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Irrationality and Transcendence of
Alternating Series Via Continued Fractions

Jonathan Sondow

Abstract. Euler gave recipes for converting alternating series of two types, I and II, into equiv-
alent continued fractions, i.e., ones whose convergents equal the partial sums. A condition we
prove for irrationality of a continued fraction then allows easy proofs that e, sin 1, and the pri-
morial constant are irrational. Our main result is that, if a series of type Il is equivalent to a sim-
ple continued fraction, then the sum is transcendental and its irrationality measure exceeds 2.
We construct all Ry® = ¢ such series and recover the transcendence of the Davison-Shallit
and Cahen constants. Along the way, we mention 7, the golden ratio, Fermat, Fibonacci, and
Liouville numbers, Sylvester’s sequence, Pierce expansions, Mahler’s method, Engel series,
and theorems of Lambert, Sierpiniski, and Thue-Siegel-Roth. We also make three conjectures.

1. INTRODUCTIO. In a 1979 lecture on the Life and Work of Leonhard Euler,
André Weil suggested “that our students of mathematics would profit much more from
a study of Euler’s Introductio in Analysin Infinitorum, rather than of the available mod-
ern textbooks” [[17, p. xii]. The last chapter of the Infroductio is “On Continued Frac-
tions.” In it, after giving their form, Euler “next look[s] for an equivalent expression
in the usual way of expressing fractions” and derives formulas for the convergents. He
then converts a continued fraction into an equivalent alternating series, i.e., one whose
partial sums equal the convergents. He “can now consider the converse problem. Given
an alternating series, find a continued fraction such that the series representing the
value of the continued fraction is the given series.”

In Proposition[Iland Theorem[I] we recall Euler’s solutions for alternating series of
two types, I and II. Lemmal[Il a simplification of Nathan’s theorem on irrationality of
a continued fraction, then yields conditions for irrationality of the sum of a type I or II
series. They easily imply the irrationality of e, sin 1, and the shifted-Fermat-number
and primorial constants, and give a simple proof of Sierpiiski’s theorem.

Our main result is that, if a type II series is equivalent to a simple continued fraction,
then the sum has irrationality measure greater than 2, and so must be transcendental,
by the Thue-Siegel-Roth theorem on rational approximations to algebraic numbers.

Corollary [[] constructs all such series and shows that their sums form a continuum
of distinct transcendental numbers, including the Davison-Shallit constant.

Corollary [2 gives explicitly the simple continued fractions for “naturally-occurring”
transcendental numbers in a doubly-infinite family which contains Cahen’s constant.

Finally, Proposition 2 provides irrationality and transcendence conditions for fami-
lies of non-alternating series, including the Kellogg-Curtiss constant. Here the proofs
involve partial sums instead of continued fractions.

Along the way, we encounter 7, Fibonacci and golden rectangle numbers, an alter-
nating Liouville constant, Sylvester’s sequence, Pierce expansions, Mahler’s method,
and Engel series. We also make three conjectures; one on e ! is an analog of Sondow’s
conjecture on e, recently proven by Berndt, Kim, and Zaharescu.

The rest of the paper is organized as follows. Lemmal[lland Proposition[Tlare in Sec-
tion 2} Theorem[I] Corollary [Il and Conjectures 1 and 2 are in Section 3} Corollary 2]
is in Section [} and Proposition [2land Conjecture 3 are in Section 3
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2. CONTINUED FRACTIONS AND IRRATIONALITY. In 1761 Lambert [26]
derived a continued fraction for tan x and showed that its value is irrational for rational
x # 0. Since tan % = 1 is rational, Lambert had established that 7 is irrational. For
modern treatments of his proof, see §3.6] and [25].

Let us denote the positive integers by N and the rational numbers by Q. Lemmal[I]
provides a sufficient condition for irrationality of the value of a continued fraction with
all elements in N. (Lambert’s has both positive and negative elements.) The statement
and quick proof are simplifications of Nathan’s theorem in [28].

Lemma 1 (Irrationality Lemma). Let o be the value of a continued fraction
b

by
a+ ——
ag—f—'..

o =

where a,, € Nandb,, € Nand a,, > b, forn =1,2,3,.... Then o & Q.

Proof. If a € Q, define the nth “tail” of « to be the value of the continued fraction

bn 1 bn 1
= e 50 = (M
n+2 Ap41 + g1
Upy1 + —————
Ap42 +-

for all n > 0. The hypotheses ensure that 0 < «,, < 1foralln > 0. As oy = «, and
a,, € Q implies o, ;1 € Q, we can write «,, = u,, /v,,, where u,, and v,, are coprime
positive integers with u,, < v,,. Thus from () we get

un-i—l _ Unbn-l-l - unan-i—l

— an-i—l - 9
Un-i—l (7%

SO Upt1 < Upt1 < Uy,. But then (un)nZO is a strictly decreasing, infinite sequence of
positive integers, which is impossible. Therefore, o & Q. ]

For instance, if a,, = 1 and b,, = 1 for all n, then by Lemmal[I]

! _ ! >0 = _ V51
T ~ 1ta “T T

+1—i—~.,

o =

¢ Q.
1

Thus the golden ratio @ := a " is irrational. For more on ¢, see Examples 2 and [l

Lemma [T] generalizes the irrationality of an infinite simple continued fraction, i.e.,
one with all partial numerators b,, = 1 and all partial quotients (or partial denomina-
tors) a,, € N.

Our hypothesis a,, > b,, is weaker than Nathan’s a,, > b,,. Ours is also sharp: with
the even weaker hypothesis a,, > b,, — 1, the lemma would be false, e.g.,

2 2
2 1+4a
14-..

o =

>0 = a=1€Q.
1+

Lemma [1 holds more generally when a,, > b, for all sufficiently large n. There is
also a condition for irrationality of a continued fraction with both positive and negative

2 [ O
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integers a,, and b,,, namely, that |a,,| > |b,| + 1; see, e.g., §3.6]. We have chosen
simplicity over generality here and elsewhere in the paper.
We now apply the Irrationality Lemma to our first kind of alternating series, type I.

Proposition 1. Let By < By < By < - -+ be positive integers.
(i). Then there is an equivalence

Q= I + LI ! (2)
" By, B, B N B? '
By + 2
B, —By+ —————
LT B, B+
(ii). Suppose that
B.i1 > B, (B, +1) forall n>0. 3)

Then the sum « is irrational.
Proof. (i). Euler establishes the equivalence in §369]; for example,

1 1 1

B, B . BZ
i 1 BO+B OB
1 0

(ii). Set a; = By, by = 1, a,,.1 = B, — B,,_1, and b,,,; = B> | for n > 1. Then
@) guarantees that a,, > b,, for all n, so by Lemma [Il the value of the continued
fraction in @) is irrational. By (i), that value equals the sum «, so o € Q. [ |

Proposition [Tl provides an easy proof of Sierpiriski’s theorem, which states that, if
@) holds with all B,, € N, then o := >~ (—1)" B, ¢ Q. Sierpiniski [34] (see also
Cahen [9]]) showed moreover that such a representation of any irrational number « in
(0,1) exists and is unique. For extensions of his theorem, see Badea [2], Duverney
[13], and Nyblom [29].

Note that part (ii) and Sierpiriski’s theorem are sharp: if B,,.1 +1 = B, (B, + 1)
foralln > 0, then (B, +1)"* = B! — (B,, + 1)~!, so by telescoping

— (D" o~ (= (=" \y_ 1
; B, _;(Bn+1+3n+1+1>_30+1€@

Example 1. The Fermat numbers F,, = 2" + 1 form the sequence [35, A000215]
(F)n>0 = 3,5,17,257,65537, 4294967297, 18446744073709551617, . .. .

Let us define the shifted-Fermat-number constant F' to be the alternating sum of re-
ciprocals of the numbers F;,, — 2 (for them, see [35, A051179])

= (=1)" = (=1)" 1 1 1
;Fn—2 ;22”—1 3+15 255+

The numbers B,, := 22" — 1 satisfy @), so the shifted-Fermat-number constant F

is irrational. For a generalization with a different proof, take e = —1 in [13, Corol-

lary 3.3]. We return to F' in Example[3

The next section studies irrationality and transcendence of our second kind of alter-
nating series, type II, which is a special case of type I.
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3. SIMPLE CONTINUED FRACTIONS AND TRANSCENDENCE. Our main
results are Theorem[Iand Corollaries [land 2] We denote the algebraic numbers by A
(others denote them by Q, the algebraic closure of Q).

Theorem 1. Fix positive integers Ay, Ay, Ao, ... with A,, > 2 foralln > 1.
(i). For any positive real numbers Ty, T1,Ts, . .., we have the equivalence between an
alternating series and a continued fraction

(=" Zo
= = )
HZ:O AgA, - A, Ay + Aozoxy

AllL'lIIJ'Q
(Ag—l)xg‘i"..

(Al — 1)1’1 +

(ii). If A1 > A, forallm > 0, then o is irrational.
(iii). If the continued fraction is simple for some xy,x1,Zs, ..., then o is a transcen-
dental number, with irrationality measure p(a) > 2.5.

The irrationality measure (or irrationality exponent) p(p) of a real number p is

defined as (see [3,4,[7], [8| §1.4], (15, Chapter 9], [18} §2.22], [36])

1
w(p) :=sup {,u >0:0< ’p— ]—9‘ < — for infinitely many P Q} NG
q q q

By the famous Thue-Siegel-Roth theorem [1], 8, p. 22], [15| p. 147], (18] p. 172], [22]
p- 176]

=1 if pis rational,
wu(p) { =2 if pis irrational, but algebraic,
> 2 if pis transcendental.

Proof of Theorem[l (i). Apply Proposition [[ part (i), with B,, := AgA; --- A, for
n > 0. Since B, — B,,_; = (A, — 1)A¢A, --- A,,_1, cancelling the common fac-

tors Ag, AgAy, AgAi A, ... inthe resulting continued fraction gives
1 1 1 - 1
_ _ + N
Ay AgAy AgA A Aé
A —1 !
(A= DA+ o Ao,
- A - A ’
Ao + 0 Ao + 0 '\
A -1+ Al A1t
(A — D AgAr + . -1

where “=” between two continued fractions means they are equivalent, i.e., they have
the same convergents (see p- 25]; for two numerical continued fractions which are
equivalent but not equal, see Example [ below). This proves the special case of (i) in
which all z,, = 1 (compare to §370]). The general case follows by cancelling the
common factors g, z1, T2, ... in @).

(ii). In Lemmal[ll we take a; := Ag,b; :=1,a, := A,y —1,and b, := A,,_, for
n > 2.Then A,y > A, implies a,, > b, foralln > 1,s0 a € Q.
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(iii). (Compare to the proof of [12] Theorem 3].) Redefining a;, as, . . ., we write the
simple continued fraction for «, and its nth convergent, as usual as
1 P
a=0+——"7F—= 0, a1, as, ...] and W =10, ay, ag, ..., a,)|.
Qo + -. .

The hypothesis in (iii) means that

S (_1)i Pn+1
= fi > 0.
;AoAl---A orn >0 6)

i n+1
A classical theorem Theorem 150] and relation (&) imply, respectively, that

D" _Pan pn (D" @)
qndn+1 qn+1 qn AOAl Tt An

for n > 1. Hence ¢, G, 11 = AgA; -+ A,;since gqo = 1 and ¢ = Ay, this also holds
for n = 0. It follows that the divisibility ¢,,¢n+1 | ¢ni1¢ns2 holds; hence ¢, | g2
A standard identity Theorem 149] is

qn+2 = an+2qn+l + Adn, (8)

SO qn | Any2qn+1- MUItlplylng ([ZI) by dnQn+1, WE deduce that ng(qrn QnJrl) = 17 Y

Gn | Gpyo. Define wg, wy, ... in Nby wy = a; and w,1¢, = a, o forn > 0.Bya
“simple lemma” Lemma 2],

WpGn_1 > /qn for infinitely many n. 9

Now, from (6), a classical inequality [8| p. 24], the equality a,, 1 = w,q,_1, and (),
respectively, we see that

n 1 1 1
0<|a— Pn < 5 = 7 < 57
Qn an-l—lqn wnqn—lqn qn

infinitely often. This and definition (3) imply p(a) > 2.5. By the Thue-Siegel-Roth
theorem, p(p) < 2if p € A, so a € A. This completes the proof of Theorem[Il  m

Note that the hypothesis in (ii) is sharp: if A,, = Ay > 1 for all n > 0, then the
series in (@) is geometric, with sum o = (Ay + 1)~ € Q. Also, in (ii) the inequality
A1 > A, is much weaker than that in 8) with B,, = AyA, - - - A,,, which amounts
to A, 1 > AgA; -+ A,. Compare Examples[Iand

For any strictly increasing sequence of positive integers Ag < A; < Ay < ---
finite or infinite, the alternating sum

1 1 + 1
Ag AgAr AgAl Ay

o=

is called the Pierce expansion of . Any number o € (0,1) has a unique Pierce ex-
pansion, which is infinite if, and only if, « is irrational [30} 31}, 32, 34]. The “only if”
part follows immediately from (ii).
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Example 2. The Pierce expansion of ¢! begins [35, A118242, A006276]

1 1 1 1 1 1

o 1 127124 12417 1241719

As o=t € A, we see that the hypothesis in (iii) cannot be omitted. Combined with the
next example, this shows that, if the Pierce expansion of o € Q is not equivalent to a
simple continued fraction, then o € A is possible, but so is o ¢ A.

Example 3. Euler p. 325] says, “Something especially deserving of our attention

is the number e....” The Taylor series e’ = Zflo:o t"n!~! and (i) lead to the Pierce

expansion of e~! and the equivalence
-1 - =8 ~ Lo
= = . 10
€ 2_322.3.4...71 5 2x9x, (10)
n= o) +
3.%'1.%'2
21’1 + il
319 + T2l
2 41'3 +

Part (ii) now gives an easy proof that e is irrational. The Taylor series for sin ¢ and
cos t lead to similar proofs that sin % and cos % are irrational for all k € N.

From (IQ) we also see that a strong converse to (iii) is not true. Namely, although
e~ 1 & A (because e € A by Hermite §12.14)), the type 1l series for e~ ' in (IQ) is

not equivalent to a simple continued fraction. Indeed, when x(, x, ... are chosen so
that all partial numerators in the continued fraction for e~* in (I0) equal 1
1 1 B 1 an
e 2(1/2 - 1
3(1/2)(2/3) 1
2(1/2) + + I
4(2/3)(3/8) 2
32/3) + e CPES
A(3/8) + - =

the partial quotients do not all lie in N. For a weaker converse to (iii), which is also not
true, see Example[8]

By (1), the simple continued fraction for e~ * begins e~ * = [0,2,1,2,...]. From
(I0) (or by inspection), the first four convergents are also partial sums of the Taylor

seriese” ! =3 (=1)"n!7t

Conjecture 1. Only four partial sums of the Taylor series for e~! are convergents to
e~ ', namely, 0,1/2,1/3, and 3/8.

Conjecture[Tlis an analog for e ! of the fact that only two partial sums of the Taylor
series for e are convergents to e, namely, 2 and 8 /3. This property of e was conjectured
by Sondow [36]], partially proven by him and Schalm [37], and recently proven in full
by Berndt, Kim, and Zaharescu [6].

Example 4. An analog of series (I0) for e~!, with the factorial n! replaced by the

primorial p,,#, is “the constant obtained through Pierce retro-expansion of the prime
sequence” [35, A132120], which we dub the primorial constant

< (=)t 11 1 1 1
P .= - _ _ — .
2 m# 2 237235 2357 235711

n=1

6 [0
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1 1 1 1 1
===+ —=—— + — — .- =0.3623062223 . .. .
2 6+30 210+2310

Proposition[d] part (i), and Theorem[I] parts (i) and (ii), imply that
1 1

2+ 2+
6* 2 4 ’
4+ 302 . 5
24 + - t—
180 + —20° O+ o7
2100 + - 10+

Conjecture 2. The primorial constant P is transcendental.

Example 5. By induction, for n > 0 the shifted Fermat number F}, — 2 can be fac-
tored as the product of all smaller Fermat numbers

n—1
Fo—2=2"—1=[[ (2 +1) = KA Fy, (12)

k=0
where the empty product equals 1 when n = 0. (From (I2) Pélya deduced that
Fy, Fy, F,, ... are pairwise coprime, thereby giving an alternate proof to Euclid’s

theorem on the infinitude of the primes §2.4].) The constant F’ in Example [ thus
has Pierce expansion

> (=1)n 11 1 1
F: _— = — — — e,
;FOFI---Fn_l 1 13 1735 13517

Part (ii) of Theorem [Il now gives a second proof that F' ¢ Q. Moreover, parts (i) of
Proposition[Iland Theorem [l yield the equivalent continued fractions

1 1
F = B =~ 1
1+ 1+

32 3
24— 2+ 5
15° 4+ ——

12+ o 16 + -
240 + - . . .

Theorem [Tl does not yield F' ¢ A, but Duverney has proven it by other methods.

Remark 1. Non-alternating series involving F), have also been studied. In 1963,
Golomb proved that the sum G := Y~ F."! is irrational. Two years later,
Mabhler [27] remarked that G is in fact transcendental, as a consequence of a gen-
eral theorem he proved in 1929—see [14} pp. 194-195]. (Mahler’s method §12.3]
proves the transcendence of values, at certain algebraic points, of functions that satisfy
a type of functional equation.) Recently, Coons [10] showed that G has irrationality
measure (1(G) = 2. In the pre-Mahler year 1916, Kempner proved that the num-
ber k=320 (F, — 1)t = 322° 272" is transcendental; see Adamczewski
for five proofs with interesting comments. (The second proof applies Mahler’s method
to the function f(z) := >"°° 2", which is defined when |z| < 1, satisfies the func-

tional equation f(2?) = f(z) — x, and has the value f(1/2) = k.)

0] 7
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The next example shows that the sufficient condition for transcendence of the sum
of a type II series in Theorem [l does not extend to the more general type I series in
Proposition[ll

Example 6. Let (f,),>0 = 1,1,2,3,5,8,13,... be the positive Fibonacci numbers
[35, A000045], defined by fo =1, f, = 1, and f,41 = fn + fu_1 for n > 1. The
product B,, := f, fni1 is a golden rectangle number [35, A001654]. The difference
between successive golden rectangle numbers is a square:

Bn - anl — fnfnJrl - fnflfn — fn(fnJrl - fnfl) - fZ (13)

Therefore, using Proposition [T} part (i), and cancelling common factors fZ, f3,...,
we obtain the equivalence

BT S
_ fnfn+1 f2
=0 Jofi + 0})92;2
Fit
JE+
The latter is the simple continued fraction expansion of o = ~! € A. This shows
that, given By < By < By < -+ in N, the sum of the series o := Y . ,(=1)"B,!
might not be transcendental, even if the series is equivalent to a simple continued

fraction. (However, if in addition B, _, divides B,, for all n > 1, then o &€ A, by
Theorem[[with Ay := By and A,, := B,,/B,,_; forn > 1.)

=[0,1,1,1,...].

Remark 2. Example [6]is a special case of the following well-known fact. For any
irrational number p with simple continued fraction expansion p = [ag, ay,as, . . .|
and nth convergent p,,/q,, there is an equivalence

—(10+ E % ao,al,a2,...].
n= anqn+1

(Proof. Replacing p with p — ap, we may assume that ay = 0. Note that go = 1.
Setting B,, = ¢nGn 11, we use @) to get B, — B,,_1 = a,,11q>, generalizing relation
(13). The rest of the proof is like the argument in Example[6] and is omitted.)

By part (i) of Theorem [l if the continued fraction in @) is simple for some
To,T1,..., then the series in (@) is equivalent to a simple continued fraction, i.e.,
(6) holds. Conversely, it is not hard to show by induction that, if (6) holds, then the
continued fraction in @) is simple for some xy, 2, .... For instance, if the partial
sums Ay ' and Ayt — (AgA;)~! equal the convergents a; ' and (a; + ay ') ™!, re-
spectively, then Ay = a; and (A; — 1)A;"' = ay € N, so the choices 7, = 1 and
x, = Ay give the finite simple continued fraction
Lo . 1 .

A0$0x1 - AL 1 - [0,(117(12].
o ot T a1
(Al - 1)(131 (Al - 1)A0 !

AO.Z'Q +

We now give a method for constructing all examples of Theorem/[d] part (iii).

page 8
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Corollary 1. (i). Construct a sequence of positive integers (An)nZO in three steps.
Step 1. Choose a sequence (M,,),>o with all M,, € N.
Step 2. Let (Nn)nZI satisfy the recursion

N1 == 1,N2 == Mo, and Nn+2 == (M'n,Nn+l + 1)Nn for n 2 1. (14)
Step 3. Define (A,,)n>0 by
Ag =My and A, = M,N,, 1+ 1 for n> 1. (15)

Then there exists (xn)nZO such that @) is an equivalence between an alternating
series and a simple continued fraction, namely,

0 —1)"
a:Zﬁ = [0,M0,M1N1,M2N2,M3N3,...]. (16)

(ii). Conversely, if the continued fraction in @) is simple for some (x,,)n>0, then the
sequence (A, )n>o in @) can be constructed by Steps 1, 2, 3.

(iii). The series in (1Q) is the Pierce expansion of o, that is, A, 11 > A, forn > 0.
(iv). Distinct sequences (M,,) >0 7 (M) )n>o in Step 1 lead to distinct transcendental
numbers o # o in ({Q). In particular; if S denotes the set of real numbers o whose
Pierce expansion is equivalent to a simple continued fraction, then #S = N§ "=rc

Proof. By definition, the continued fraction in @) is simple if, and only if,

a). ro =

b). A,x, 2,1 =1 for n >0,
c). Apzg € N, and

d). (4, — 1)z, €N for n > 1.

(
(
(
(
(i). Set xg = 1 and z,, = N,,/N,,;1 for n > 1. From formulas (13) and (I4) we get
A, = N, 4o/N, for n > 1. It is now easy to verify (a), (b), (c), and (d). Observing
that (A,, — 1)z, = M, N,, forn > 1, the equivalence @) gives (I6). This proves (i).
(ii). Assume (a), (b), (¢), and (d). Then A, € N implies that x,, € Q for n > 1,
so ©, = N,,/D,,, where N,, € N and D,, € N, with gcd(N,,D,) = 1. From
(a) and (b), we get N; = 1 and D; = Aj. From (d), we see that D,, | (4, — 1)
for n > 1, so there exists M,, € N such that A,, = M,,D,, + 1. Since (b) implies
AnNnNn-i-l = DnDn-‘rl’ we get

(M, D, +1)N,N,,y, = D,,D,, ., for n>1. (17)

Consequently, N,, .1 | D,,D,, 41, 50 N,y | D,. Also, D,, | (M,,D,, + 1)N,,N,, 41,
so D,, | N,y1. Thus D,, = N, forall n > 1; in particular, N, = D; = A,. Mak-
ing replacements in (I7) and in A,, = M, D,, + 1, we obtain (I4) and (13)), respec-
tively. This proves (ii).

(iii). Note that (I4) and (I3) give A,,,1 = M,,, 1A, N,, +1 > A, forn > 0.

@iv). By Theorem [I] the sum « is transcendental. It now suffices to show that, given
a = [0, My, My Ny, MyN,, ... ] and o = [0, M}, M{N{, M)N},...], if a = o/,
then M,, = M for all n > 0. By the uniqueness of simple continued fraction expan-
sion, My = M| and M N, = M| N, for k > 1. Using (14}, the rest of the proof is
an easy induction, which we omit. This completes the proof of the corollary. ]

0] 9

alternatingseries.tex

page 9



IMathematical Assoc. of America American Mathematical Monthly 0:0 October 1,2020 12:43 a.m. alternatingseries.tex page 10

Example 7. Choosing the constant sequence M,, = 1 yields N; = 1, N, = 1, and
Nyyo = (Nyy1 +1)N,, forn > 1. Then Ay = land A,, = N,,y; + 1 forn > 1, so

A, =1,2,3,4,9,28,225,6076, 1361025, . . .

(see [35, A007704]). By (iv), we recover the transcendence of the Davison-Shallit
constant Example A] (see also [A8] pp. 436, 445], [35] A242724])

> (=1)" 11 1 1
D= - 14 ... =0.62946502045 . ..
ZOAOAl---An 26 24 216 062046502045

and, by (i), the expansion p. 1221, [35, A006277]
D = [O, 1, Ny, Ny, N3, .. ] = [O, 1,1,1,2,3,8,27,224,6075,1361024, . .. ]

Example 8. Let us define an alternating Liouville constant by the series
= (=1)" 1 1 1 1
)\ = = —— = — —
Z 10n' 102 106 + 1024 10120 +

n=2
= 0.00999900000000000000000099...900... .
96

Forn =1,2,3, ..., the nth partial sum of the series satisfies

1 1

P, (1) P,
< 10(n+2)! Qn+2’

RIS o 0<|[A—=2
0. =2 g = ‘ Q.

k=2

From this and (8)), we infer that \ has irrationality measure p(\) = oo. By definition,

A is therefore a Liouville number, so Liouville’s theorem (8, §1.4], §9.3], 22}

§11.7] (or its descendant, the Thue-Siegel-Roth theorem) implies A is transcendental.
On the other hand, its Pierce expansion

> (=" 1 1 1
A= _— = - 18
n;o AOAl - An 102! 102!103!—2! + 102!103!—2!104!—3! ( )

cannot be constructed from any sequence (M,,),>o as in (i). (Proof. If it could, then
M, = Ay = 10% would imply M;10* +1 = A, = 10*~%, contradicting M; € N.)
Hence by (ii) a converse to Theorem [I] part (iii), weaker than the false converse
in Example 3] is also not true. Namely, although A\ ¢ A and p(\) > 2.5, the type Il
series for X in (I8) is not equivalent to a simple continued fraction.
More positively, one can show that, if a sequence (M,,),>o in (i) grows sufficiently
rapidly, then the sum « in the equivalence (18)) is a Liouville number.

The next section gives further applications of Theorem/[I1
4. SYLVESTER’S SEQUENCE AND CAHEN’S CONSTANT. There are not

many “naturally-occurring” transcendental numbers for which the simple continued
fraction is known explicitly. They include the beautiful expansions

10 [0
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e—1=1[1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1, 14, ...,

tanl=[1,1,1,3,1,5,1,7,1,9,1,11,1,13,1,15,1,17,1,19,...],
1/tanh1 = [1,3,5,7,9,11,13,15,17,19, 21, 23,25, 27,29, 31,33, ... ],
I,(2)/1(2) = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 17,18, ... |,

andthoseofez/q,tan%,tanh%,andh( )/IHp( ), for pand ¢ in N, where I..(x) is

a modified, or hyperbolic, Bessel function of the ﬁrst kind [15, Chapter 3]. References
to several others are given in §V].

Theorem [I] yields a doubly-infinite family of such numbers. We define them by a
natural recursion, independently of Corollary [1l

Corollary 2. Fixk € Nandl € N. Forn > 0, define s,, = s,,(k, () by the recurrence
so=Fk and s, = (8051 8p_1)" +1 for n > 1. (19)
(i). Then there is an equivalence

(e

Sp41 — 1

Ckyg =

= [a07a17a27 . --]7
n=0

where the partial quotients of the simple continued fraction are

(LO:O,al:sé, and a, ;1 = (s H (anrZGNfornZl.
i=0
(ii). The sum C}, 4 is transcendental, and Cy, ; = Cl o only when (k,0) = (K, 0').

(iii). The double-exponential lower bound a,, > (k* + 1)(“1)”74 holds for all n > 4.
(iv). There are the summations
> s -1 2 Shar — 1
T and Sl T - _ o
n=0 Snt1 1

(v). Taking £ = 1 gives

1 1 1 1 1 1
Cip=————+

So S0S1 505152 50515283 5051525354 505152535455

= [0730, 1, (30)27 (31)2, (3032)2, (3183)2, (308284)2, (313335)2, . ]

(vi). For odd n > 1 and even m > 2, the partial quotients a,, and a,, of Cy 1 are
coprime.

Proof. (i). Set A,, := s’ forn > 0. Then (I9) gives s, — 1 = AgA; -+ A, soby

eorem|ll for any xg, 1,... In ere is an equivalence
Th f 0, %1, Rt th 1
M Z sbst - st sbxoxy
sTxix
Vi 14142
(Sl - 1)‘%.1 + 7
(s5—1D)xg + -

0] 11
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The partial numerators equal 1 when zg = 1 and ,,; = (sflxn)*l for n > 0. By
induction, the solution of this recursion is

|
—_

Ty = (sf)(_l)nﬂ forn > 1.

%

i
=]

The partial quotients are then ag = 0, a; = shzo = s, and a,, 1, = (s, — 1)z, for
n > 1. Substituting s, — 1 = (sf§st - s’ _, + 1) — 1 and expanding the binomial,
the 1s cancel, so s{s! - -+ s’ | divides s’ — 1 and a,,+; € N. This proves (i).

(ii). Theorem[dland (i) imply Cy , & A. From a; = k‘ and ay = ((k* +1)* — 1)k*,
we deduce that Cy, o # Cy o when (k, £) # (k', ). This proves (ii).

(iii). Let v, := s, — 1. Then (19) implies v, 41 = v, (v, + 1)¢ > b forn > 1.
As oy = kL (K 4 1)¢ > k! 4 1, induction yields cv,, > (K¢ + 1)+ forn > 2.
Since (i) implies a,, > %, > a2’ , > ol we get (iii).

(iv). For n > 0, definition (T9) implies s,,,1 — 1 = (s,, — 1)s’, so

! ! =l i1 (20)
— = or n .
Sn—1 Sppi—1 sy —1 o

Hence the first series in (iv) telescopes to (s§ — 1)(s; — 1)7' + (s —1)7! = 1.
Replacing n with 2n + 1 in 20), we sum from n = 0 to oo and obtain the second
equality in (iv).

(v). Set £ = 1 in parts (i) and (ii).

(vi). Recursion (I9) yields ged(s;, s;) = 1 for i # 7, so (ii) follows from (i). This
completes the proof of the corollary. ]

Example 9. Take (k, () = (1, 1). Sylvester’s sequence [39,140] is defined as
(S)ns0 = (Sns1(L,1))ns0 = 2,3, 7,43, 1807, 3263443, 10650056950807, . ..

(see [12] p. 123], [18] pp. 436, 444], [20]], [35, A000058]). Sylvester’s sequence satis-
fies the recursion Sy = 2 and S,,,; = (S, — 1)S,, + 1 forn > 0.
Likewise, C' := C} ; defines Cahen’s constant [9], [18l §6.71, [35] A118227]

= (~1)" 1101 1
C = b . 0.643410546288338 ...
an—1 56 12 1806

n=0

> (=)t 1 1 1
-1 =1—-= _ .
;S()Sl---sn,l 523 237723743

Corollary Rlrecovers C' ¢ A from [12] and gives the expansion [35, A006279]

C =10,1,1,1,(5)% (S1)?, (S052)?, (5155)%, (S0.5254)°, (515355)%,...] (21)
=10,1,1, 1,22, 3% 14%, 1297, 252987, 420984147%, ...].

Since o, := S,, — 1 satisfies v, 41 — @, = @2 and ), (—1)"a,; ' = C, Proposi-

12 [0
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tion [[land Theorem [Tl give, respectively, the continued fractions

1 1
C = E = T
1+ 1+

22
12 +

2
3
7

+42+-..

= 1+
24
422 6
62
+ 422 +

22 4

In his 1891 paper “A remark on an expansion of numbers which has some similar-
ities with continued fractions” [9]], Cahen defined C' and showed that it is irrational.
Exactly 100 years later, as an example of their “self-similar” (or “self-generating” [18}
§6.7], [19, §6.7]) simple continued fractions, Davison and Shallit [12] proved that C' is
transcendental and that C' = [0, 1,¢3, 4%, ¢3, - . .]. (This expansion agrees with @10,
by (8) and induction.) For generalizations of [12]], see Becker [5] and Topfer [41]].

Example 10. Corollary2shows that the Cahen-type constant Cy. ; = [0, k, 1,...], so

1 1 1
1>Cl71>§>Cz,1>§>C371>Z>C4,1>---

When k = 2 we have s0(2,1) = 2 = s1(1,1) = Sy. It follows that in general
Snt1(2,1) = s,42(1,1) = S,41, s0

00 > (=1)"
C2,1:Z (( -1 ZS 1_;);11—)1:1_0.

n=0 n+1 n-l—l_l

By Corollary 2]
Coq =10, 2, 1, 2%, 3%, 147 1297, 252987, 4209841477, ...] & A.
Example 11. For an example with ¢ > 1, we take (k,¢) = (1,2) to get
(5n:1(1,2))ns0 = 2, 5,101, 1020101, 1061522231810040101, . ..
(see [33] and [35, A231830]). Then C' 5 is the transcendental number

1 1

2 @2 25 10

RS -
100 1020100

CLQ :1—

=1- = 0.759999019703 . .. .

Here av, := $,,1(1,2) — 1 satisfies o, 11 — v, = a2 (a, + 2), so Proposition [T
Theorem[I] and Corollary 2l give the continued fractions

L 1
0172 _= 12 g 1
1+ 1+ I
12-3 + i 3+ 25
1002 - 102 + - .. 10200 + - . .

0] 13
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~10,1%,2% — 1,(5* — 1)27%,(101* — 1)2*57%,(1020101* — 1)2725%*101 2,
(1061522231810040101% — 1)2257210171020101 2, .. . ]
= [0, 1, 3, 6, 1632, 637563750, 1767398865801083661443214432, ... ].

Our final section studies series of positive terms involving Sylvester-type sequences.

5. SOME NON-ALTERNATING SERIES. Another series formed from Sylvester’s
sequence is the sum of reciprocals. Setting (k,¢) = (1, 1) in 200, the right-hand side
is then S, !, so the series telescopes to

=1 - 1 1 1
1 _ — =1, (22)

n=0

a rational number. By contrast, the corresponding alternating sum

Rt

n=0 n

is transcendental, as are the non-alternating sums

1 > 1 1
,;s_%‘z<szn—1_szn+l—1>‘c 2y

n=0
and 37 52_n1+1 =1-C.
Finch asked, “What can be said about Y~ (S, — 1)~ = 1.6910302067 ... ?”
[18| p. 436]. We denote this constant by

> 1 > 1
K=d g 1= " g5 s,

and we name it the Kellogg-Curtiss constant, because Kellogg conjectured [23]], and
Curtiss proved [11]], the following bound on solutions to a unit fraction equation:

n
1
z; € N and E — =1 max x; < — 1.
i € x; — 0Zitn P S O
P

Remark 3. By (22)), one solution of the equation Y .- z;' = 1is x; = S;. In
fact, this is the solution provided by the “greedy Egyptian fraction algorithm”—see
Soundararajan [38]. Likewise, the greedy Egyptian fraction expansion of Cahen’s
constant C' is series (23) with x; = S;.

The following general result shows in particular that K is irrational.
Proposition 2. For k € Nand { € N, define the Kellogg-Curtiss-type constant
- 1

Ko=S —+
P e

where the Sylvester-type sequence (s,,(k,?)),>o is defined in Corollary[2]

14 [0
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(i). Then Ky, , & Q. In particular, the Kellogg-Curtiss constant K = K; ; =1+ Ko 4
is irrational.
(ii). If ¢ > 2, then K},  is transcendental and p( Ky ,) > 3.

We could prove (i) from the fact that, given a non-decreasing sequence of pos-
itive integers Ao, Ay, ..., the Engel series >~ (AgA;---A,)~" converges to an
irrational number if (and only if) A,, tends to infinity with n (see, e.g., §2.2]). In-
stead, we give a mostly self-contained proof. It uses partial sums instead of continued
fractions (compare to Example [8)).

Proof of Proposition[2l Let us fix integers k > 1 and ¢ > 1, and write s,, in place of
sn(k,£). Then for n > 1, the nth partial sum of the series for K},  is, in lowest terms,

Pn n—1 1 n—1 1 . ,
—_— = = _— nZSS”WSi:Sn—l
Qn gt Sit1 — 1 P SéS{ . Sf Q 0“1 n—1
With this value of (),, we see that
P, - 1 1 & 1
0 < K]g)g - —n = _— = — S
n gsésfsf an_zosfzsfl+]
1 & 1 1 1 .
< — ——=——< .
@n jZO (sz)J-H @n sz -1~ sz-H
(). If Ky € Q, say Ky, = P/Q, then
P, P P, 1 1
Ky = (25)

_— = — — > — > —
Qe Q@ QT QQ. Q7

for n so large that ),, > Q. But ¢ > 1, so (23) contradicts (24). Therefore, K}, & Q.
(i1). From 24)), we infer that (K} o) > €+ 1. If ¢ > 2, then (K} ) > 3, so by the
Thue-Siegel-Roth theorem, K, , ¢ A. This completes the proof of the proposition.

By a similar argument (also not using Theorem[I] or continued fractions), Cy , & A
for ¢ > 2. The case £ = 1 though (which includes Cahen’s constant C') would seem to
require using Theorem[I] as in the proof of Corollary 21 However, Duverney has
found a proof that C' ¢ A which is similar to that of Proposition 2] part (ii). He uses
relation (23)) and the fact that Ss,, (o > %Sﬁn, which follows from S,, | > %SZ

Duverney has also answered Finch’s question by pointing out that, as a special
case of a result of Becker [5] p. 186, Remark (ii)], the Kellogg-Curtiss constant K is
transcendental.

Conjecture 3. For k > 1, the Kellogg-Curtiss-type constant K, ; is transcendental.

ACKNOWLEDGMENTS. I thank Daniel Duverney and Michael Nyblom for (independently) pointing out
the series which shows that Sierpiriski’s theorem is sharp. I am also indebted to Duverney for generalizing my
earlier special case of Corollary [Tl I thank Steven Finch for comments on the manuscript and for discussions
on [12]. Finally, I am grateful to Yohei Tachiya for a proof that K is irrational.
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