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Irrationality and Transcendence of
Alternating Series Via Continued Fractions

Jonathan Sondow

Abstract. Euler gave recipes for converting alternating series of two types, I and II, into equiv-

alent continued fractions, i.e., ones whose convergents equal the partial sums. A condition we

prove for irrationality of a continued fraction then allows easy proofs that e, sin 1, and the pri-

morial constant are irrational. Our main result is that, if a series of type II is equivalent to a sim-

ple continued fraction, then the sum is transcendental and its irrationality measure exceeds 2.

We construct all ℵ
ℵ0

0 = c such series and recover the transcendence of the Davison–Shallit

and Cahen constants. Along the way, we mention π, the golden ratio, Fermat, Fibonacci, and

Liouville numbers, Sylvester’s sequence, Pierce expansions, Mahler’s method, Engel series,

and theorems of Lambert, Sierpiński, and Thue-Siegel-Roth. We also make three conjectures.

1. INTRODUCTIO. In a 1979 lecture on the Life and Work of Leonhard Euler,

André Weil suggested “that our students of mathematics would profit much more from

a study of Euler’s Introductio in Analysin Infinitorum, rather than of the available mod-

ern textbooks” [17, p. xii]. The last chapter of the Introductio is “On Continued Frac-

tions.” In it, after giving their form, Euler “next look[s] for an equivalent expression

in the usual way of expressing fractions” and derives formulas for the convergents. He

then converts a continued fraction into an equivalent alternating series, i.e., one whose

partial sums equal the convergents. He “can now consider the converse problem. Given

an alternating series, find a continued fraction such that the series representing the

value of the continued fraction is the given series.”

In Proposition 1 and Theorem 1, we recall Euler’s solutions for alternating series of

two types, I and II. Lemma 1, a simplification of Nathan’s theorem on irrationality of

a continued fraction, then yields conditions for irrationality of the sum of a type I or II

series. They easily imply the irrationality of e, sin 1, and the shifted-Fermat-number

and primorial constants, and give a simple proof of Sierpiński’s theorem.

Our main result is that, if a type II series is equivalent to a simple continued fraction,

then the sum has irrationality measure greater than 2, and so must be transcendental,

by the Thue-Siegel-Roth theorem on rational approximations to algebraic numbers.

Corollary 1 constructs all such series and shows that their sums form a continuum

of distinct transcendental numbers, including the Davison-Shallit constant.

Corollary 2 gives explicitly the simple continued fractions for “naturally-occurring”

transcendental numbers in a doubly-infinite family which contains Cahen’s constant.

Finally, Proposition 2 provides irrationality and transcendence conditions for fami-

lies of non-alternating series, including the Kellogg-Curtiss constant. Here the proofs

involve partial sums instead of continued fractions.

Along the way, we encounter π, Fibonacci and golden rectangle numbers, an alter-

nating Liouville constant, Sylvester’s sequence, Pierce expansions, Mahler’s method,

and Engel series. We also make three conjectures; one on e−1 is an analog of Sondow’s

conjecture on e, recently proven by Berndt, Kim, and Zaharescu.

The rest of the paper is organized as follows. Lemma 1 and Proposition 1 are in Sec-

tion 2; Theorem 1, Corollary 1, and Conjectures 1 and 2 are in Section 3; Corollary 2

is in Section 4; and Proposition 2 and Conjecture 3 are in Section 5.
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2. CONTINUED FRACTIONS AND IRRATIONALITY. In 1761 Lambert [26]

derived a continued fraction for tan x and showed that its value is irrational for rational

x 6= 0. Since tan π
4
= 1 is rational, Lambert had established that π is irrational. For

modern treatments of his proof, see [15, §3.6] and [25].

Let us denote the positive integers by N and the rational numbers by Q. Lemma 1

provides a sufficient condition for irrationality of the value of a continued fraction with

all elements in N. (Lambert’s has both positive and negative elements.) The statement

and quick proof are simplifications of Nathan’s theorem in [28].

Lemma 1 (Irrationality Lemma). Let α be the value of a continued fraction

α =
b1

a1 +
b2

a2 + · · ·

,

where an ∈ N and bn ∈ N and an ≥ bn for n = 1, 2, 3, . . . . Then α 6∈ Q.

Proof. If α ∈ Q, define the nth “tail” of α to be the value of the continued fraction

αn :=
bn+1

an+1 +
bn+2

an+2 + · · ·

, so αn =
bn+1

an+1 + αn+1

, (1)

for all n ≥ 0. The hypotheses ensure that 0 < αn < 1 for all n ≥ 0. As α0 = α, and

αn ∈ Q implies αn+1 ∈ Q, we can write αn = un/vn, where un and vn are coprime

positive integers with un < vn. Thus from (1) we get

un+1

vn+1

= αn+1 =
vnbn+1 − unan+1

un

,

so un+1 < vn+1 ≤ un. But then (un)n≥0 is a strictly decreasing, infinite sequence of

positive integers, which is impossible. Therefore, α 6∈ Q.

For instance, if an = 1 and bn = 1 for all n, then by Lemma 1

α =
1

1 +
1

1 + · · ·

=
1

1 + α
> 0 =⇒ α =

√
5− 1

2
6∈ Q.

Thus the golden ratio ϕ := α−1 is irrational. For more on ϕ, see Examples 2 and 6.

Lemma 1 generalizes the irrationality of an infinite simple continued fraction, i.e.,

one with all partial numerators bn = 1 and all partial quotients (or partial denomina-

tors) an ∈ N.

Our hypothesis an ≥ bn is weaker than Nathan’s an > bn. Ours is also sharp: with

the even weaker hypothesis an ≥ bn − 1, the lemma would be false, e.g.,

α =
2

1 +
2

1 + · · ·

=
2

1 + α
> 0 =⇒ α = 1 ∈ Q.

Lemma 1 holds more generally when an ≥ bn for all sufficiently large n. There is

also a condition for irrationality of a continued fraction with both positive and negative

2 [ 0
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integers an and bn, namely, that |an| ≥ |bn|+ 1; see, e.g., [15, §3.6]. We have chosen

simplicity over generality here and elsewhere in the paper.

We now apply the Irrationality Lemma to our first kind of alternating series, type I.

Proposition 1. Let B0 < B1 < B2 < · · · be positive integers.

(i). Then there is an equivalence

α :=
1

B0

− 1

B1

+
1

B2

− · · · ∼= 1

B0 +
B2

0

B1 −B0 +
B2

1

B2 −B1 + · · ·

. (2)

(ii). Suppose that

Bn+1 ≥ Bn(Bn + 1) for all n ≥ 0. (3)

Then the sum α is irrational.

Proof. (i). Euler establishes the equivalence in [17, §369]; for example,

1

B0

− 1

B1

=
1

B0 +
B2

0

B1 −B0

.

(ii). Set a1 = B0, b1 = 1, an+1 = Bn − Bn−1, and bn+1 = B2
n−1 for n ≥ 1. Then

(3) guarantees that an ≥ bn for all n, so by Lemma 1 the value of the continued

fraction in (2) is irrational. By (i), that value equals the sum α, so α 6∈ Q.

Proposition 1 provides an easy proof of Sierpiński’s theorem, which states that, if

(3) holds with all Bn ∈ N, then α :=
∑∞

n=0(−1)nB−1
n 6∈ Q. Sierpiński [34] (see also

Cahen [9]) showed moreover that such a representation of any irrational number α in

(0, 1) exists and is unique. For extensions of his theorem, see Badea [2], Duverney

[13], and Nyblom [29].

Note that part (ii) and Sierpiński’s theorem are sharp: if Bn+1 + 1 = Bn(Bn + 1)
for all n ≥ 0, then (Bn+1 + 1)−1 = B−1

n − (Bn + 1)−1, so by telescoping

∞∑

n=0

(−1)n

Bn

=
∞∑

n=0

(
(−1)n

Bn + 1
+

(−1)n

Bn+1 + 1

)

=
1

B0 + 1
∈ Q.

Example 1. The Fermat numbers Fn = 22
n

+ 1 form the sequence [35, A000215]

(Fn)n≥0 = 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, . . . .

Let us define the shifted-Fermat-number constant F to be the alternating sum of re-

ciprocals of the numbers Fn − 2 (for them, see [35, A051179])

F :=
∞∑

n=0

(−1)n

Fn − 2
=

∞∑

n=0

(−1)n

22n − 1
= 1− 1

3
+

1

15
− 1

255
+ · · · = 0.7294270 . . . .

The numbers Bn := 22
n − 1 satisfy (3), so the shifted-Fermat-number constant F

is irrational. For a generalization with a different proof, take ǫ = −1 in [13, Corol-

lary 3.3]. We return to F in Example 5.

The next section studies irrationality and transcendence of our second kind of alter-

nating series, type II, which is a special case of type I.

0] 3
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3. SIMPLE CONTINUED FRACTIONS AND TRANSCENDENCE. Our main

results are Theorem 1 and Corollaries 1 and 2. We denote the algebraic numbers by A

(others denote them by Q, the algebraic closure of Q).

Theorem 1. Fix positive integers A0, A1, A2, . . . , with An ≥ 2 for all n ≥ 1.

(i). For any positive real numbers x0, x1, x2, . . . , we have the equivalence between an

alternating series and a continued fraction

α :=
∞∑

n=0

(−1)n

A0A1 · · ·An

∼= x0

A0x0 +
A0x0x1

(A1 − 1)x1 +
A1x1x2

(A2 − 1)x2 + · · ·

. (4)

(ii). If An+1 > An for all n ≥ 0, then α is irrational.

(iii). If the continued fraction is simple for some x0, x1, x2, . . . , then α is a transcen-

dental number, with irrationality measure µ(α) ≥ 2.5.

The irrationality measure (or irrationality exponent) µ(ρ) of a real number ρ is

defined as (see [3, 4, 7], [8, §1.4], [15, Chapter 9], [18, §2.22], [36])

µ(ρ) := sup

{

µ > 0 : 0 <

∣
∣
∣
∣
ρ− p

q

∣
∣
∣
∣
<

1

qµ
for infinitely many

p

q
∈ Q

}

. (5)

By the famous Thue-Siegel-Roth theorem [1], [8, p. 22], [15, p. 147], [18, p. 172], [22,

p. 176]

µ(ρ)







= 1 if ρ is rational,

= 2 if ρ is irrational, but algebraic,

≥ 2 if ρ is transcendental.

Proof of Theorem 1. (i). Apply Proposition 1, part (i), with Bn := A0A1 · · ·An for

n ≥ 0. Since Bn − Bn−1 = (An − 1)A0A1 · · ·An−1, cancelling the common fac-

tors A0, A0A1, A0A1A2, . . . in the resulting continued fraction gives

1

A0

− 1

A0A1

+
1

A0A1A2

− · · · ∼= 1

A0 +
A✄2

0

(A1 − 1)✚✚A0 +
A✄2

0A
2
1

(A2 − 1)A0A1 + · · ·
∼= 1

A0 +
A0

A1 − 1 + ✚✚A0A✄2
1

(A2 − 1)✘✘✘A0A1 + · · ·

∼= 1

A0 +
A0

A1 − 1 +
A1

A2 − 1 + · · ·

,

where “∼=” between two continued fractions means they are equivalent, i.e., they have

the same convergents (see [15, p. 25]; for two numerical continued fractions which are

equivalent but not equal, see Example 4 below). This proves the special case of (i) in

which all xn = 1 (compare to [17, §370]). The general case follows by cancelling the

common factors x0, x1, x2, . . . in (4).

(ii). In Lemma 1, we take a1 := A0, b1 := 1, an := An−1 − 1, and bn := An−2 for

n ≥ 2. Then An+1 > An implies an ≥ bn for all n ≥ 1, so α 6∈ Q.

4 [ 0
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(iii). (Compare to the proof of [12, Theorem 3].) Redefining a1, a2, . . . , we write the

simple continued fraction for α, and its nth convergent, as usual as

α = 0 +
1

a1 +
1

a2 + · · ·

= [0, a1, a2, . . . ] and
pn
qn

= [0, a1, a2, . . . , an].

The hypothesis in (iii) means that

n∑

i=0

(−1)i

A0A1 · · ·Ai

=
pn+1

qn+1

for n ≥ 0. (6)

A classical theorem [22, Theorem 150] and relation (6) imply, respectively, that

(−1)n

qnqn+1

=
pn+1

qn+1

− pn
qn

=
(−1)n

A0A1 · · ·An

(7)

for n ≥ 1. Hence qnqn+1 = A0A1 · · ·An; since q0 = 1 and q1 = A0, this also holds

for n = 0. It follows that the divisibility qnqn+1 | qn+1qn+2 holds; hence qn | qn+2.

A standard identity [22, Theorem 149] is

qn+2 = an+2qn+1 + qn, (8)

so qn | an+2qn+1. Multiplying (7) by qnqn+1, we deduce that gcd(qn, qn+1) = 1, so

qn | an+2. Define w0, w1, . . . in N by w0 = a1 and wn+1qn = an+2 for n ≥ 0. By a

“simple lemma” [12, Lemma 2],

wnqn−1 ≥
√
qn for infinitely many n. (9)

Now, from (6), a classical inequality [8, p. 24], the equality an+1 = wnqn−1, and (9),

respectively, we see that

0 <

∣
∣
∣
∣
α− pn

qn

∣
∣
∣
∣
<

1

an+1q2n
=

1

wnqn−1q2n
≤ 1

q
5/2
n

infinitely often. This and definition (5) imply µ(α) ≥ 2.5. By the Thue-Siegel-Roth

theorem, µ(ρ) ≤ 2 if ρ ∈ A, so α 6∈ A. This completes the proof of Theorem 1.

Note that the hypothesis in (ii) is sharp: if An = A0 > 1 for all n > 0, then the

series in (4) is geometric, with sum α = (A0 + 1)−1 ∈ Q. Also, in (ii) the inequality

An+1 > An is much weaker than that in (3) with Bn = A0A1 · · ·An, which amounts

to An+1 > A0A1 · · ·An. Compare Examples 1 and 5.

For any strictly increasing sequence of positive integers A0 < A1 < A2 < · · · ,
finite or infinite, the alternating sum

α :=
1

A0

− 1

A0A1

+
1

A0A1A2

− · · ·

is called the Pierce expansion of α. Any number α ∈ (0, 1) has a unique Pierce ex-

pansion, which is infinite if, and only if, α is irrational [30, 31, 32, 34]. The “only if”

part follows immediately from (ii).

0] 5
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Example 2. The Pierce expansion of ϕ−1 begins [35, A118242, A006276]

1

ϕ
=

1

1
− 1

1 · 2 +
1

1 · 2 · 4 − 1

1 · 2 · 4 · 17 +
1

1 · 2 · 4 · 17 · 19 − · · · .

As ϕ−1 ∈ A, we see that the hypothesis in (iii) cannot be omitted. Combined with the

next example, this shows that, if the Pierce expansion of α 6∈ Q is not equivalent to a

simple continued fraction, then α ∈ A is possible, but so is α 6∈ A.

Example 3. Euler [17, p. 325] says, “Something especially deserving of our attention

is the number e . . . .” The Taylor series et =
∑∞

n=0 t
nn!−1 and (i) lead to the Pierce

expansion of e−1 and the equivalence

e−1 =
∞∑

n=2

(−1)n

2 · 3 · 4 · · · n
∼= x0

2x0 +
2x0x1

2x1 +
3x1x2

3x2 +
4x2x3

4x3 + · · ·

. (10)

Part (ii) now gives an easy proof that e is irrational. The Taylor series for sin t and

cos t lead to similar proofs that sin 1
k

and cos 1
k

are irrational for all k ∈ N.

From (10) we also see that a strong converse to (iii) is not true. Namely, although

e−1 6∈ A (because e 6∈ A by Hermite [15, §12.14]), the type II series for e−1 in (10) is

not equivalent to a simple continued fraction. Indeed, when x0, x1, . . . are chosen so

that all partial numerators in the continued fraction for e−1 in (10) equal 1

1

e
=

1

2 +
2(1/2)

2(1/2) +
3(1/2)(2/3)

3(2/3) +
4(2/3)(3/8)

4(3/8) + · · ·

=
1

2 +
1

1 +
1

2 +
1

(3/2) + · · ·

(11)

the partial quotients do not all lie in N. For a weaker converse to (iii), which is also not

true, see Example 8.

By (11), the simple continued fraction for e−1 begins e−1 = [0, 2, 1, 2, . . . ]. From

(10) (or by inspection), the first four convergents are also partial sums of the Taylor

series e−1 =
∑∞

n=0(−1)nn!−1.

Conjecture 1. Only four partial sums of the Taylor series for e−1 are convergents to

e−1, namely, 0, 1/2, 1/3, and 3/8.

Conjecture 1 is an analog for e−1 of the fact that only two partial sums of the Taylor

series for e are convergents to e, namely, 2 and 8/3. This property of ewas conjectured

by Sondow [36], partially proven by him and Schalm [37], and recently proven in full

by Berndt, Kim, and Zaharescu [6].

Example 4. An analog of series (10) for e−1, with the factorial n! replaced by the

primorial pn#, is “the constant obtained through Pierce retro-expansion of the prime

sequence” [35, A132120], which we dub the primorial constant

P :=
∞∑

n=1

(−1)n−1

pn#
=

1

2
− 1

2 · 3 +
1

2 · 3 · 5 − 1

2 · 3 · 5 · 7 +
1

2 · 3 · 5 · 7 · 11 − · · ·

6 [ 0
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=
1

2
− 1

6
+

1

30
− 1

210
+

1

2310
− · · · = 0.3623062223 . . . .

Proposition 1, part (i), and Theorem 1, parts (i) and (ii), imply that

P =
1

2 +
22

4 +
62

24 +
302

180 +
2102

2100 + · · ·

∼= 1

2 +
2

2 +
3

4 +
5

6 +
7

10 + · · ·

6∈ Q.

Conjecture 2. The primorial constant P is transcendental.

Example 5. By induction, for n ≥ 0 the shifted Fermat number Fn − 2 can be fac-

tored as the product of all smaller Fermat numbers

Fn − 2 = 22
n − 1 =

n−1∏

k=0

(

22
k

+ 1
)

= F0F1 · · ·Fn−1, (12)

where the empty product equals 1 when n = 0. (From (12) Pólya deduced that

F0, F1, F2, . . . are pairwise coprime, thereby giving an alternate proof to Euclid’s

theorem on the infinitude of the primes [22, §2.4].) The constant F in Example 1 thus

has Pierce expansion

F =
∞∑

n=0

(−1)n

F0F1 · · ·Fn−1

=
1

1
− 1

1 · 3 +
1

1 · 3 · 5 − 1

1 · 3 · 5 · 17 + · · · .

Part (ii) of Theorem 1 now gives a second proof that F 6∈ Q. Moreover, parts (i) of

Proposition 1 and Theorem 1 yield the equivalent continued fractions

F =
1

1 +
12

2 +
32

12 +
152

240 + · · ·

∼= 1

1 +
1

2 +
3

4 +
5

16 + · · ·

.

Theorem 1 does not yield F 6∈ A, but Duverney [16] has proven it by other methods.

Remark 1. Non-alternating series involving Fn have also been studied. In 1963,
Golomb [21] proved that the sum G :=

∑∞

n=0 F
−1
n is irrational. Two years later,

Mahler [27] remarked that G is in fact transcendental, as a consequence of a gen-

eral theorem he proved in 1929—see [14, pp. 194–195]. (Mahler’s method [15, §12.3]

proves the transcendence of values, at certain algebraic points, of functions that satisfy

a type of functional equation.) Recently, Coons [10] showed that G has irrationality

measure µ(G) = 2. In the pre-Mahler year 1916, Kempner [24] proved that the num-

ber κ :=
∑∞

n=0(Fn − 1)−1 =
∑∞

n=0 2
−2n is transcendental; see Adamczewski [1]

for five proofs with interesting comments. (The second proof applies Mahler’s method

to the function f(x) :=
∑∞

n=0 x
2n , which is defined when |x| < 1, satisfies the func-

tional equation f(x2) = f(x)− x, and has the value f(1/2) = κ.)

0] 7
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The next example shows that the sufficient condition for transcendence of the sum

of a type II series in Theorem 1 does not extend to the more general type I series in

Proposition 1.

Example 6. Let (fn)n≥0 = 1, 1, 2, 3, 5, 8, 13, . . . be the positive Fibonacci numbers

[35, A000045], defined by f0 = 1, f1 = 1, and fn+1 = fn + fn−1 for n ≥ 1. The

product Bn := fnfn+1 is a golden rectangle number [35, A001654]. The difference

between successive golden rectangle numbers is a square:

Bn −Bn−1 = fnfn+1 − fn−1fn = fn(fn+1 − fn−1) = f 2
n. (13)

Therefore, using Proposition 1, part (i), and cancelling common factors f 2
1 , f

2
2 , . . . ,

we obtain the equivalence

α :=
∞∑

n=0

(−1)n

fnfn+1

∼= 1

f0f1 +
f 2
0��f

2
1

��f
2
1+

��f
2
1��f

2
2

��f
2
2 + · · ·

= [0, 1, 1, 1, . . . ].

The latter is the simple continued fraction expansion of α = ϕ−1 ∈ A. This shows

that, given B0 < B1 < B2 < · · · in N, the sum of the series α :=
∑∞

n=0(−1)nB−1
n

might not be transcendental, even if the series is equivalent to a simple continued

fraction. (However, if in addition Bn−1 divides Bn for all n ≥ 1, then α 6∈ A, by

Theorem 1 with A0 := B0 and An := Bn/Bn−1 for n ≥ 1.)

Remark 2. Example 6 is a special case of the following well-known fact. For any

irrational number ρ with simple continued fraction expansion ρ = [a0, a1, a2, . . . ]
and nth convergent pn/qn, there is an equivalence

ρ = a0 +
∞∑

n=0

(−1)n

qnqn+1

∼= [a0, a1, a2, . . . ].

(Proof. Replacing ρ with ρ − a0, we may assume that a0 = 0. Note that q0 = 1.

Setting Bn = qnqn+1, we use (8) to get Bn −Bn−1 = an+1q
2
n, generalizing relation

(13). The rest of the proof is like the argument in Example 6, and is omitted.)

By part (i) of Theorem 1, if the continued fraction in (4) is simple for some

x0, x1, . . . , then the series in (4) is equivalent to a simple continued fraction, i.e.,

(6) holds. Conversely, it is not hard to show by induction that, if (6) holds, then the

continued fraction in (4) is simple for some x0, x1, . . . . For instance, if the partial

sums A−1
0 and A−1

0 − (A0A1)
−1 equal the convergents a−1

1 and (a1 + a−1
2 )−1, re-

spectively, then A0 = a1 and (A1 − 1)A−1
0 = a2 ∈ N, so the choices x0 = 1 and

x1 = A−1
0 give the finite simple continued fraction

x0

A0x0 +
A0x0x1

(A1 − 1)x1

=
1

A0 +
1

(A1 − 1)A−1
0

= [0, a1, a2].

We now give a method for constructing all examples of Theorem 1, part (iii).

8 [ 0
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Corollary 1. (i). Construct a sequence of positive integers (An)n≥0 in three steps.

Step 1. Choose a sequence (Mn)n≥0 with all Mn ∈ N.

Step 2. Let (Nn)n≥1 satisfy the recursion

N1 = 1, N2 = M0, and Nn+2 = (MnNn+1 + 1)Nn for n ≥ 1. (14)

Step 3. Define (An)n≥0 by

A0 = M0 and An = MnNn+1 + 1 for n ≥ 1. (15)

Then there exists (xn)n≥0 such that (4) is an equivalence between an alternating

series and a simple continued fraction, namely,

α :=
∞∑

n=0

(−1)n

A0A1 · · ·An

∼= [0,M0,M1N1,M2N2,M3N3, . . . ]. (16)

(ii). Conversely, if the continued fraction in (4) is simple for some (xn)n≥0, then the

sequence (An)n≥0 in (4) can be constructed by Steps 1, 2, 3.

(iii). The series in (16) is the Pierce expansion of α, that is, An+1 > An for n ≥ 0.

(iv). Distinct sequences (Mn)n≥0 6= (M ′
n)n≥0 in Step 1 lead to distinct transcendental

numbers α 6= α′ in (16). In particular, if S denotes the set of real numbers α whose

Pierce expansion is equivalent to a simple continued fraction, then #S = ℵℵ0

0 = c.

Proof. By definition, the continued fraction in (4) is simple if, and only if,

(a). x0 = 1,

(b). Anxnxn+1 = 1 for n ≥ 0,

(c). A0x0 ∈ N, and

(d). (An − 1)xn ∈ N for n ≥ 1.

(i). Set x0 = 1 and xn = Nn/Nn+1 for n ≥ 1. From formulas (15) and (14) we get

An = Nn+2/Nn for n ≥ 1. It is now easy to verify (a), (b), (c), and (d). Observing

that (An − 1)xn = MnNn for n ≥ 1, the equivalence (4) gives (16). This proves (i).

(ii). Assume (a), (b), (c), and (d). Then An ∈ N implies that xn ∈ Q for n ≥ 1,
so xn = Nn/Dn, where Nn ∈ N and Dn ∈ N, with gcd(Nn,Dn) = 1. From

(a) and (b), we get N1 = 1 and D1 = A0. From (d), we see that Dn | (An − 1)
for n ≥ 1, so there exists Mn ∈ N such that An = MnDn + 1. Since (b) implies

AnNnNn+1 = DnDn+1, we get

(MnDn + 1)NnNn+1 = DnDn+1 for n ≥ 1. (17)

Consequently, Nn+1 | DnDn+1, so Nn+1 | Dn. Also, Dn | (MnDn + 1)NnNn+1,
so Dn | Nn+1. Thus Dn = Nn+1 for all n ≥ 1; in particular, N2 = D1 = A0. Mak-

ing replacements in (17) and in An = MnDn + 1, we obtain (14) and (15), respec-

tively. This proves (ii).

(iii). Note that (14) and (15) give An+1 = Mn+1AnNn + 1 > An for n ≥ 0.

(iv). By Theorem 1, the sum α is transcendental. It now suffices to show that, given

α = [0,M0,M1N1,M2N2, . . . ] and α′ = [0,M ′
0,M

′
1N

′
1,M

′
2N

′
2, . . . ], if α = α′,

then Mn = M ′
n for all n ≥ 0. By the uniqueness of simple continued fraction expan-

sion, M0 = M ′
0 and MkNk = M ′

kN
′
k for k ≥ 1. Using (14), the rest of the proof is

an easy induction, which we omit. This completes the proof of the corollary.

0] 9
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Example 7. Choosing the constant sequence Mn = 1 yields N1 = 1, N2 = 1, and

Nn+2 = (Nn+1 + 1)Nn for n ≥ 1. Then A0 = 1 and An = Nn+1 + 1 for n ≥ 1, so

An = 1, 2, 3, 4, 9, 28, 225, 6076, 1361025, . . .

(see [35, A007704]). By (iv), we recover the transcendence of the Davison-Shallit

constant [12, Example A] (see also [18, pp. 436, 445], [35, A242724])

D :=
∞∑

n=0

(−1)n

A0A1 · · ·An

= 1− 1

2
+

1

6
− 1

24
+

1

216
− · · · = 0.62946502045 . . .

and, by (i), the expansion [12, p. 122], [35, A006277]

D = [0, 1, N1, N2, N3, . . . ] = [0, 1, 1, 1, 2, 3, 8, 27, 224, 6075, 1361024, . . . ].

Example 8. Let us define an alternating Liouville constant by the series

λ :=
∞∑

n=2

(−1)n

10n!
=

1

102
− 1

106
+

1

1024
− 1

10120
+ · · ·

= 0.009999000000000000000000 99 . . . 9
︸ ︷︷ ︸

96

00 . . . .

For n = 1, 2, 3, . . . , the nth partial sum of the series satisfies

Pn

Qn

:=
n+1∑

k=2

(−1)k

10k!
=⇒ 0 <

∣
∣
∣
∣
λ− Pn

Qn

∣
∣
∣
∣
<

1

10(n+2)!
=

1

Qn+2
n

.

From this and (5), we infer that λ has irrationality measure µ(λ) = ∞. By definition,

λ is therefore a Liouville number, so Liouville’s theorem [8, §1.4], [15, §9.3], [22,

§11.7] (or its descendant, the Thue-Siegel-Roth theorem) implies λ is transcendental.

On the other hand, its Pierce expansion

λ =
∞∑

n=0

(−1)n

A0A1 · · ·An

=
1

102!
− 1

102!103!−2!
+

1

102!103!−2!104!−3!
− · · · (18)

cannot be constructed from any sequence (Mn)n≥0 as in (i). (Proof. If it could, then

M0 = A0 = 102! would imply M110
2! + 1 = A1 = 103!−2!, contradictingM1 ∈ N.)

Hence by (ii) a converse to Theorem 1, part (iii), weaker than the false converse

in Example 3, is also not true. Namely, although λ 6∈ A and µ(λ) ≥ 2.5, the type II

series for λ in (18) is not equivalent to a simple continued fraction.

More positively, one can show that, if a sequence (Mn)n≥0 in (i) grows sufficiently

rapidly, then the sum α in the equivalence (16) is a Liouville number.

The next section gives further applications of Theorem 1.

4. SYLVESTER’S SEQUENCE AND CAHEN’S CONSTANT. There are not

many “naturally-occurring” transcendental numbers for which the simple continued

fraction is known explicitly. They include the beautiful expansions

10 [ 0
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e− 1 = [1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, . . . ],

tan 1 = [1, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 1, 15, 1, 17, 1, 19, . . . ],

1/ tanh 1 = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, . . . ],

I0(2)/I1(2) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, . . . ],

and those of e2/q, tan 1
q
, tanh 1

q
, and I p

q
(2
q
)/I1+ p

q
(2
q
), for p and q in N, where Ic(x) is

a modified, or hyperbolic, Bessel function of the first kind [15, Chapter 3]. References

to several others are given in [12, §V].

Theorem 1 yields a doubly-infinite family of such numbers. We define them by a

natural recursion, independently of Corollary 1.

Corollary 2. Fix k ∈ N and ℓ ∈ N. For n ≥ 0, define sn = sn(k, ℓ) by the recurrence

s0 = k and sn = (s0s1 · · · sn−1)
ℓ + 1 for n ≥ 1. (19)

(i). Then there is an equivalence

Ck,ℓ :=
∞∑

n=0

(−1)n

sn+1 − 1
∼= [a0, a1, a2, . . . ],

where the partial quotients of the simple continued fraction are

a0 = 0, a1 = sℓ0, and an+1 = (sℓn − 1)
n−1∏

i=0

(sℓi)
(−1)n+i ∈ N for n ≥ 1.

(ii). The sum Ck,ℓ is transcendental, and Ck,ℓ = Ck′,ℓ′ only when (k, ℓ) = (k′, ℓ′).

(iii). The double-exponential lower bound an > (kℓ + 1)(ℓ+1)n−4

holds for all n ≥ 4.

(iv). There are the summations

∞∑

n=0

sℓn − 1

sn+1 − 1
= 1 and

∞∑

n=0

sℓ2n+1 − 1

s2n+2 − 1
= Ck,ℓ.

(v). Taking ℓ = 1 gives

Ck,1 =
1

s0
− 1

s0s1
+

1

s0s1s2
− 1

s0s1s2s3
+

1

s0s1s2s3s4
− 1

s0s1s2s3s4s5
+ · · ·

∼= [0, s0, 1, (s0)
2, (s1)

2, (s0s2)
2, (s1s3)

2, (s0s2s4)
2, (s1s3s5)

2, . . . ].

(vi). For odd n ≥ 1 and even m ≥ 2, the partial quotients an and am of Ck,1 are

coprime.

Proof. (i). Set An := sℓn for n ≥ 0. Then (19) gives sn+1 − 1 = A0A1 · · ·An, so by

Theorem 1, for any x0, x1, . . . in R+ there is an equivalence

Ck,ℓ =
∞∑

n=0

(−1)n

sℓ0s
ℓ
1 · · · sℓn

∼= x0

sℓ0x0 +
sℓ0x0x1

(sℓ1 − 1)x1 +
sℓ1x1x2

(sℓ2 − 1)x2 + · · ·

.

0] 11
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The partial numerators equal 1 when x0 = 1 and xn+1 = (sℓnxn)
−1 for n ≥ 0. By

induction, the solution of this recursion is

xn =
n−1∏

i=0

(sℓi)
(−1)n+i

for n ≥ 1.

The partial quotients are then a0 = 0, a1 = sℓ0x0 = sℓ0, and an+1 = (sℓn − 1)xn for

n ≥ 1. Substituting sℓn − 1 = (sℓ0s
ℓ
1 · · · sℓn−1 + 1)ℓ − 1 and expanding the binomial,

the 1s cancel, so sℓ0s
ℓ
1 · · · sℓn−1 divides sℓn − 1 and an+1 ∈ N. This proves (i).

(ii). Theorem 1 and (i) imply Ck,ℓ 6∈ A. From a1 = kℓ and a2 = ((kℓ + 1)ℓ − 1)k−ℓ,
we deduce that Ck,ℓ 6= Ck′,ℓ′ when (k, ℓ) 6= (k′, ℓ′). This proves (ii).

(iii). Let αn := sn − 1. Then (19) implies αn+1 = αn(αn + 1)ℓ > αℓ+1
n for n ≥ 1.

As α2 = kℓ(kℓ + 1)ℓ ≥ kℓ + 1, induction yields αn ≥ (kℓ + 1)(ℓ+1)n−2

for n ≥ 2.

Since (i) implies an ≥ s2ℓn−3 > α2ℓ
n−3 ≥ αℓ+1

n−3, we get (iii).

(iv). For n > 0, definition (19) implies sn+1 − 1 = (sn − 1)sℓn, so

1

sn − 1
− 1

sn+1 − 1
=

sℓn − 1

sn+1 − 1
for n ≥ 1. (20)

Hence the first series in (iv) telescopes to (sℓ0 − 1)(s1 − 1)−1 + (s1 − 1)−1 = 1.

Replacing n with 2n + 1 in (20), we sum from n = 0 to ∞ and obtain the second

equality in (iv).

(v). Set ℓ = 1 in parts (i) and (ii).

(vi). Recursion (19) yields gcd(si, sj) = 1 for i 6= j, so (ii) follows from (i). This

completes the proof of the corollary.

Example 9. Take (k, ℓ) = (1, 1). Sylvester’s sequence [39, 40] is defined as

(Sn)n≥0 := (sn+1(1, 1))n≥0 = 2, 3, 7, 43, 1807, 3263443, 10650056950807, . . .

(see [12, p. 123], [18, pp. 436, 444], [20], [35, A000058]). Sylvester’s sequence satis-

fies the recursion S0 = 2 and Sn+1 = (Sn − 1)Sn + 1 for n ≥ 0.

Likewise, C := C1,1 defines Cahen’s constant [9], [18, §6.7], [35, A118227]

C =
∞∑

n=0

(−1)n

Sn − 1
= 1− 1

2
+

1

6
− 1

42
+

1

1806
− · · · = 0.643410546288338 . . .

= 1−
∞∑

n=1

(−1)n−1

S0S1 · · ·Sn−1

= 1− 1

2
+

1

2 · 3 − 1

2 · 3 · 7 +
1

2 · 3 · 7 · 43 − · · · .

Corollary 2 recovers C 6∈ A from [12] and gives the expansion [35, A006279]

C = [0, 1, 1, 1, (S0)
2, (S1)

2, (S0S2)
2, (S1S3)

2, (S0S2S4)
2, (S1S3S5)

2, . . . ] (21)

= [0, 1, 1, 1, 22, 32, 142, 1292, 252982, 4209841472 , . . . ].

Since αn := Sn − 1 satisfies αn+1 − αn = α2
n and

∑∞

n=0(−1)nα−1
n = C, Proposi-

12 [ 0
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tion 1 and Theorem 1 give, respectively, the continued fractions

C =
1

1 +
12

12 +
22

22 +
62

62 +
422

422 + · · ·

∼= 1

1 +
1

1 +
2

2 +
3

6 +
7

42 + · · ·

.

In his 1891 paper “A remark on an expansion of numbers which has some similar-

ities with continued fractions” [9], Cahen defined C and showed that it is irrational.

Exactly 100 years later, as an example of their “self-similar” (or “self-generating” [18,

§6.7], [19, §6.7]) simple continued fractions, Davison and Shallit [12] proved that C is

transcendental and that C = [0, 1, q20 , q
2
1, q

2
2 , . . . ]. (This expansion agrees with (21),

by (8) and induction.) For generalizations of [12], see Becker [5] and Töpfer [41].

Example 10. Corollary 2 shows that the Cahen-type constant Ck,1 = [0, k, 1, . . . ], so

1 > C1,1 >
1

2
> C2,1 >

1

3
> C3,1 >

1

4
> C4,1 > · · · .

When k = 2 we have s0(2, 1) = 2 = s1(1, 1) = S0. It follows that in general

sn+1(2, 1) = sn+2(1, 1) = Sn+1, so

C2,1 =
∞∑

n=0

(−1)n

sn+1(2, 1) − 1
=

∞∑

n=0

(−1)n

Sn+1 − 1
= 1−

∞∑

n=0

(−1)n

Sn − 1
= 1− C.

By Corollary 2,

C2,1 = [0, 2, 1, 22, 32, 142, 1292, 252982, 4209841472 , . . . ] 6∈ A.

Example 11. For an example with ℓ > 1, we take (k, ℓ) = (1, 2) to get

(sn+1(1, 2))n≥0 = 2, 5, 101, 1020101, 1061522231810040101, . . .

(see [33] and [35, A231830]). Then C1,2 is the transcendental number

C1,2 = 1− 1

22
+

1

22 · 52 − 1

22 · 52 · 1012 + · · ·

= 1− 1

4
+

1

100
− 1

1020100
+ · · · = 0.759999019703 . . . .

Here αn := sn+1(1, 2) − 1 satisfies αn+1 − αn = α2
n(αn + 2), so Proposition 1,

Theorem 1, and Corollary 2 give the continued fractions

C1,2 =
1

1 +
12

12 · 3 + 42

42 · 6 + 1002

1002 · 102 + · · ·

∼= 1

1 +
1

3 +
4

24 +
25

10200 + · · ·

0] 13
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∼= [0, 12, 22 − 1, (52 − 1)2−2, (1012 − 1)225−2, (10201012 − 1)2−252101−2,

(10615222318100401012 − 1)225−210121020101−2 , . . . ]

= [0, 1, 3, 6, 1632, 637563750, 1767398865801083661443214432, . . . ].

Our final section studies series of positive terms involving Sylvester-type sequences.

5. SOME NON-ALTERNATING SERIES. Another series formed from Sylvester’s

sequence is the sum of reciprocals. Setting (k, ℓ) = (1, 1) in (20), the right-hand side

is then S−1
n , so the series telescopes to

∞∑

n=0

1

Sn

=
∞∑

n=0

(
1

Sn − 1
− 1

Sn+1 − 1

)

=
1

S0 − 1
= 1, (22)

a rational number. By contrast, the corresponding alternating sum

∞∑

n=0

(−1)n

Sn

=
∞∑

n=0

(−1)n

Sn − 1
−

∞∑

n=0

(−1)n

Sn+1 − 1
= C − (1− C) = 2C − 1

is transcendental, as are the non-alternating sums

∞∑

n=0

1

S2n

=
∞∑

n=0

(
1

S2n − 1
− 1

S2n+1 − 1

)

= C (23)

and
∑∞

n=0 S
−1
2n+1 = 1− C .

Finch asked, “What can be said about
∑∞

n=0(Sn − 1)−1 = 1.6910302067 . . . ?”

[18, p. 436]. We denote this constant by

K :=
∞∑

n=0

1

Sn − 1
= 1 +

∞∑

n=1

1

S0S1 · · ·Sn−1

and we name it the Kellogg-Curtiss constant, because Kellogg conjectured [23], and

Curtiss proved [11], the following bound on solutions to a unit fraction equation:

xi ∈ N and

n∑

i=0

1

xi

= 1 =⇒ max
0≤i≤n

xi ≤ Sn − 1.

Remark 3. By (22), one solution of the equation
∑∞

i=0 x
−1
i = 1 is xi = Si. In

fact, this is the solution provided by the “greedy Egyptian fraction algorithm”—see

Soundararajan [38]. Likewise, the greedy Egyptian fraction expansion of Cahen’s

constant C is series (23) with xi = S2i.

The following general result shows in particular that K is irrational.

Proposition 2. For k ∈ N and ℓ ∈ N, define the Kellogg-Curtiss-type constant

Kk,ℓ :=
∞∑

n=0

1

sn+1(k, ℓ)− 1
,

where the Sylvester-type sequence (sn(k, ℓ))n≥0 is defined in Corollary 2.

14 [ 0
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(i). Then Kk,ℓ 6∈ Q. In particular, the Kellogg-Curtiss constantK = K1,1 = 1+K2,1

is irrational.

(ii). If ℓ ≥ 2, then Kk,ℓ is transcendental and µ(Kk,ℓ) ≥ 3.

We could prove (i) from the fact that, given a non-decreasing sequence of pos-

itive integers A0, A1, . . . , the Engel series
∑∞

n=0(A0A1 · · ·An)
−1 converges to an

irrational number if (and only if ) An tends to infinity with n (see, e.g., [15, §2.2]). In-

stead, we give a mostly self-contained proof. It uses partial sums instead of continued

fractions (compare to Example 8).

Proof of Proposition 2. Let us fix integers k ≥ 1 and ℓ ≥ 1, and write sn in place of

sn(k, ℓ). Then for n ≥ 1, the nth partial sum of the series for Kk,ℓ is, in lowest terms,

Pn

Qn

:=
n−1∑

i=0

1

si+1 − 1
=

n−1∑

i=0

1

sℓ0s
ℓ
1 · · · sℓi

=⇒ Qn = sℓ0s
ℓ
1 · · · sℓn−1 = sn − 1.

With this value of Qn we see that

0 < Kk,ℓ −
Pn

Qn

=
∞∑

i=n

1

sℓ0s
ℓ
1 · · · sℓi

=
1

Qn

∞∑

j=0

1

sℓn · · · sℓn+j

<
1

Qn

∞∑

j=0

1

(sℓn)
j+1

=
1

Qn

1

sℓn − 1
≤ 1

Qℓ+1
n

.

(24)

(i). If Kk,ℓ ∈ Q, say Kk,ℓ = P/Q, then

Kk,ℓ −
Pn

Qn

=
P

Q
− Pn

Qn

≥ 1

QQn

>
1

Q2
n

(25)

for n so large that Qn > Q. But ℓ ≥ 1, so (25) contradicts (24). Therefore, Kk,ℓ 6∈ Q.

(ii). From (24), we infer that µ(Kk,ℓ) ≥ ℓ+ 1. If ℓ ≥ 2, then µ(Kk,ℓ) ≥ 3, so by the

Thue-Siegel-Roth theorem,Kk,ℓ 6∈ A. This completes the proof of the proposition.

By a similar argument (also not using Theorem 1 or continued fractions), Ck,ℓ 6∈ A

for ℓ ≥ 2. The case ℓ = 1 though (which includes Cahen’s constant C) would seem to

require using Theorem 1, as in the proof of Corollary 2. However, Duverney [16] has

found a proof that C 6∈ A which is similar to that of Proposition 2, part (ii). He uses

relation (23) and the fact that S2n+2 >
1
8
S4
2n, which follows from Sn+1 >

1
2
S2
n.

Duverney has also answered Finch’s question by pointing out that, as a special

case of a result of Becker [5, p. 186, Remark (ii)], the Kellogg-Curtiss constant K is

transcendental.

Conjecture 3. For k ≥ 1, the Kellogg-Curtiss-type constant Kk,1 is transcendental.
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