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ORTHOGONAL POLYNOMIALS OF TYPE RI

JANG SOO KIM AND DENNIS STANTON

Dedicated to Dick Askey, our great mentor.

Abstract. A combinatorial theory for type RI orthogonal polynomials is given. The ingre-
dients include weighted generalized Motzkin paths, moments, continued fractions, determi-
nants, and histories. Several explicit examples in the Askey scheme are given.
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1. Introduction

Ismail and Masson [11] defined orthogonal polynomials of type RI by generalizing the three-
term recurrence relation that classical orthogonal polynomials satisfy. In this paper we develop
the combinatorial theory of type RI orthogonal polynomials. This theory parallels the Flajolet–
Viennot development [7, 18], for classical orthogonal polynomials, using weighted paths. We
also give type RI versions of several classical polynomials in the Askey scheme.

The orthogonal polynomials Pn(x) of type RI are defined recursively. Let {Pn(x)}n≥0 be
defined by P−1(x) = 0, P0(x) = 1 and for n ≥ 0,

(1.1) Pn+1(x) = (x− bn)Pn(x)− (anx+ λn)Pn−1(x).

This defines Pn(x) as a monic polynomial in x of degree n and also a polynomial in the recurrence
coefficients, {bk}, {ak}, and {λk}. Let

dm(x) :=

m∏

i=1

(aix+ λi), and Qm(x) :=
Pm(x)

dm(x)
.

The orthogonality relation for Pn(x) is defined by a linear functional L on a certain vector space
of rational functions:

L(Pn(x)Qm(x)) = 0, if 0 ≤ n < m.

The motivation for this paper is to explain this orthogonality combinatorially. Our com-
binatorial models for L and Pn(x) have weighted objects, where the weights depend on the
coefficients bn, an, and λn. Note that an = 0 is the classical orthogonal polynomial case. In
this case the objects of weight 0 may be deleted, and Viennot’s theory is recovered.

Throughout this paper we assume that an 6= 0 and Pn(−λn/an) 6= 0 for all n ≥ 0
unless otherwise stated.

In the classical theory, the orthogonality takes place via a linear functional L on the vector
space of polynomials. For type RI orthogonality, we will need to extend the definition of L
from the space of polynomials to a larger vector space

V = span{xnQm(x) : n,m ≥ 0}
of rational functions.

In Section 2 we find several bases of the vector space V . We show that there is a unique
linear functional L on V with respect to which the type RI orthogonal polynomials Pn(x) are
orthogonal. This is a slight improvement of a result of Ismail and Masson [11].

In Section 3 we give combinatorial interpretations for µn = L(xn), µn,m = L(xnQm(x)),
µn,m,ℓ = L(xnPm(x)Qℓ(x)), and ρn,m,ℓ = L(xnPm(x)Pℓ(x)) in terms of lattice paths called
Motzkin-Schröder paths. We find the infinite continued fraction for the moment generating
function. We also give a recursive formula for νn,m = L (xn/dm(x)).

In Section 4 we study Laurent biorthogonal polynomials Pn(x), which are type RI orthogonal
polynomials with λn = 0. Kamioka [12] combinatorially studied these polynomials. In this case
there is another linear functional F that gives a different type of orthogonality for Pn(x). We
find a simple connection between our linear functional L and the other linear functional F using
inverted polynomials. We then review Kamioka’s results and generalize them.

In Section 5 we express the generating function for Motzkin-Schröder paths with bounded
height in terms of inverted polynomials where the indices of the sequences an, bn, and λn are
shifted. There are finite continued fractions for these rational functions which are explicitly
given by the three-term recurrence coefficients.

In Section 6 we find determinant formulas for Pn(x) and Qn(x) using νi,j . We also consider
some Hankel determinants using µn.
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In Sections 7, 8, and 9 we give examples of type RI orthogonal polynomials, including
Askey–Wilson and q-Racah polynomials.

In Section 10 we study combinatorial aspects of some type RI polynomials in the previous
sections.

2. The orthogonality of type RI polynomials

In this section we find several bases of the vector space

(2.1) V := span{xnQm(x) : n,m ≥ 0}.
We then give a detailed proof of the following result of Ismail and Masson [11].

Theorem 2.1. [11, Theorem 2.1] There is a unique linear functional L on V satisfying L(1) = 1
and

L(xnQm(x)) = 0 if 0 ≤ n < m.

We note that Theorem 2.1 is stated slightly differently in [11, Theorem 2.1]. Instead of
stating the uniqueness of L, they write that the values of L on the elements in the set {xn :
n ≥ 0} ∪ {1/dm(x) : m ≥ 1} are uniquely determined. We will show that this set is a basis of
V , hence the two statements are equivalent. In the proof of [11, Theorem 2.1] they implicitly
use the fact that {xm−1Qm(x) : m ≥ 2} ∪ {Qm(x) : m ≥ 0} is a basis of V without a proof. In
this section we give a detailed proof of Theorem 2.1 by showing this fact.

Observe that dividing both sides of (1.1) by dn(x) gives

(2.2) (an+1x+ λn+1)Qn+1(x) = (x− bn)Qn(x) −Qn−1(x).

Let

(2.3) V ′ := span{xn/dm(x) : n,m ≥ 0}.
We first find a basis of V ′ and then show that V = V ′.

Lemma 2.2. The vector space V ′ has a basis

(2.4) {xn : n ≥ 0} ∪ {1/dm(x) : m ≥ 1}.

Proof. Let B be the given set. Since the elements in B are linearly independent, it suffices
to show that B spans V ′. To do this, it suffices to show that p(x)/dj(x) ∈ span(B) for any
polynomial p(x) and any integer j ≥ 1.

By dividing p(x) by dj(x), we can write

(2.5)
p(x)

dj(x)
= q(x) +

r(x)

dj(x)
,

where q(x) and r(x) are polynomials and deg r(x) < j. If r(x) is constant, we have p(x)/dj(x) ∈
span(B). Otherwise, we can write

(2.6)
r(x)

dj(x)
=

(ajx+ λj)r1(x) + c

dj(x)
=

r1(x)

dj−1(x)
+

c

dj(x)
,

where r1(x) is a polynomial with deg r1(x) < j − 1 and c is a constant. By iterating (2.6) we
can express r(x)/dj(x) as a linear combination of the elements in B. Then by (2.5) we have
p(x)/dj(x) ∈ span(B) as desired. �

Lemma 2.3. We have V = V ′.



4 JANG SOO KIM AND DENNIS STANTON

Proof. By the definitions (2.1) and (2.3) of V and V ′, it is clear that V ⊆ V ′ and xn ∈ V
for n ≥ 0. By Lemma 2.2, the set in (2.4) is a basis of V ′. Thus it suffices to show that
1/dm(x) ∈ V for all m ≥ 0. We prove this by induction on m, where the base case m = 0 is
clear.

For m ≥ 1, let Um−1(x) be the quotient of Pm(x) when divided by amx+ λm:

Pm(x) = (amx+ λm)Um−1(x) + Pm(−λm/am).

Then
Pm(x)

dm(x)
=
Um−1(x)

dm−1(x)
+
Pm(−λm/am)

dm(x)
,

and

(2.7)
1

dm(x)
=

1

Pm(−λm/am)

(
Pm(x)

dm(x)
− Um−1(x)

dm−1(x)

)
.

Since Um−1(x) is a polynomial of degree m− 1, by iterating (2.6), we can write

Um−1(x)

dm−1(x)
=

m−1∑

i=0

ci
di(x)

,

for some constants c0, c1, . . . , cm−1. Then by the induction hypothesis, Um−1(x)/dm−1(x) ∈ V .
Since Pm(x)/dm(x) = Qm(x) ∈ V , (2.7) shows that 1/dm(x) ∈ V , completing the proof. �

Observe that every element of V is of the form p(x)/dm(x) for some polynomial p(x) and an
integer m ≥ 0. One can find many bases of V as follows.

Proposition 2.4. Let {tn : n ≥ 1} be a sequence of nonnegative integers and let {fn(x) : n ≥ 1}
and {gn(x) : n ≥ 0} be sequences of polynomials satisfying the following conditions:

• deg(fn(x)) = n+ tn for all n ≥ 1, and
• deg(gn(x)) ≤ n and gn(−λn/an) 6= 0 for all n ≥ 0.

Then V has a basis given by

B = {fn(x)/dtn(x) : n ≥ 1} ∪ {gn(x)/dn(x) : n ≥ 0}.
Proof. We first show that the elements in B are linearly independent. Suppose that

(2.8)
n∑

i=1

Ci
fi(x)

dti(x)
+

m∑

j=0

Dj
gj(x)

dj(x)
= 0,

where Ci and Dj are constants. We must show that the coefficients Ci and Dj are all zero.
Dividing both sides of (2.8) by xn and taking the limit x→ ∞, we obtain

Cn
lead(fn(x))

lead(dtn(x))
= 0,

where lead(p(x)) is the leading coefficient of p(x). This shows Cn = 0. Repeating this process
with xn replaced by xi, for i = n − 1, n − 2, . . . , 1, we obtain that Ci = 0 for all 1 ≤ i ≤ n.
Then (2.8) becomes

(2.9)

m∑

j=0

Dj
gj(x)

dj(x)
= 0.

Let k be the number of integers 1 ≤ j ≤ m such that −λj/aj = −λm/am. Multiplying both
sides of (2.9) by (amx + λm)k and substituting x = −λm/am we obtain Dm = 0. In this way
one can show that Dj = 0 for all 1 ≤ j ≤ m. Then we also have D0 = 0. Therefore the elements
in B are linearly independent.
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Now we show that B spans V . By Lemmas 2.2 and 2.3, it suffices to show that xn, 1/dm(x) ∈
span(B) for all n ≥ 1 and m ≥ 0.

We claim that, for any m ≥ 0 and any polynomial p(x),

(2.10)
p(x)

dm(x)
∈ span(B) if deg p(x) ≤ m.

We proceed by induction on m, where the base case m = 0 is true because p(x)/d0(x) is a
constant and g0(x)/d0(x) ∈ B is a nonzero constant. Let m ≥ 1 and suppose (2.10) holds for
all integers less than m. Then by the same argument as in the proof of 2.3 we can write

p(x)

dm(x)
=

m∑

i=0

ci
di(x)

for some constants ci. By the induction hypothesis, we have ci/di(x) ∈ span(B), and therefore
to show p(x)/dm(x) ∈ span(B), it is enough to show that 1/dm(x) ∈ span(B). Dividing gm(x)
by (amx+ λm), we have

(2.11)
gm(x)

dm(x)
=

q(x)

dm−1(x)
+
gm(−am/λm)

dm(x)
,

where q(x) is a polynomial with deg q(x) = deg gm(x) − 1 ≤ m− 1. By the induction hypoth-
esis, we have q(x)/dm−1(x) ∈ span(B). Then (2.11) shows that 1/dm(x) ∈ span(B) because
gm(−am/λm) 6= 0. Thus (2.10) is also true for m and the claim is proved.

By (2.10), we have 1/dm(x) ∈ span(B) for m ≥ 0. Therefore it remains to show that
xn ∈ span(B) for n ≥ 1. Dividing fn(x) by dtn(x), we have

(2.12)
fn(x)

dtn(x)
= qn(x) +

rn(x)

dtn(x)
,

where qn(x) and rn(x) are polynomials with deg qn(x) = n and deg rn(x) < tn. By (2.10), we
have rn(x)/dtn(x) ∈ span(B), and therefore (2.12) shows qn(x) ∈ span(B). This implies that

span{xn : n ≥ 0} = span({1} ∪ {qn(x) : n ≥ 1}) ⊆ span(B).

Hence we have xn ∈ span(B) for all n ≥ 0, which completes the proof. �

As a corollary of Proposition 2.4 we present three notable bases of V . We use the following
three choices in Proposition 2.4:

fn(x) = xndn(x), tn = n, gn(x) = 1,

fn(x) = Pn(x)dn(x), tn = n, gn(x) = Pn(x),

fn(x) = xnPn+1(x), tn = n+ 1, gn(x) = Pn(x).

Corollary 2.5. The following are bases of V :

{xn : n ≥ 1} ∪ {1/dm(x) : m ≥ 0},

{Pn(x) : n ≥ 1} ∪ {Qm(x) : m ≥ 0},

{xnQn+1(x) : n ≥ 1} ∪ {Qm(x) : m ≥ 0}.

Now we give a detailed proof of Theorem 2.1. Our proof is basically the same as the proof
in [11] with some details provided.
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Proof of Theorem 2.1. By Corollary 2.5,

B := {xm−1Qm(x) : m ≥ 2} ∪ {Qm(x) : m ≥ 0}.
is a basis of V . Since the values of L on {1} ∪ {xnQm(x) : 0 ≤ n < m} are given, and this set
contains B, if L exists, it is unique. For the existence, we construct L by defining its values on
the basis B as follows:

L(1) = 1, L(Qm(x)) = L(xm−1Qm(x)) = 0, for m ≥ 1.

It suffices to show that L satisfies

(2.13) L(xnQm(x)) = 0 if 0 ≤ n < m.

We prove (2.13) by induction on (n,m). The base case n = 0 is true by definition of L. Let
1 ≤ n < m and assume that (2.13) is true all pairs (n′,m′) 6= (n,m) such that 0 ≤ n′ < m′,
n′ ≤ n and m′ ≤ m. We now show that it is also true for (n,m). Since it is true for (m− 1,m)
by definition of L, we may assume 1 ≤ n ≤ m− 2. By (2.2) we have

(amx+ λm)Qm(x) = (x− bm−1)Qm−1(x)−Qm−2(x).

Multiplying both sides of the above equation by xn−1 we have

amx
nQm(x) + λmx

n−1Qm(x) = xnQm−1(x)− bm−1x
n−1Qm−1(x) − xn−1Qm−2(x).

Since 0 ≤ n− 1 ≤ m− 3, by the induction hypothesis, taking L on both sides gives

amL(xnQm(x)) = 0.

Since am 6= 0, we obtain L(xnQm(x)) = 0. Hence (2.13) is also true for (n,m) and the proof is
completed by induction. �

3. Moments of type RI orthogonal polynomials

Recall from Theorem 2.1 that there is a unique linear functional L on V satisfying L(1) = 1
and

L(xnQm(x)) = 0 if 0 ≤ n < m.

In this section we give combinatorial interpretations for

µn := L(xn),
µn,m := L(xnQm(x)),

µn,m,ℓ := L(xnPm(x)Qℓ(x)),

ρn,m,ℓ := L(xnPm(x)Pℓ(x))

in terms of lattice paths called Motzkin-Schröder paths. We also give a recursive formula for

νn,m = L (xn/dm(x)) .

Note that Qn(x)Qm(x) 6∈ V in general, so we do not consider L(Qn(x)Qm(x)).

3.1. Combinatorial interpretations for µn and µn,m.

In this subsection we give combinatorial interpretations for µn and µn,m using recursive
formulas.

Note that µn,m has the initial conditions given by

(3.1) µ0,0 = 1, µn,m = 0 for 0 ≤ n < m.

The following lemma gives a recurrence, which determines µn,m since the recurrence decreases
either n or n−m
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Lemma 3.1. For n,m ≥ 0 with (n,m) 6= (0, 0), we have

µn,m =

{
0, if n < m,

am+1µn,m+1 + bmµn−1,m + µn−1,m−1 + λm+1µn−1,m+1, if n ≥ m,

where µi,j = 0 if j < 0.

Proof. We have already seen that µn,m = 0 for n < m. Suppose n ≥ m. Since (n,m) 6= (0, 0)
we have n ≥ 1. Then

am+1µn,m+1 = L
(
am+1x

nPm+1(x)

dm+1(x)

)

= L
(
xn−1(am+1x+ λm+1)Pm+1(x)

dm+1(x)
− λm+1x

n−1Pm+1(x)

dm+1(x)

)

= L
(
xn−1((x − bm)Pm(x)− (amx+ λm)Pm−1(x))

dm(x)

)
− λm+1µn−1,m+1

= µn,m − bmµn−1,m − µn−1,m−1 − λm+1µn−1,m+1.

Thus
µn,m = am+1µn,m+1 + bmµn−1,m + µn−1,m−1 + λm+1µn−1,m+1,

as desired. �

Definition 3.2. A Motzkin path is a path on or above the x-axis consisting of up steps U =
(1, 1), horizontal steps H = (1, 0), and down steps D = (1,−1). A Schröder path is a path on
or above the x-axis consisting of up steps U = (1, 1), horizontal steps H = (1, 0), and vertical
step V = (0,−1).

Remark 3.3. A Schröder path is more commonly defined as a path consisting of up steps
(1, 1), double horizontal steps (2, 0), and down steps (1,−1). One can easily convert from our
definition of a Schröder path to this one by changing each horizontal step (1, 0) to a double
horizontal step (2, 0), and each vertical step (0,−1) to a down step (1,−1).

Now we define another lattice path, which contains both Motzkin and Schröder paths.

Definition 3.4. A Motzkin-Schröder path is a path on or above the x-axis consisting of up
steps U = (1, 1), horizontal steps H = (1, 0), vertical down step V = (0,−1), and diagonal
down steps D = (1,−1). For a Motzkin-Schröder path π, the weight wt(π) of π is the product
of the weight of each step, where every up step has weight 1, a horizontal step starting at height
k has weight bk, a vertical down step (0,−1) starting at height k has weight ak, and a diagonal
down step (1,−1) starting at height k has weight λk. See Figure 1.

Remark 3.5. In [13, 14], Kim found a combinatorial interpretation for moments of biorthogonal
polynomials using lattice paths. The steps are up steps, horizontal steps, and d types of down
steps. If d = 2, these lattice paths are equivalent to our Motzkin-Schröder paths.

Let MS((a, b) → (c, d)) denote the set of Motzkin-Schröder paths from (a, b) to (c, d) and let

MSn,m := MS((0, 0) → (n,m)), MSn := MSn,0 .

We also denote by Motz((a, b) → (c, d)) (resp. Sch((a, b) → (c, d))) the set of Motzkin (resp. Schröder)
paths from (a, b) to (c, d). The sets Motzn,m, Motzn, Schn,m, and Schn are defined similarly.

Theorem 3.6. For n,m ≥ 0, we have

µn,m = L(xnQm(x)) =
∑

π∈MSn,m

wt(π).
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0

1

2

3
a3

a2

λ1

a2

λ1
b0

λ3
b2

a2
b2

a2
b1

Figure 1. A Motzkin-Schröder path π from (0, 3) to (13, 1) with wt(π) = a42a3b0b1b
2
2λ

2
1λ3.

Proof. Let µ′
n,m be the right hand side. Then one can easily check that µ′

n,m satisfies the
same initial conditions in (3.1) and the recurrence relation in Lemma 3.1 as µn,m. Therefore
µn,m = µ′

n,m for all n,m ≥ 0. �

Corollary 3.7. We have

µn =
∑

π∈MSn

wt(π).

Equivalently,
∑

n≥0

µnx
n =

1

1− b0x−
a1x+ λ1x

2

1− b1x−
a2x+ λ2x

2

. . .

.

Proof. The first statement is the special case m = 0 of Theorem 3.6. The second statement
follows from the first using Flajolet’s theory [7]. �

For example, by Corollary 3.7, the moments µn for n = 0, 1, 2 can be computed as

µ0 = 1,

µ1 = b0 + a1,

µ2 = b20 + λ1 + 2a1b0 + a2a1 + b1a1 + a21.

Remark 3.8. Lattice paths containing Motzkin-Schröder paths are considered in [5]. The
number of Motzkin-Schröder paths is listed in [16, A064641]. If bn = an = 0 and λn = 1, then
µ2n+1 = 0 and µ2n = Cn, the nth Catalan number. If bn = λn = 0 and an = 1, then µn = Cn.

By taking an = bn = λn = 1 for all n in Corollary 3.7 we obtain the following result, which
also appears in [5].

Proposition 3.9. The generating function for the number of Motzkin-Schröder paths is given
by

∑

n≥0

|MSn |xn =
1− x−

√
1− 6x− 3x2

2(x+ x2)
= 1 + 2x+ 7x2 + 29x3 + 133x4 + 650x5 + · · · .

3.2. Combinatorial interpretations for µn,m,ℓ and ρn,m,ℓ.

In this subsection we give a combinatorial interpretation for Pn(x) in terms of tilings (The-
orem 3.11). This allows us to write µn,m,ℓ = L(xnPm(x)Qℓ(x)) as a signed sum of µn,m =
L(xnPm(x)). We will show that these are positive sums by finding a sign-reversing involution
which cancel all negative terms. Using a similar argument we will also find a positive formula
for ρn,m,ℓ = L(xnPm(x)Pℓ(x)).
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1 2 3 4 5 6 7 8 9

−b0 −λ2 −a4 1 −b6 −a8

Figure 2. A Favard tiling T ∈ FT9 with wt(T ) = −a4a8b0b6λ2. This tile
contributes wt(T )xbm(T )+bd(T ) = −a4a8b0b6λ2x3 to P8(x).

Definition 3.10. A (bicolored) Favard tiling of size n is a tiling of a 1× n square board with
tiles where each tile is a domino or a monomino and is colored black or red. We label the
squares in the 1 × n board by 1, 2, . . . , n from left to right. The set of Favard tilings of size n
is denoted by FTn.

For T ∈ FTn, we define bm(T ) (resp. bd(T ), rm(T ), and rd(T )) to be the number of black
monominos (resp. black dominos, red monominos, and black monominos) in T . We also define

wt(T ) =
∏

τ∈T

wt(τ),

where

wt(τ) =





1 if τ is a black monomino,

−bi−1 if τ is a red monomino with (largest) entry i,

−ai−1 if τ is a black domino with largest entry i,

−λi−1 if τ is a red domino with largest entry i.

For example, see Figure 2.
The recurrence (1.1) gives the following combinatorial interpretation for Pn(x).

Theorem 3.11. For n ≥ 0, we have

Pn(x) =
∑

T∈FTn

wt(T )xbm(T )+bd(T ).

Proof. Let Un(x) denote the right hand side. Then by definition one can easily check that, for
n ≥ 0, we have

Un+1(x) = (x− bn)Un(x)− (anx+ λn)Un−1(x)

where U−1(x) = 0 and U0(x) = 1. Therefore, by (1.1), Tn(x) and Pn(x) satisfy the same
recurrence relation and the same initial conditions. This show the theorem. �

Now we give a combinatorial interpretation for µn,m,ℓ.

Theorem 3.12. For n,m, ℓ ≥ 0, we have

µn,m,ℓ = L(xnPm(x)Qℓ(x)) =
∑

π∈MS((0,m)→(n,ℓ))

wt(π).

Proof. We will find a sign-reversing involution on a larger set whose fixed point set is given by
the Motzkin-Schröder paths in this theorem.

Applying Theorem 3.11 to Pm(x) and using Theorem 3.6, we have

(3.2) L(xnPm(x)Qℓ(x)) =
∑

T∈FTm

wt(T )L(xn+bm(T )+bd(T )Qℓ(x)) =
∑

(π,T )∈X

wt(π)wt(T ),

where X is the set of pairs (π, T ) of a Motzkin-Schröder path π ∈ MSt,ℓ and a Favard tiling
T ∈ FTm satisfying t = n+ bm(T ) + bd(T ). The sign-reversing involution on X will remove or
add a horizontal step or a peak ((U, V ) or (U,D)) in π, and modify T accordingly.
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Consider (π, T ) ∈ X and write π = S1 . . . Sr as a sequence of steps. Suppose that i and j are
the largest integers such that π starts with i up steps and T starts with j black monominos.

Case 1: j ≥ i + 1. In this case we have i + 1 ≤ bm(T ) ≤ n + bm(T ) + bd(T ) = t.
Therefore π must have the (i + 1)st step. We define π′ and T ′ in the following three
cases depending on the step Si+1.
Case 1-a: Si+1 is a horizontal step. In this case let

π′ = S1 . . . Ŝi+1 . . . Sr,

and define T ′ to be the Favard tiling obtained from T by replacing the black

monomino at position i + 1 by a red monomino. Here the notation Ŝi+1 means
that Si+1 is removed from the sequence. See Figure 3.

Case 1-b: Si+1 is a vertical step. In this case let

π′ = S1 . . . ŜiŜi+1 . . . Sr,

and define T ′ to be the Favard tiling obtained from T by replacing the two black
monominos at positions i and i+ 1 by a black domino. See Figure 4.

Case 1-c: Si+1 is a down step. In this case let

π′ = S1 . . . ŜiŜi+1 . . . Sr,

and define T ′ to be the Favard tiling obtained from T by replacing the two black
monominos at positions i and i+ 1 by a red domino. See Figure 5.

Case 2: j ≤ i and j < m. In this case T contains a tile, say A, with entry j + 1. We
define π′ and T ′ in the following three cases depending on the tile A.
Case 2-a: A is a red monomino. In this case let

π′ = S1 . . . SjHSj+1 . . . Sr,

and define T ′ to be the Favard tiling obtained from T by replacing A by a black
monomino. See Figure 3.

Case 2-b: A is a black domino. In this case let

π′ = S1 . . . SjUV Sj+1 . . . Sr,

and define T ′ to be the Favard tiling obtained from T by replacing A by two black
monominos. See Figure 4.

Case 2-c: A is a red domino. In this case let

π′ = S1 . . . SjUDSj+1 . . . Sr,

and define T ′ to be the Favard tiling obtained from T by replacing A by two black
monominos. See Figure 5.

Case 3: j ≤ i and j = m. In this case define π′ = π and T ′ = T . See Figure 6.

It is straightforward to verify that (π, T ) 7→ (π′, T ′) is a sign-reversing involution on X whose
fixed points are the pairs (π, T ) with π ∈ MS((0, 0) → (m+ n, ℓ)) and T ∈ FTm such that the
first m steps of π are up steps and T consists of m black monominos. Note that if (π, T ) is a
fixed point, then wt(T ) = 1 and wt(π) = wt(π≥m), where π≥m is the subpath of π from (m,m)
to (m+ n, ℓ). This shows that

(3.3)
∑

(π,T )∈X

wt(π)wt(T ) =
∑

π∈MS((m,m)→(m+n,ℓ))

wt(π) =
∑

π∈MS((0,m)→(n,ℓ))

wt(π).

Then the theorem follows from (3.2) and (3.3). �
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i = 3

1 2 3 4 5 6

j = 4

i = 3

1 2 3 4 5 6

j = 3

Figure 3. A pair (π, T ) ∈ X in Case 1-a on the left and the corresponding
pair (π′, T ′) in Case 2-a on the right, for (n,m, ℓ) = (2, 6, 2). The horizontal
step starting at (3, 3) in π is collapsed to a point.

i = 3

1 2 3 4 5 6

j = 4

i = 2

1 2 3 4 5 6

j = 2

Figure 4. A pair (π, T ) ∈ X in Case 1-b on the left and the corresponding
pair (π′, T ′) in Case 2-b on the right, for (n,m, ℓ) = (2, 6, 2). The peak (U, V )
starting at (2, 2) in π is collapsed to a point.

Now we list a number of special cases of Theorem 3.12.
First of all, if an = 0, we obtain Viennot’s result.

Corollary 3.13. [18, Proposition 17 on page I-15] We have

L(xnPm(x)Pℓ(x)) = λ1 . . . λℓ
∑

π∈Motz((0,m)→(n,ℓ))

wt(π).

In the next section we will show that if λn = 0 and ℓ = 0 in Theorem 3.12, then we obtain
Kamioka’s result [12, Lemma 3.1] on Laurent biorthogonal polynomials.

If m = 0 or ℓ = 0 in Theorem 3.12, we obtain the following corollary.
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i = 3

1 2 3 4 5 6

j = 4

i = 2

1 2 3 4 5 6

j = 2

Figure 5. A pair (π, T ) ∈ X in Case 1-c on the left and the corresponding
pair (π′, T ′) in Case 2-c on the right, for (n,m, ℓ) = (2, 6, 2). The peak (U,D)
starting at (2, 2) in π is collapsed to a point.

i = 6

1 2 3 4 5 6

j = 6

Figure 6. A pair (π, T ) ∈ X in Case 3 for (n,m, ℓ) = (2, 6, 2). In this case
(π, T ) = (π′, T ′) is a fixed point.

Corollary 3.14. For n,m ≥ 0, we have

L(xnPm(x)) =
∑

π∈MS((0,m)→(n,0))

wt(π),

L(xnQm(x)) =
∑

π∈MS((0,0)→(n,m))

wt(π).

If n = 0 in Theorem 3.12, we obtain the following corollary.
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Corollary 3.15. We have

L(Pn(x)Qm(x)) =

{
0 if n < m,

am+1am+2 . . . an if n ≥ m.

In particular,

L(Pn(x)Qm(x)) = δn,m, if 0 ≤ n ≤ m,

L(Pn(x)) = a1a2 · · · an,
L(Pn(x)(Qm(x)− am+1Qm+1(x))) = δn,m.

If m = 0 and n = ℓ, or n = 0 and m = ℓ, we obtain the following corollary, which is
equivalent to [11, Corollary 2.2].

Corollary 3.16. We have

L(xnQn(x)) = L(Pn(x)Qn(x)) = 1.

Using Corollary 3.15 we can find the coefficients in the expansion of an arbitrary polynomial
as a linear combination of Pn(x).

Proposition 3.17. Let p(x) be a polynomial in x, and expand

p(x) =

∞∑

m=0

cmPm(x).

Then
cm = L (p(x)(Qm(x) − am+1Qm+1(x))) .

Proof. Corollary 3.15 implies

L(p(x)Qℓ(x)) =
∑

m≥ℓ

cmamam−1 · · · aℓ+1,

and thus
L(p(x)(Qℓ(x)− aℓ+1Qℓ+1(x))) = cℓ,

as desired. �

The following theorem implies that ρn,m,ℓ = L(xnPm(x)Pℓ(x)) is a positive polynomial in
ak, bk, and λk.

Theorem 3.18. For n,m, ℓ ≥ 0, we have

ρn,m,ℓ = L(xnPm(x)Pℓ(x)) =
∑

π

wt(π),

where the sum is over all Motzkin-Schröder paths from (0,m) to (n+ ℓ, 0) such that the last ℓ
steps consist only of vertical steps and down steps.

Proof. By Theorem 3.11 and Theorem 3.12, we have

L(xnPm(x)Pℓ(x)) =
∑

T∈FTℓ

wt(T )L(xn+bm(T )+bd(T )Pm(x)) =
∑

(π,T )∈X

wt(π)wt(T ),

where X is the set of pairs (π, T ) of a Motzkin-Schröder path π from (0,m) to (n+ t, 0) and a
Favard tiling T ∈ FTℓ satisfying t = n+ bm(T ) + bd(T ).

By the same argument as in the proof of Theorem 3.12, we can find a sign-reversing involution
on X whose fixed points are exactly the Motzkin-Schröder paths described in this theorem.
The only difference in the construction of the sign-reversing involution is that we write π =
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SrSr−1 . . . S1 and let i be the largest integer such that the last i steps S1, . . . , Si consist of
vertical and down steps. We omit the details. �

If ℓ = 0 in Theorem 3.18, we obtain Corollary 3.14. If n = 0 in Theorem 3.18, we obtain the
following corollary.

Corollary 3.19. For m,n ≥ 0, we have

L(Pm(x)Pn(x)) =
∑

π

wt(π),

where the sum is over all Motzkin-Schröder paths from (0,m) to (n, 0) such that the last n steps
consist only of vertical steps and down steps.

Example 3.20. If (n,m, ℓ) = (0, 1, 1), we have

L(P1(x)P1(x)) = a1a2 + a1b1 + λ1.

One path is eliminated: the path V H , because the last step is a horizontal step, which is neither
a vertical step nor a down step.

If (n,m, ℓ) = (0, 2, 1), we have

L(P2(x)P1(x)) = a21a2 + a1a
2
2 + a1a2a3 + a1a2b1 + a1a2b2 + a2λ1 + a1λ2.

One path is eliminated: the path V V H , because the last step is a horizontal step, which is
neither a vertical step nor a down step.

3.3. The moments νn,m.

We will find a recurrence for νn,m = L (xn/dm(x)) and a generating function for them. We
do not have a combinatorial interpretation for them.

For m ≥ 1, define Um(x) to be the quotient of Pm(x) when divided by amx+ λm:

Pm(x) = (amx+ λm)Um(x) + Pm(−λm/am).

Let fm,i be the coefficients of Um(x):

Um(x) =

m−1∑

i=0

fm,ix
i.

The following Lemma 3.21 with ν0,0 = 1 allows us to compute νn,m for all n,m ≥ 0.

Lemma 3.21. For n,m ≥ 1 we have

νn,0 = µn,0 = µn,(3.4)

ν0,m = − 1

Pm(−λm/am)

m−1∑

i=0

fm,iνi,m−1,(3.5)

νn,m =
1

am
νn−1,m−1 −

λm
am

νn−1,m.(3.6)

Proof. The first identity is immediate from the definitions of νn,m and µn,m. The second identity
follows from

0 = L
(
Pm(x)

dm(x)

)
= L

(
Um(x)

dm−1(x)
+
Pm(−λm/am)

dm(x)

)
.

The third identity follows from

amνn,m = L
(
xn−1(amx+ λm)

dm
− λmx

n−1

dm

)
= νn−1,m−1 − λmνn−1,m.

�
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For m ≥ 0, let

Vm(x) =
∑

n≥0

νn,mx
n.

Proposition 3.22. For an integer m ≥ 1, we have

Vm(x) =
amν0,m
am + λmx

+
xVm−1(x)

am + λmx
.

Proof. By (3.6), for n ≥ 1,

amνn,m + λmνn−1,m = νn−1,m−1.

By multiplying both sides by xn and summing over n ≥ 1, we obtain

am(Vm(x) − ν0,m) + λmxVm(x) = xVm−1(x),

which is equivalent to the desired equation. �

By iterating the equation in Proposition 3.22 and observing the fact V0(x) =
∑

n≥0 µnx
n we

obtain the following corollary.

Corollary 3.23. For m ≥ 1, we have

Vm(x) =
xm
∑

n≥0 µnx
n

∏m
j=1(aj + λjx)

+

m∑

i=1

ν0,ix
m−i

∏m
j=i(1 + λjx/aj)

.

4. Moments of Laurent biorthogonal polynomials

In this section we study Laurent biorthogonal polynomials Pn(x), which are type RI or-
thogonal polynomials with λn = 0. Kamioka [12] combinatorially studied this case. There is
another linear functional F that gives a different type of orthogonality for Pn(x). We will first
study the connection between our linear functional L and Kamioka’s linear functional F . We
then review Kamioka’s results and show that these are special cases of Theorem 3.12.

In this section we consider the case λn = 0 for all n ≥ 0, so that the polynomials Pn(x) are
defined by P−1(x) = 0, P0(x) = 1, and for n ≥ 0,

(4.1) Pn+1(x) = (x− bn)Pn(x)− anxPn−1(x).

Throughout this section we assume that Pn(0) 6= 0 and an 6= 0 for all n ≥ 0. Since
Pn(0) = (−1)nb0b1 . . . bn−1, we must have bn 6= 0 for all n ≥ 0.

For n ≥ 0, let

Qn(x) =
Pn(x)

a1 . . . anxn
,

where Q0(x) = 1. Then V = span{xnQm(x) : n,m ≥ 0} is the vector space of Laurent
polynomials.

Kamioka showed the following Favard-type theorem.

Theorem 4.1. [12, Theorem 2.1] There is a unique linear functional F on V such that F(1) = 1
and

F(x−nPm(x)) = 0, 0 ≤ n < m.

Remark 4.2. We note that the original statement of [12, Theorem 2.1] is that there is a unique
linear functional F on V such that F(1) = 1 and

F(x−nPm(x)) = hnδn,m, 0 ≤ n ≤ m,
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for some constants hn 6= 0. Since span({1}∪ {x−nPm(x) : 0 ≤ n < m}) = V and x−kPk(x), for
k ≥ 0, is a linear combination of the elements in the spanning set {1}∪{x−nPm(x) : 0 ≤ n < m},
where the coefficient of 1 is nonzero, the two statements are equivalent.

Using Theorem 2.1 we obtain a slightly different Favard-type theorem.

Theorem 4.3. There is a unique linear functional L on V such that L(1) = 1 and

L(x−nPm(x)) = 0, 0 < n ≤ m.

Proof. By Theorem 2.1, there is a unique linear functional L on V satisfying the orthogonality

L
(
xn−mPm(x)/a1 . . . am

)
= 0, 0 ≤ n < m.

Replacing n by m− n in the above equation gives the theorem. �

Note that, since P1(x) = x− b0, if n = 0 and m = 1 in Theorem 4.1 we obtain

(4.2) F(x) = b0.

Similarly, if n = m = 1 in Theorem 4.9, we obtain

(4.3) L(x−1) = b−1
0 .

We now show that the linear functionals F and L in the above two Favard-type theorems
have a simple connection.

Proposition 4.4. For all f(x) ∈ V , we have

F(f(x)) = b0 · L(x−1f(x)).

Proof. We will show the equivalent statement

(4.4) L(f(x)) = b−1
0 · F(xf(x)).

Let L′(f(x)) be the right hand side of (4.4). Then by Theorem 4.9 it suffices to show that
L′(1) = 1 and

L′(x−nPm(x)) = 0, 0 < n ≤ m.

By definition of L′ and (4.2), we have L′(1) = b−1
0 F(x) = 1. For 0 < n ≤ m, we have

L′(x−nPm(x)) = b−1
0 · F(x−(n−1)Pm(x)) = 0

because 0 ≤ n− 1 < m. This completes the proof. �

We will find another connection between the linear functionals F and L using inverted
polynomials.

Definition 4.5. The inverted polynomial of Pn(x) is defined by P ∗
n(x) := xnPn(x

−1)/Pn(0).
For any linear functional M on V define M∗ by

M∗(f(x)) := M(f(x−1)).

Using (4.1) and Pn(0) = (−1)nb0b1 . . . bn−1, we have

P ∗
n+1(x) = (x− b∗n)P

∗
n(x)− a∗nxP

∗
n−1(x),

where

b∗n :=
1

bn
, a∗n :=

an
bn−1bn

.

It is easy to check that the map X 7→ X∗ is an involution, i.e., X∗∗ = X , for each X ∈
{Pn, an, bn,M}.
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Let P = {Pn(x)}n≥0 be the sequence of polynomials given by (4.1). By Theorems 4.1 and
4.9 there are unique linear functionals, denoted by LP and FP , satisfying L(1) = F(1) = 1 and

LP (x
−nPm(x)) = 0, 0 < n ≤ m,

FP (x
−nPm(x)) = 0, 0 ≤ n < m.

We will sometime write L in place of LP .

Proposition 4.6. Let P = {Pn(x)}n≥0 be the sequence of polynomials given by (4.1) and let
P ∗ = {P ∗

n(x)}n≥0. Then we have

FP∗ = L∗
P , LP∗ = F∗

P .

Proof. For 0 ≤ n < m, by the definition of P ∗
m(x), we have

L∗
P (x

−nP ∗
m(x)) = LP (x

nP ∗
m(x−1)) = LP (x

−(m−n)Pm(x)/Pm(0)) = 0,

where the last equality follows from Theorem 4.9 since 0 < m− n ≤ m. By Theorem 4.1, this
shows the first identity FP∗ = L∗

P .
Applying the first identity to P ∗, we have L∗

P∗ = F(P∗)∗ . Then

LP∗ = (L∗
P∗)∗ = (F(P∗)∗)

∗ = F∗
P ,

which gives the second identity. �

Kamioka [12, Lemma 3.1] showed that (in our notation) for n,m ≥ 0,

F(xn+1Pm(x)) = F(x)
∑

π∈Sch((0,m)→(n,0))

wt(π),(4.5)

F∗(xnP ∗
m(x)) =

∑

π∈Sch((0,m)→(n,0))

wt∗(π),(4.6)

where wt∗(π) is the same weight wt(π) with bn and an replaced by b∗n and a∗n, respectively.

Remark 4.7. Kamioka’s definition of Schröder paths is different from ours; his definition is
the one explained in Remark 3.3. In [12, Lemma 3.1] it is written that “both the sums range
over all Schröder paths from (−n,−n) to (2k, 0).” Here (−n,−n) is a typo for (−n, n).

By Proposition 4.4, the first identity (4.5) is equivalent to

(4.7) L(xnPm(x)) =
∑

π∈Sch((0,m)→(n,0))

wt(π).

By Proposition 4.6, the left hand side of (4.6) can be rewritten as

F∗(xnP ∗
m(x)) = LP∗(xnP ∗

m(x)),

and therefore the second identity (4.6) is also equivalent to (4.7) with P replaced by P ∗.
The following theorem, which is the special case λn = 0 of Theorem 3.12, is a generalization

of (4.7), hence a generalization of Kamioka’s results (4.5) and (4.6).

Theorem 4.8. For n,m, ℓ ≥ 0, we have

L(xnPm(x)Qℓ(x)) =
∑

π∈Sch((0,m)→(n,ℓ))

wt(π).

We give a similar formula for L(xnPm(x)Qℓ(x)) when n is negative.
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Theorem 4.9. For n,m, ℓ ≥ 0, we have

L(x−n−1Qm(x)Pℓ(x)) =
a∗1 . . . a

∗
ℓPm(0)Pℓ(0)

a1 . . . amb0

∑

π∈Sch((0,m)→(n,ℓ))

wt∗(π).

Proof. Since Qℓ(x) = x−ℓPℓ(x)/a1 . . . aℓ, applying Theorem 4.1 to the inverted polynomials
P ∗
k (x), we obtain

(4.8) LP∗

(
xnP ∗

m(x)
x−ℓP ∗

ℓ (x)

a∗1 . . . a
∗
ℓ

)
=

∑

π∈Sch((0,m)→(n,ℓ))

wt(π).

Observe that

LP∗(f(x)) = F∗
P (f(x)) = FP (f(x

−1)) = b0LP (x
−1f(x−1)),

where the first, second, and third equalities follow from Proposition 4.6, the definition of F∗
P ,

and Proposition 4.4, respectively. Therefore the left hand side of (4.8) can be rewritten as

(4.9) b0LP

(
x−1−nP ∗

m(x−1)
xℓP ∗

ℓ (x
−1)

a∗1 . . . a
∗
ℓ

)
=

a1 . . . amb0
a∗1 . . . a

∗
ℓPm(0)Pℓ(0)

L
(
x−1−nQm(x)Pℓ(x)

)
,

where the following identities are used:

P ∗
m(x−1) =

x−mPm(x)

Pm(0)
=
a1 . . . amQm(x)

Pm(0)
, P ∗

ℓ (x
−1) =

x−ℓPℓ(x)

Pℓ(0)
.

Using (4.8) and (4.9) we obtain the desired identity. �

If m = ℓ = 0 in Theorems 4.8 and 4.9 we obtain the following result of Kamioka.

Corollary 4.10. [12, Theorem 3.1] For n ≥ 0, we have

L(xn) =
∑

π∈Schn

wt(π),

L(x−n−1) = b−1
0

∑

π∈Schn

wt∗(π).

5. Lattice paths with bounded height

In this section we express the generating function for Motzkin-Schröder paths with bounded
height as quotients of inverted polynomials where the indices of the sequences b = {bn}n≥0, a =
{an}n≥0, and λ = {λn}n≥0 are shifted.

Recall that Pn(x) are defined in (1.1). We will denote this polynomial by Pn(x; b, a, λ) to in-
dicate that the three-term recurrence coefficients are taken from the sequences b = {bn}n≥0, a =
{an}n≥0, and λ = {λn}n≥0. The inverted polynomial P ∗

n(x) = xnPn(1/x) will also be written as
P ∗
n(x; b, a, λ) = xnPn(1/x; b, a, λ). Note that P

∗
n(x) = xnPn(1/x) satisfy P

∗
−1(x) = 0, P ∗

1 (x) = 1
and

(5.1) P ∗
n+1(x) = (1− bnx)P

∗
n(x) − (anx+ λnx

2)P ∗
n−1(x).

Definition 5.1. For a sequence s = {sn}n≥0 define δs = {sn+1}n≥0. For Pn(x) = Pn(x; b, a, λ),
we also define

δPn(x) = δPn(x; b, a, λ) = Pn(x; δb, δa, δλ),

δP ∗
n(x) = δP ∗

n(x; b, a, λ) = P ∗
n(x; δb, δa, δλ).
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Definition 5.2. We denote by MS≤k
n,r,s the set of Motzkin-Schröder paths from (0, r) to (n, s)

such that the y-coordinate of every point is at most k. Define MS≤k
n := MS≤k

n,0,0 and

µ≤k
n,r,s :=

∑

π∈MS≤k
n,r,s

wt(π),

µ≤k
n :=

∑

π∈MS≤k
n

wt(π).

The goal of this section is to prove the following theorem, which is a generalization of
Viennot’s results [18, (27) on page V-19] on orthogonal polynomials (the case an = 0).

Theorem 5.3. If r ≤ s, then

(5.2)
∑

n≥0

µ≤k
n,r,sx

n =
P ∗
r (x)δ

s+1P ∗
k−s(x)

P ∗
k+1(x)

· xs−r.

If r > s, then

(5.3)
∑

n≥0

µ≤k
n,r,sx

n =
P ∗
s (x)δ

r+1P ∗
k−r(x)

P ∗
k+1(x)

·
r∏

i=s+1

(ai + λix).

If r = s = 0 in Theorem 5.3 we obtain the following corollary.

Corollary 5.4. We have
∑

n≥0

µ≤k
n xn =

δP ∗
k (x)

P ∗
k+1(x)

.

On the other hand, using Flajolet’s argument [7], we obtain a continued fraction expression
for the generating function for µ≤k

n .

Proposition 5.5. We have

∑

n≥0

µ≤k
n xn =

1

1− b0x−
a1x+ λ1x

2

1− b1x−
a2x+ λ2x

2

1− b2x− . . . − akx+ λkx
2

1− bkx

.

Remark 5.6. Combining Corollary 5.4 and Proposition 5.5 gives

(5.4)
δP ∗

k (x)

P ∗
k+1(x)

=
1

1− b0x−
a1x+ λ1x

2

1− b1x− a2x+ λ2x
2

1− b2x− . . . − akx+ λkx
2

1− bkx

,

which can also be shown using the following fundamental recurrence relations for continued
fractions, see [3, Chapter III, §2].

For the remainder of this section we give a proof of Theorem 5.3. To do this we give a
combinatorial meaning to

P ∗
k+1(x)

∑

n≥0

µ≤k
n,r,sx

n.
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First we need a combinatorial interpretation for P ∗
n(x). Similarly to Theorem 3.11, the

recurrence (5.1) gives the following proposition.

Proposition 5.7. For n ≥ 0, we have

P ∗
n(x) =

∑

T∈FTn

wt(T )xbm(T )+rm(T )+2rd(T ).

Let

MS≤k
∗,r,s :=

⋃

n≥0

MS≤k
n,r,s .

Then by Proposition 5.7 we have

P ∗
k+1(x)

∑

n≥0

µ≤k
n,r,sx

n =
∑

T∈FTk+1

∑

π∈MS
≤k
∗,r,s

wt(T )wt(π)x|π|+rm(T )+bm(T )+2bd(T ).

In what follows we construct a sign-reversing involution on MS≤k
∗,r,s×FTk+1, which can-

cels many terms in the above equation. The basic idea is similar to that in Section 3: for
(π, T ) ∈ MS≤k

∗,r,s ×FTk+1 we add or remove a horizontal step, a peak ((U, V ) or (U,D)), or a
valley ((V, U) or (D,U)) in π and modify the corresponding tile(s) in T . We first need several
terminologies.

For π ∈ MS≤k
∗,r,s, we define |π| to be n if π ∈ MS≤k

n,r,s. A valley of π is a pair (D,U) or (V, U)
of consecutive steps in π and a peak of π is a pair (U,D) or (U, V ) of consecutive steps in π.

Let (π, T ) ∈ MS≤k
∗,r,s ×FTk+1 and write π = S1 . . . Sm as a sequence of steps. A removable

point of π is a point (j, h) on π satisfying one of the following conditions:

• π has a horizontal step starting at (j, h),
• h ≥ min(r, s) and π has a peak starting at (j, h), or
• h ≤ min(r, s) and π has a valley starting at (j, h).

In other words, a removable point of π is the starting point of a horizontal step, a peak above
the line y = min(r, s), or a valley below the line y = min(r, s). Let remove(π) denote the
smallest integer i ≥ 0 such that the ending point of S1 . . . Si is a removable point. (If i = 0,
the ending point of S1 . . . Si means the starting point of π, which is (0, r).) If there is no such
integer i, we define remove(π) = ∞. See Figures 7 and 8.

An addable point of (π, T ) is a point (j, h) on π satisfying one of the following conditions:

• T has a red monomino containing h+ 1,
• h ≥ min(r, s) and T has a (red or black) domino containing h+ 1, h+ 2, or
• h ≤ min(r, s) and T has a (red or black) domino containing h, h+ 1.

In other words, an addable point of (π, T ) is an intersection of π with the line y = h for some
h such that T has a red monomino with h+1, a domino with h+1, h+2 and h ≥ min(r, s), or
a domino with h, h+ 1 and h ≤ min(r, s). Let add(π, T ) denote the smallest integer i ≥ 0 such
that the ending point of S1 . . . Si is an addable point. If there is no such integer i, we define
add(π, T ) = ∞. See Figures 9 and 10.

We are now ready to define a map φ : MS≤k
∗,r,s ×FTk+1 → MS≤k

∗,r,s ×FTk+1. Let (π, T ) ∈
MS≤k

∗,r,s ×FTk+1 and write π = S1 . . . Sm as a sequence of steps. Then φ(π, T ) = (π′, T ′) is
defined as follows.

Case 1: remove(π) = add(π, T ) = ∞. In this case, (π′, T ′) = (π, T ).
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Figure 7. A Motzkin-Schröder path π in MS≤k
∗,r,s for r = 3, s = 5 and k = 6.

The dashed line is the line y = min(r, s). The red dots are the removable points
of π. The horizontal step, a peak, or a valley starting at each removable point
is colored red. In this case remove(π) = 1 because the first removable point
occurs after the first step.
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Figure 8. A Motzkin-Schröder path π in MS≤k
∗,r,s for r = 5, s = 2 and k = 5.

The dashed line is the line y = min(r, s). The red dots are the removable points
of π. The horizontal step, a peak, or a valley starting at each removable point
is colored red. In this case remove(π) = 4 because the first removable point
occurs after the fourth step.
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Figure 9. An element (π, T ) ∈ MS≤k
∗,r,s×FTk+1 for r = 2, s = 3, k = 5. The

dashed line is the line y = min(r, s). The removable points of π are the red
dots and remove(π) = 1. The addable points of (π, T ) are circled. Since the
first addable point occurs at the beginning of π, we have add(π, T ) = 0.
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Figure 10. An element (π, T ) ∈ MS≤k
∗,r,s ×FTk+1 for r = 3, s = 1, k = 5. The

dashed line is the line y = min(r, s). The removable points of π are the red
dots and remove(π) = 1. Since there are no addable points, we have add(π, T ) =
∞.

Case 2: remove(π) ≥ add(π, T ). Suppose that i = add(π, T ) and S1 . . . Si ends at (j, h),
which is an addable point. Let τ be the tile of T containing h+ 1. Then

π′ =





S1 . . . SiHSi+1 . . . Sm, if τ is a red monomino,

S1 . . . SiUDSi+1 . . . Sm, if τ is a red domino and h ≥ min(r, s),

S1 . . . SiUV Si+1 . . . Sm, if τ is a black domino and h ≥ min(r, s),

S1 . . . SiDUSi+1 . . . Sm, if τ is a red domino and h ≤ min(r, s),

S1 . . . SiV USi+1 . . . Sm, if τ is a black domino and h ≤ min(r, s),

and T ′ is the tiling obtained from T by replacing τ by one or two black monomino(s)
according to the size of τ .

Case 3: remove(π) < add(π, T ). Suppose that i = remove(π, T ) and S1 . . . Si ends at
(j, h), which is a removable point. Then

π′ =

{
S1 . . . Ŝi+1 . . . Sm, if Si+1 = H ,

S1 . . . Ŝi+1Ŝi+2 . . . Sm, otherwise,

T ′ =





T −Bh+1 +Rh+1, if Si+1 = H ,

T −Bh+1 −Bh+2 +Rh+1,h+2, if (Si+1, Si+2) = (U,D) and h ≥ min(r, s),

T −Bh+1 −Bh+2 +Bh+1,h+2, if (Si+1, Si+2) = (U, V ) and h ≥ min(r, s),

T −Bh −Bh+1 +Rh,h+1, if (Si+1, Si+2) = (D,U) and h ≤ min(r, s),

T −Bh −Bh+1 +Bh,h+1, if (Si+1, Si+2) = (D,V ) and h ≤ min(r, s).

Here, for example, T−Bh−Bh+1+Rh,h+1 means the tiling obtained from T by removing
a black monomino with h and a black monomino with h+ 1 and adding a red domino
with h, h+ 1.

Example 5.8. If (π, T ) is the element in Figure 9, then φ(π, T ) is the element in Figure 11. If
(π, T ) is the element in Figure 10, then φ(π, T ) is the element in Figure 12.

Lemma 5.9. The map φ : MS≤k
∗,r,s ×FTk+1 → MS≤k

∗,r,s×FTk+1 is a sign-reversing involution,
i.e., if φ(π, T ) = (π′, T ′) with (π, T ) 6= (π′, T ′), then wt(π′, T ′) = −wt(π, T ), where

wt(π, T ) := wt(T )wt(π)x|π|+rm(T )+bm(T )+2bd(T ).

Moreover, the set of fixed points of φ is given by

Fix(φ) = {(φ, T ) : remove(π) = add(π, T ) = ∞}.
Proof. This is a straightforward verification using the definition of φ. We omit the details. �
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−b0 1 1 −λ4 1

Figure 11. An element (π, T ) ∈ MS≤k
∗,r,s ×FTk+1 for r = 2, s = 3, k = 5. The

dashed line is the line y = min(r, s). The removable points of π are the red dots
and remove(π) = 0. The addable points of (π, T ) are circled and add(π, T ) = 4.
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Figure 12. An element (π, T ) ∈ MS≤k
∗,r,s ×FTk+1 for r = 3, s = 1, k = 5. The

dashed line is the line y = min(r, s). The removable points of π are the red dots
and remove(π) = 1. The removable points of (π, T ) are circled and add(π, T ) =
1.

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. The theorem can be reformulated as follows:

(5.5) P ∗
k+1(x)

∑

n≥0

µ≤k
n,r,sx

n =

{
P ∗
r (x)δ

s+1P ∗
k−s(x)x

s−r , if r ≤ s,

P ∗
s (x)δ

s+1P ∗
k−r(x)

∏r
i=s+1(ai + λix), if r > s.

By Lemma 5.9 we have

P ∗
k+1(x)

∑

n≥0

µ≤k
n,r,sx

n =
∑

T∈FTk+1

∑

π∈MS≤k
∗,r,s

wt(T )wt(π)x|π|+rm(T )+bm(T )+2bd(T )

=
∑

(π,T )∈Fix(φ)

wt(T )wt(π)x|π|+rm(T )+bm(T )+2bd(T ),

where Fix(φ) is the set of pairs (π, T ) ∈ MS≤k
∗,r,s ×FTk+1 such that remove(π) = add(π, T ) = ∞.

We first consider the case r ≤ s. Suppose (π, T ) ∈ Fix(φ). It is easy to see that there is a
unique π satisfying remove(π) = ∞, namely π = UU . . . U consisting of s− r up steps. This π
contributes the factor xs−r in (5.5). Moreover, since add(π, T ) = ∞, we must have that the tile
in T containing h must be a red monomino for every r+1 ≤ h ≤ s+1. On the other hand, there
is no restriction on the tiles containing i ≤ r and j ≥ s+ 2. If we sum over all (π, T ) ∈ Fix(φ),
the part of T consisting of tiles with entries in {1, 2, . . . , r} (resp. {s + 2, s + 3, . . . , k + 1})
contributes the factor P ∗

r (x) (resp. δ
s+1P ∗

k−s(x)) in (5.5). This shows (5.5) when r ≤ s.
Now we consider the case r < s. This can be shown similarly as in the previous case. The

only difference is that π is not unique, but π can be any path with r− s steps, where each step
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is either U or V . The contribution of such π’s is the factor
∏r

i=s+1(ai + λix) in (5.5). This
completes the proof. �

6. Determinants for type RI polynomials

Classically the orthogonal polynomials may be given by a quotient of Hankel determinants:

(6.1) Pn(x) =
1

det(µi+j)
n−1
i,j=0

det

(
(µi+j)0≤i≤n−1

0≤j≤n

(xj)0≤j≤n

)
.

Moreover, we know that ([3, p. 16]) the denominator determinant factors

(6.2) ∆n := det(µi+j)
n
i,j=0 =

n∏

k=1

λn+1−k
k .

In this section we find analogues of (6.1) and (6.2) for type RI polynomials Pn(x) and Qn(x).
One may ask why such determinantal formulas arise. In the classical case the orthogonality

relations may be considered as linear equations for the coefficients of Pn(x). These may be
solved by Cramer’s rule to give a quotient of determinants [3, p. 12]. These are exactly the
Hankel determinants in (6.1). The type RI orthogonality relations may also be considered as
linear relations for expansion coefficients of Pn(x) and Qn(x). The same method would gives the
determinant in this section, but not the product formulas for the denominator determinants.
Thus we do not use Cramer’s rule in this section.

6.1. Quotients of determinants for Pn(x) and Qn(x).

We shall give in Theorem 6.1 three quotients of determinants for Pn(x) and Qn(x). We also
factor the three denominator determinants in Theorem 6.4, these are

∆′
n := det(νi+j,n)0≤i,j≤n,

∆′′
n := det(νi+j,j)0≤i,j≤n,

∆′′′
n := det(νi,j)0≤i,j≤n.

Theorem 6.4 shows that ∆′
n and ∆′′′

n are always nonzero and ∆′′
n is nonzero if λk 6= 0 for all

k ≥ 1.

Theorem 6.1. We have

(6.3) Pn(x) =
1

∆′
n

det




ν0,n ν1,n · · · νn,n
ν1,n ν2,n · · · νn+1,n

...
...

. . .
...

νn−1,n νn,n · · · ν2n−1,n

1 x · · · xn




=
1

∆′
n

det

(
(νi+j,n)0≤i≤n−1

0≤j≤n

(xj)0≤j≤n

)
,

(6.4) Qn(x) =
1

∆′′
n

det




ν0,0 ν1,1 · · · νn,n
ν1,0 ν2,1 · · · νn+1,n

...
...

. . .
...

νn−1,0 νn,1 · · · ν2n−1,n

1 x
d1(x)

· · · xn

dn(x)




=
1

∆′′
n

det



(νi+j,j)0≤i≤n−1

0≤j≤n(
xj

dj(x)

)
0≤j≤n


 ,
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(6.5) Qn(x) =
1

∆′′′
n

det




ν0,0 ν0,1 · · · ν0,n
ν1,0 ν1,1 · · · ν1,n
...

...
. . .

...
νn−1,0 νn−1,1 · · · νn−1,n

1 1
d1(x)

· · · 1
dn(x)




=
1

∆′′′
n

det



(νi,j)0≤i≤n−1

0≤j≤n(
1

dj(x)

)
0≤j≤n


 .

Proof. Let f(x) be the determinant in the right hand side of (6.3), which is a polynomial in x
of degree n. Multiplying the last row of the determinant by xj/dn(x), and applying L, yields
a last row equal to the j + 1 row, so L(f(x)xj/dn(x)) = 0 for 0 ≤ j < n.

Note that Pn(x) is uniquely determined, up to a multiple, as the polynomial of degree n such
that L(g(x)Pn(x)/dn(x)) = 0 for any polynomial g(x) of degree at most n− 1. Thus there is a
constant c satisfying

(6.6) Pn(x) = cf(x).

Multiplying both sides of (6.6) by xn/dn(x) and applying L yield

L(xnQn(x)) = c∆′
n.

Since L(xnQn(x)) = 1, we have c = 1/∆′
n, which proves (6.3).

The second and third identities can be proved similarly. �

Since Pn(x) is a monic polynomial, the coefficient of xn is 1. The only contribution of xn

occurs in the cofactor of xn in the determinant in (6.3). Thus we have the following corollary.

Corollary 6.2. We have

∆′
n = det(νi+j,n)0≤i,j≤n = det(νi+j,n)0≤i,j≤n−1.

Dividing both sides of (6.3) by dn(x), we may obtain another formula for Qn(x).

Remark 6.3. We can take special cases of Theorem 6.1 to recover the classical results and
Kamioka’s results.

If ak = 0 for all k ≥ 0, then dk(x) = λ1 . . . λk, νi,j = µi/λ1 . . . λj , and therefore

(6.7) ∆′
n =

∆n

(λ1 . . . λn)n+1
, ∆′′

n =
∆n

λn1λ
n−1
2 . . . λ1n

, ∆′′′
n = 0.

In this case Pn(x) become the usual orthogonal polynomials and (6.4) reduces to (6.1).
If λk = 0 for all k ≥ 0, then dk(x) = a1 . . . akx

k, νi,j = L(xi−j)/a1 . . . aj , and

(6.8) ∆′
n =

det(L(xi+j−n))0≤i,j≤n

(a1 . . . an)n+1
, ∆′′

n = 0, ∆′′′
n =

det(L(xi−j))0≤i,j≤n

an1a
n−1
2 . . . a1n

.

In this case the polynomials Pn(x) become biorthogonal Laurent polynomials and (6.5) reduces
to

(6.9) Pn(x) =
a1 . . . an

det(L(xi−j))0≤i,j≤n
det

(
(L(xi−j))0≤i≤n−1

0≤j≤n

(xn−j)0≤j≤n

)
,

which is slightly different but equivalent to Kamioka’s formula [12, (2.8)].

Here is how the three denominator determinants factor.
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Theorem 6.4. We have

∆′
n =

n∏

k=1

1

(−ak)kPk(−λk/ak)
,(6.10)

∆′′
n =

n∏

k=1

λkk
(−ak)kPk(−λk/ak)

,(6.11)

∆′′′
n =

n∏

k=1

1

Pk(−λk/ak)
.(6.12)

Remark 6.5. Note that if ak = 0, by (6.7), both (6.10) and (6.11) reduce to the formula (6.2)
for the Hankel determinant of orthogonal polynomials.

If λk = 0, the constant term of Pk(x) is Pk(0) = (−1)kb0b1 . . . bk−1. In this case we have

∆′
n =

n∏

k=1

1

akkb
n−k+1
k−1

, ∆′′
n = 0, ∆′′′

n = (−1)(
n+1

2 )
n∏

k=1

1

bn−k+1
k−1

.

Since νi,j = L(xi/dj(x)) = L(xi−j/a1 . . . aj), the above formulas for ∆′
n and ∆′′′

n are equivalent
to the following Toeplitz determinant formula due to Kamioka [12, 2.14b]:

(6.13) det(L(xi−j))0≤i,j≤n = (−1)(
n+1

2 )
n∏

k=1

(
ak
bk−1

)n−k+1

.

The rest of this subsection is devoted to proving Theorem 6.4. We shall use determinantal
facts to reduce the determinant to one involving the orthogonality relations, (6.14). We need
several lemmas.

Lemma 6.6. Let L be any linear functional defined on the vector space spanned by xi/rj(x)
for i, j ≥ 0, where rj(x) is a fixed polynomial for each j ≥ 0. Suppose that for k ≥ 0, pk(x) and
qk(x) are given by

pk(x) =

k∑

i=0

pk,ix
i, qk(x) =

k∑

i=0

qk,ix
i

ri(x)
,

where pk,k 6= 0 and qk,k 6= 0. Then we have

det

(
L
(
xi+j

rj(x)

))n

i,j=0

=
1∏n

i=0 pi,iqi,i
det (L (pi(x)qj(x)))

n
i,j=0 .

Proof. The proof is similar to that of Lemma 6.12. The matrices P = (pi,j)
n
i,j=0 and Q =

(qj,i)
n
i,j=0 are upper and lower triangular, respectively. Thus, letting M = (L(xi+j/rj(x)))

n
i,j=0,

we have

det(L(xi+j/rj(x)))
n
i,j=0 =

1∏n
i=0 pi,iqi,i

det(PMQ)ni,j=0.

Since the (k, s)-entry of PMQ is

n∑

i,j=0

L(pkixiqsjxj/rj(x)) = L(pk(x)qs(x)),

we are done. �
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Lemma 6.7. For any polynomial f(x) of degree n, there are unique numbers A0, . . . , An sat-
isfying

f(x) =

n∑

i=0

Aix
i

n∏

j=i+1

(ajx+ λj).

Moreover,

An = (−an/λn)nf(−λn/an).

Proof. The expansion exists because the ith term in the sum has terms from xi to xn. The
factor (anx+ λn) exists for all terms except i = n. So putting x = −λn/an gives only the An

term. �

Now we prove the second equation (6.11) in Theorem 6.4. The other two equations in
Theorem 6.4 will be proved using this equation.

Proof of (6.11). Let

Pk(x) =

k∑

i=0

pk,ix
i, Qk(x) =

k∑

i=0

qk,ix
i

di(x)
.

Then by Lemma 6.6 with pk(x) = Pk(x), qk(x) = Qk(x), and rk(x) = dk(x), we have

(6.14) ∆′′
n = det

(
L
(
xi+j

dj(x)

))n

i,j=0

=
1∏n

i=0 pi,iqi,i
det (L (Pi(x)Qj(x)))

n
i,j=0 .

Since Pk(x) are monic and L(Pi(x)Qj(x)) = δi,j for 0 ≤ i ≤ j, we have

(6.15) ∆′′
n =

n∏

i=0

q−1
i,i .

On the other hand, by Lemma 6.7, we can write

Pk(x) =

k∑

i=0

Akix
i

k∏

j=i+1

(ajx+ λj),

where Akk = (−ak/λk)kPk(−λk/ak). Then

Qk(x) =
Pk(x)

dk(x)
=

k∑

i=0

Akix
i

di(x)
.

Therefore qk,k = Akk = (−ak/λk)kPk(−λk/ak) and substituting this in (6.15) gives (6.11). �

We will prove (6.10) by relating the two determinants in (6.3) and (6.4). First note that
dividing (6.3) by dn(x) gives a determinant formula for Qn(x) with last row of

(6.16) 1/dn(x), x/dn(x), . . . , x
n/dn(x),

while the determinant formula (6.4) for Qn(x) has last row

(6.17) 1, x/d1(x), x
2/d2(x), . . . , x

n/dn(x),

and the last columns of the two matrices are the same. So the plan is to change the last row
from (6.17) to (6.16). To this end we need the following lemma.
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Lemma 6.8. There exists a unique upper triangular matrix (Bi,j)
n
i,j=0 such that for all 0 ≤

k ≤ n,

(6.18)
n∑

j=k

Bk,jx
j/dj(x) = xk/dn(x).

Moreover, the entries Bi,j also satisfy

(6.19) Bk,k = (λk+1 . . . λn)
−1, 0 ≤ k ≤ n,

(6.20)

n∑

j=k

Bk,jνs+j,j = νs+k,n, s ≥ 0.

Proof. We can rewrite (6.18) as

(6.21) 1 =

n∑

j=k

Bk,jx
j−kdn(x)/dj(x).

Since xj−kdn(x)/dj(x) is a polynomial with lowest term xj−k with nonzero coefficient λj+1 · · ·λn,
one can uniquely determine Bk,j for j = k, k + 1, . . . , n. This proves the first statement of the
lemma. Setting x = 0 in (6.21) we obtain 1 = Bk,kdn(0)/dj(0). Therefore (6.19) follows from
dj(0) = λj . . . λn. Lastly, by (6.21) we have

νs+k,n = L
(
xs+k

dn(x)

)
= L


xs+k

n∑

j=k

Bk,j
xj−k

dj(x)


 =

n∑

j=k

Bk,jL
(
xs+j

dj(x)

)
=

n∑

j=k

Bk,jνs+j,j ,

which proves (6.20). �

We are now ready to prove (6.10).

Proof of (6.10). Dividing (6.3) by dn(x) and comparing with (6.4), we obtain

(6.22)
1

∆′
n

det



(νi+j,n)0≤i≤n−1

0≤j≤n(
xj

dn(x)

)
0≤j≤n


 =

1

∆′′
n

det



(νi+j,j)0≤i≤n−1

0≤j≤n(
xj

dj(x)

)
0≤j≤n


 .

Let L (resp. R) be the matrix in the left (resp. right) hand side of (6.22). Let Cj be the jth
column of R and (Bi,j)

n
i,j=0 the upper triangular matrix in Lemma 6.8. For k = 0, 1, . . . , n− 1

in this order, replace the kth column of R by
∑n

j=k Bk,jCj . Then by Lemma 6.8, the resulting
matrix is L. Therefore

(6.23) det(L) = det(R)

n−1∏

k=0

Bk,k.

By (6.22), (6.23), and (6.19), we have

∆′
n = ∆′′

n

n∏

k=1

λkk.

Then (6.10) follows from (6.11). �

We note that the matrices for ∆′′
n and for ∆′′′

n can be obtained from each other using column
operations using Lemma 6.9.
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Lemma 6.9. There exists a unique lower triangular matrix (Ci,j)
n
i,j=0 such that for all 0 ≤

k ≤ n,

(6.24)

k∑

j=0

Ck,j
xj

dj(x)
=

1

dk(x)
.

Moreover, the entries Ci,j also satisfy

(6.25) Ck,k = (−ak/λk)k, 0 ≤ k ≤ n,

(6.26)

k∑

j=0

Ck,jνs+j,j = νs,k, s ≥ 0, 0 ≤ k ≤ n.

Proof. We can rewrite (6.24) as

(6.27) 1 =

k∑

j=0

Ck,jx
j

k∏

j=i+1

(ajx+ λj).

By Lemma 6.7, there are unique numbers Ck,0, Ck,1, . . . , Ck,k satisfying (6.27) and (6.25) holds.
By (6.24), we have

νs,k = L
(

xs

dk(x)

)
= L


xs

k∑

j=0

Ck,j
xj

dj(x)


 =

k∑

j=0

Ck,jL
(
xs+j

dj(x)

)
=

k∑

j=0

Ck,jνs+j,j ,

which proves (6.26). �

Finally we prove the last equation (6.12) in Theorem 6.4.

Proof of (6.12). The proof is similar to that of (6.10). By (6.4) and (6.5), we have

(6.28)
1

∆′′′
n

det



(νi,j)0≤i≤n−1

0≤j≤n(
1

dj(x)

)
0≤j≤n


 =

1

∆′′
n

det



(νi+j,j)0≤i≤n−1

0≤j≤n(
xj

dj(x)

)
0≤j≤n


 .

Let L (resp. R) be the matrix in the left (resp. right) hand side of (6.28). Let Dj be the jth
column of R and (Ci,j)

n
i,j=0 the upper triangular matrix in Lemma 6.9. For k = 0, 1, . . . , n− 1

in this order, replace the kth column of R by
∑k

j=0 Ck,jDj . Then by Lemma 6.9, the resulting
matrix is L. Therefore

(6.29) det(L) = det(R)

n−1∏

k=0

Ck,k.

By (6.28), (6.29), and (6.25), we have

∆′′′
n = ∆′′

n

n∏

k=1

(−ak/λk)k.

Then (6.12) follows from (6.11). �
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6.2. More determinants.

In this subsection we consider more general determinants. Let

∆′
n,s = det (νs+i+j,s+n)

n
i,j=0 ,

∆′′
n,s = det (νs+i+j,s+j)

n
i,j=0 ,

∆′′′
n,s = det (νi,s+j)

n
i,j=0 .

Then ∆′
n = ∆′

n,0, ∆
′′
n = ∆′′

n,0, and ∆′′′
n = ∆′′′

n,0. Hence Theorem 6.4 can be restated as follows:

∆′
n,0 =

(−1)(
n+1

2 )
∏n

k=1 a
k
kPk(−λk/ak)

,(6.30)

∆′′
n,0 =

(−1)(
n+1

2 )λ11λ
2
2 . . . λ

n
n∏n

k=1 a
k
kPk(−λk/ak)

,(6.31)

∆′′′
n,0 =

1∏n
k=1 Pk(−λk/ak)

.(6.32)

Letting x = 0 in (6.3) and (6.4), we have

Pn(0) = (−1)n
∆′

n−1,1

∆′
n,0

,(6.33)

Qn(0) = (−1)n
∆′′

n−1,1

∆′′
n,0

.(6.34)

Since limx→∞Qn(x) = 1/a1 . . . an, letting x→ ∞ in (6.5), we have

(6.35)
1

a1 . . . an
= (−1)n

∆′′′
n−1,1

∆′′′
n,0

.

Theorem 6.10. We have

∆′
n−1,1 =

(−1)(
n
2)Pn(0)∏n

k=1 a
k
kPk(−λk/ak)

,(6.36)

∆′′
n−1,1 =

(−1)(
n
2)λ01λ

1
2 . . . λ

n−1
n Pn(0)∏n

k=1 a
k
kPk(−λk/ak)

,(6.37)

∆′′′
n−1,1 =

(−1)n∏n
k=1 akPk(−λk/ak)

.(6.38)

Proof. By (6.30) and (6.33), we have the first identity. By (6.31), (6.34), we obtain the second
identity. By (6.32) and (6.35), we obtain the last identity. �

Remark 6.11. If λk = 0 for all k ≥ 1, then Pn(0) = (−1)nb0b1 . . . bn−1 and dj(x) = a1 . . . aj .
In this case (6.32) and (6.38) reduce to

det(L(xi−j))0≤i,j≤n = (−1)(
n+1

2 )
n∏

k=1

(
ak
bk−1

)n+1−k

,(6.39)

det(L(xi−j−1))0≤i,j≤n−1 =
(−1)(

n
2)

a1 . . . an

n∏

k=1

(
ak
bk−1

)n+1−k

,(6.40)

which are equivalent to Kamioka’s results [12, 2.14a and 2.14b].
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6.3. Hankel determinants for µn.

Recall from (6.2) that ∆n factors in the classical case (ak = 0). In this subsection we will
show in Theorem 6.14 that ∆n always factors if the three-term recurrence coefficients are all
constants.

We need the following well-known lemma.

Lemma 6.12. Let pk(x) and qk(x) be monic polynomials of degree k for 0 ≤ k ≤ n. Let L be
any linear functional defined on polynomials. Then we have

det(L(xi+j))ni,j=0 = det(L(pi(x)qj(x)))ni,j=0 .

Proof. Let pk(x) =
∑k

i=0 pk,ix
i and qk(x) =

∑k
i=0 qk,ix

i. Then P = (pi,j)
n
i,j=0 is a lower

unitriangular matrix and Q = (qj,i)
n
j,i=0 is an upper unitriangular matrix. Thus, letting M =

(L(xi+j))ni,j=0, we have

det(L(xi+j))ni,j=0 = det(PMQ)ni,j=0.

Since the (k, s)-entry of PMQ is
n∑

i=0

n∑

j=0

L(pkixiqsjxj) = L(pk(x)qs(x)),

we are done. �

We first show that ∆n factors if ak and bk are constants and λk = 0.

Lemma 6.13. If ak = 1, bk = t, and λk = 0 for all k ≥ 0, then

(6.41) ∆n = (1 + t)(
n+1

2 ).

If ak = A, bk = B, and λk = 0 for all k ≥ 0, then

(6.42) ∆n = (A2 + AB)(
n+1

2 ).

Proof. Using the Lindström–Gessel–Viennot lemma [15, 10], one obtains that the first iden-
tity (6.41) is equivalent to the result of Sulanke and Xin [17, Lemma 2.2] on non-intersecting
Schröder paths where each horizontal step has weight t. The second identity (6.42) then follows
from the first using the fact that µi is a polynomial in A and B of degree i. �

Now we show that ∆n factors if bk, ak, and λk are constants.

Theorem 6.14. If ak = A, bk = B, λk = C, for all k ≥ 0, then

∆n = (A2 +AB + C)(
n+1

2 ).

Proof. Let y = x+ C/A and P̃n(y) = Pn(x) = Pn(y − C/A). Since

Pn+1(x) = (x −B)Pn(x) − (Ax+ C)Pn−1(x),

we have
P̃n+1(y) = (y − C/A−B)P̃n(y)−AyP̃n−1(y).

Moreover, since dn(x) = (Ax + C)n and d̃n(y) = Anyn, we have d̃n(y) = dn(x) and Q̃n(y) =
Qn(x). Thus the orthogonality

L(xjQn(x)) = 0, if 0 ≤ j < n,

implies that

L(yjQ̃n(y)) = 0, if 0 ≤ j < n.

Therefore P̃n(y) are type RI orthogonal polynomials with the same linear functional L.
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Now the original Hankel determinant is

det (µi+j)
n
i,j=0 = det

(
L(xi+j)

)n
i,j=0

= det
(
L((y − C/A)

i+j
)
)n
i,j=0

.

By Lemma (6.12) with pk(y) = qk(y) = (y − C/A)k, we have

det
(
L((y − C/A)

i+j
)
)n
i,j=0

= det
(
L(yi+j)

)n
i,j=0

.

By (6.42), we have

det
(
L(yi+j)

)n
i,j=0

= (A2 +A(C/A +B))(
n+1

2 ),

which finishes the proof. �

The following proposition provides another proof of Theorem 6.14 via (6.2) because the
λn = A2 + AB + C are constant.

Proposition 6.15. Let µn be the moments for the type RI polynomials with ak = A, bk = B,
and λk = C. Then µn are also the moments for classical orthogonal polynomials defined by

B0 = A+B, Bn = 2A+B, Λn = A2 +AB + C, n ≥ 1.

Sketch of Proof. Because the type RI coefficients are constant, the type RI continued fraction
for the moment generating function in Corollary 3.7 satisfies a quadratic equation and may be
solved. This also occurs in the classical case except for the B0 term. Dealing with this term,
and explicitly solving, shows that each moment generating function is

1− Bx−
√
1− 4Ax− 2Bx+B2x2 − 4Cx2

2x(A+ Cx)
.

Note that Proposition 3.9 is the A = B = C = 1 special case. �

Remark 6.16. Note that in Theorem 6.14, the entries in the determinant of ∆n = det (µi+j)
n
i,j=0

are positive polynomials in A,B, and C. It would be interesting to prove this theorem using
nonintersecting lattice paths such as the proof of the Aztec diamond theorem due to Eu and
Fu [6]. Brualdi and Kirkland [2] evaluated the Hankel determinant of Schröder numbers using
J-fractions.

If C = B2, we can cancel a crossing of an up step and a down step with a pair of parallel
horizontal steps. Thus we obtain the following corollary.

Corollary 6.17. If ak = A, bk = B, λk = B2, for all k ≥ 0, then
∑

π0,π1,...,πn

wt(π1) · · ·wt(πn) = (A2 +AB +B2)(
n+1

2 ),

where the sum is over all nonintersecting Motzkin-Schröder paths π0, π1, . . . , πn such that πi is
from (−i, 0) to (i, 0) and there are no pairs of horizontal steps starting at (x, y) and (x, y + 1).

Proof. By Theorem 6.14, we have

det (µi+j)
n
i,j=0 = (A2 +AB +B2)(

n+1

2 ).

The left hand side can be written as

(6.43)
∑

σ,π0,π1,...,πn

sign(σ)wt(π0)wt(π1) · · ·wt(πn),

where the sum is over all permutations σ of {0, 1, . . . , n} andMotzkin-Schröder paths π0, π1, . . . , πn
such that πi is from (−i, 0) to (σ(i), 0) for all i ∈ {0, 1, . . . , n}.
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If there are two distinct paths πi and πj sharing a lattice point (r, s) ∈ Z
2, find the

smallest pair (i, j) in lexicographic order and then the smallest pair (r, s) in lexicographic
order. By swapping the parts in πi and πj after the point (r, s) we obtain a different term
sign(σ′)wt(π′

0)wt(π
′
1) · · ·wt(π′

n) in the sum and

(6.44) sign(σ)wt(π0)wt(π1) · · ·wt(πn) = −sign(σ′)wt(π′
0)wt(π

′
1) · · ·wt(π′

n).

Canceling these terms, we may assume that no distinct paths πi and πj share a lattice point
in the sum (6.43). Then if two distinct paths πi and πj intersect, each intersection must occur
between an up step in one path and a down step in the other path. By replacing the up step and
the down step by a horizontal step and swapping the parts after these steps we similarly obtain
a different term sign(σ′)wt(π′

0)wt(π
′
1) · · ·wt(π′

n) in the sum satisfying (6.44). After canceling
such configurations we obtain the desired formula. �

Problem 6.18. Find a bijective proof of Corollary 6.17.

7. Explicit type RI polynomials

In this section we explain the methods for finding the explicit type RI polynomials later in
Sections 8 and 9.

We need to define a linear functional L on V . Recall that V is the vector space whose basis
is

{xm : m ≥ 0} ∪ {1/dn(x) : n ≥ 1}.
Note that we could replace the monomial xm by any set of polynomials, one for each degree.

In Section 8 we start by taking a classical L on the polynomial part of V . We extend L to the
larger space V by explicitly defining L(1/dn(x)). Good choices of the denominator polynomials
dn(x), found by “gluing” onto a weight function representing L, allow the extension to be
explicitly defined by shifting parameters in the linear functional L. The explicit type RI

polynomials will be obtained by also shifting parameters.
As an example of this phenomenon, take the classical Jacobi polynomials on [−1, 1],

La,b(f) =
Γ(a+ b+ 2)

2a+b+1Γ(a+ 1)Γ(b+ 1)

∫ 1

−1

w(x)f(x)dx, w(x) = (1 − x)a(1 + x)b

which includes the parameters a and b. For the integral to converge for all polynomials f(x),
one needs a, b > −1. However one may extend these values to all real numbers by defining La,b

on a basis

La,b((1 − x)k) = 2k
(a+ 1)k

(a+ b+ 2)k
, k ≥ 0.

The choice of dn(x) = (1 + x)n glues to w(x) so that one defines

La,b(1/dn(x)) = 2−n (b − n+ 1)n
(a+ b− n+ 2)n

, n ≥ 1.

This defines an extension for La,b to V by defining it on a basis, without referring to the
integral. We shall see in Section 8 that the type RI polynomials for this La,b and dn(x) are the
corresponding shifted Jacobi polynomials.

Since L extended in this way always has the same moment sequence, we have equality of
their moment generating functions, which are continued fractions. Each of the examples in
Section 8 satisfies this theorem.
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Theorem 7.1. Suppose that Pn(x) is a type RI orthogonal polynomial

Pn+1(x) = (x − bn)Pn(x) − (anx+ λn)Pn−1(x), P−1(x) = 0, P0(x) = 1,

whose linear functional extends that for an orthogonal polynomial

pn+1(x) = (x−Bn)pn(x) − Λnpn−1(x), p−1(x) = 0, p0(x) = 1.

Then we have the formal power series equality between continued fractions

∑

n≥0

µnx
n =

1

1− b0x− a1x+ λ1x
2

1− b1x−
a2x+ λ2x

2

1− b2x− · · ·

=
1

1−B0x−
Λ1x

2

1−B1x− Λ2x
2

1−B2x− · · ·

.

In Section 9 our second method for explicit type RI polynomials chooses dn(x) = (1+ ax)n,
an nth power, for some special orthogonal polynomials. This inserts 1+ ax into the three-term
recurrence (9.2), which does change the linear functional L. Yet there is a relation between the
type RI and classical moment generating functions, see Proposition 9.3 and Theorem 9.4.

8. Gluing

We shall show gluing works by considering the Jacobi polynomials P
(a,b)
n (x) on [−1, 1], whose

weight function is (1−x)a(1+x)b, and La,b defined as before. Then we use the same technique
on classical orthogonal polynomials in the subsections.

The linear functional on the vector space of polynomials is

(8.1) La,b(f(x)) =
Γ(a+ b+ 2)

2a+b+1Γ(a+ 1)Γ(b+ 1)

∫ 1

−1

(1− x)a(1 + x)bf(x)dx,

where
La,b(1) = 1, La,b(P

(a,b)
n (x)P (a,b)

m (x)) = 0, m 6= n.

As in Section 7 we extend La,b to the vector space V by defining La,b on the basis elements
1/dn(x) = 1/(1 + x)n. Even though the integral may not exist, if b < n, we may define the
linear functional by what the integral would give by shifting b to b− n

(8.2) La,b(1/dn(x)) = 2−n (b − n+ 1)n
(a+ b+ 2− n)n

.

Proposition 8.1. We have for any polynomial p(x)

(8.3) La,b(p(x)/dn(x)) = 2−n (b− n+ 1)n
(a+ b+ 2− n)n

La,b−n(p(x)).

Proof. Write

(8.4)
p(x)

dn(x)
= t(x) +

n∑

i=1

ci
di(x)

for some polynomial t(x). Assume that b − n > −1 and a > −1. Then applying La,b to (8.4)
may be done integration which is linear, so (8.3) holds. Each term is a rational function of a
and b, thus (8.3) is true in general. �
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Consider the type RI orthogonality for a fixed n ≥ 1

La,b

(
xk

Pn(x)

(1 + x)n

)
= 0, 0 ≤ k ≤ n− 1.

This is by Proposition 8.4

La,b−n

(
xkPn(x)

)
= 0, 0 ≤ k ≤ n− 1.

If b−n > −1, this is the usual orthogonal polynomial orthogonality, so Pn(x) must be a multiple

of the Jacobi polynomial P
(a,b−n)
n (x). Note also that P

(a,b−n)
n (−1) 6= 0, which is required.

Once we know an explicit formula for the type RI polynomials, we can find their three term
recurrence by considering the higher term coefficients.

To summarize, all we need to do is find the shift in parameters when dn(x) is glued onto a
known weightw(x). Then apply this shift to the parameters in the usual orthogonal polynomials.
This is carried out on the next 7 subsections. The degeneracy condition Pn(−λn/an) 6= 0 holds
because the polynomials may be explicitly evaluated at these values.

8.1. Jacobi polynomials on [−1, 1].

Recall that the Jacobi polynomials are

P (a,b)
n (x) =

(a+ 1)n
n!

2F1

(
−n, a+ b+ 1

a+ 1

∣∣∣∣
1− x

2

)
.

In Section 7 we took dn(x) = (1 + x)n. Here we record the case dn(x) = (1− x)n, which shifts
a to a− n. The values of the linear functional are given by a beta function evaluation.

Definition 8.2. Let La,b be the linear functional on V such that

(8.5) La,b

(
(1 + x)k

(1− x)n

)
= 2k−n (b + 1)k

(a− n+ 1)n(a+ b+ 2)k−n
, k, n ≥ 0.

Theorem 8.3. Up to a constant cn, the type RI polynomials for w(x) = (1 − x)a(1 + x)b on
[−1, 1] and dn(x) = (1− x)n are shifted Jacobi polynomials

pn(x) = cnP
(a−n,b)
n (x).

Proposition 8.4. We have for the monic type RI polynomials, p̂n(x),

p̂n+1(x) = (x − bn)p̂n(x)− (1− x)λnp̂n−1(x).

where

bn =
b− a+ 3n+ 1

a+ b+ n+ 1
, λn =

2n(n+ b)

(a+ b+ n)(a+ b+ n+ 1)
.

Remark 8.5. The moments are the same as the moments for the usual Jacobi polynomials

P
(a,b)
n (x) on [−1, 1],

La,b(x
n) =

n∑

s=0

(
n

s

)
(−2)s

(a+ 1)s
(a+ b+ 2)s

.

The usual three-term recurrence coefficients for the monic Jacobi polynomials are

Bn =
(b2 − a2)

(2n+ a+ b)(2n+ a+ b+ 2)
,

Λn =
4n(n+ a)(n+ b)(n+ a+ b)

(2n+ a+ b− 1)(2n+ a+ b)2(2n+ a+ b+ 1)

and Theorem 7.1 holds.
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Remark 8.6. If a = b = 1/2, then the Catalan numbers Ck = 1
k+1

(
2k
k

)
are moments

{4kL1/2,1/2(x
2k) = Ck : k ≥ 0} = {1, 1, 2, 5, 14, 42, . . .}.

If a = b = −1/2, then the central binomial coefficients are moments

{
4kL−1/2,−1/2(x

2k) =

(
2k

k

)
: k ≥ 0

}
= {1, 2, 6, 20, 70, . . .}.

8.1.1. A mixed Jacobi formula.

One may alternate inserting (1− x) with (1 + x) into the denominator by taking

dn(x) = (1− x)⌈n/2⌉(1 + x)⌊n/2⌋.

Definition 8.7. Let La,b be the linear functional on V such that

La,b

(
(1− x)k

(1 − x)⌈n/2⌉(1 + x)⌊n/2⌋

)
= 2k−n (a+ 1)k−⌈n/2⌉

(b− ⌊n/2⌋+ 1)⌊n/2⌋(a+ b+ 2)k−n
, k, n ≥ 0.

Theorem 8.8. Up to a constant, the type RI polynomials for w(x) = (1−x)a(1+x)b on [−1, 1]
and dn(x) = ((1− x)⌈n/2⌉(1 + x)⌊n/2⌋ are shifted Jacobi polynomials

pn(x) = cnP
(a−⌈n/2⌉,b−⌊n/2⌋)
n (x) = c′n 1F2

(
−n, a+ b+ 1
a− ⌈n/2⌉+ 1

∣∣∣∣
1− x

2

)
.

Proposition 8.9. For the monic type RI polynomials p̂n(x), we have

p̂n+1(x) = (x− bn)p̂n(x) − (1− (−1)n−1x)λnp̂n−1(x),

where

bn =
1

a+ b+ n+ 1

{
×(b− a+ 1), if n is even

×(b− a), if n is odd,

and

λn =
2n

(a+ b+ n)(a+ b+ n+ 1)

{
×(a+ n/2), if n is even

×(b+ (n+ 1)/2), if n is odd.

The moments are again given by Remarks 8.5 and 8.6.

8.2. Jacobi polynomials on [0, 1].

The Jacobi polynomials on [0, 1] are

P (a,b)
n (1 − 2x) =

(a+ 1)n
n!

2F1

(
−n, n+ a+ b+ 1

a+ 1

∣∣∣∣ x
)

and have the weight function w(x) = xa(1− x)b given by the linear functional

Ma,b(f(x)) =
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)

∫ 1

0

xa(1− x)bf(x)dx.
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8.2.1. dn(x) = (1− x)n.

Let’s choose dn(x) = (1 − x)n which naturally glues onto the weight w(x). So we see that
the modified weight function w′(x) occurs by replacing b by b− n in w(x).

As before this beta integral may be evaluated.

Definition 8.10. Let Ma,b be the linear functional on V such that

Ma,b

(
xk

(1− x)n

)
=

(a+ 1)k
(b− n+ 1)n(a+ b+ 2)k−n

, k, n ≥ 0.

Theorem 8.11. Up to a constant cn, the type RI polynomials for w(x) = xa(1− x)b on [0, 1]
and dn(x) = (1− x)n are shifted Jacobi polynomials

pn(x) = cnP
(a,b−n)
n (1− 2x) = c′n 2F1

(
−n, a+ b + 1

a+ 1

∣∣∣∣ x
)
.

Proposition 8.12. We have for the monic type RI polynomials, p̂n(x),

p̂n+1(x) = (x − bn)p̂n(x)− (1− x)λnp̂n−1(x).

where

bn =
a+ 2n+ 1

a+ b+ n+ 1
, λn =

n(n+ a)

(a+ b+ n)(a+ b+ n+ 1)
.

Remark 8.13. The moments are the same as the moments for the usual Jacobi polynomials

P
(a,b)
n (x), on [0, 1] instead of [−1, 1], evaluated by beta functions,

Ma,b(x
k) =

(a+ 1)k
(a+ b+ 2)k

.

Remark 8.14. If a = b = 1/2, then the Catalan numbers are moments

{4kM1/2,1/2(x
k) = Ck+1 : k ≥ 0} = {1, 2, 5, 14, 42, . . .}.

8.2.2. dn(x) = xn.

Theorem 8.15. Up to a constant the type RI polynomials for w(x) = xa(1− x)b on [0, 1] and
dn(x) = xn are shifted Jacobi polynomials

pn(x) = cnP
(a−n,b)
n (1− 2x) = c′n 2F1

(
−n, a+ b + 1
a− n+ 1

∣∣∣∣ x
)
.

Proposition 8.16. We have for the monic type RI polynomials, p̂n(x),

p̂n+1(x) = (x− bn)p̂n(x)− xanp̂n−1(x).

where

bn =
a− n

a+ b+ n+ 1
, an =

n(b+ n)

(a+ b+ n)(a+ b+ n+ 1)
.

8.3. Laguerre polynomials.

The Laguerre polynomials

La
n(x) =

(a+ 1)n
n!

1F1

(
−n
a+ 1

∣∣∣∣ x
)

have

La(f(x)) =
1

Γ(a+ 1)

∫ ∞

0

xae−xf(x)dx.

Thus the choice of dn(x) = xn shifts a.
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Definition 8.17. Extend the linear functional La to V by

La

(
1

dn(x)

)
=

1

(a− n+ 1)n
, n ≥ 1.

Theorem 8.18. Up to a constant the type RI polynomials for w(x) = xae−x on [0,∞) and
dn(x) = xn are shifted Laguerre polynomials

pn(x) = cnL
a−n
n (x) = c′n 1F1

(
−n

a− n+ 1

∣∣∣∣ x
)
.

Proposition 8.19. We have for the monic type RI polynomials, p̂n(x),

p̂n+1(x) = (x− bn)p̂n(x)− xanp̂n−1(x).

where

bn = a− n, an = n.

The monic Laguerre polynomials have

Bn = 2n+ a+ 1, Λn = n(n+ a).

Remark 8.20. The moments are

L(xk) = (a+ 1)k.

8.4. Meixner polynomials.

The Meixner polynomials

Mn(x; b, c) = 2F1

(
−n,−x

b

∣∣∣∣ 1−
1

c

)

have for their linear functional

Lb,c(f(x)) = (1− c)b
∞∑

x=0

(b)x
x!

cxf(x)

Thus the choice of dn(x) = (x+ b− 1)(x+ b− 2) · · · (x+ b− n) shifts b to b− n.

Definition 8.21. Extend the linear functional Lb,c to V by

Lb,c

(
1

dn(x)

)
=

(1− c)n

(b− n)n
, n ≥ 1.

Theorem 8.22. Up to a constant, the type RI polynomials for Lb,c and dn(x) = (x+ b− n)n
are shifted Meixner polynomials

pn(x) = cnMn(x; b − n, c) = cn 2F1

(
−n,−x
b− n

∣∣∣∣ 1−
1

c

)
.

Proposition 8.23. We have for the monic type RI polynomials, p̂n(x),

p̂n+1(x) = (x− bn)p̂n(x) − (x+ b− n)λnp̂n−1(x),

where

bn =
n− (2n+ 1)c+ bc

1− c
, λn =

cn

1− c
.

The monic Meixner polynomials have

Bn =
n+ (n+ b)c

1− c
, Λn =

n(n+ b− 1)c

(1 − c)2
.
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Remark 8.24. The moments are

Lb,c(x
k) =

k∑

j=1

S(k, j)(b)j

(
c

1− c

)j

,

where S(k, j) are the Stirling numbers of the second kind.

8.5. Little q-Jacobi polynomials.

The little q-Jacobi polynomials are

pn(x; a, b|q) = 2φ1

(
q−n, abqn+1

aq

∣∣∣∣ q; qx
)
.

The linear functional for the orthogonal polynomial orthogonality is

(8.6) La,b(f(x)) =
(aq)∞
(abq2)∞

∞∑

x=0

(bq)x
(q)x

(aq)xf(qx).

Choosing dn(x) = (bx; q−1)n we see that b shifts to bq−n

(bq)x
dn(qx)

=
(bq1−n)x
(bq1−n)n

,

so the next theorem results using the extension

La,b

(
1

dn(x)

)
=

(abq2−n)n
(bq1−n)n

, n ≥ 1.

Theorem 8.25. Up to a constant, the type RI polynomials for the little q-Jacobi polynomials
with La,b given by (8.6) and dn(x) = (bx; q−1)n are shifted little q-Jacobi polynomials

pn(x) = cnpn(x; a, bq
−n|q).

Proposition 8.26. We have for the type RI monic polynomials, p̂n(x),

p̂n+1(x) = (x− bn)p̂n(x)− λn(1− bxq1−n)p̂n−1(x),

where

bn = qn
1 + a− aqn − aqn+1

1− abqn+1
, λn = q2n−1 (1− qn)(1 − aqn)

(1− abqn)(1 − abqn+1)
.

Remark 8.27. The moments are

La,b(x
k) =

(aq; q)k
(abq2; q)k

.

8.6. Big q-Jacobi polynomials.

The big q-Jacobi polynomials are

Pn(x; a, b, c; q) = 3φ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q; q
)
.

The linear functional for orthogonality is given by a q-integral

(8.7) La,b,c(f(x)) =
1

aq(1− q)

(aq, bq, cq, abq/c; q)∞
(q, abq2, c/a, aq/c; q)∞

∫ aq

cq

(x/a, x/c; q)∞
(x, bx/c; q)∞

f(x)dq(x).

There are two choices for dn(x) which shift parameters

dn(x) = (bx/cq; q−1)n, b→ bq−n,

dn(x) = (x/a; q)n, a→ aq−n.
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Extending La,b,c may be accomplished via

La,b

(
1

dn(x)

)
=

{
(abq2−n)n

(bq1−n)n(abq1−n/c)n
, if dn(x) = (bx/cq; q−1)n, n ≥ 1

(abq2−n)n(aq
1−n/c)n

(aq1−n)n(abq1−n/c)n(c/a)n
, if dn(x) = (x/a; q)n, n ≥ 1.

Theorem 8.28. Up to a constant, the type RI polynomials for the big q-Jacobi polynomials
with La,b,c given by (8.7) and dn(x) = (bx/cq; q−1)n are shifted big q-Jacobi polynomials

pn(x) = cnpn(x; a, bq
−n; q).

Also choosing dn(x) = (x/a; q)n we obtain the shifted big q-Jacobi polynomials

pn(x) = cnpn(x; aq
−n, b; q).

Proposition 8.29. We have for the type RI monic polynomials, p̂n(x),

p̂n+1(x) = (x− bn)p̂n(x)− (1− bxq−n/c)λnp̂n−1(x), dn(x) = (bx/cq; q−1)n,

where

bn = −q ab− aqn − cqn − acqn + acq2n + acq2n+1

1− abqn+1
,

λn = −acqn+1 (1− qn)(1 − aqn)(1− cqn)

(1 − abqn)(1 − abqn+1)
.

Proposition 8.30. We have for the type RI monic polynomials, p̂n(x),

p̂n+1(x) = (x − bn)p̂n(x)− (1− xqn−1/a)λnp̂n−1(x), dn(x) = (x/a; q)n,

where

bn = q−n a+ aq − aqn+1 − abqn+1 − acqn+1 + cq2n+1

1− abqn+1
,

λn = a2q2−2n (1− qn)(1− bqn)(1− cqn)

(1− abqn)(1− abqn+1)
.

8.7. The Askey–Wilson polynomials.

Here we consider separately the absolutely continuous case and the purely discrete case.

8.7.1. The continuous case.

The Askey–Wilson polynomials are defined by

pn(x; a, b, c, d|q) =
(ab, ac, ad; q)n

an
4φ3

(
q−n, abcdqn−1, az, a/z

ab, ac, ad

∣∣∣∣ q; q
)
,

z = eiθ, x = cos θ = (z + 1/z)/2.

Note that

(Az,A/z; q)n =

n−1∏

j=0

(1− 2Axqj +A2q2j)

is a polynomial in x of degree n. Thus pn(x; a, b, c, d|q) is a function of x.
The weight function for the Askey–Wilson polynomials is

La,b,c,d(r(x)) =
(q, ab, ac, ad, bc, bd, cd)∞

2π(abcd)∞

∫ π

0

r((eiθ +e−iθ)/2)w(θ, a, b, c, d)dθ, La,b,c,d(1) = 1,

where

w(θ, a, b, c, d) =
(e2iθ, e−2iθ)∞

(aeiθ, ae−iθ, beiθ, be−iθ, ceiθ, ce−iθ, deiθ, de−iθ)∞
.
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Let

dn(x) = (bz/q, b/zq; q−1)n =

n−1∏

j=0

(1 − 2bxq−1−j + b2q−2−2j).

We next define the extension of La,b,c,d to V using the Askey–Wilson integral and

w(θ, a, b, c, d)

dn(x)
= w(θ, a, bq−n, c, d).

Definition 8.31. Suppose La,b,c,d is a linear functional on V such that
(8.8)

La,b,c,d

(
(cz, c/z; q)j(az, a/z; q)k
(bzq−n, bq−n/z; q)n

)
=

(cd; q)j(ac; q)k+j(ad; q)k
(abqk−n; q)n−k(bcqj−n; q)n−j(bdq−n; q)n(abcd; q)k+j−n

.

Theorem 8.32. The type RI polynomials for La,b,c,d and denominator polynomials

dn(x) =

n−1∏

j=0

(1− 2bxq−1−j + b2q−2−2j)

are shifted Askey–Wilson polynomials

pn(x; a, bq
−n, c, d|q) = (abq−n, ac, ad; q)n

an
4φ3

(
q−n, abcd/q, az, a/z

ac, ad, abq−n

∣∣∣∣ q; q
)
.

Note that

dn(x)/dn−1(x) = 1− 2bxq−n + b2q−2n

which is the factor in the type RI recurrence relation.

Proposition 8.33. We have for the monic type RI polynomials, p̂n(x),

p̂n+1(x) = (x− bn)p̂n(x) − λn(1 − 2bxq−n + b2q−2n)p̂n−1(x),

where

bn =
bq−n + qn/b

2
− q1+2n

2b(1− abcdqn−1)

(
(1− abq−1−n)(1− bcq−1−n)(1− bdq−1−n)

− (1− q−1−n)(1 − abcd/q)(1− b2q−1−2n)

)
,

λn =
(1− qn)(1− acqn−1)(1 − adqn−1)(1 − cdqn−1)

4(1− abcdqn−2)(1− abcdqn−1)
.

Sketch of Proof. The value zn = bq−n puts xn = 1/2(bq−n + qn/b), and dn(xn)/dn−1(xn) = 0.
For this value of xn, pn(xn) is evaluable as a product by the 1-balanced 3φ2 evaluation. This
choice also allows pn+1(xn) to be a sum of 2 terms, using the Sears transformation for a 1-
balanced 4φ3. This determines the value of bn, and λn can be found by finding the coefficients
of xn. �

8.7.2. The q-Racah case.

For completeness we record the analogous results for the q-Racah polynomials.

Definition 8.34. For 0 ≤ n ≤ N , let pn(X ; b, c, d,N ; q) be the polynomial of degree n in
X = µ(x) = q−x + cdqx+1

pn(µ(x); b, c, d,N ; q) = 4φ3

(
q−n, bqn−N , q−x, cdqx+1

q−N , bdq, cq

∣∣∣∣ q; q
)
.
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Since

(q−x; q)j(cdq
x+1; q)j =

j−1∏

s=0

(1− qsµ(x) + cdq1+2s)

pn(µ(x); b, c, d,N ; q) is a polynomial in µ(x) = X of degree n.
Let

dn(X) =

n−1∏

j=0

(1 −Xqj/bd+ q2j+1c/b2d),

dn(µ(x)) = (q−x/bd, cqx+1/b; q)n.

Definition 8.35. Let Mb,c,d,N be the linear functional defined on V by

Mb,c,d,N(r(X)) =
N∑

x=0

vwp(x, b, c, d,N)r(µ(x)),

where

vwp(x, b, c, d,N) =
(dq)N (cq/b)N
(cdq2)N (1/b)N

(cdq)x
(q)x

1− cdq1+2x

1− cdq

(q−N )x
(cdqN+2)x

(cq)x
(dq)x

(bdq)x
(cq/b)x

(qN/b)x.

See [9, (II-21)]. Here the constants have been chosen, using the very well poised 6φ5 summation
theorem, so that Mb,c,d,N(1) = 1.

The classical orthogonal polynomials for Mb,c,d,N are q-Racah polynomials

Mb,c,d,N (pn(X ; b, c, d,N ; q)pm(X ; b, c, d,N ; q)) = 0 if n 6= m.

Note that gluing does occur

vwp(x, b, c, d,N)

dn(µ(x))
= c(n, b, c, d,N)× vwp(x, bq−n, c, d,N),

for some constant c(n, b, c, d,N) independent of x.

Theorem 8.36. The polynomials pn(X ; bq−n, c, d,N ; q), 0 ≤ n ≤ N , are the type RI polyno-
mials for the q-Racah linear functional Mb,c,d,N with

dn(X) =

n−1∏

j=0

(1 −Xqj/bd+ q2j+1c/b2d),

dn(µ(x)) = (q−x/bd, cqx+1/b; q)n.

Proposition 8.37. The monic type RI q-Racah polynomials satisfy for 0 ≤ n ≤ N − 1

p̂n+1(X) = (X − bn)p̂n(X)− λn(1−Xqn−1/bd+ q2n−1c/b2d)p̂n−1(X)

where

bn = −(−b+ bd(−1 + qN−n + qN−n+1 − qN+1) + qn

+ c(qn − q2n − q2n+1 + qN+n+1)− bcdqN+1 + cdqN+n+1)/(bqn − qN ),

λn = dq1−2n (1 − qn)(1− cqn)(1− qN−n+1)(1 − dqN−n+1)

(1− qN−n/b)(1− qN−n+1/b)
.
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9. dn(x) as nth powers

In this section we consider the case bn = 0 for orthogonal polynomials, so that the polynomi-
als are either even or odd. Hermite polynomials are one example. We choose dn(x) = (1+ax)n,
then modify the three term recurrence by inserting the factor 1 + ax, independent of n, for a
type RI polynomial, see (9.2). The new linear functional La has new values on the polynomials,
so the moments do change, unlike the previous examples.

General results for the type RI polynomials and their moments, in terms of the original
orthogonal polynomials, are given in Proposition 9.1, Proposition 9.2, and Theorem 9.4. We
do not know a representing measure for the new linear functional La in terms of an original
measure, even in the Hermite case.

9.1. General results.

Let pn(x) be orthogonal polynomials defined by

(9.1) pn+1(x) = xpn(x) − λnpn−1(x)

with non-zero moments µ2n = L(x2n).
Consider a type RI version of pn

(9.2) rn+1(x) = xrn(x) − λn(1 + ax)rn−1(x).

These polynomials are rescaled versions of the original orthogonal polynomials. Proposition 9.1
follows easily by rescaling.

Proposition 9.1. We have

rn(x) = pn

(
x√

1 + ax

)
(
√
1 + ax)n.

Next we see how the moments are related. Let La be the linear functional for these polyno-
mials. Let µn be the moments for the orthogonal polynomials in (9.1), and let θn = La(x

n) be
the moments for the type RI polynomials (9.2).

Proposition 9.2. The moments θn = La(x
n) for the above type RI polynomials are given by

θ2n =
∑

k even

(
n+ k/2

k

)
akµ2n+k,

θ2n+1 =
∑

k odd

(
n+ (k + 1)/2

k

)
akµ2n+1+k.

Proof. We use the combinatorial interpretation of θn as weighted Motzkin-Schröder paths and
µ2n as weighted Dyck paths, where a Dyck path is a Motzkin path with no horizontal steps.

Take the paths for θ2n, which start at (0, 0) end at (2n, 0), and stay at or above the x-axis.
There are no horizontal steps, as bn = 0 in (9.2). There are down steps starting at y-coordinate
n with weight λn, and vertical steps starting at y-coordinate n with weight aλn. If there are k
vertical steps, where k must be even, these contribute a weight of ak. We can change these k
steps to down steps to obtain a weighted Dyck path from (0, 0) to (2n+ k, 0). This is a term

in the combinatorial expansion for µ2n+k. But each such Dyck path for µ2n+k occurs
(
n+k/2

k

)

times, by choosing which of the n+ k/2 down steps are switched to vertical steps.
The proof for θ2n+1 is basically the same. �

These moments may also be connected via Chebyshev polynomials.
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Proposition 9.3. The moments θn satisfy

θn = La(x
n) = L(xnwn(x, a)),

where

w2n(x, a) =
∑

k even

(
n+ k/2

k

)
akxk = 2F1

(
−n, n+ 1

1/2

∣∣∣∣ − a2x2/4

)
= U2n(aix/2),

w2n+1(x, a) =
∑

k odd

(
n+ (k + 1)/2

k

)
akxk = (n+ 1)ax 2F1

(
−n, n+ 2

3/2

∣∣∣∣ − a2x2/4

)
.

The moment generating functions, which are given by the continued fractions in Theorem 7.1
are related.

Theorem 9.4. As formal power series in t, we have for the usual orthogonal polynomials

∞∑

n=0

µ2nt
2n = L

(
1

1− xt

)
= L

(
1

1− x2t2

)
,

and for the type RI polynomials

∞∑

n=0

θnt
n = La

(
1

1− xt

)
= L

(
1

1− x2t(a+ t)

)
.

9.2. Explicit examples.

9.2.1. Chebyshev polynomials.

Proposition 9.5. If bn = b, an = a and λn = λ are constant, then the type RI monic
polynomials are

pn(x) = Un

(
x− b

2
√
ax+ λ

)
(
√
ax+ λ)n.

Note that these are the polynomials we considered in Theorem 6.14.

9.2.2. Hermite polynomials.

Proposition 9.6. If bn = 0, an = an and λn = n, then the type RI monic polynomials are
pn(x) satisfy

∞∑

n=0

pn(x)

n!
tn = ext−(1+ax)t2/2.

Also

pn(x) = Hen

(
x√

1 + ax

)
(
√
1 + ax)n,

where Hen(x) are the monic Hermite polynomials normalized by

Hen+1(x) = xHen(x) − nHen−1(x), He−1(x) = 0, He0(x) = 1.

10. Combinatorics

In this section we study combinatorial aspects of some type RI orthogonal polynomials
considered in Section 8 and 9.
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10.1. Hermite polynomials.

The classical Hermite Hen(x) polynomials are the generating functions for matchings (or
involutions) on n points. Their moments count perfect matchings on n points. In this section
we give the corresponding results for the type RI Hermite polynomials in Section 9.2.

Let Hn(x, a) be the type RI Hermite polynomials given by Proposition 9.6. The following
result follows from either Theorem 3.11 or the exponential generating function for Hn(x, a).

Proposition 10.1. Hn(x, a) is the generating function for involutions of length n, where 1-
cycles are weighted by x, and 2-cycles are two colored, with weights −1 and −ax.

The combinatorics of the moments can be given using Proposition 9.2.

Proposition 10.2. The moments θn = L(xn) for the type RI Hermite polynomials are the
generating functions for 2-coloring the edges of the following perfect matchings, red and blue.

(1) If n is even, the perfect matching is on 2n+ 2K points, and 2K of these n+K edges
are colored red, each of weight a, for some 0 ≤ K ≤ n.

(2) If n is odd, the perfect matching is on 2n+2K+2 points, and 2K+1 of these n+K+1
edges are colored red, each of weight a, for some 0 ≤ K ≤ n.

Here is a simple linearization result:

Hn(x, a)Hm(x, a) =

min(m,n)∑

s=0

(
n

s

)(
m

s

)
s!(1 + ax)sHn+m−2s(x, a).

10.2. Laguerre polynomials.

The classical Laguerre polynomials have moments µn = (a+1)n = (A)n if A = a+1. When
A = 1 this is µn = n!, so the number of weighted Motzkin paths is the number of permutations
of length n. Viennot [18] used Laguerre histories to give a bijection which explained this fact,
and implied many weighted versions.

In Section 8.3 the type RI Laguerre polynomials are given. The moments remain µn =
(a+ 1)n = (A)n, but we now have weighted Motzkin-Schröder paths with different weights,

bn = a− n, an = n, λn = 0.

Note that since λn = 0, Motzkin-Schröder paths become Schröder paths. In terms of weighted
lattice paths we have the following proposition.

Proposition 10.3. For bn = a− n, an = n, and λn = 0, we have
∑

π∈Schn

wt(π) = (a+ 1)n.

In this subsection we give a combinatorial proof of Proposition 10.3 using a type RI Laguerre
history.

Let Sch′n denote the set of Schröder paths π ∈ Schn that contain no peaks (U, V ). For
π ∈ Sch′n, define wt′(π) to be the weight of π with respect to bn = a+ 1, an = n, and λn = 0.

Lemma 10.4. We have ∑

π∈Schn

wt(π) =
∑

π∈Sch′
n

wt′(π).
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Proof. For π, σ ∈ Schn define a relation π ∼ σ if π is obtained from σ by a sequence of replacing
a peak (U, V ) by a horizontal step H or vice versa. Since a peak (U, V ) and a horizontal step
H have the same starting and ending points, it is easy to see that ∼ is an equivalence relation
on Schn and Sch′n is a system of representatives of the equivalence classes. Moreover, for each
π ∈ Sch′n, we have ∑

σ∼π

wt(σ) = wt′(π)

because the weight of a peak (U, V ) and a horizontal stepH starting at height n are, respectively,
n + 1 and a − n, whose sum is a + 1. Summing the above equation over π ∈ Sch′n gives the
desired identity. �

Definition 10.5. A type RI Laguerre history of length n is a labeled Schröder path from (0, 0)
to (n, 0) in which each vertical step starting at height h is labeled by an integer in {1, 2, . . . , h}.
The set of type RI Laguerre histories of length n is denoted by LHn.

By the definition of a type RI Laguerre history we have

(10.1)
∑

π∈Sch′
n

wt′(π) =
∑

π∈LHn

(a+ 1)H(π),

where H(π) is the number of horizontal steps in π. By Lemma 10.4 and (10.1), to show
Proposition 10.3 it suffices to show the following proposition.

Proposition 10.6. We have
∑

π∈LHn

(a+ 1)H(π) = (a+ 1)n.

To show the above proposition we give a bijection φ : LHn → Sn, where Sn is the set of
permutations on [n].

Let π ∈ LHn. Then φ(π) is the permutation in Sn constructed as follows. The basic idea is
to create a cycle for each horizontal step of π and the vertical steps following immediately after
that.

• First, consider the leftmost horizontal step. Suppose there are k vertical steps, labeled
v1, . . . , vk, following this horizontal step. If the horizontal step is between the lines
x = i− 1 and x = i, create a cycle starting with i. Then for j = 1, 2, . . . , k, add at the
end of the cycle the vjth smallest integer in [i] that have not been used. This creates a
cycle of length k + 1 with largest integer i.

• For each of the remaining horizontal steps, from left to right, repeat the above process.

For example, let π be the type RI Laguerre history in Figure 13. Then the corresponding
permutation φ(π), in cycle notation, is given by

φ(π) = (4, 2, 3)(8)(9, 7, 1)(10)(12)(13, 5, 11, 6).

It is easy to check that the map φ is a bijection such that if φ(π) = w, then H(π) is equal
to the number of cycles in w. This proves Proposition 10.6.

10.3. Meixner polynomials.

For the Meixner polynomials, the situation is similar to the Laguerre polynomials. The
moments for the classical Meixner polynomials are

(10.2) µn =

n∑

j=1

S(n, j)(b)j

(
c

1− c

)j

,
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Figure 13. A type RI Laguerre history of length 13.

which involves set partitions and permutations as the fundamental combinatorial objects.
The type RI Meixner polynomials in Section 8.4 retain these moments, but with different

paths and weights. In this section we develop a type RI Meixner history to prove (10.2). To
simplify matters we reformulate the formula for the moments. Let d = c/(1− c), so that

(10.3) bn = n− dn+ bd− d, an = nd, λn = bdn− dn2.

Proposition 10.7. Let bn, an, and λn be given by (10.3). Then

µn =

n∑

j=1

S(n, j)(b)jd
j .

In this subsection we give a combinatorial proof of Proposition 10.7.
For π ∈ MSn define wt(π) to be the weight of π with respect to the weights in Proposi-

tion 10.7. Then a combinatorial restatement of Proposition 10.7 is Proposition 10.8

Proposition 10.8. We have

∑

π∈MSn

wt(π) =
n∑

j=1

S(n, j)(b)jd
j .

Let MS′n denote the set of Motzkin-Schröder paths π ∈ MSn that contain no peaks (U, V ).
For π ∈ MS′n, define wt′(π) to be the weight of π with respect to

bn = n+ bd, an = nd, λn = bdn− dn2.

Then the following lemma is proved by the same argument as in the proof of Lemma 10.4.

Lemma 10.9. We have ∑

π∈MSn

wt(π) =
∑

π∈MS′
n

wt′(π).

Let MS′′n denote the set of Motzkin-Schröder paths π ∈ MS′
n that contain no down steps.

Note that MS′′n ⊂ Schn. For π ∈ MS′n, define wt′′(π) to be the product of the weight of each
step, where the weight of a step starting at height n is given by

• 1 if the step is an up step,
• nd if the step is a vertical step,
• bd+ n if the step is a horizontal step not followed by a vertical step, and
• bd+ b if the step is a horizontal step followed by a vertical step.

By defining a relation π ∼ σ if π is obtained from σ by a sequence of replacing a pair (H,V )
with a down step D or vice versa, we similarly obtain the following lemma.
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Lemma 10.10. We have ∑

π∈MS′
n

wt′(π) =
∑

π∈MS′′
n

wt′′(π).

Definition 10.11. A type RI Meixner history of length n is a path π ∈ MS′n together with a
labeling such that

• each vertical step starting at height h is labeled by an integer in {1, 2, . . . , h},
• each horizontal step followed by a vertical step is not labeled or is labeled by 0, and
• each horizontal step not followed by a vertical step and starting at height h is not

labeled or is labeled by an integer in {1, 2, . . . , h}.
Let MHn denote the set of type RI Meixner histories of length n.
For π ∈ MHn, define wt(π) to be the product of the weight of each step defined as follows:

• An up step has weight 1.
• A vertical step has weight d.
• A non-labeled horizontal step has weight bd.
• A horizontal step labeled 0 has weight b.
• A horizontal step labeled i, for i ≥ 1, has weight 1.

By definition it is clear that

(10.4)
∑

π∈MS′′
n

wt′′(π) =
∑

π∈MHn

wt(π).

By Lemmas 10.9 and 10.10 and (10.4), Proposition 10.8 is equivalent to

(10.5)
∑

π∈MHn

wt(π) =

n∑

j=1

S(n, j)(b)jd
j .

Let Sn denote the set of pairs (P, σ) of a set partition P = {B1, . . . , Bk} of [n] and a
permutation σ of the blocks B1, . . . , Bk of P . For (P, σ) ∈ Sn, define

wt(P, σ) = bcyc(σ)d|P |,

where cyc(σ) is the number of cycles in σ and |P | is the number of blocks in P . Since∑
π∈Sn

bcyc(π) = (b)n, we have

(10.6)
n∑

j=1

S(n, j)(b)jd
j =

∑

(P,σ)∈Sn

wt(P, σ).

Using (10.6) we can rewrite (10.5) as

(10.7)
∑

π∈MHn

wt(π) =
∑

(P,σ)∈Sn

wt(P, σ).

To prove (10.7) we find a weight-preserving bijection ψ : MHn → Sn.
Let π ∈ MHn. Then there are n non-vertical steps in π, say A1, . . . , An from left to right.

Note that the ending point of Ai has x-coordinate i. We create available blocks and cycles of
blocks as follows. We will use the convention that once an available block is used as an element
of a cycle the block is no longer available. Moreover, if there are several available blocks, these
are ordered by their smallest elements.

• Initially there are no available blocks and no cycles of blocks.
• For i = 1, 2, . . . , n, do the following procedure:

– If Ai is an up step, create a new available block containing a single element i.



ORTHOGONAL POLYNOMIALS OF TYPE RI 49

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

3

1

2

2

4

2

2

0

2

1

Figure 14. A type RI Meixner history of length 14.

– If Ai is a non-labeled horizontal step and if it is not followed by a vertical step,
then create a new available block containing a single element i and make a cycle
consisting only of this block.

– If Ai is a horizontal step labeled by j ≥ 1, then insert the integer i in the j-th
available block.

– If Ai is a non-labeled horizontal step followed by a vertical step, then create a new
available block containing a single element i and make a cycle starting with this
block. Suppose that Ai is followed by k vertical steps labeled r1, r2, . . . , rk. Then
add the r1-th available block at the end of the cycle, add the r2-th available block
at the end of the cycle, and so on. After this process we obtain a cycle consisting
of k + 1 blocks.

– If Ai is a horizontal step labeled by 0, then Ai must be followed by a vertical step.
Suppose that Ai is followed by k vertical steps labeled r1, r2, . . . , rk. First insert i
in the r1-th available block and then create a new cycle starting with this block.
Then, as in the previous case, add the r2-th available block at the end of the cycle,
add the r3-th available block at the end of the cycle, and so on. After this process
we obtain a cycle consisting of k blocks.

For example, if π is the Meixner history in Figure 14, then the cycles of ψ(π) are created as
in Table 1 and we get

ψ(π) = ({3, 4}, {1})({7})({8}, {5, 6})({12}, {11}, {9}, {10})({13, 14}, {2}).

It is straightforward to check that the map ψ : MHn → Sn is a weight-preserving bijection,
which shows (10.7).

Finally we note that the nth moment of the Meixner polynomials has the following formula
due to de Médicis [4, Theorem 2]:

(10.8) µn = (1− c)−n
∑

π∈Sn

bcyc(π)cnexc(π),

where nexc(π) is the number of non-excedances of π, i.e., the number of integers i ∈ [n] with
π(i) < i. Since the Meixner polynomials and the type RI Meixner polynomials have the same
nth moment, combining Proposition 10.7 and (10.8) yields the following corollary.

Corollary 10.12. We have

∑

π∈Sn

bcyc(π)cnexc(π) =

n∑

j=1

S(n, j)(b)jc
j(1− c)n−j .
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non-vertical steps available blocks new cycles of blocks
A1 {1}
A2 {1}, {2}
A3 {1}, {2}, {3}
A4 {1}, {2}, {3} ({3, 4}, {1})
A5 {2}, {5}
A6 {2}, {5, 6}
A7 {2}, {5, 6} ({7})
A8 {2}, {5, 6} ({8}, {5, 6})
A9 {2}, {9}
A10 {2}, {9}, {10}
A11 {2}, {9}, {10}, {11}
A12 {2}, {9}, {10}, {11} ({12}, {11}, {9}, {10})
A13 {2}, {13}
A14 {2}, {13} ({13, 14}, {2})

Table 1. The process of the map ψ for each non-vertical step Ai.
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[5] M. Dziemiańczuk. On directed lattice paths with additional vertical steps.

https://arxiv.org/abs/1410.5747.
[6] S.-P. Eu and T.-S. Fu. A simple proof of the Aztec diamond theorem. Electron. J. Combin., 12:Research

Paper 18, 8, 2005.
[7] P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125–161, 1980.
[8] P. Flajolet and R. Schott. Nonoverlapping partitions, continued fractions, Bessel functions and a divergent

series. European J. Combin., 11(5):421–432, 1990.
[9] G. Gasper and M. Rahman. Basic hypergeometric series, volume 96 of Encyclopedia of Mathematics and its

Applications. Cambridge University Press, Cambridge, second edition, 2004. With a foreword by Richard
Askey.

[10] I. M. Gessel and X. G. Viennot. Determinants, paths, and plane partitions. preprint, 1989.
[11] M. E. H. Ismail and D. R. Masson. Generalized orthogonality and continued fractions. J. Approx. Theory,

83(1):1–40, 1995.
[12] S. Kamioka. Laurent biorthogonal polynomials, q-Narayana polynomials and domino tilings of the Aztec

diamonds. J. Combin. Theory Ser. A, 123:14–29, 2014.
[13] D. Kim. A combinatorial approach to biorthogonal polynomials. ProQuest LLC, Ann Arbor, MI, 1989.

Thesis (Ph.D.)–University of Minnesota.
[14] D. Kim. A combinatorial approach to biorthogonal polynomials. SIAM J. Discrete Math., 5(3):413–421,

1992.
[15] B. Lindström. On the vector representations of induced matroids. Bull. London Math. Soc., 5:85–90, 1973.

[16] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.org.
[17] R. A. Sulanke and G. Xin. Hankel determinants for some common lattice paths. Advances in Applied

Mathematics, 40(2):149167, 2008.
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