the ra-th available block
at the end of the cycle, and so on. After this process we obtain a cycle consisting
of k + 1 blocks.

— If A; is a horizontal step labeled by 0, then A; must be followed by a vertical step.
Suppose that A; is followed by k vertical steps labeled r1,rs, ..., rg. First insert ¢
in the ri-th available block and then create a new cycle starting with this block.
Then, as in the previous case, add the ro-th available block at the end of the cycle,
add the r3-th available block at the end of the cycle, and so on. After this process
we obtain a cycle consisting of k blocks.

For example, if 7 is the Meixner history in Figure [[4] then the cycles of i(m) are created as
in Table [l and we get

e(m) = ({3,4}, {1HETH 8}, {5, 61) ({12}, {11}, {9}, {10})({13, 14}, {2}).

It is straightforward to check that the map v : MH,, — S, is a weight-preserving bijection,
which shows ([I0.7).

Finally we note that the nth moment of the Meixner polynomials has the following formula
due to de Médicis [4, Theorem 2]:

(10.8) o = (1 _ C)*n Z bCyC(ﬂ')CnCXC(ﬂ),
TES,

where nexc(m) is the number of non-excedances of m, i.e., the number of integers i € [n] with
(i) < i. Since the Meixner polynomials and the type R; Meixner polynomials have the same
nth moment, combining Proposition [[0.7 and (I0.8)) yields the following corollary.

Corollary 10.12. We have

S peremeneetn) = 37 s(n, j)(b);¢ (1 - )",

TeS, Jj=1
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(1]
(2]

(3]

[10]
(11]

12]
(13]
[14]
[15]
[16]
(17]

(18]

JANG SOO KIM AND DENNIS STANTON

non-vertical steps | available blocks new cycles of blocks
Ay {1}

Ay {1},{2}

AB {1}7{2}a {3}
Ay {1},{2}, {3} ({3,4},{1})
As {2}, {5}
AG {2}7 {576}
A? {2}7 {576} ({7})

A8 {2}7{5a6} ({S}a{576})
Ag {2}.{9}

AlO {2}7 {9}, {10}

All {2}7{9}7{10}7{11}
Ary {2},{9}, {10}, {11} | ({12}, {11},{9}, {10})
Ars {2}, {13}
A {2}, {13} ({13,14},{2})

TABLE 1. The process of the map 1 for each non-vertical step A;.

REFERENCES

R. Bacher and P. Flajolet. Pseudo-factorials, elliptic functions, and continued fractions. Ramanujan J.,
21(1):71-97, 2010.

R. A. Brualdi and S. Kirkland. Aztec diamonds and digraphs, and Hankel determinants of Schréder numbers.
J. Combin. Theory Ser. B, 94(2):334-351, 2005.

T. S. Chihara. An introduction to orthogonal polynomials. Gordon and Breach Science Publishers, New
York, 1978. Mathematics and its Applications, Vol. 13.

A. de Médicis. The Combinatorics of Meixner Polynomials: Linearization Coefficients. European Journal
of Combinatorics, 19(3):355367, 1998.

M. Dziemianczuk. On directed lattice paths with additional vertical steps.
https://arxiv.org/abs/1410.5747.

S.-P. Eu and T.-S. Fu. A simple proof of the Aztec diamond theorem. Electron. J. Combin., 12:Research
Paper 18, 8, 2005.

P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125-161, 1980.

P. Flajolet and R. Schott. Nonoverlapping partitions, continued fractions, Bessel functions and a divergent
series. Furopean J. Combin., 11(5):421-432, 1990.

G. Gasper and M. Rahman. Basic hypergeometric series, volume 96 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, second edition, 2004. With a foreword by Richard
Askey.

I. M. Gessel and X. G. Viennot. Determinants, paths, and plane partitions. preprint, 1989.

M. E. H. Ismail and D. R. Masson. Generalized orthogonality and continued fractions. J. Approx. Theory,
83(1):1-40, 1995.

S. Kamioka. Laurent biorthogonal polynomials, ¢g-Narayana polynomials and domino tilings of the Aztec
diamonds. J. Combin. Theory Ser. A, 123:14-29, 2014.

D. Kim. A combinatorial approach to biorthogonal polynomials. ProQuest LLC, Ann Arbor, MI, 1989.
Thesis (Ph.D.)-University of Minnesota.

D. Kim. A combinatorial approach to biorthogonal polynomials. SIAM J. Discrete Math., 5(3):413-421,
1992.

B. Lindstréom. On the vector representations of induced matroids. Bull. London Math. Soc., 5:85-90, 1973.
OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.org.

R. A. Sulanke and G. Xin. Hankel determinants for some common lattice paths. Advances in Applied
Mathematics, 40(2):149167, 2008.

G. Viennot. Une théorie combinatoire des polyndémes orthogonaux. Lecture Notes, UQAM, 1983.


https://arxiv.org/abs/1410.5747
http://oeis.org

ORTHOGONAL POLYNOMIALS OF TYPE R; 51

DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY (SKKU), SUWON, GYEONGGI-DO 16419, SOUTH
KOREA
E-mail address: jangsookim@skku.edu

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455, USA
E-mail address: stanton@math.umn.edu



	1. Introduction
	2. The orthogonality of type RI polynomials
	3. Moments of type RI orthogonal polynomials
	3.1. Combinatorial interpretations for n and n,m
	3.2. Combinatorial interpretations for n,m, and n,m,
	3.3. The moments n,m

	4. Moments of Laurent biorthogonal polynomials
	5. Lattice paths with bounded height
	6. Determinants for type RI polynomials
	6.1. Quotients of determinants for Pn(x) and Qn(x)
	6.2. More determinants
	6.3. Hankel determinants for n

	7. Explicit type RI polynomials
	8. Gluing
	8.1. Jacobi polynomials on [-1,1]
	8.2. Jacobi polynomials on [0,1]
	8.3. Laguerre polynomials
	8.4. Meixner polynomials
	8.5. Little q-Jacobi polynomials
	8.6. Big q-Jacobi polynomials
	8.7. The Askey–Wilson polynomials

	9. dn(x) as nth powers
	9.1. General results
	9.2. Explicit examples

	10. Combinatorics
	10.1. Hermite polynomials
	10.2. Laguerre polynomials
	10.3. Meixner polynomials

	References

