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Abstract

We provide uniqueness and existence results for the eventually p-

convex and eventually p-concave solutions to the difference equation ∆f =

g on the open half-line (0,∞), where p is a given nonnegative integer and

g is a given function satisfying the asymptotic property that the sequence

n 7→ ∆pg(n) converges to zero. These solutions, that we call log Γp-

type functions, include various special functions such as the polygamma

functions, the logarithm of the Barnes G-function, and the Hurwitz zeta

function. Our results generalize to any nonnegative integer p the special

case when p = 1 obtained by Krull and Webster, who both generalized

Bohr-Mollerup-Artin’s characterization of the gamma function.

We also follow and generalize Webster’s approach and provide for

log Γp-type functions analogues of Euler’s infinite product, Weierstrass’

infinite product, Gauss’ limit, Gauss’ multiplication formula, Legendre’s

duplication formula, Euler’s constant, Stirling’s constant, Stirling’s for-

mula, Wallis’s product formula, and Raabe’s formula for the gamma

function. We also introduce and discuss analogues of Binet’s function,

Burnside’s formula, Fontana-Mascheroni’s series, Euler’s reflection for-

mula, and Gauss’ digamma theorem.

Lastly, we apply our results to several special functions, including the

Hurwitz zeta function and the generalized Stieltjes constants, and show

through these examples how powerful is our theory to produce formulas

and identities almost systematically.
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List of symbols

A Glaisher-Kinkelin’s constant
brn(x) Drx

(
x
n+r

)

Ck set of k times continuously differentiable functions on R+

Ck(I) set of k times continuously differentiable functions on I
D ordinary derivative operator
D
p
S

{g : R+ → R : ∆pg(t) → 0 as t→
S

∞}

D∞
S

⋃
p>0

D
p
S

D̃−1

N
{g : R+ → R : the sequence n 7→ g(n) is summable}

f[x
0

, . . . , xp] divided difference of f at the points x
0

, . . . , xp
f
p
n[g] function defined in (2)
Gn nth Gregory coefficient Gn =

∫
1

0

(
t
n

)
dt

Gn Gn = 1−
∑n
j=1

|Gj|

Hx harmonic number function
I arbitrary real interval whose interior is nonempty
Jq[g] Binet-like function defined in (38)
Kp K

p
+ ∪K

p
−

K
p
+ set of functions f : R+ → R that are eventually p-convex

K
p
− set of functions f : R+ → R that are eventually p-concave

Kp(I) K
p
+(I) ∪K

p
−(I)

K
p
+(I) set of functions f : I→ R that are p-convex

K
p
−(I) set of functions f : I→ R that are p-concave

K∞
⋂
p>0

Kp

LogΓp set of log Γp-type functions (see Subsection 5.2)
N, N∗ N = {0, 1, 2, . . .}, N∗ = {1, 2, . . .}

Pp[f] interpolating polynomial of degree 6 p of f
R+ open half-line (0,∞)

R
p
S

{g : R+ → R : for each x > 0, ρpt [g](x) → 0 as t→
S

∞}

Rp,m,n remainder in Gregory’s summation formula (44)
ran(Σ) range of the map Σ
S S = N or R
xk x(x− 1) · · · (x− k + 1)

x→
S

∞ x tends to infinity, assuming only values in S ∈ {N,R}

x+ max{0, x}

γ Euler’s constant
γ[g] generalized Euler’s constant associated with g
Γp function Γp / set of Γp-type functions (see Subsection 5.2)
∆ forward difference operator
ρ
p
a[f] function defined in (5)
σ[g], σ[g] σ[g] =

∫
1

0

Σg(t+ 1)dt, σ[g] =
∫
1

0

Σg(t)dt

Σ map defined in (23)
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ψ, ψν digamma function, polygamma functions

1 Introduction

Let R+ denote the open half-line (0,∞) and let ∆ denote the forward difference
operator on the space of functions from R+ to R. In this paper, we are inter-
ested in the classical functional equation ∆f = g on R+, which can be written
explicitly as

f(x + 1) − f(x) = g(x), x > 0,

where g : R+ → R is a given function. This equation appears naturally in the
theory of the Euler gamma function, with f(x) = ln Γ(x) and g(x) = ln x, but
also in the study of many other special functions such as the Barnes G-function
and the Hurwitz zeta function.

For any function g : R+ → R, the difference equation ∆f = g has infinitely
many solutions, and each of them can be uniquely determined by prescribing
its values in the interval (0, 1]. Recall also that any two solutions differ by a
1-periodic function, i.e., a periodic function of period 1.

For certain functions g, however, special solutions can be determined by
their local properties or their asymptotic behaviors. On this issue, a seminal
result is the very nice characterization of the gamma function by Bohr and
Mollerup [20]. They showed that all log-convex solutions f : R+ → R+ to the
equation

f(x + 1) = x f(x), x > 0, (1)

are of the form f(x) = c Γ(x), where c > 0. Thus, the gamma function is a
kind of principal solution to its equation (Nörlund [69, Chapter 5] calls it the
“Hauptlösung”). The additive, but equivalent, version of this result, obtained
by taking the logarithm of both sides of (1), can be stated as follows. For
g(x) = ln x, all convex solutions f : R+ → R to the difference equation ∆f = g

are of the form f(x) = c+ln Γ(x), where c ∈ R. Recall also that the proof of Bohr
and Mollerup’s result was simplified later by Artin [9] (see also Artin [10]) and,
as observed by Webster [80], this result “has then become known as the Bohr-
Mollerup-Artin Theorem, and was adopted by Bourbaki [21] as the starting
point for his exposition of the gamma function.”

A noteworthy generalization of Bohr-Mollerup-Artin’s theorem was provided
by Krull [46,47] and then independently by Webster [79,80]. Recall that a func-
tion g : R+ → R is said to be eventually convex (resp. eventually concave) if
it is convex (resp. concave) in a neighborhood of infinity. Krull [46] essentially
showed that for any eventually concave function g : R+ → R having the asymp-
totic property that, for each h > 0,

g(x + h) − g(x) → 0 as x→ ∞,
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there exists exactly one (up to an additive constant) eventually convex solution
f : R+ → R to the equation ∆f = g (and dually, if g is eventually convex, then f
is eventually concave). He also provided an explicit expression for this solution
as a pointwise limit of functions, namely

f(x) = f(1) + lim

n→∞
f1n[g](x), x > 0,

where

f1n[g](x) = − g(x) +

n−1∑

k=1

(g(k) − g(x + k)) + x g(n).

Much later, and independently, Webster [79, 80] established the multiplicative
version of Krull’s result.

In this paper, we generalize Krull-Webster’s result by relaxing the asymp-
totic condition imposed on function g into the much weaker requirement that
the sequence n 7→ ∆pg(n) converges to zero for some nonnegative integer p.
This relaxation leads us to replacing the convexity and concavity properties
by the p-convexity and p-concavity properties (i.e., convexity and concavity of
order p; see Definition 2.1 below). More precisely, we establish the unique-
ness and existence theorems below (Theorems 1.1 and 1.2), as they were stated
separately by Webster in the case when p = 1.

We let N denote the set of nonnegative integers and we let N∗ denote the set
of strictly positive integers. For any p ∈ N, any n ∈ N∗, and any g : R+ → R,
we define the function fpn[g] : R+ → R by the equation

fpn[g](x) = − g(x) +

n−1∑

k=1

(g(k) − g(x + k)) +

p∑

j=1

(
x
j

)
∆j−1g(n) . (2)

Theorem 1.1 (Uniqueness). Let p ∈ N and let the function g : R+ → R have
the property that the sequence n 7→ ∆pg(n) converges to zero. Suppose
that f : R+ → R is an eventually p-convex or eventually p-concave function
satisfying the difference equation ∆f = g. Then f is uniquely determined
(up to an additive constant) by g through the equation

f(x) = f(1) + lim

n→∞
fpn[g](x), x > 0.

Theorem 1.2 (Existence). Let p ∈ N and suppose that the function g : R+ →
R is eventually p-convex or eventually p-concave and has the asymptotic
property that the sequence n 7→ ∆pg(n) converges to zero. Then there exists
a unique (up to an additive constant) eventually p-convex or eventually p-
concave solution f : R+ → R to the difference equation ∆f = g. Moreover,

f(x) = f(1) + lim

n→∞
fpn[g](x), x > 0, (3)

and f is p-convex (resp. p-concave) on any unbounded subinterval of R+

on which g is p-concave (resp. p-convex).
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We observe that Theorem 1.2 was first proved in the case when p = 0

by John [42]. As mentioned above, it was also established in the case when
p = 1 by Krull [46] and Webster [80]. More recently, the case when p = 2 was
investigated by Rassias and Trif [72], but the asymptotic condition they imposed
on function g is much stronger than ours and hence defines a very specific
subclass of functions. (We discuss Rassias and Trif’s result in Appendix A.)
We also observe that attempts to establish Theorem 1.2 for any value of p were
made by Kuczma [50, Theorem 1] (see also Kuczma [52, pp. 118–121]) and
then by Ardjomande [8]. However, the representation formulas they provide
for the solutions are rather intricate. Thus, to the best of our knowledge, both
Theorems 1.1 and 1.2, as stated above in their full generality and simplicity,
were previously unknown.

For any solution f arising from Theorem 1.2 when p = 1, Webster [80] calls
the function exp ◦f a Γ-type function. In fact, exp ◦f reduces to the gamma
function Γ when exp ◦g is the identity function, which simply means that the
gamma function restricted to R+ is itself a Γ -type function. In this particular
case, the limit given in (3) reduces to the following Gauss well-known limit for
the gamma function

Γ(x) = lim

n→∞

n!nx

x(x + 1) · · · (x+ n) . (4)

Similarly, for any fixed p ∈ N and any solution f arising from Theorem 1.2,
we call the function exp ◦f a Γp-type function, and we naturally call the function
f a log Γp-type function. When the value of p is not specified, we call these func-
tions multiple Γ-type function and multiple log Γ-type function, respectively.
This terminology will be defined more formally and justified in Subsection 5.2.

Interestingly, Webster established for Γ -type functions analogues of Leg-
endre’s duplication formula, Gauss’ multiplication formula, Stirling’s for-
mula, Euler’s constant, and Weierstrass’ infinite product for the gamma
function. In this paper, we also establish for multiple Γ -type functions and mul-
tiple log Γ -type functions analogues of all the formulas above as well as analogues
of Stirling’s constant, Euler’s infinite product, Wallis’s product formula, and
Raabe’s formula for the gamma function. We also introduce analogues of Bi-
net’s function, Burnside’s formula, and Fontana-Mascheroni’s series, and
discuss analogues of Euler’s reflection formula and Gauss’ digamma theo-
rem. Thus, for each multiple Γ -type function, it is no longer surprising for
instance that an analogue of Euler’ infinite product must hold, almost render-
ing a formal proof unnecessary! All these results, together with the uniqueness
and existence theorems above, show that our theory provides a very general and
unified framework to study the properties of a large variety of functions. Thus,
for each of these functions we can retrieve known formulas and establish new
ones.
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Example 1.3 (The Hurwitz zeta function, see Subsection 9.6). Consider the
Hurwitz zeta function s 7→ ζ(s,a), defined when ℜ(a) > 0 as an analytic
continuation to C \ {1} of the series

∑∞
k=0

(a+ k)−s. This function is known to
satisfy the difference equation

ζ(s,a+ 1) − ζ(s,a) = − a−s.

Also, it is not difficult to see that, for any s ∈ R \ {1}, the restriction of the map
x 7→ ζ(s, x) to R+ is a log Γp(s)-type function, where

p(s) = max{0, ⌊1− s⌋}.

Theorem 1.2 then tells us that all eventually p(s)-convex or eventually p(s)-
concave solutions fs : R+ → R to the difference equation

fs(x + 1) − fs(x) = − x−s

are of the form fs(x) = cs + ζ(s, x), where cs ∈ R. Moreover, equation (3)
provides the following analogue of Gauss’ limit for the gamma function

ζ(s, x) = ζ(s) + x−s + lim

n→∞




n−1∑

k=1

(
(x+ k)−s − k−s

)
−

p(s)∑

j=1

(
x
j

)
∆j−1

n n−s




,

where s 7→ ζ(s) is the Riemann zeta function. Using one of our new results
(namely, Theorem 6.5), we are also able to derive the following analogue of
Stirling’s formula

ζ(s, x) −
x1−s

s− 1

−

p(s)∑

j=1

Gj∆
j−1

x x−s → 0 as x→ ∞,

where Gn =
∫
1

0

(
t
n

)
dt is the nth Gregory coefficient. For instance, setting

s = − 3

2

in this asymptotic formula, we obtain

ζ
(
− 3

2

, x
)
+ 2

5

x5/2 − 7

12

x3/2 + 1

12

(x+ 1)3/2 → 0 as x→ ∞.

Example 1.4 (Barnes’sG-function, see Subsection 9.5). The BarnesG-function
G : R+ → R+ is the unique solution to the equation

f(x + 1) = Γ(x)f(x)

whose logarithm is eventually 2-convex and vanishes at x = 1. Thus defined, this
function is a Γ

2

-type function. In particular, formula (3) provides the following
analogue of Gauss’ limit for the gamma function

G(x) = lim

n→∞

Γ(1)Γ(2) · · · Γ(n)
Γ(x)Γ(x+ 1) · · · Γ(x+ n) n!

x n(
x
2

)
.
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Our results also enable us to derive various unusual formulas. For instance, we
have the following analogue of Euler’s infinite product

G(x) =
1

Γ(x)

∞∏

k=1

Γ(k)

Γ(x+ k)
kx(1+ 1/k)(

x
2

)

and the following analogue of Weierstrass’ infinite product

G(x) =
e(−γ−1)(x

2

)

Γ(x)

∞∏

k=1

Γ(k)

Γ(x+ k)
kxeψ

′(k)(x
2

)
,

where γ is Euler’s constant and ψ is the digamma function. We also have the
following surprising analogues of Wallis’s product formula

lim

n→∞

Γ(1)Γ(3) · · · Γ(2n− 1)

Γ(2)Γ(4) · · · Γ(2n)

(
2n

e

)n
=

1√
2

and

lim

n→∞

G(1)G(3) · · · G(2n− 1)

G(2)G(4) · · · G(2n)
nn

2− 1

2

n− 1

24

2

n2− 7

24 π
1

2

n

e
3

2

n2− 1

2

n− 1

24

= A
1

2

,

where A is Glaisher-Kinkelin’s constant defined by the equation ζ ′(−1) = 1

12

−

lnA.

Throughout this paper we will use the basic function g(x) = ln x as the
guiding example. However, many other functions, including the examples above,
will be discussed in Section 9.

This paper is outlined as follows. In Section 2, we present some defini-
tions and preliminary results on higher order convexities as well as on Newton
interpolation theory. In Section 3, we establish Theorems 1.1 and 1.2 and pro-
vide conditions for the sequence n 7→ f

p
n[g](x) to converge uniformly on any

bounded subset of R+. We also examine the particular case when the sequence
n 7→ g(n) is summable, and we provide historical remarks on some improve-
ments of Krull-Webster’s theory. In Section 4, we investigate some properties
of the set of functions g(x) defined by the asymptotic condition stated in The-
orems 1.1 and 1.2. We also investigate the subset of those functions that are
eventually p-convex or eventually p-concave. In Section 5, we introduce, in-
vestigate, and characterize the multiple log Γ -type functions. In Section 6, we
show how Stirling’s formula, Stirling’s constant, and Euler’s constant can be
generalized to the multiple log Γ -type functions and we introduce analogues of
Binet’s function, Burnside’s formula, and Fontana-Mascheroni’s series. We also
show how the so-called Gregory summation formula, with an integral form of
the remainder, can be very easily derived in this setting. In Section 7, we discuss
conditions for the solutions arising from Theorem 1.2 (i.e., the log Γp-type func-
tions) to be differentiable and we show how these solutions can also be obtained
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by first differentiating both sides of the difference equation ∆f = g. In Section 8,
we explore further properties of the multiple log Γ -type functions. Specifically,
we provide analogues of Euler’s infinite product, Weierstrass’ infinite product,
Raabe’s formula, Gauss’ multiplication formula, and Wallis’s product formula.
We also discuss analogues of Euler’s reflection formula and Gauss’ digamma
theorem, and we define and solve a generalized version of a functional equation
proposed by Webster. In Sections 9 and 10, we apply our results to a number
of multiple Γ -type functions and multiple log Γ -type functions, many of whose
are well-known special functions related to the gamma function.

We use the following notation throughout. The symbol I denotes an (ar-
bitrary) interval of the real line whose interior is nonempty. For any points
x
0

, x
1

, . . . , xp+1

∈ I and any function f : I → R, the symbol f[x
0

, x
1

, . . . , xp+1

]

stands for the divided difference of f at the points x
0

, x
1

, . . . , xp+1

. The symbol
S represents either N or R. For any S ∈ {N,R}, the notation x →

S

∞ means
that x tends to infinity, assuming only values in S. For any x ∈ R and any
k ∈ N, we set x+ = max{0, x} and

xk = x(x− 1) · · · (x − k + 1) =
Γ(x+ 1)

Γ(x− k + 1)
.

For any k ∈ N and any nonempty open real interval I, we let Ck(I) denote the set
of k times continuously differentiable functions on I, and we set Ck = Ck(R+).
We also let ∆ and D denote the usual difference and derivative operators, re-
spectively. We sometimes add a subscript to specify the variable on which the
operator acts, e.g., writing ∆n and Dx.

Recall that the digamma function ψ is defined on R+ by the equationψ(x) =
D ln Γ(x). The polygamma functions ψν (ν ∈ Z) are defined on R+ as follows.
If ν ∈ N, then ψν(x) = Dνψ(x). In particular, ψ

0

= ψ is the digamma function.
If ν ∈ Z \ N, then we have ψ−1

(x) = ln Γ(x) and

ψν−1

(x) =

∫x

0

ψν(t)dt =

∫x

0

(x− t)−ν−1

(−ν − 1)!
ln Γ(t)dt.

Recall also that the harmonic number function x 7→ Hx is defined on (−1,∞)

by the series

Hx =

∞∑

k=1

(
1

k
−

1

x+ k

)
.

Both functions are strongly related: we have Hx−1

= ψ(x) + γ on R+, where γ
is Euler’s constant (also called Euler-Mascheroni constant).

For any a > 0, any p ∈ N, and any g : R+ → R, we define the function
ρpa[g] : [0,∞) → R by the equation

ρpa[g](x) = g(x+ a) −

p−1∑

j=0

(
x
j

)
∆jg(a) . (5)

10



For any p ∈ N and any S ∈ {N,R}, we let Rp
S

be the set of functions g : R+ →
R having the asymptotic property that, for each x > 0,

ρ
p
t [g](x) → 0 as t→

S

∞.

We also let D
p
S

be the set of functions g : R+ → R having the asymptotic
property that

∆pg(t) → 0 as t→
S

∞.

We immediately observe that the inclusion D
p
S

⊂ D
p+1

S

holds for every p ∈ N.
We will see in Subsection 4.1 that so does the inclusion R

p
S

⊂ R
p+1

S

.

2 Preliminaries

This section is devoted to some basic definitions and results that are needed in
this paper. We essentially focus on higher order convexity and Newton inter-
polation theory.

2.1 Higher order convexity and concavity

Let us recall the definition of higher order convexity and concavity properties
and present some related results. For background see, e.g., [50], [53, Chapter 15],
[70], and [73, pp. 237–240].

Definition 2.1. A function f : I→ R is said to be convex of order p or simply
p-convex for some integer p > −1 if for any system x

0

< x
1

< · · · < xp+1

of
p+ 2 points in I it holds that

f[x
0

, x
1

, . . . , xp+1

] > 0.

The function f is said to be concave of order p or simply p-concave if −f is
p-convex.

Thus defined, a function f : I → R is 1-convex (resp. 1-concave) if it is an
ordinary convex (resp. concave) function, while it is a 0-convex (resp. 0-concave)
if it is an increasing (resp. decreasing) function.

For any integer p > −1, we let K
p
+(I) (resp. Kp−(I)) denote the set of p-

convex (resp. p-concave) functions f : I → R and we let K
p
+ (resp. Kp−) denote

the set of functions f : R+ → R that are eventually p-convex (resp. eventually
p-concave), i.e., p-convex (resp. p-concave) in a neighborhood of infinity. We
also set

Kp(I) = K
p
+(I) ∪K

p
−(I) and Kp = K

p
+ ∪K

p
−.

The following lemma provides some known connections between higher order
convexity and higher order differentiability (see, e.g., [53, Chapter 15]).

11



Lemma 2.2. Suppose that I is an nonempty open real interval and let
p ∈ N∗. Then the following assertions hold.

(a) We have Kp(I) ⊂ Cp−1(I).

(b) If f ∈ K
p
+(I), then ∆jf ∈ K

p−j
+ (I) for j = 0, . . . ,p+ 1.

(c) If f ∈ Cj(I) ∩K
p
+(I) for some j ∈ {0, . . . ,p+ 1}, then f(j) ∈ K

p−j
+ (I).

(d) If f ∈ Cp(I), then f ∈ K
p
+(I) if and only if f(p) ∈ K0

+(I).

(e) If f ∈ Cp(I), then f ∈ K
p−1

+ (I) if and only if f(p) ∈ K−1

+ (I).

(f) We have f ∈ K
p
+(I) if and only if f ∈ Cp−1(I) and f(p−1) ∈ K1

+(I).

(g) If f ∈ C1(I) and f ′ ∈ K
p−1

+ (I), then f ∈ K
p
+(I).

We also have the following important lemma. It is interesting in its own
right and will be very useful in the subsequent sections. A variant of this result
can be found in Kuczma [53, Lemma 15.7.2]. Recall first that for any f : I→ R,
any p ∈ N, and any x ∈ I such that x+ p ∈ I, we have

∆pf(x) = p! f[x, x+ 1, . . . , x+ p], (6)

where ∆ stands for the standard forward difference operator.

Lemma 2.3. Let p ∈ N. A function f : I→ R is p-convex (resp. p-concave)
if and only if the map (z

0

, . . . , zp) ∈ Ip+1 7→ f[z
0

, . . . , zp] is increasing (resp.
decreasing) in each place. In particular, if f is p-convex (resp. p-concave)
and if ∆pf is defined on I, then ∆pf is increasing (resp. decreasing) on I.

Proof. Using the definition of p-convexity and the standard recurrence relation
for divided differences, we can see that f is p-convex if and only if, for any
pairwise distinct x

0

, . . . , xp ∈ I, we have

f[x
1

, x
2

. . . , xp] − f[x0, x2 . . . , xp]

x
1

− x
0

> 0.

Equivalently, for any pairwise distinct x
0

, . . . , xp ∈ I, we have

x
1

> x
0

⇒ f[x
1

, x
2

. . . , xp] − f[x0, x2 . . . , xp] > 0.

The latter condition exactly means that the map (z
0

, . . . , zp) 7→ f[z
0

, . . . , zp] is
increasing in the first place. Since this map is known to be symmetric, it must
be increasing in each place. The second part of the lemma follows from (6).

12



2.2 Newton interpolation

For any integer p ∈ N, any p points x
0

, . . . , xp−1

∈ R+, and any function
f : R+ → R, we let the map

x 7→ Pp−1

[f](x
0

, . . . , xp−1

; x)

denote the unique interpolating polynomial of f with nodes at x
0

, . . . , xp−1

.
Recall that this polynomial has degree at most p − 1. (The zero polynomial
can be assumed to have degree −1.) For instance, using the classical Newton
interpolation formula we obtain the following identity: for any a > 0,

Pp−1

[f](a,a+ 1, . . . ,a+ p− 1; x) =

p−1∑

j=0

(
x−a
j

)
∆jf(a). (7)

Also, the corresponding interpolation error at x is

f(x) −

p−1∑

j=0

(
x−a
j

)
∆jf(a) = (x− a)p f[a,a+ 1, . . . ,a+ p − 1, x] (8)

(see, e.g., [71, Section 8.2.2] and [77, Section 2.1.3]). The right side of (8) is
actually the remainder of the (p− 1)th degree Newton expansion of f(x) about
x = a (see, e.g., [34, Section 5.3]). Note also that formula (8), which actually
generalizes (6) on R+, is a pure identity and is therefore valid without any
restriction on the form of f(x). When f ∈ Cp, the right side of (8) also takes
the form

(
x−a
p

)
f(p)(ξ) for some real number ξ satisfying

min{a, x} < ξ < max{a+ p − 1, x}.

Using (7) and (8) we see that, for any a > 0, any p ∈ N, and any g : R+ →
R, the quantity ρpa[g](x) defined in (5) is precisely the interpolation error at
a+ x when considering the interpolating polynomial of g with nodes at a,a+

1, . . . ,a+ p− 1. We then immediately derive the following identities:

ρpa[g](x) = g(x + a) − Pp−1

[g](a,a+ 1, . . . ,a+ p − 1;a+ x) , (9)

ρpa[g](x) = xp g[a,a+ 1, . . . ,a+ p − 1,a+ x] . (10)

We now provide a key technical lemma that will be used repeatedly in this
paper to obtain various convergence results.

Lemma 2.4. Let p ∈ N, f ∈ Kp, and a > 0 be so that f is p-convex or
p-concave on [a,∞). Then, for any x > 0, we have

0 6 ± εp(x) ρ
p+1

a [f](x) 6 ±
∣∣∣
(
x−1

p

)∣∣∣
⌈x⌉−1∑

j=0

∆p+1f(a+ j),

13



where εp(x) ∈ {−1, 0, 1} is the sign of xp+1 and ± stands for 1 or −1 ac-
cording to whether f ∈ K

p
+ or f ∈ K

p
− . Moreover, if x ∈ {0, 1, . . . ,p} (i.e.

εp(x) = 0), then ρp+1

a [f](x) = 0.

Proof. Let us first establish the inequalities. Negating f if necessary, we may
assume that it lies in K

p
+. We may also assume that x /∈ {0, 1, . . . ,p}, which

means that εp(x) 6= 0. By (10) we have

εp(x) ρ
p+1

a [f](x) = εp(x) x
p+1 f[a,a+ 1, . . . ,a+ p,a+ x] > 0

and hence, using Lemma 2.3, identity (6), and the standard recurrence relation
for divided differences, we obtain

0 6 εp(x) ρ
p+1

a [f](x)

= εp(x) x
p+1 f[a,a+ 1, . . . ,a+ p,a+ x]

= εp(x)(x− 1)p (f[a+ x,a+ 1, . . . ,a+ p] − f[a,a+ 1, . . . ,a+ p])

6 εp(x)
(
x−1

p

)
(∆pf(a+ x) − ∆pf(a))

6 εp(x)
(
x−1

p

)
(∆pf(a+ ⌈x⌉) − ∆pf(a)),

which proves the inequalities. Now, when x ∈ {0, 1, . . . ,p}, then
(
x
j

)
= 0 when-

ever j > x and hence ρp+1

a [g](x) = 0 by (5).

Remark 2.5. It is not difficult to see that, in Lemma 2.4, the upper delimiter
⌈x⌉−1 of the sum could be replaced with ⌈median{x, 1, x−p+1}⌉−1 whenever
p > 1. Although this alternative delimiter would make the second inequality a
little tighter, it would not have a great impact on our subsequent results.

3 Uniqueness and existence results

In this section we establish Theorems 1.1 and 1.2 and show that, under the
assumptions of these theorems, the sequence n 7→ f

p
n[g](x) converges uniformly

on any bounded subset of R+. We also discuss the particular case where the
sequence n 7→ g(n) is summable. Lastly, we provide historical notes on Krull-
Webster’s theory and some of its improvements.

3.1 Main results

We start this section by establishing a slightly improved version of our unique-
ness Theorem 1.1. We state this new version in Theorem 3.1 below and provide
a very short proof. Let us first note that any solution f : R+ → R to the equation

14



∆f = g satisfies the equations

f(n) = f(1) +

n−1∑

k=1

g(k), n ∈ N∗
; (11)

f(x+ n) = f(x) +

n−1∑

k=0

g(x + k), n ∈ N∗
. (12)

Also, using (2), (5), (11), and (12), we can easily derive the identity

f(x) = f(1) + fpn[g](x) + ρ
p+1

n [f](x). (13)

Theorem 3.1 (Uniqueness). Let p ∈ N and g ∈ D
p
S

. Suppose that f : R+ → R

is a solution to the equation ∆f = g that lies in Kp. Then, the following
assertions hold.

(a) We have f ∈ R
p+1

S

.

(b) For each x > 0, the sequence n 7→ fpn[g](x) converges and we have

f(x) = f(1) + lim

n→∞
fpn[g](x) , x > 0.

(c) For any nonempty bounded subset E of R+, the sequence n 7→ fpn[g]

converges uniformly on E to f− f(1).

Proof. We clearly have f ∈ D
p+1

S

. Assertion (a) then follows from Lemma 2.4.
Assertion (b) follows from assertion (a) and identity (13). Using again identity
(13) and Lemma 2.4, for large integer n we obtain

sup

x∈E
|fpn[g](x) − f(x) + f(1)| = sup

x∈E

∣∣ρp+1

n [f](x)
∣∣

6 sup

x∈E

∣∣∣
(
x−1

p

)∣∣∣ sup

x∈E

⌈x⌉−1∑

j=0

∣∣∆p+1f(n + j)
∣∣
.

This establishes assertion (c).

Example 3.2. Using Theorem 3.1 with g(x) = ln x and p = 1, it follows that
all solutions f : R+ → R+ to the equation f(x + 1) = x f(x) for which ln f lie
in K1 are of the form f(x) = c Γ(x), where c > 0. We thus simply retrieve
Bohr-Mollerup-Artin’s theorem as expected, as well as Gauss’ limit (4).

Using the definition of ρpa[g](x), we can easily derive the following two iden-
tities:

ρpa[g](p) = ∆pg(a) ; (14)

ρpa[g](x) − ρ
p+1

a [g](x) =
(
x
p

)
ρpa[g](p) . (15)

15



Identity (14) shows that the inclusion R
p
S

⊂ D
p
S

holds for any p ∈ N. We will see
in Subsection 4.1 that the converse inclusion does not hold. Now, the following
straightforward identities will also be useful as we continue:

f
p
n+1

[g](x) − fpn[g](x) = −ρp+1

n [g](x) ; (16)

fpn[g](x + 1) − fpn[g](x) = g(x) − ρpn[g](x) . (17)

For any integers 1 6 m 6 n, from (16) we obtain

fpn[g](x) = fpm[g](x) −

n−1∑

k=m

ρ
p+1

k [g](x) , (18)

which shows that, for any x > 0, the convergence of the sequence n 7→ f
p
n[g](x)

is equivalent to the summability of the sequence n 7→ ρ
p+1

n [g](x).
We now establish a slightly improved version of our existence Theorem 1.2.

We first present a technical lemma, which follows straightforwardly from Lemma
2.4.

Lemma 3.3. Let p ∈ N, g ∈ Kp, and m ∈ N∗ be so that g is p-convex or
p-concave on [m,∞). Then, for any x > 0 and any integer n > m, we have

∣∣∣∣∣

n−1∑

k=m

ρp+1

k [g](x)

∣∣∣∣∣ 6

∣∣∣
(
x−1

p

)∣∣∣
⌈x⌉−1∑

j=0

|∆pg(n + j) − ∆pg(m + j)|.

Theorem 3.4 (Existence). Let p ∈ N and g ∈ D
p
S

∩Kp. Then, the following
assertions hold.

(a) We have g ∈ R
p
S

.

(b) For each x > 0, the sequence n 7→ fpn[g](x) converges and the function
f : R+ → R defined by

f(x) = lim

n→∞
fpn[g](x) , x > 0,

is a solution to the equation ∆f = g that is p-concave (resp. p-convex)
on any unbounded subinterval I of R+ on which g is p-convex (resp.
p-concave). Moreover, we have f(1) = 0 and, for every n ∈ I ∩N∗,

|fpn[g](x) − f(x)| 6 ⌈x⌉
∣∣∣
(
x−1

p

)∣∣∣ |∆pg(n)| , x > 0.

(c) For any nonempty bounded subset E of R+, the sequence n 7→ f
p
n[g]

converges uniformly on E to f.
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Proof. We have g ∈ D
p
S

⊂ D
p+1

S

. By Lemma 2.4, it follows immediately that g
lies in R

p+1

S

, and hence also in R
p
S

by (14) and (15). This establishes assertion
(a). Now, suppose for instance that g lies in K

p
+. Let I be any unbounded

subinterval of R+ on which g is p-convex and let m ∈ I ∩ N∗. For any x > 0,
the sequence k 7→ ρ

p+1

k [g](x) for k >m does not change in sign by Lemma 2.4.
Thus, since g lies in D

p
N

, for any x > 0 the sequence

n 7→
n−1∑

k=m

ρp+1

k [g](x)

converges by Lemma 3.3. By (18) it follows that the sequence n 7→ f
p
n[g](x)

converges. Denoting the limiting function by f, by (17) and assertion (a) we
must have ∆f = g. Moreover, we also have f(1) = 0 by Theorem 3.1.

It is also easy to see that every fpn[g] is p-concave on I. (Note that the
second sum in (2) is a polynomial of degree p in x, hence it is both p-convex
and p-concave.) Since f is a pointwise limit of functions p-concave on I, it too
is p-concave on I.

The inequality then follows from Eq. (13), Lemma 2.4, and the observation
that the restriction of the sequence n 7→ ∆pg(n) to I ∩ N∗ increases to zero by
Lemma 2.3. This proves assertion (b). Assertion (c) immediately follows from
assertion (b).

Theorems 3.1 and 3.4 show that the assumption g ∈ D
p
N
∩Kp constitutes a

sufficient condition to ensure both the uniqueness (up to an additive constant)
and existence of solutions to the equation ∆f = g that lie in Kp. Nevertheless,
we can show that this condition is actually not quite necessary. We discuss and
elaborate on this natural question in Appendix B.

We now present an important property of the sequence n 7→ fpn[g](x). Con-
sidering the straightforward identity

fp+1

n [g](x) − fpn[g](x) =
(
x
p+1

)
∆pg(n),

we immediately see that if the sequence n 7→ fp+1

n [g](x) − fpn[g](x) approaches
zero for some x ∈ R+ \ {0, 1, . . . ,p}, then necessarily g ∈ D

p
N
. More importantly,

this identity also shows that if g ∈ D
p
N

and if the sequence n 7→ fpn[g](x) con-
verges, then so does the sequence n 7→ fp+1

n [g](x) and both sequences converge
to the same limit. Since we have D

p
N
⊂ D

p+1

N
for any p ∈ N, we immediately

obtain the following important proposition.

Proposition 3.5. Let p ∈ N. If g ∈ D
p
N

and if the sequence n 7→ f
p
n[g](x)

converges, then for any integer q > p the sequence

n 7→ |fpn[g](x) − f
q
n[g](x)|

converges to zero. Moreover, the convergence is uniform on any nonempty
bounded subset of R+.
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3.2 The case when the sequence g(n) is summable

Let D̃−1

N
be the set of functions g : R+ → R having the asymptotic property

that the sequence n 7→
∑n−1

k=1

g(k) converges. We immediately observe that
D̃−1

N
⊂ D0

N
. In this context, our uniqueness and existence results reduce to the

following two theorems.

Theorem 3.6 (Uniqueness). Let g ∈ D̃−1

N
and suppose that f : R+ → R is

a solution to the equation ∆f = g that lies in K0. Then, the following
assertions hold.

(a) f(x) has a finite limit as x→ ∞, denote it by f(∞).

(b) For each x > 0, the sequence n 7→
∑n−1

k=0

g(x + k) converges and we
have

f(x) = f(∞) −

∞∑

k=0

g(x+ k) , x > 0.

(c) The sequence n 7→
∑n−1

k=0

g(x+k) converges uniformly on R+ to f(∞)−

f(x).

Proof. The sequence n 7→ f(n) converges by (11). Assuming for instance that
f ∈ K0

+, for any x > 0 we obtain

f(⌊x⌋+ n) 6 f(x+ n) 6 f(⌈x⌉+ n) for large integer n.

Letting n →N ∞ in these inequalities and using the squeeze theorem, we get
assertion (a). Assertion (b) follows from assertion (a) and identity (12). Now,
for large integer n, by (12) we have

sup

x∈R+

∣∣∣∣∣

∞∑

k=n

g(x + k)

∣∣∣∣∣ = sup

x∈R+

|f(x+ n) − f(∞)| 6 |f(n) − f(∞)|.

This proves assertion (c).

Theorem 3.7 (Existence). Let g ∈ D̃−1

N
∩K0. Then, the following assertions

hold.

(a) We have g ∈ R0

N
.

(b) For each x > 0, the sequence n 7→
∑n−1

k=0

g(x + k) converges and the
function f : R+ → R defined by

f(x) = −

∞∑

k=0

g(x + k) , x > 0,
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is a solution to the equation ∆f = g that is decreasing (resp. increas-
ing) on any unbounded subinterval I of R+ on which g is increas-
ing (resp. decreasing). Moreover, we have f(∞) = 0 and, for every
n ∈ I ∩ N∗, ∣∣∣∣∣

∞∑

k=n

g(x+ k)

∣∣∣∣∣ 6 |f(n)|, x > 0.

(c) The sequence n 7→
∑n−1

k=0

g(x+k) converges uniformly on R+ to −f(x).

Proof. This follows straightforwardly from Theorems 3.4 and 3.6.

3.3 Historical notes

As mentioned in the Introduction, the uniqueness and existence result in the
case when p = 1 was established in the pioneering work of Krull [46,47] and then
independently by Webster [79, 80] as a generalization of Bohr-Mollerup-Artin’s
theorem. We observe that it was also partially rediscovered by Dinghas [29].
In addition, we note that Krull’s result was presented and somewhat revisited
by Kuczma [48] (see also Kuczma [51] and Kuczma [52, pp. 114–118]) as well
as by Anastassiadis [6, pp. 69–73]. To our knowledge, the only attempts to
establish uniqueness and existence results for any value of p were made by
Kuczma [52, pp. 118–121] and Ardjomande [8]. Independently of these latter
results, a special investigation of the case when p = 2, which involves the Barnes
G-function, was made by Rassias and Trif [72] (see our Appendix A).

We also observe that Gronau and Matkowski [37, 38] improved the multi-
plicative version of Krull’s result by replacing the log-convexity property with
the much weaker condition of geometrical convexity (see also Guan [39] for a
recent application of this result), thus providing another characterization of
the gamma function, which was later improved by Alzer and Matkowski [3]
and Matkowski [58]. (For further characterizations of the gamma function and
generalizations, see also Anastassiadis [6] and Muldoon [67].)

Many other variants and improvements of Krull’s result can actually be
found in the literature. For instance, Anastassiadis [5] (see also [6, p. 71]) gen-
eralized Krull’s result by modifying the asymptotic condition. Rohde [74] also
generalized that result by modifying the convexity property. Gronau [35] pro-
posed a variant of Krull’s result and applied it to characterize the Euler beta and
gamma functions and study certain spirals (see also Gronau [36]). Merkle and
Ribeiro Merkle [60] proposed to combine Krull’s result with differentiation tech-
niques to characterize the Barnes G-function. Himmel and Matkowski [41] also
proposed improvements of Krull’s result to characterize the beta and gamma
functions.
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4 Interpretations of the asymptotic conditions

In this section, we provide interpretations of the asymptotic conditions that
define the sets R

p
S

and D
p
S

and we investigate some properties of these sets.
We also describe the sets R

p
S

∩ Kp and D
p
S

∩ Kp and show that they actually
coincide. Moreover, we show that Cp ∩D

p
S

∩Kp is exactly the set of functions
g ∈ Cp for which g(p) eventually increases or decreases to zero.

4.1 Asymptotic conditions

Using (9) and (10), we can immediately state the following characterization of
the set R

p
S

in terms of interpolating polynomials. Using (9), (10), and (14), we
can obtain a similar characterization for the set D

p
S

.

Proposition 4.1. Let p ∈ N. A function g : R+ → R lies in R
p
S

if and only
if, for each x > 0,

g[a,a+ 1, . . . ,a+ p − 1,a+ x] → 0 as a→
S

∞. (19)

When S = R (resp. S = N), condition (19) means that g asymptotically
coincides with its interpolating polynomial whose nodes are any p points
equally spaced by 1 (resp. any p consecutive integers).

It is clear that the sets R
p
S

and D
p
S

are closed under linear combinations;
hence they are linear spaces. Moreover, using (14) and (15) we see that

R
p
S

= R
p+1

S

∩D
p
S

. (20)

In particular, the sets R0

S

,R1

S

, . . . are increasingly nested. As already observed,
this property also holds trivially for the sets D0

S

,D1

S

, . . .. Now, identity (9)
shows that the polynomial function x 7→ xp lies in R

p+1

S

\ R
p
S

and we can easily
see that it lies also in D

p+1

S

\ D
p
S

. Thus, we have proved that

R
p
S

 R
p+1

S

and D
p
S

 D
p+1

S

.

We also have R
p
S

 D
p
S

for any p ∈ N∗. Indeed, the 1-periodic function g(x) =
sin(2πx) lies in D

p
S

\ R
p
S

for any p ∈ N∗. On the other hand, we have

R0

R
= D0

R
 R0

N
 D0

N
.

For instance, we can easily construct a continuous (or even smooth) function
g : R+ → R such that for any n ∈ N∗, we have g = 0 on the interval [n−1,n− 1

n
]

and g(n − 1

2n
) = 1. Such a function has the property that, for each x > 0,

g(x+n) → 0 as n→N ∞. However, since it does not vanish at infinity, it must
lie in R0

N
\ R0

R
.
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It is clear that if a function f : R+ → R lies in D
p+1

S

, then ∆f lies in D
p
S

.
Also, if f lies in R

p+1

S

, then ∆f lies in R
p
S

by (20). This latter observation follows
also from the second of the straightforward identities

ρ
p
a+1

[f](x) − ρpa[f](x) = ρpa[∆f](x) ; (21)

ρp+1

a [f](x+ 1) − ρp+1

a [f](x) = ρpa[∆f](x) . (22)

Thus, we have proved the following proposition.

Proposition 4.2. Let j,p ∈ N be such that j 6 p. Then the following
assertions hold.

(a) If f ∈ R
p
S

, then ∆jf ∈ R
p−j
S

.

(b) f ∈ D
p
S

if and only if ∆jf ∈ D
p−j
S

.

We will see in Corollary 4.7 that, if f ∈ Kp−1, then the implication in
assertion (a) of Proposition 4.2 becomes an equivalence.

It is easy to see that, for any p ∈ N, the space R
p
S

contains every function
that behaves asymptotically like a polynomial of degree less than or equal to
p − 1; that is, every function g : R+ → R such that g(x) − P(x) → 0 as x → ∞

for some polynomial P of degree less than or equal to p − 1. More generally, if
g−h ∈ R

p
S

and h ∈ R
p
S

, then clearly g ∈ R
p
S

. To give another illustration of this
latter property, we observe for instance that both functions ln x and Hx − ln x

lie in R1

R
and hence so does the function Hx (which, a priori, is a not completely

trivial result).
It is clear that the spaces R∞

S

= ∪p>0

R
p
S

and D∞
S

= ∪p>0

D
p
S

contain a
very large variety of functions, including not only all the functions that have
polynomial behaviors at infinity as discussed above, and in particular all the
rational functions, but also many other functions. We observe, however, that
they do not contain any strictly increasing exponential function. For instance,
if g(x) = 2

x, then ∆pg(x) = 2

x for any p ∈ N, and this function does not
vanish at infinity. Actually, such exponential functions grow asymptotically
much faster than polynomial functions and may remain eventually p-convex
even after adding nonconstant 1-periodic functions. For instance, both functions
2

x and 2

x + sin(2πx) are eventually p-convex for any p ∈ N.

Remark 4.3. Using (5) and (20), we also obtain R
p
S

= R∞
S

∩D
p
S

for any p ∈ N.

4.2 Eventually p-convex or p-concave functions

Let us now investigate the sets Kp, Rp
S

∩Kp, and D
p
S

∩Kp. It is easy to see that
none of these sets is a linear space. For instance, both functions f(x) = x+ sinx

and g(x) = x lie in K0 but f − g does not. We also have ∆f /∈ K0, which
shows that Kp is not closed under the operator ∆. Finally, we can see that
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both functions f(x) = 2 lnx + sinx
x2

and g(x) = 2 lnx lie in R1

S

∩ K1 (use, e.g.,
Proposition 4.5 and Theorem 4.9 below) but f− g does not.

The following proposition shows that, just as the sets C0

,C1

,C2

, . . . are de-
creasingly nested, so are the sets K−1

,K0

,K1

, . . . and thus we can naturally let
K∞ denote the intersection set ∩p>0

Kp.

Proposition 4.4. For any integer p > −1, we have Kp+1  Kp.

Proof. Let f ∈ Kp+1 for some integer p > −1. Suppose without loss of
generality that f ∈ K

p+1

+ and let I be an unbounded subinterval of R+ on
which f is (p + 1)-convex. By Lemma 2.3, it follows that the restriction of
the map (z

0

, . . . , zp+1

) 7→ f[z
0

, . . . , zp+1

] to Ip+2 is increasing in each place.
If f /∈ K

p
−, then there are pairwise distinct points x

0

, . . . , xp+1

∈ I such that
f[x

0

, . . . , xp+1

] > 0. But then, f is p-convex on the interval (maxi xi,∞), that
is, f ∈ K

p
+. To see that the strict inclusion holds, we just observe that the

function f(x) = xp+1 + sinx lies in Kp \ Kp+1.

Interestingly, Proposition 4.4 shows that the assumption g ∈ Kp, which
occurs in many statements (e.g., in Theorem 3.4), can be given equivalently by
g ∈ ∪q>pKq.

We also have the following two important propositions.

Proposition 4.5. For any p ∈ N, we have R
p
R
∩Kp = D

p
R
∩Kp = R

p
N
∩Kp =

D
p
N
∩Kp.

Proof. We already know that R
p
S

⊂ D
p
S

and D
p
R
⊂ D

p
N
. Also, Dp

S

∩ Kp ⊂ R
p
S

by Theorem 3.4. It remains to show that D
p
N
∩ Kp ⊂ D

p
R
. Let g ∈ D

p
N
∩ Kp.

Suppose for instance that g ∈ K
p
+ and let a > 0 be so that g is p-convex on

[a,∞). By Lemma 2.3, ∆pg is increasing on [a,∞). Thus, for any x > a + 1,
we have

∆pg(⌊x⌋) 6 ∆pg(x) 6 ∆pg(⌈x⌉).
Letting x→ ∞ and using the squeeze theorem, we obtain that g ∈ D

p
R
.

Proposition 4.6. If f ∈ Kp for some p ∈ N, then the following assertions
are equivalent:

(i) f ∈ R
p+1

S

, (ii) f ∈ D
p+1

S

, (iii) ∆f ∈ R
p
S

, (iv) ∆f ∈ D
p
S

.

Proof. We clearly have (i) ⇒ (ii) and (iii) ⇒ (iv). By Proposition 4.2, we also
have (i) ⇒ (iii) and (ii) ⇒ (iv). Finally, by Theorem 3.1, we have (iv) ⇒ (i).

Combining Lemma 2.2(b) with Propositions 4.2 and 4.6, we obtain the fol-
lowing corollary, which naturally complements Proposition 4.2.

Corollary 4.7. Let j,p ∈ N be such that j 6 p. If f ∈ Kp−1, then we have
f ∈ R

p
S

if and only if ∆jf ∈ R
p−j
S

.
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Due to Proposition 4.5, we will henceforth write Dp∩Kp instead of Dp
S

∩Kp.
We also observe that when g lies in Dp ∩ Kp, then by (10) and Lemma 2.3
the maps t 7→ ρ

p
t [g](x) and t 7→ ∆pg(t) eventually increase or decrease to

zero. It is not known whether these latter conditions characterize the set Dp ∩
Kp. However, when g lies in Cp, we have the nice characterization given in
Theorem 4.9 below, which immediately follows from the next proposition.

Proposition 4.8. Let p, r ∈ N be such that r 6 p and let g ∈ Cr. Then the
following assertions hold.

(a) g ∈ K
p
+ if and only if g(r) ∈ K

p−r
+ . More precisely, for any unbounded

open interval I of R+, g is p-convex on I if and only if g(r) is (p− r)-
convex on I.

(b) g ∈ Dp ∩K
p
+ if and only if g(r) ∈ Dp−r ∩K

p−r
+ .

Proof. Assertion (a) follows from Lemma 2.2(c) and Lemma 2.2(g). To see
that assertion (b) holds, it is enough to show that, for any p > 1, we have
g ∈ Dp ∩K

p
+ if and only if g ′ ∈ Dp−1 ∩K

p−1

+ . Suppose first that g ∈ Dp ∩K
p
+.

Then g ′ ∈ K
p−1

+ by assertion (a). Let x > 1 be so that g is p-convex on [x,∞).
By the mean value theorem, there exist ξ1x, ξ

2

x ∈ (0, 1) such that

∆pg(x−1) = ∆p−1g ′(x−1+ξ1x) 6 ∆p−1g ′(x) 6 ∆p−1g ′(x+ξ2x) = ∆pg(x).

Letting x→ ∞, we see that g ′ ∈ D
p−1

R
. Conversely, suppose that g ′ ∈ Dp−1 ∩

K
p−1

+ . Then g ∈ K
p
+ by assertion (a). Let x > 1 be so that g ′ is (p− 1)-convex

on [x,∞) and let t ∈ (x, x+ 1). Then we have

∆p−1g ′(x) 6 ∆p−1g ′(t) 6 ∆p−1g ′(x + 1).

Integrating on t ∈ (x, x+ 1), we obtain

∆p−1g ′(x) 6 ∆pg(x) 6 ∆p−1g ′(x+ 1).

Letting x→ ∞, we see that g ∈ D
p
R
.

Theorem 4.9. Let p ∈ N and g ∈ Cp. Then g ∈ Dp∩Kp+ (resp. g ∈ Dp∩Kp−)
if and only if g(p) eventually increases (resp. decreases) to zero.

Remark 4.10. The function g(x) = 1

x
sinx2 vanishes at infinity but its deriva-

tive does not. Theorem 4.9 shows that if g ∈ Cq ∩Dp ∩Kq for some p,q ∈ N
such that p 6 q, then all the functions g(p),g(p+1)

, . . . ,g(q) vanish at infinity.

Proposition 4.8 does not provide any information on the derivative g ′ when
g lies in C1 ∩D0 ∩K0. The following proposition deals with this issue.

Proposition 4.11. If g ∈ C1 ∩ D0 ∩ K0

− is such that g ′ ∈ K0, then g ′ ∈
C0 ∩ D̃−1

N
∩K0

+.
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Proof. Let x > 1 be so that g is decreasing and g ′ is monotone on Ix = [x−1,∞).
By the mean value theorem, there exist ξ1x, ξ

2

x ∈ (0, 1) such that ∆g(x − 1) =

g ′(x− 1+ ξ1x) and ∆g(x) = g ′(x+ ξ2x). Thus, we have

∆g(x − 1) 6 g ′(x) 6 ∆g(x) or ∆g(x − 1) > g ′(x) > ∆g(x)

according to whether g ′ is increasing or decreasing. In both cases, we see that
g ′(x) approaches zero as x → ∞. Since g ′ is nonpositive on Ix, it must be
increasing on Ix; hence g ′ ∈ K0

+. For any integers m,n such that x 6 m 6 n,
we then have

g(n − 1) − g(m − 1) =

n−1∑

k=m

∆g(k − 1) 6

n−1∑

k=m

g ′(k) 6 0.

Letting n→N ∞, we can see that g ′ ∈ D̃−1

N
.

Remark 4.12. The assumption that g ′ ∈ K0 in Proposition 4.11 cannot be
ignored. Indeed, one can show that the function g(x) = 1

x3
(x + sinx) lies in

C1 ∩D0 ∩K0

− whereas its derivative g ′ does not lie in K0.

Combining Lemma 2.2(b) with Theorem 3.4 and Proposition 4.2(b), we can
very easily obtain the following two corollaries, in which the symbols R and D

can be used interchangeably.

Corollary 4.13. Let g ∈ K
p
+ (resp. g ∈ K

p
−) for some p ∈ N. Then g ∈ D

p
S

if and only if there exists a solution f : R+ → R to the equation ∆f = g that
lies in D

p+1

S

∩K
p
− (resp. D

p+1

S

∩K
p
+).

Corollary 4.14. For any p ∈ N, we have Dp ∩K
p
+ ⊂ K

p−1

− and Dp ∩K
p
− ⊂

K
p−1

+ . More precisely, if g ∈ Dp and is p-convex (resp. p-concave) on an
unbounded interval of R+, then on this interval it is also (p − 1)-concave
(resp. (p − 1)-convex).

We end this section by providing a characterization of the set Rp ∩ Kp =

Dp ∩Kp in terms of interpolating polynomials.

Proposition 4.15. Let g ∈ Kp for some p ∈ N. Then we have g ∈ R
p
S

if
and only if for any x

0

, . . . , xp > 0, g[a+x
0

, . . . ,a+xp] → 0 as a→
S

∞. This
latter condition means that g asymptotically coincides with its interpolating
polynomial with any p nodes.

Proof. (Necessity) Suppose for instance that g lies in K
p
+ and let s ∈ S, s > 0,

be so that g is p-convex on Is = [s,∞). By Lemma 2.3, the map (z
0

, . . . , zp) ∈
Ip+1

s 7→ g[z
0

, . . . , zp] is increasing in each place. Since g ∈ R
p
S

, this map is also
nonpositive on Ip+1

s ; indeed, for s 6 z
0

6 · · · 6 zp 6 a, a ∈ S, and x > 0, we
have

g[z
0

, . . . , zp] 6 g[a,a+ 1, . . . ,a+ p − 1,a+ x],
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where the right side increases to zero as a →
S

∞ by (10). Now, for any
x
0

, . . . , xp > 0 and any a > s+ p, we have

g[a− p, . . . ,a− 1,a+ xp] 6 g[a+ x
0

, . . . ,a+ xp] 6 0,

where the left side increases to zero as a→
S

∞.
(Sufficiency) This immediately follows from Proposition 4.1.

5 Multiple log Γ-type functions

In this section we define and investigate the map, denote it by Σ, that carries
any function g ∈ ∪p>0

(Dp ∩ Kp) into the unique solution f to the equation
∆f = g that arises from the existence Theorem 3.4. We also investigate certain
properties of these solutions, that we call multiple log Γ -type functions.

5.1 The map Σ

We define the asymptotic degree of a function f ∈ K0 to be the integer value

deg f = min{q ∈ N : f ∈ D
q
R
}− 1.

For instance, if f is a polynomial of degree p for some p ∈ N, then deg f = p. If
f(x) = 0 or f(x) = ln(1+ 1/x), then deg f = −1. If f(x) = x+ sin x or f(x) = 2

x,
then deg f = ∞. It is easy to see that the identity deg f = 1 + deg∆f holds
whenever deg f > 0. However, it is no longer true when deg f = −1. Note also
that deg f should not to be confused with the limiting value of x∆f(x)/f(x) as
x→ ∞, which is related to the notion of elasticity of a function.

Now, define the map

Σ :
⋃

p>0

(Dp ∩Kp) → ran(Σ)

by the condition

g ∈ Dp ∩Kp ⇒ Σg(x) = lim

n→∞
fpn[g](x) , (23)

where ran(Σ) denotes the range of Σ.
This map is well defined; indeed, if g ∈ (Dp∩Kp)∩ (Dq∩Kq) for some 0 6

p < q, then by Proposition 3.5 the sequences n 7→ f
p
n[g](x) and n 7→ f

q
n[g](x)

have the same limit. Thus, in view of Proposition 4.4, we can see that condition
(23) holds for p = 1+ degg.

Just as the indefinite integral of a function g is the class of functions whose
derivative is g, the indefinite sum of a function g is the class of functions whose
difference is g (see, e.g., [34, p. 48]). The map Σ now enables one to refine the
latter definition as follows.
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Definition 5.1. The principal indefinite sum of a function g ∈ ∪p>0

(Dp∩Kp)
is the class of functions c+ Σg, where c ∈ R.

We will sometimes add a subscript to specify the variable on which the map
Σ acts. For instance, Σx g(2x) stands for the function obtained by applying Σ
to the function x 7→ g(2x) while Σg(2x) stands for the value of the function Σg
at 2x.

Let us now examine some immediate properties of the map Σ. Theorems 3.1
and 3.4 and Proposition 4.6 show that, for any p ∈ N and any g ∈ Dp ∩ Kp,
the function Σg has the following features:

� it lies in Dp+1 ∩Kp = Rp+1 ∩Kp, and

� it is the unique solution to the equation ∆f = g that lies in Kp and
vanishes at 1.

We also have that degΣg = 1 + degg whenever degg > 0; but this property
no longer holds if degg = −1. Finally, using (11) we immediately see that the
restriction of Σg to N∗ is

Σg(n) =

n−1∑

j=1

g(j) , n ∈ N∗
. (24)

Now, it is clear that the map Σ is one-to-one and it is even a bijection
since we have restricted its codomain to its range. We then have the following
immediate result.

Proposition 5.2. The map Σ is a bijection and its inverse is the restriction
of the difference operator ∆ to ran(Σ).

Remark 5.3. Quite surprisingly, we observe that if g ∈ Dp∩Kp for some p ∈ N,
then Σg need not lie in Kp+1 (and hence the converse of Lemma 2.2(b) does
not hold). For instance, for any c ∈ R, the function f(x) = c+ 2

−x(1+ 1

3

sin x)

lies in K0

− \ K1. Indeed, 2xf ′(x) is 2π-periodic and negative while 2

xf ′′(x) is
2π-periodic and change in sign from x = π

6

to x = π. However, the function
g = ∆f lies in D0 ∩K0

+ for 2

x∆f ′(x) is 2π-periodic and positive.

5.2 Multiple log Γ -type functions

Barnes [11–13] introduced a sequence of functions Γ
1

, Γ
2

, . . ., called multiple
gamma functions, that generalize the Euler gamma function. The restrictions
of these functions to R+ are characterized by the equations

Γp+1

(x + 1) =
Γp+1

(x)

Γp(x)
,

Γ
1

(x) = Γ(x), Γp(1) = 1, x > 0, p ∈ N∗
,

26



together with the convexity condition

(−1)p+1Dp+1

ln Γp(x) > 0, x > 0.

For recent references, see, e.g., Adamchik [1, 2] and Srivastava and Choi [76].
Thus defined, this sequence satisfies the conditions

ln Γp+1

= − Σ ln Γp and deg ln Γp = p.

Also, it can be naturally extended to the case when p = 0 by setting Γ
0

(x) = 1/x.
When g ∈ Dp ∩Kp and degg = p− 1 for some p ∈ N, we say that exp ◦Σg

(resp. Σg) is a Γp-type function (resp. a log Γp-type function). When p > 1,
exp ◦Σg reduces to the function Γp when exp ◦g is precisely the function 1/Γp−1

,
which simply shows that the function Γp restricted to R+ is itself a Γp-type
function. We also let Γp (resp. LogΓp) denote the set of Γp-type functions (resp.
log Γp-type functions). Thus, by definition we have

ran(�) =
⋃

p>0

ran(�|Dp∩Kp) =
⋃

p>0

LogΓp .

Finally, we say that a function f : R+ → R is a multiple Γ-type function (resp.
multiple log Γ-type function) if it lies in ∪p>0

Γp (resp. ∪p>0

LogΓp).
Thus defined, the set of log Γp-type functions can be characterized as follows.

Proposition 5.4. For any function f : R+ → R and any p ∈ N, the following
assertions are equivalent.

(i) f ∈ Log�p .

(ii) f(1) = 0, f ∈ Kp, ∆f ∈ Dp ∩Kp, and deg∆f = p − 1.

(iii) f = Σ∆f, ∆f ∈ Dp ∩Kp, and deg∆f = p − 1.

(iv) f ∈ ran(�) and deg∆f = p − 1.

(v) If p > 1, then f ∈ ran(�) and deg f = p .
If p = 0, then f ∈ ran(�) and deg f ∈ {−1, 0}.

It follows from Proposition 5.4 that a function f : R+ → R lies in ran(Σ) if
and only if there exists p ∈ N such that f(1) = 0, f ∈ Kp, and ∆f ∈ Dp ∩Kp.

We also have the following result, which was proved by Webster [80, Theorem
5.1] in the special case when p = 1.

Proposition 5.5. Let g
1

,g
2

,g ∈ Dp ∩Kp for some p ∈ N, let a > 0, and let
h : R+ → R be defined by the equation h(x) = g(x + a) for x > 0. Then

(a) g
1

+ g
2

∈ Dp ∩Kp and Σ(g
1

+ g
2

) = Σg
1

+ Σg
2

;
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(b) if g
1

− g
2

∈ Dp ∩Kp, then Σ(g
1

− g
2

) = Σg
1

− Σg
2

;

(c) h ∈ Dp ∩Kp and Σh(x) = Σx g(x + a) = Σg(x+ a) − Σg(a+ 1).

Proof. Assertions (a) and (b) are immediate. To see that (c) holds, define a
function j : R+ → R by the equation j(x) = Σg(x + a) − Σg(a + 1) for x > 0.
Then j is a solution to the equation ∆j = h that lies in Kp and satisfies j(1) = 0.
Hence, Σh = j, as required.

Example 5.6 (see [80]). Consider the function g : R+ → R defined by g(x) =
ln

x
x+a

for some a > 0. Then we have g ∈ D0 ∩K0 (and also g ∈ D1 ∩K1) and
Proposition 5.5 shows that

Σg(x) = ln

Γ(x)Γ(a+ 1)

Γ(x + a)
.

Also, since g is concave on R+, we have that Σg is convex on R+. As Webster [80,
p. 615] observed, this is “a not completely trivial result, but one immediate from
the approach adopted here.”

Example 5.7 (A rational function). The function

g(x) =
x4 + 1

x3 + x
= x+

1

x
− 2ℜ

(
1

x+ i

)

clearly lies in D2 ∩K2. Using Proposition 5.5, we then have

Σg(x) = c+
(
x
2

)
+ψ(x) − 2ℜψ(x+ i)

for some c ∈ R, where ψ(x+ i) = Dx ln Γ(x+ i). Indeed, the function

h(x) = ℜ

(
1

x+ i

)
=

x

x2 + 1

lies in D0 ∩ K0 while the function f(x) = ℜψ(x + i) lies in K0 and satisfies
∆f = h.

5.3 Integration of multiple log Γ -type functions

The uniform convergence of the sequence n 7→ f
p
n[g] shows that the function

Σg is continuous whenever so is g. More generally, we also have the following
result.

Proposition 5.8. Let g ∈ C0∩Dp∩Kp for some p ∈ N. Then the following
assertions hold.

(a) Σg ∈ C0 ∩Dp+1 ∩Kp.
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(b) Σg is integrable at 0 if and only if so is g.

(c) Let n ∈ N∗ be so that g is p-convex or p-concave on [n,∞). For any
0 6 a 6 x, the following inequality holds

∣∣∣∣
∫x

a

(fpn[g](t) − Σg(t))dt

∣∣∣∣ 6

∫x

a

⌈t⌉
∣∣∣
(
t−1

p

)∣∣∣dt |∆pg(n)| .

Moreover, the following assertions hold.

(c1) The sequence n 7→
∫x
a
(fpn[g](t) − Σg(t))dt converges to zero.

(c2) The sequence n 7→
∫x
a
(fpn[g](t) + g(t))dt converges to

∫x

a

(Σg(t) + g(t))dt =

∫x

a

Σg(t+ 1)dt.

(c3) For any m ∈ N∗, the sequence n 7→
∫x
a
(fpn[g](t) − fpm[g](t))dt

converges to ∫x

a

(Σg(t) − fpm[g](t))dt.

Proof. Assertion (a) follows from the uniform convergence of the sequence n 7→
f
p
n[g]. Assertion (b) follows from assertion (a) and the identity Σg(x + 1) −

Σg(x) = g(x). Now, using (13) we see that the function Σg− fpn[g] = ρ
p+1

n [Σg]

is integrable at 0 and hence on (a, x). The inequality of assertion (c) then
follows from Theorem 3.4(b); and hence assertion (c1) also holds. Assertion
(c2) follows from assertion (c1) and the identity Σg(x + 1) − Σg(x) = g(x).
Finally, using (18) we see that the function fpm[g] − f

p
n[g] is integrable on (a, x)

and hence assertion (c3) follows from assertion (c1).

6 Asymptotic analysis

In this section we essentially provide for multiple log Γ -type functions analogues
of Stirling’s formula, Stirling’s constant, and Euler’s constant. We also
revisit Gregory’s summation formula and show how it can be derived almost
trivially in this context.

6.1 Generalized Stirling’s formula and related results

The asymptotic behavior of the gamma function for large values of its argument
can be summarized as follows: for any a > 0, we have the following asymptotic
equivalences

Γ(x+ a) ∼ xa Γ(x) as x→ ∞; (25)

Γ(x) ∼
√
2πe−xxx−

1

2 as x→ ∞. (26)
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In this subsection we provide and discuss analogues of these formulas for
the multiple log Γ -type functions. We start with a technical but fundamental
lemma. Recall first that, for any n ∈ N, the nth Gregory coefficient (also called
the nth Bernoulli number of the second kind) is the number Gn defined by the
equation (see, e.g., [17–19,61])

Gn =

∫
1

0

(
t
n

)
dt.

The first few values of Gn are: 1,

1

2

,− 1

12

,

1

24

,− 19

720

, . . .. These numbers are
decreasing in absolute value and satisfy the equations

∞∑

n=1

|Gn| = 1 and Gn = (−1)n−1|Gn| for n > 1. (27)

To simplify the notation, for any n ∈ N we set

Gn = 1−

n∑

j=1

|Gj|.

By (27) we have Gn > 0 for all n ∈ N. Also, from the straightforward identity

(−1)n
(
t−1

n

)
= 1−

n∑

j=1

(−1)j−1

(
t
j

)
,

we easily derive
∫
1

0

∣∣(t−1

n

)∣∣ dt = (−1)n
∫
1

0

(
t−1

n

)
dt =

∣∣∣∣
∫
1

0

(
t−1

n

)
dt

∣∣∣∣ = Gn . (28)

Lemma 6.1. Let g ∈ Dp ∩ Kp for some p ∈ N (hence g ∈ Kp−1 if p > 1)
and let a > 0.

(a) Let x > 0 be so that g is p-convex or p-concave on [x,∞). Then

|ρp+1

x [Σg](a)| 6 ⌈a⌉
∣∣∣
(
a−1

p

)∣∣∣ |∆pg(x)| , (29)

and if g ∈ C0,
∣∣∣∣
∫
1

0

ρp+1

x [Σg](t)dt

∣∣∣∣ 6 Gp |∆
pg(x)|. (30)

(b) Suppose that p > 1 and let x > 0 be so that g is (p − 1)-convex or
(p − 1)-concave on [x,∞). Then

|ρpx [g](a)| 6 ⌈a⌉
∣∣∣
(
a−1

p−1

)∣∣∣ |∆pg(x)| , (31)

and if g ∈ C0,
∣∣∣∣
∫
1

0

ρpx [g](t)dt

∣∣∣∣ 6 Gp−1

|∆pg(x)|. (32)
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Proof. Assuming for instance that g is eventually p-convex, the function ∆pg
increases to zero on [x,∞) by Lemma 2.3. Using Lemma 2.4, we then obtain

|ρp+1

x [Σg](a)| 6

∣∣∣
(
a−1

p

)∣∣∣
⌈a⌉−1∑

j=0

|∆pg(x + j)|

from which we immediately derive (29). Now, observing that the function
t 7→ ρp+1

x [Σg](t) does not change in sign on (0, 1) by Lemma 2.4, and then
integrating both sides of (29) on a ∈ (0, 1), we obtain

∣∣∣∣
∫
1

0

ρp+1

x [Σg](t)dt

∣∣∣∣ =

∫
1

0

|ρp+1

x [Σg](t)|dt 6

∫
1

0

∣∣∣
(
t−1

p

)∣∣∣ dt |∆pg(x)|,

which, using (28), gives (30). We prove (31) and (32) similarly.

A first asymptotic result. If g ∈ Dp ∩Kp for some p ∈ N, then for any a ∈ N
the ath degree Newton expansion of Σg(x+ a) is given by

Σg(x + a) =

a∑

j=0

(
a
j

)
∆jΣg(x) ,

or equivalently,

Σg(x+ a) − Σg(x) −
∑

j>1

(
a
j

)
∆j−1g(x) = 0.

If the index variable j in the latter sum is bounded above by p, then clearly
the resulting left-hand expression need no longer be zero but it approaches zero
as x → ∞ (because g ∈ D

p
R
). The following theorem shows that this latter

property still holds when a is any nonnegative real number, thus providing the
asymptotic behavior of the difference Σg(x + a) − Σg(x) for large values of x.
We omit the proof of this theorem for it follows immediately from (29) and
(31). We also observe that the first convergence result (33) was established by
Webster [80, Theorem 6.1] in the case when p = 1. The second one (34) simply
expresses the fact that g lies in R

p
R

by Proposition 4.5.

Theorem 6.2. Let g ∈ Dp ∩ Kp for some p ∈ N and let a > 0. Let also
x > 0 be so that g is p-convex or p-concave on [x,∞). Then

∣∣∣∣∣∣
Σg(x + a) − Σg(x) −

p∑

j=1

(
a
j

)
∆j−1g(x)

∣∣∣∣∣∣
6 ⌈a⌉

∣∣∣
(
a−1

p

)∣∣∣ |∆pg(x)| ,

with equality if a ∈ {1, 2, . . . ,p}. In particular,

Σg(x + a) − Σg(x) −

p∑

j=1

(
a
j

)
∆j−1g(x) → 0 as x→ ∞ . (33)
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If p > 1 and if x > 0 is so that g is (p − 1)-convex or (p − 1)-concave on
[x,∞), then

∣∣∣∣∣∣
g(x + a) −

p−1∑

j=0

(
a
j

)
∆jg(x)

∣∣∣∣∣∣
6 ⌈a⌉

∣∣∣
(
a−1

p−1

)∣∣∣ |∆pg(x)| ,

with equality if a ∈ {1, 2, . . . ,p − 1}. In particular,

g(x+ a) −

p−1∑

j=0

(
a
j

)
∆jg(x) → 0 as x→ ∞ . (34)

Example 6.3. Let us apply Theorem 6.2 to the function g(x) = ln x. For this
function we have p = 1 + degg = 1 and Σg(x) = ln Γ(x). Thus, for any x > 0

and any a > 0 we obtain

(
1+

1

x

)−⌈a⌉|a−1|

6
Γ(x + a)

Γ(x) xa
6

(
1+

1

x

)⌈a⌉|a−1|

, (35)

with equalities if a = 1. Thus, we retrieve the asymptotic equivalence (25).
Interestingly, Wendel [81] provided the following tighter inequalities

(
1+

a

x

)a−1

6
Γ(x+ a)

Γ(x) xa
6 1 if 0 6 a 6 1.

Considering higher values of p may provide inequalities that are tighter than
(35). For instance, taking p = 2, we obtain

(
1+

1

x

)(a
2

)−2⌈a⌉|(a−1

2

)|(
1+

2

x

)⌈a⌉|(a−1

2

)|
6

Γ(x+ a)

Γ(x) xa

6

(
1+

1

x

)(a
2

)+2⌈a⌉|(a−1

2

)|(
1+

2

x

)−⌈a⌉|(a−1

2

)|
.

Thus, we can see that the central function in the inequalities above can always
be “sandwiched” by finite products of powers of rational functions. Similar
inequalities for this function can be found, e.g., in [76, pp. 106–107].

The asymptotic constant and Binet-like function. With any function g lying
in ∪p>0

(C0 ∩Dp ∩Kp) we associate the number

σ[g] =

∫
1

0

Σg(t + 1)dt =

∫
1

0

(Σg(t) + g(t))dt . (36)

We then observe that the following identity holds for any x > 0,
∫x+1

x

Σg(t)dt = σ[g] +

∫x

1

g(t)dt. (37)
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Indeed, both sides have the same derivative and the same value at x = 1.
It would be convenient to name the constant σ[g] for we will make an in-

tensive use of it throughout the rest of this paper. In view of Theorem 6.5
below, we will call it the asymptotic constant associated with the function g,
although a more appropriate name for this constant could also be proposed and
used in subsequent papers.

Just as in Lemma 6.1, we have assumed the continuity of function g to ensure
that the integrals in (36) and (37) be defined. Of course, this assumption could
have been relaxed into weaker properties such as local integrability of both g and
Σg. However, for the sake of simplicity we will henceforth assume the continuity
of any function whenever we need to integrate it on a compact interval; see also
Remark 11.1.

We also have the following proposition, which follows immediately from
Proposition 5.5 and identity (37).

Proposition 6.4. Let g ∈ ∪p>0

(C0 ∩Dp∩Kp), let a > 0, and let h : R+ → R

be defined by the equation h(x) = g(x + a) for x > 0. Then

σ[h] = σ[g] +

∫
1+a

1

g(t)dt − Σg(a+ 1).

Now, for any q ∈ N and any g ∈ C0, we define the function Jq[g] : R+ → R

by the equations

Jq[g](x) = −

∫
1

0

ρqx [g](t)dt =

q−1∑

j=0

Gj∆
jg(x) −

∫x+1

x

g(t)dt . (38)

When g(x) = ln Γ(x) and q = 2, this function reduces to Binet’s function J(x)
related to ln Γ(x) (see, e.g., [28, p. 224]). That is,

J2[ln Γ ](x) = J(x) = ln Γ(x) −
1

2

ln(2π) + x−

(
x−

1

2

)
ln x.

We will say that the function Jq[g] is the Binet-like function associated with
the function g and the parameter q. As we will see in the rest of this paper,
many subsequent definitions and results will be expressed in terms of the Binet-
like function.

Using (37), we can also see that for any q ∈ N and any g ∈ ∪p>0

(C0 ∩Dp ∩
Kp) we have

Jq+1[Σg](x) = Σg(x) −

∫x

1

g(t)dt+

q∑

j=1

Gj∆
j−1g(x) − σ[g] . (39)

In particular, we have

σ[g] = − J1[Σg](1) and ∆Jq+1[Σg] = Jq+1[g].
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Generalized Stirling’s formula. The following important theorem enables one
to investigate, for any function g lying in ∪p>0

(C0 ∩Dp ∩Kp), the asymptotic
behavior of the function Σg for large values of its argument. In particular, the
convergence result (40) gives for Σg an analogue of Stirling’s formula. We call it
the generalized Stirling formula. Combining (33) with (40) then immediately
provides the asymptotic behavior of Σg(x + a) for any a > 0. We also observe
that alternative formulations of (40) in the case when p = 1 were established
by Krull [46, p. 368] and later by Webster [80, Theorem 6.3].

Theorem 6.5 (Generalized Stirling’s formula). Let g ∈ C0∩Dp∩Kp for some
p ∈ N and let x > 0 be so that g is p-convex or p-concave on [x,∞). Then

∣∣Jp+1[Σg](x)
∣∣ 6 Gp |∆

pg(x)|.

In particular, the function Jp+1[Σg] lies in D0

R
, that is,

Σg(x) −

∫x

1

g(t)dt+

p∑

j=1

Gj∆
j−1g(x) → σ[g] as x→ ∞ . (40)

If p > 1 and if x > 0 is so that g is (p − 1)-convex or (p − 1)-concave on
[x,∞), then

|Jp[g](x)| 6 Gp−1

|∆pg(x)|.

In particular, the function Jp[g] lies in D0

R
, that is,

−

∫x+1

x

g(t)dt+

p−1∑

j=0

Gj∆
jg(x) → 0 as x→ ∞ . (41)

Proof. The first inequality is obtained from (30), (37), and (39). The first
convergence result (40) immediately follows. The second inequality and its
associated convergence result (41) is obtained similarly using (32) and (38).

Remark 6.6. We can readily see that (34) can be obtained by applying the
operator ∆x to (33). More generally, the first part of Theorem 6.2 can be
obtained by replacing g by Σg and p by p + 1 in the second part. The same
observation applies to Theorem 6.5 (cf. the identity ∆Jp+1[Σg] = Jp+1[g]).

Example 6.7. Applying Theorem 6.5 to the function g(x) = lnx with p = 1,
we immediately obtain the following inequalities for any x > 0

(
1+

1

x

)− 1

2

6
Γ(x)√

2πe−x xx−
1

2

6

(
1+

1

x

) 1

2

;

(
1+

1

x

)x
6 e 6

(
1+

1

x

)x+2

.
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Thus, we retrieve the well-known asymptotic equivalences (including (26))

Γ(x) ∼
√
2π e−x xx−

1

2 as x→ ∞ ;

x! = Γ(x+ 1) ∼
√
2πx e−x xx as x→ ∞ ;

(
1+ 1

x

)x
∼ e as x→ ∞ .

Just as in Example 6.3, tighter inequalities can be obtained by considering
higher values of p. For instance, for p = 2, we obtain

(
1+

1

x

)− 3

4

(
1+

2

x

) 5

12

6
Γ(x)√

2πe−x xx−
1

2

6

(
1+

1

x

) 11

12

(
1+

2

x

)− 5

12

.

For p = 3, we obtain

(
1+

1

x

)− 23

24

(
1+

2

x

) 13

12

(
1+

3

x

)− 3

8

6
Γ(x)√

2πe−x xx−
1

2

6

(
1+

1

x

) 31

24

(
1+

2

x

)− 7

6

(
1+

3

x

) 3

8

.

Thus, we see that the central function in these inequalities can always be brack-
eted by finite products of radical functions.

Example 6.7 illustrates the possibility of obtaining closer bounds for the
Binet-like function Jp+1[Σg](x) by considering any value of p that is higher than
1 + degg. Actually, it is not difficult to see that this feature applies to every
continuous multiple log Γ -type function. We discuss this issue in Appendix C
and show that the inequalities actually get tighter and tighter as p increases.

Improvements of Stirling’s formula. The following estimate of the gamma
function is due to Gosper [33]

Γ(x) ∼
√
2πe−x xx−

1

2

(
1+

1

6x

) 1

2

as x→ ∞,

and is more accurate than Stirling’s formula. On the basis of this alternative
approximation, Mortici [64] provided the following narrow inequalities

(
1+

α

2x

) 1

2

<
Γ(x)√

2πe−x xx−
1

2

<

(
1+

β

2x

) 1

2

, for x > 2,

where α = 1

3

≈ 0.333 and β = (391/30)1/3 − 2 ≈ 0.353. We actually observe
that the quest for finer and finer bounds and approximations for the gamma
function has gained an increasing interest during this last decade (see [23,25,26,
31, 56, 63–66, 82, 83] and the references therein). We believe that some of these
investigations could be generalized to various Γp-type functions. New results
along this line would be most welcome.
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Series expressions for Σg and σ[g]. The following result provides series ex-
pressions for Σg(x) and σ[g] in terms of Gregory’s coefficients (see also Propo-
sition C.2 in Appendix C).

Proposition 6.8. Let g ∈ C0 ∩ Dp ∩ K∞ for some p ∈ N. Let x > 0 be so
that for every integer q > p the function g is q-convex or q-concave on
[x,∞). Suppose also that the sequence q 7→ ∆qg(x) is bounded. Then the
sequence n 7→ Gn∆

n−1g(x) is summable and we have J∞[Σg](x) = 0, i.e.,

Σg(x) = σ[g] +

∫x

1

g(t)dt−

∞∑

n=1

Gn∆
n−1g(x).

In particular, if the assumptions above are satisfied for x = 1, then we have

σ[g] =

∞∑

n=1

Gn∆
n−1g(1). (42)

Proof. Since the sequence n 7→ Gn converges to zero, by (30) so does the
sequence

q 7→
∫
1

0

ρq+1

x [Σg](t)dt.

We then obtain the result using (37).

Example 6.9. Applying Proposition 6.8 to the function g(x) = ln(x), we obtain
the following infinite product representation of the gamma function

Γ(x) =
√
2πe−x xx−

1

2

∞∏

n=2

e−Gn∆
n−1

ln(x)
,

that is,

Γ(x) =
√
2πe−x xx−

1

2

(
x+ 1

x

) 1

12

(
(x+ 2)x

(x+ 1)2

)− 1

24

×
(
(x + 3)(x+ 1)3

(x+ 2)3x

) 19

720

. . . .

A similar representation of the gamma function can be found in Feng and
Wang [31].

Fontana-Mascheroni’s series. When g(x) = 1

x
and p = 0, identity (42) re-

duces to the well-known formula

γ =

∞∑

n=1

|Gn|

n
,
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and the latter series is called Fontana-Mascheroni’s series (see, e.g., [17]).
Thus, the series representation of the asymptotic constant σ[g] given in (42)
provides the analogue of Fontana-Mascheroni’s series for any function g satis-
fying the assumptions of Proposition 6.8.

The following proposition provides a way to construct a function g(x) that
has a prescribed asymptotic constant σ[g] given in the form (42).

Proposition 6.10. Let S =
∑∞
n=1

Gnsn for some sequence n 7→ sn and let
g : R+ → R be such that

g(n) =

n∑

k=1

(
n−1

k−1

)
sk , n ∈ N∗

.

If g satisfies the assumptions of Proposition 6.8, then the following asser-
tions hold.

(a) S = σ[g].

(b) Σg(n) =
∑n−1

k=1

(
n−1

k

)
sk for any n ∈ N∗.

(c) sn = ∆n−1g(1) = ∆nΣg(1) for any n ∈ N∗.

Proof. Using the classical inversion formula [34, p. 192], we obtain

sn+1

=

n∑

k=0

(−1)n−k
(
n
k

)
g(k + 1) = ∆ng(1).

This establishes assertion (c) and then assertion (a) by Proposition 6.8. Asser-
tion (b) is straightforward using (24).

Example 6.11. Let us apply Proposition 6.10 to the series

S =

∞∑

n=1

|Gn|

n2

.

Let g : R+ → R be a function such that

g(n) =

n∑

k=1

(−1)k−1

(
n−1

k−1

)
1

k2
=

1

n
Hn , n ∈ N∗

.

We naturally take g(x) = 1

x
Hx , from which we derive

Σg(x) =
π2

12

−
1

2

ψ
1

(x) +
1

2

H2

x−1

.

Thus, we have S = σ[g]. Combining this with the definition of σ[g], we derive
the surprising identity

∫
1

0

H2

t dt = 1−
π2

6

+ 2

∞∑

n=1

|Gn|

n2

,
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which is worth comparing with

∫
1

0

Ht dt = γ =

∞∑

n=1

|Gn|

n
.

To give another example, consider the series

S =

∞∑

n=1

|Gn|

n + a
,

where a > 0. Proposition 6.10 shows that we can take

g(x) = B(x,a+ 1) and Σg(x) =
1

a
− B(x,a),

where (x,y) 7→ B(x,y) is the beta function. We then derive the identity

∞∑

n=1

|Gn|

n + a
=

1

a
−

∫
1

0

B(x + 1,a)dx.

Using the definition of the beta function as an integral, this identity also reads

∞∑

n=1

|Gn|

n+ a
=

1

a
+

∫
1

0

xa

ln(1− x)
dx.

Setting a = 1

2

for instance, we obtain

∞∑

n=1

|Gn|

2n+ 1

= 1+
1

2

∫
1

0

√
x

ln(1− x)
dx

and the decimal expansion of the latter integral is Sloane’s A094691 [75].

Asymptotic behaviors and trends. The following corollary, which immediately
follows from (37) and (40), particularizes the generalized Stirling formula when
the function g lies in C0 ∩D0 ∩K0.

Corollary 6.12. Let g ∈ C0 ∩D0 ∩K0. Then

Σg(x) −

∫x+1

x

Σg(t)dt → 0 as x→ ∞ .

Equivalently,

Σg(x) −

∫x

1

g(t)dt → σ[g] as x→ ∞ .
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It is clear that the integral (37) planes and cancels out the cyclic variations
of any 1-periodic additive component of Σg in the sense that the function

x 7→
∫x+1

x

ω(t)dt

is constant for any 1-periodic functionω : R+ → R. In fact, the integral (37) can
be interpreted as the trend of the function Σg, just as a moving average enables
one to decompose a time series into its trend and its seasonal variation. Thus,
Corollary 6.12 shows that Σg(x) coincides asymptotically with its trend (as we
could expect from a function lying in C0∩D1∩K0) and behaves asymptotically
like the antiderivative of g.

The centered version of integral (37), namely

∫x+ 1

2

x− 1

2

Σg(t)dt = σ[g] +

∫x− 1

2

1

g(t)dt, x > 1

2

,

naturally provides a more accurate trend of Σg. The following corollary shows
that Σg(x) coincides asymptotically with this latter trend whenever g lies in
C0 ∩D0 ∩K0 or in C0 ∩ D1 ∩K1. It is not difficult to see that in general this
result no longer holds when g lies in C0∩D2 ∩K2. The logarithm of the Barnes
G-function (see Subsection 9.5) could serve as an example here.

Corollary 6.13. Let p ∈ {0, 1}, let g ∈ C0 ∩ Dp ∩ Kp, and let x > 0 be so
that g is p-convex or p-concave on [x,∞). Then

∣∣∣∣Σg
(
x+

1

2

)
−

∫x+1

x

Σg(t)dt

∣∣∣∣ 6
∣∣Jp+1[Σg](x)

∣∣ 6 Gp |∆
pg(x)|.

In particular,

Σg(x) −

∫x+ 1

2

x− 1

2

Σg(t)dt → 0 as x→ ∞ ,

or equivalently,

Σg(x) −

∫x− 1

2

1

g(t)dt → σ[g] as x→ ∞ .

Proof. Using Theorem 6.5, we see that it is enough to prove the first inequality.
Let

h(x) = Σg

(
x+

1

2

)
−

∫x+1

x

Σg(t)dt.

Consider first the case when p = 0 and suppose for instance that g lies in K0

+;
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hence Σg is decreasing on [x,∞). Then it is geometrically clear that

|h(x)| 6






∫x+ 1

2

x

Σg(t)dt−
1

2

Σg

(
x+

1

2

)
, if h(x) 6 0,

1

2

Σg

(
x+

1

2

)
−

∫x+1

x+ 1

2

Σg(t)dt, if h(x) > 0,

and that both quantities are less than or equal to J1[Σg](x).
Now, suppose that p = 1 and for instance that g lies in K1

+; hence Σg
is concave on [x,∞). Using the Hermite-Hadamard inequality and then the
trapezoidal rule on the intervals [x, x + 1

2

] and [x + 1

2

, x + 1], we obtain the
following chain of inequalities:

0 6 h(x) 6

∫x+1

x

Σg(t)dt −
1

2

Σg(x + 1) −
1

2

Σg(x)

and the latter quantity is exactly −J2[Σg](x).

Applying Corollary 6.13 to the function g(x) = ln x, we obtain Burnside’s
formula [24] (see also [63])

Γ(x) ∼
√
2π

(
x− 1

2

e

)x− 1

2

as x→ ∞ . (43)

Thus, Corollary 6.13 gives an analogue of Burnside’s formula for any continuous
Γp-type function when p ∈ {0, 1}. It also shows that this formula provides a
better approximation than the generalized Stirling formula for all functions g
lying in C0 ∩Dp ∩Kp with p ∈ {0, 1}.

6.2 Generalized Stirling’s constant

The number
√
2π arising in Example 6.7 is called Stirling’s constant (see, e.g.,

[32]). For certain multiple Γ -type functions, analogues of Stirling’s constant can
be easily defined as follows.

Definition 6.14 (Generalized Stirling’s constant). For any function g lying in
∪p>0

(C0 ∩Dp ∩Kp) and integrable at 0, we define the number

σ[g] = σ[g] −

∫
1

0

g(t)dt =

∫
1

0

Σg(t)dt.

We say that the number exp(σ[g]) is the generalized Stirling constant associ-
ated with g.
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Note that, contrary to the generalized Stirling constant, the asymptotic
constant σ[g] exists for any function g lying in ∪p>0

(C0 ∩Dp ∩Kp), even if it
is not integrable at 0. This shows that the asymptotic constant is the “good”
constant to consider in this new theory. When g is integrable at 0, then (40)
can take the form

Σg(x) −

∫x

0

g(t)dt+

p∑

j=1

Gj∆
j−1g(x) → σ[g] as x→ ∞ .

6.3 The Gregory summation formula revisited

Let g ∈ C0, q ∈ N, and let 1 6 m 6 n be integers. Integrating both sides of
(18) on x ∈ (0, 1), we obtain

∫n

m

g(t)dt =

n−1∑

k=m

g(k) +

q∑

j=1

Gj(∆
j−1g(n) − ∆j−1g(m)) + Rq,m,n , (44)

where

Rq,m,n =

∫
1

0

n−1∑

k=m

ρq+1

k [g](t)dt =

∫
1

0

(fqm[g](t) − fqn[g](t))dt.

Identity (44) is nothing other than Gregory’s summation formula (see,
e.g., [14, 43, 62]) with an integral form of the remainder. Note that, just like
identity (8), equation (44) is a pure identity and therefore holds without any
restriction on the form of g(x). Actually, this identity can be simply written in
terms of the Binet-like function as

n−1∑

k=m

Jq+1[g](k) = − Rq,m,n ,

or equivalently, if g ∈ ∪p>0

(C0 ∩Dp ∩Kp),

Jq+1[Σg](n) − Jq+1[Σg](m) = − Rq,m,n .

Remark 6.15. We observe that Jordan [43, p. 285] established that

“ Rq,m,n = Gq+1

(n −m)∆q+1g(ξ) ”

for some ξ ∈ (m,n). However, taking for instance g(x) = x2 and (q,m,n) =

(0, 1, 2) shows that this form of the remainder is not correct. However, we
conjecture that Jordan’s formula can be corrected by assuming that ξ ∈ (m −

1,n− 1).
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The following lemma, which is an immediate consequence of Lemma 2.4,
provides an upper bound for |Rp,m,n| when g is p-convex or p-concave on [m,∞).
We then see that, under this latter assumption, Gregory’s formula (44) provides
a quadrature formula for the numerical computation of the integral of g over
the interval (m,n).

Lemma 6.16. Let g ∈ C0 ∩Kp for some p ∈ N and let m ∈ N∗ be so that
g is p-convex or p-concave on [m,∞). Then, for any integer n > m, we
have

|Rp,m,n| =

∣∣∣∣∣

n−1∑

k=m

∫
1

0

ρp+1

k [g](t)dt

∣∣∣∣∣ 6 Gp |∆
pg(n) − ∆pg(m)|. (45)

Example 6.17. Let us compute the integral

I =

∫
2π

π

ln x dx = 4.809854526737 . . .

numerically using Gregory’s summation formula (44). Using an appropriate
linear change of variable, we obtain I =

∫n
1

g(t)dt, where

g(t) = π
n−1

ln

(
π
n−1

(t − 1) + π
)
.

Taking n = 20 and q = 10 for instance, we obtain

I ≈
19∑

k=1

g(k) +

10∑

j=1

Gj(∆
j−1g(20) − ∆j−1g(1)) = 4.809854526746 . . .

and (45) gives |R
10,1,20

| 6 5.9× 10

−11.

In the following result, we give sufficient conditions on function g for the
sequence q 7→ Rq,m,n to converge to zero. Gregory’s formula (44) then takes a
special form.

Proposition 6.18. Let g ∈ C0, p ∈ N, and let 1 6 m 6 n be integers.
Suppose that, for every integer q > p, the function g is q-convex or q-
concave on [m,∞). Suppose also that the sequence q 7→ ∆qg(n) − ∆qg(m)

is bounded. Then we have
∫n

m

g(t)dt =

n−1∑

k=m

g(k) +

∞∑

j=1

Gj(∆
j−1g(n) − ∆j−1g(m)) ,

or equivalently,
n−1∑

k=m

J∞[g](k) = 0.

If g ∈ ∪p>0

(C0 ∩ Dp ∩ Kp), then this latter condition simply means that
J∞[Σg](n) = J∞[Σg](m).

42



Proof. The sequence q 7→ Rq,m,n converges to zero by (45). The result then
immediately follows from Gregory’s formula (44).

Example 6.19. Taking g(x) = ln x and m = p = 1 in Proposition 6.18, we
obtain the following identity for any n ∈ N∗

lnn! = 1−n+

(
n +

1

2

)
lnn+

1

12

ln

(
n + 1

2n

)
−

1

24

ln

(
4n(n+ 2)

3(n+ 1)2

)
+ · · ·

Gregory’s formula (44) is sometimes presented in a more general form in the
literature. We provide this general form in the following proposition using our
integral expression for the remainder. Lemma 6.16 then can be easily adapted
to this general form.

Proposition 6.20 (General form of Gregory’s formula). Let a ∈ R, n,q ∈ N,
h > 0, and f ∈ C0([a,∞)). Then

1

h

∫a+nh

a

f(t)dt =

n−1∑

k=0

f(a+ kh)

+

q∑

j=1

Gj

(
(∆j−1

[h]
f)(a + nh) − (∆j−1

[h]
f)(a)

)
+ Rhq,a,n ,

where

Rhq,a,n =

∫
1

0

n∑

k=1

ρ
p+1

k [g](t)dt and g(x) = f(a+ (x− 1)h).

Here, ∆[h] denotes the forward difference operator with step h > 0.

Proof. This formula can be obtained immediately from (44) replacing n by
n+ 1 and then setting m = 1 and g(x) = f(a+ (x− 1)h).

Gregory’s formula is often compared with the corresponding Euler-Maclau-
rin summation formula. We now recall the latter in its general form (see,
e.g., [76, p. 220]) as we will use it a few times in this paper. We also note
that Euler-Maclaurin’s formula is more advantageous than Gregory’s formula if
we deal with functions whose derivatives are less complicated than their differ-
ences. However, there are functions for which Euler-Maclaurin’s formula leads
to divergent series while the corresponding Gregory’s formula-based series (see
Proposition 6.18) are convergent. For instance, this may be due to the fact that
Dn 1

x
increases indefinitely with n while ∆n 1

x
tends to zero if n increases. (Here,

we paraphrase from Jordan [43, p. 285].)
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Proposition 6.21 (Euler-Maclaurin formula). Let N ∈ N∗, f ∈ C1([a,b]), and
h = (b − a)/N, for some real numbers a < b. Then we have

h

N∑

k=0

f(a+ kh) =

∫b

a

f(x)dx+
h

2

(f(a) + f(b))

+ h2
∫N

0

B
1

(s− ⌊s⌋)Df(a+ sh)ds .

If, in addition, f ∈ C2q([a,b]) for some q ∈ N∗, then

h

N∑

k=0

f(a + kh) =

∫b

a

f(x)dx+
h

2

(f(a) + f(b))

+

q∑

j=1

h2j
B
2j

(2j)!

(
D2j−1f(b) −D2j−1f(a)

)
+ R ,

where

R = − h2q+1

∫N

0

B
2q(s− ⌊s⌋)
(2q)!

D2qf(a+ sh)ds

and

|R| 6 h2q
|B

2q|

(2q)!

∫b

a

|D2qf(x)|dx.

Here f ∈ Ck([a,b]) means that f ∈ Ck(I) for some open interval I containing
[a,b].

6.4 Generalized Euler’s constant

Suppose that g ∈ C0 ∩Dp ∩Kp for some p ∈ N. Let also m ∈ N∗ be so that g
is p-convex or p-concave on [m,∞). By Lemma 6.16 the sequence n 7→ Rp,m,n

converges and we have (see also Proposition 5.8)

Rp,m,∞ = lim

n→∞

∫
1

0

(fpm[g](t) − fpn[g](t))dt =

∞∑

k=m

∫
1

0

ρ
p+1

k [g](t)dt

=

∫
1

0

∞∑

k=m

ρ
p+1

k [g](t)dt =

∫
1

0

(fpm[g](t) − Σg(t))dt

= −

∫
1

0

ρp+1

m [Σg](t)dt = Jp+1[Σg](m),

where the fifth equality follows from (13). Also, (45) reduces to

|Rp,m,∞| = |Jp+1[Σg](m)| 6 Gp |∆
pg(m)| , (46)

which is also an immediate consequence of Theorem 6.5.

44



Let us now provide a geometric interpretation of the remainder Rp,m,∞.
Suppose for instance that g is p-concave on [m,∞) and that p is even; the
other cases are similar. Then by (9) and Lemma 2.4, for any integer k ∈ [m,∞)

and any t ∈ (0, 1), we have

0 > ρ
p+1

k [g](t) = g(k + t) − Pp[g](k, k + 1, . . . , k+ p; k + t),

which means that, on the interval [k, k + 1], the graph of g lies under (or on)
that of its interpolating polynomial with nodes at k, k+ 1, . . . , k+ p. Also, the
(signed) surface area between both graphs is

−

∫
1

0

ρp+1

k [g](t)dt = Jp+1[g](k) .

Summing this area for k = m, . . . ,n − 1 and letting n →N ∞, we obtain the
cumulated (signed) surface area

−

∞∑

k=m

∫
1

0

ρ
p+1

k [g](t)dt =

∞∑

k=m

Jp+1[g](k) = − Rp,m,∞. (47)

This interpretation is particularly visual when p = 0 or p = 1. For instance,
when p = 1, the graph of g on [m,∞) lies either over or under the polygonal line
through the points (k,g(k)) for all integers k >m. The value −Rp,m,∞ is then
the signed area between the graph of g and this polygonal line and corresponds
to the remainder in the trapezoidal rule on [m,∞).

In view of this interpretation, we now propose the following definition.

Definition 6.22 (Generalized Euler’s constant). The generalized Euler con-
stant associated with a function g ∈ ∪p>0

(C0 ∩Dp ∩Kp) is the number

γ[g] = − Rp,1,∞ =

∞∑

k=1

Jp+1[g](k) = − Jp+1[Σg](1) ,

where p = 1+ degg.

For instance, if g ∈ C0 ∩D0 ∩K0, we have

γ[g] = lim

n→∞

(
n−1∑

k=1

g(k) −

∫n

1

g(t)dt

)
(48)

=

∞∑

k=1

(
g(k) −

∫k+1

k

g(t)dt

)
,

which represents the remainder in the rectangle method on [1,∞).
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Similarly, if g ∈ C0 ∩D1 ∩K1 and degg = 0, we get

γ[g] = lim

n→∞

(
n−1∑

k=1

g(k) −

∫n

1

g(t)dt +
1

2

g(n) −
1

2

g(1)

)

=

∞∑

k=1

(
g(k) −

∫k+1

k

g(t)dt +
1

2

∆g(k)

)
,

which represents the remainder in the trapezoidal rule on [1,∞). If g ∈ C1,
then this latter expression also reduces to (use integration by parts)

γ[g] =

∞∑

k=1

∫k+1

k

(
t− k−

1

2

)
g ′(t)dt =

∫∞

1

(
{t}−

1

2

)
g ′(t)dt , (49)

where {t} = t− ⌊t⌋.
Thus defined, the number γ[g] generalizes to any function lying in ∪p>0

(C0∩
Dp ∩Kp) not only the classical Euler constant γ but also the generalized Euler
constant γ[g] associated with a positive and strictly decreasing function g (see,
e.g., [7, 32]), as defined in (48). Moreover, as we will see in Subsection 8.2, this
number plays a central role in the Weierstrassian form of Σg (which also justifies
the choice m = 1 in the definition of γ[g]).

If g is p-convex or p-concave on [1,∞), then by (46) we also have the in-
equality

|γ[g]| 6 Gp |∆
pg(1)|. (50)

A conversion formula between γ[g] and σ[g]. The following proposition,
which immediately follows from the identity γ[g] = −Jp+1[Σg](1), shows how
the numbers γ[g] and σ[g] are related and provides an alternative way to com-
pute the value of γ[g].

Proposition 6.23. For any function g lying in ∪p>0

(C0∩Dp∩Kp), we have

σ[g] = γ[g] +

p∑

j=1

Gj∆
j−1g(1),

where p = 1+ degg.

An analogue of Liu’s formula for Γ-type functions. Using (49) together with
Proposition 6.21 with a = h = 1 and b = N = n (first-order version of the
Euler-Maclaurin formula), we obtain the following statement. For any n ∈ N∗

and any g ∈ C1 ∩D1 ∩K1, with degg = 0, we have

n∑

k=1

g(k) = γ[g] +

∫n

1

g(t)dt +
1

2

(g(1) + g(n))

+

∫∞

n

(
1

2

− {t}

)
g ′(t)dt,
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that is, using Proposition 6.23,

n∑

k=1

g(k) = σ[g] +

∫n

1

g(t)dt+
1

2

g(n) +

∫∞

n

(
1

2

− {t}

)
g ′(t)dt, (51)

or equivalently,

J2[Σg](n) =

∫∞

n

(
1

2

− {t}

)
g ′(t)dt,

where {t} = t − ⌊t⌋. Applying this result to g(n) = lnn, we obtain Liu’s exact
formula [55] (see also [63])

n! =
√
2πn

(n
e

)n
exp

(∫∞

n

1

2

− {t}

t
dt

)
, n ∈ N∗

.

A generalization of (51) to any function g lying in ∪p>0

(C0 ∩Dp ∩Kp) would
be welcome.

An integral form of γ[g]. The following proposition shows that the integral
representation of the Euler constant

γ =

∫∞

1

(
1

⌊t⌋ −
1

t

)
dt

can be generalized to the constant γ[g] for any function g lying in ∪p>0

(C0 ∩
Dp ∩Kp). This result is a straightforward consequence of (47).

Proposition 6.24. For any g ∈ C0 ∩Dp ∩Kp, where p = 1+ degg, we have

γ[g] =

∫∞

1

( p∑

j=0

Gj∆
jg(⌊t⌋) − g(t)

)
dt.

In particular, when degg = −1, we have γ[g] =
∫∞
1

(g(⌊t⌋) − g(t))dt.

6.5 Further asymptotic results

We end this section by establishing two additional asymptotic results. The
first one concerns only the case when the sequence n 7→ g(n) is summable.
The second one is much more general and concerns all the continuous multiple
log Γ -type functions. We also discuss the search for simple conditions on function
g : R+ → R to ensure the existence of Σg.

The case when g(n) is summable. In the special case when g ∈ D̃−1

N
∩K0, the

generalized Stirling formula and the constants γ[g] and σ[g] take very special
forms. We present them in the following proposition, which immediately follows
from Theorem 3.7, Eq. (48), and Proposition 6.23.
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Proposition 6.25. If g ∈ D̃−1

N
∩K0, then we have

Σg(x) →
∞∑

k=1

g(k) as x→ ∞.

If, in addition we have g ∈ C0, then g is integrable at infinity and

σ[g] = γ[g] =

∞∑

k=1

g(k) −

∫∞

1

g(t)dt.

A general asymptotic result. The following general result gives a sufficient
condition on a function g lying in ∪p>0

(C0∩Dp∩Kp) for Σg to be asymptotically
equivalent to its (possibly shifted) trend.

Proposition 6.26. Let g ∈ C0 ∩Dp ∩Kp for some p ∈ N and let a > 0. If
p > 1, we assume that the function

x 7→
∫x+1

x Σg(t)dt

Σg(x + a)
(52)

(that is defined in a neighborhood of infinity) is eventually monotone. Then
we have

Σg(x + a) ∼

∫x+1

x

Σg(t)dt as x→ ∞. (53)

Proof. Assume first that g lies in C0∩D0∩K0. Let us prove that for any c ∈ R
we have

c+
∫x+1

x
Σg(t)dt

c+ Σg(x + a)
→ 1 as x→ ∞. (54)

Suppose that g lies in D̃−1

N
and for instance that Σg is eventually increasing.

Then for sufficiently large x we have

c+ Σg(x)

|c+ Σg(x + a)|
6
c+

∫x+1

x
Σg(t)dt

|c+ Σg(x + a)|
6

c+ Σg(x+ 1)

|c+ Σg(x+ a)|

and (54) then follows from Corollary 6.25. Suppose now that g does not lie
in D̃−1

N
, which implies that g is not integrable at infinity. It follows that the

integral (37) tends to infinity as x→ ∞, and hence so does the function Σg(x).
In this case, by (33) and (40) we obtain

Σg(x + a) −

∫x+1

x

Σg(t)dt → 0 as x→ ∞

and then (54) follows immediately.
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Suppose now that g lies in C0 ∩ Dp ∩ Kp, with degg = p − 1, for some
p ∈ N∗. We first observe that

∆px

∫x+1

x

Σg(t)dt =

∫x+1

x

∆pΣg(t)dt

and that ∆pΣg = cp + Σ∆
pg for some cp ∈ R. Since ∆pg lies in C0 ∩D0 ∩K0,

by (54) we have

∆px
∫x+1

x
Σg(t)dt

∆
p
xΣg(x + a)

=
cp +

∫x+1

x
Σ∆pg(t)dt

cp + Σ∆pg(x + a)
→ 1 as x→ ∞.

Let us now show that the sequence

n 7→ ∆p−1

n

∫n+1

n
Σg(t)dt

∆p−1

n Σg(n + a)

(which exists for large values of n) converges to 1. By minimality of p, the
function ∆p−1Σg lies in D2

N
\ D1

N
and hence the sequence n 7→ ∆p−1Σg(n + a)

tends to infinity. Using the discrete version of L’Hospital’s rule, we then obtain

lim

n→∞

∆
p−1

n

∫n+1

n Σg(t)dt

∆
p−1

n Σg(n+ a)
= lim

n→∞

∆
p
n

∫n+1

n Σg(t)dt

∆pnΣg(n + a)
= 1.

Iterating this process, we finally see that condition (53) holds for the integer
values of x, and then also for the real values of x using the eventual monotonicity
of the function specified by (52) together with the squeeze theorem.

Remark 6.27. In Proposition 6.26 we made the assumption that the function
specified by (52) is eventually monotone. We conjecture that this assumption
is actually satisfied whenever g lies in ∪p>1

(C0 ∩Dp ∩Kp).

The quest for a characterization of the domain of definition of the map Σ.
Recall that the domain of definition of the map Σ is the set ∪p>0

(Dp ∩Kp). In
this respect, it would be useful to have a very simple test to check whether a
given function g lies in this set. The following result shows that both conditions
g ∈ K0 and

lim

n→∞

|g(n + 1)|

|g(n)|
6 1 (55)

are necessary. However, they are not sufficient. For instance, for any q ∈ N the
function gq(x) = xq+1 + sinx lies in Kq \ Kq+1 and satisfies condition (55).
However, it does not lie in D∞

N
.

Proposition 6.28. Let g ∈ K0. If g lies in Dp ∩Kp for some p ∈ N, then
condition (55) holds. Conversely, if condition (55) holds, then g lies in
D̃−1

N
or we have ∆g(x)/g(x) → 0 as x→ ∞.
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Proof. Assume that g lies in Dp ∩ Kp for p = 1 + degg. If p = 0, then the
function x 7→ |g(x)| eventually decreases to zero and hence condition (55) holds.
Now suppose that p > 1. Then the function ∆pg lies in D0 ∩K0 and there are
two exclusive cases to consider.

(a) Suppose that the sequence n 7→ ∆p−1g(n) tends to infinity. Using the
discrete version of L’Hospital’s rule, we then obtain

lim

n→∞

∆p−1g(n + 1)

∆p−1g(n)
= lim

n→∞

∆pg(n + 1)

∆pg(n)
= ℓ

for some ℓ ∈ R satisfying |ℓ| 6 1. Iterating this process, we see that
condition (55) holds.

(b) Suppose that the sequence n 7→ ∆p−1g(n) has a nonzero limit. If p = 1,
then condition (55) holds trivially. If p > 2, then the sequence n 7→
∆p−2g(n) tends to infinity and we can use the discrete version of L’Hospi-
tal’s rule and iterate the process as in the previous case.

Conversely, suppose that g ∈ K0 and that condition (55) holds. If the
inequality is strict, then g is summable by the ratio test and hence g lies in
D̃−1

N
. Otherwise, if the inequality is an equality, then we have |g(n+1)| ∼ |g(n)|

as n →N ∞. Since g lies in K0 and hence eventually no longer changes in
sign (i.e., g lies in K−1), we also have g(x + 1) ∼ g(x) as x → ∞, that is,
∆g(x)/g(x) → 0 as x→ ∞.

It is easy to see that the function g : R+ → R lies in D∞
N

if and only if there
exists p ∈ N for which the sequence n 7→ ∆pg(n) converges. This observation
follows from the immediate identity

∆pg(n) = ∆pg(1) +

n−1∑

k=1

∆p+1g(k) , n ∈ N∗
, p ∈ N.

In particular, if we assume that g ∈ K∞, then g does not lie to D∞
N

if and only if
for every p ∈ N the sequence n 7→ ∆pg(n) tends to infinity. It is easy to see that
condition (55) fails to hold for many functions g lying in K∞ \D∞

N
. Examples of

such functions include g(x) = 2

x and g(x) = Γ(x). It seems reasonable to think
that this observation actually follows from a general rule. We then formulate
the following conjecture.

Conjecture. Let g ∈ K∞. Then g lies in D∞
N

if and only if condition (55) holds.

7 Derivatives of multiple log Γ-type functions

In this section we discuss certain differentiability properties of Σg when g lies
in Cr ∩Dp ∩Kp for some p, r ∈ N. In particular, when r 6 p we show that Σg
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also lies in Cr and that DrΣg(x) can be computed as the limit of the sequence
n 7→ Drf

p
n[g](x). We also discuss how the functions (Σg)(r) and Σg(r) are

related and show how Σg can be computed by first computing Σg(r). Finally,
we provide an alternative uniqueness result for differentiable solutions to the
equation ∆f = g.

7.1 On differentiability of multiple log Γ -type functions

We investigate the differentiability of the function Σg when g is of class Cr for
some r ∈ N. The central result is given in Theorem 7.2 below. We first consider
a technical lemma. For any n, r ∈ N, we set

brn(x) = Drx
(
x
n+r

)
.

Lemma 7.1. For any integers 0 6 r 6 p, any g ∈ Cr, and any a, x > 0 we
have ρp+1

a [g] ∈ Cr and

Drx ρ
p+1

a [g](x) = ρp+1−r
a [g(r)](x)

−

r∑

i=1

p−r∑

j=0

br+1−i
j (x)

∫
1

0

ρp−j−r+1

a [∆j+r−ig(i)](t)dt.

Proof. It is clear that ρp+1

a [g] ∈ Cr and we can assume that 1 6 r 6 p. Using
(5) it is then easy to see that

Drx ρ
p+1

a [g](x) = g(r)(x+ a) −

p−r∑

j=0

brj (x)∆
j+rg(a) ;

Dr−1

x ρpa[g
′](x) = g(r)(x+ a) −

p−r∑

n=0

br−1

n (x)∆n+r−1g ′(a).

Subtracting the second equation from the first one, we obtain

Drx ρ
p+1

a [g](x) −Dr−1

x ρpa[g
′](x) =

p−r∑

n=0

br−1

n (x)∆n+r−1g ′(a)

−

p−r∑

j=0

brj (x)∆
j
a

(
∆rg(a) −

p−j−r∑

n=0

Gn∆
n+r−1g ′(a)

)

−

p−r∑

j=0

brj (x)∆
j
a

p−j−r∑

n=0

Gn∆
n+r−1g ′(a),

where the expression in parentheses reduces to
∫
1

0

ρp−j−r+1

a [∆r−1g ′](t)dt.
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Now, we have

p−r∑

n=0

br−1

n (x)∆n+r−1g ′(a) −
p−r∑

j=0

brj (x)∆
j
a

p−j−r∑

n=0

Gn∆
n+r−1g ′(a)

=

p−r∑

n=0

br−1

n (x)∆n+r−1g ′(a) −
p−r∑

j=0

brj (x)

p−r∑

n=j

Gn−j∆
n+r−1g ′(a)

=

p−r∑

n=0

∆n+r−1g ′(a)


br−1

n (x) −

n∑

j=0

Gn−jb
r
j (x)




.

The latter expression in parentheses is identically zero. Indeed, the sum therein
is the convolution of the sequences n 7→ Gn and n 7→ brn(x), whose ordinary
generating functions are

∫
1

0



∑

n>0

(
t
n

)
zn


dt =

∫
1

0

(1+ z)t dt =
z

ln(1+ z)

and

Drx




∑

n>0

(
x
n+r

)
zn



 = Drx

(
1

zr
(1+ z)x

)
=

1

zr
(1 + z)x(ln(1+ z))r,

respectively. Thus, the ordinary generating function for the convolution is

1

zr−1

(1+ z)x(ln(1+ z))r−1

and hence it defines the sequence n 7→ br−1

n (x).
Now, collecting the remaining nonzero terms and using (21) we obtain

Drxρ
p+1

a [g](x) = Dr−1

x ρpa[g
′](x) −

p−r∑

j=0

brj (x)

∫
1

0

ρp−j−r+1

a [∆j+r−1g ′](t)dt.

Finally, using a simple induction on r, we obtain the claimed formula.

Theorem 7.2 (Differentiability of multiple log Γ -type functions). Let g ∈ Cr ∩
Dp∩Kp for some r,p ∈ N. If r > p, we further assume that the derivatives
g(p+1)

,g(p+2)
, . . . ,g(r) lie in K0. Then the following assertions hold.

(a) Σg ∈ Cr ∩Dp+1 ∩Kp.

(b) For each x > 0, the sequence n 7→ Drfpn[g](x) converges and we have

DrΣg(x) = lim

n→∞
Drfpn[g](x), x > 0.
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(c) For any nonempty bounded subset E of R+, the sequence n 7→ Drf
p
n[g]

converges uniformly on E to DrΣg.

Proof. Let us first assume that r 6 p. The result holds for r = 0 by Theorem 3.4
and Proposition 5.8. So we can assume that 1 6 r 6 p. Let x > 0 and letm ∈ N∗

be so that g is p-convex or p-concave on [m,∞). For every i ∈ {1, . . . , r} and
every j ∈ {0, . . . ,p − r}, by Lemma 2.2(b), Lemma 3.3, Proposition 4.8, and
Lemma 6.16, both sequences

n 7→
n−1∑

k=m

ρ
p+1−r
k [g(r)](x) and n 7→

n−1∑

k=m

∫
1

0

ρ
p−j−r+1

k [∆j+r−ig(i)](t)dt

converge and, for any integer n > m, we have
∣∣∣∣∣

∞∑

k=n

ρ
p+1−r
k [g(r)](x)

∣∣∣∣∣ 6 ⌈x⌉
∣∣∣
(
x−1

p−r

)∣∣∣
∣∣∣∆p−rg(r)(n)

∣∣∣

and ∣∣∣∣∣

∞∑

k=n

∫
1

0

ρp−j−r+1

k [∆j+r−ig(i)](t)dt

∣∣∣∣∣ 6 Gp−j−r

∣∣∣∆p−ig(i)(n)
∣∣∣ .

Combining these inequalities with Lemma 7.1, it follows that for any bounded
subset E of R+ the sequence

n 7→ sup

x∈E

∣∣∣∣∣

∞∑

k=n

Drx ρ
p+1

k [g](x)

∣∣∣∣∣

converges to zero. Using the classical result on differentiability of uniformly
convergent sequences, it follows that the function

∞∑

k=m

ρp+1

k [g](x) = fpm[g](x) − Σg(x)

lies in Cr (and hence so does Σg) and that

∞∑

k=m

Drρp+1

k [g](x) = Dr
∞∑

k=m

ρp+1

k [g](x) = Drfpm[g](x) −DrΣg(x).

This proves the theorem when r 6 p.
Let us now assume that r > p. By Proposition 4.8, the function g(p) lies in

Cr−p ∩ D0 ∩ K0. By Proposition 4.11, for any i ∈ {p + 1, . . . , r}, the function
g(i) lies in Cr−i ∩ D̃−1

N
∩K0. By Theorem 3.7, it follows that the sequence

n 7→ −

n−1∑

k=0

g(i)(x+ k) = Difpn[g](x)

converges uniformly on R+. Again, we conclude the proof by using the classical
result on differentiability of uniformly convergent sequences.
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Remark 7.3. If g ∈ Cr∩Dp∩Kp for some integers 0 6 r 6 p, then the function
Σg lies in Cr by Theorem 7.2. Actually, this result can also be established by
elementary means. Indeed, by Proposition 5.8 we have Σg(r) ∈ C0. Hence, there
exists F ∈ Cr such that F(r) = Σg(r). Since Σg(r) also lies in Kp−r, we have
F ∈ Kp by Proposition 4.8. Now, we also have Dr∆F = ∆F(r) = ∆Σg(r) = g(r),
which shows that ∆(F+P) = g for some polynomial P of degree at most r. Since
F + P lies in Kp, by the uniqueness theorem we must have F + P = Σg + c for
some c ∈ R. Hence Σg lies in Cr.

Proposition 7.4. Let g ∈ Cr∩Dp∩Kp for some integers p ∈ N and r ∈ N∗.
If r > p, we further assume that the derivatives g(p+1)

,g(p+2)
, . . . ,g(r) lie

in K0. Then for any x > 0 we have

(Σg)(r)(x) − Σg(r)(x) = (Σg)(r)(1) = g(r−1)(1) − σ[g(r)]. (56)

If r > p, then this value reduces to −
∑∞
k=1

g(r)(k).

Proof. By Propositions 4.8 and 4.11, we have g(r) ∈ D
(p−r)+
N

. By Theorem 7.2,
we have Σg ∈ Cr ∩ Dp+1 ∩ Kp. Also, by the existence Theorem 3.4, both
functions ϕ

1

= (Σg)(r) and ϕ
2

= Σg(r) are solutions in K(p−r)+ to the equation
∆ϕ = g(r). By the uniqueness Theorem 3.1, we have (Σg)(r) − Σg(r) = c for
some c ∈ R. For any x > 0, using (37) we then get

g(r−1)(1) − σ[g(r)] = g(r−1)(x) −

∫x+1

x

Σg(r)(t)dt

= c+ g(r−1)(x) −

∫x+1

x

(Σg)(r)(t)dt

= c+ g(r−1)(x) − (Σg)(r−1)(x+ 1) + (Σg)(r−1)(x),

which reduces to the constant c. If r > p, then we have g(r) ∈ C0∩ D̃−1

N
∩K0 by

Proposition 4.11. The last part of the proof then follows from Proposition 6.25.

Example 7.5. The function g(x) = 1

x
lies in C∞∩D0∩K∞ and all its derivatives

lie in K0. By Theorem 7.2, the function

Σg(x) =

∞∑

k=0

(
1

k+ 1

−
1

x+ k

)
= ψ(x) + γ

lies in C∞ ∩D1 ∩K∞. Thus, the series can be differentiated term by term and
hence, for any r ∈ N∗, we have

(Σg)(r)(x) = −

∞∑

k=0

(−1)rr!(x + k)−r−1 = ψr(x).
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Combining Theorems 6.2 and 6.5 with Proposition 7.4, we obtain the fol-
lowing corollary, which includes the generalized Stirling formula for (Σg)(r).

Corollary 7.6. Let g ∈ Cr ∩ Dp ∩ Kp for some p, r ∈ N and let x > 0 be
so that g is p-convex or p-concave on [x,∞). If r > p, we further assume
that the derivatives g(p+1)

,g(p+2)
, . . . ,g(r) lie in K0. Then the following

assertions hold.

(a) For any a > 0, we have

∣∣∣∣∣∣
(Σg)(r)(x+ a) − (Σg)(r)(x) −

(p−r)+∑

j=1

(
a
j

)
∆j−1g(r)(x)

∣∣∣∣∣∣

6 ⌈a⌉
∣∣∣
(
a−1

(p−r)+

)∣∣∣
∣∣∣∆(p−r)+g(r)(x)

∣∣∣

In particular, the left-hand expression tends to zero as x→ ∞.

(b) If r > 1, we have
∣∣∣∣∣∣
(Σg)(r)(x) − g(r−1)(x) +

(p−r)+∑

j=1

Gj∆
j−1g(r)(x)

∣∣∣∣∣∣
6 G(p−r)+ |∆(p−r)+g(r)(x)|.

In particular, the left-hand expression tends to zero as x→ ∞.

Moreover, if r > p, then (Σg)(r)(x) → 0 as x→ ∞.

It turns out that the convergence results in Corollary 7.6 can be obtained
just by taking the rth derivative of (33) and (40), respectively. In particular,
the function Jp+1[Σg](x) and its derivatives vanish at infinity.

Derivatives of Σg(x) at x = 1. Proposition 7.4 enables us to compute the
value of (Σg)(r)(1) whenever g(r) exists. For instance, for g(x) = ln x we obtain

ψ(1) = (ln Γ)′(1) = − σ[g ′] = − γ

and, for any integer r > 2,

ψ(r−1)(1) = (ln Γ)(r)(1) = (−1)r(r− 2)!− σ[g(r)]

= (−1)r(r− 1)! ζ(r).

If the function Σg is real analytic at 1, then the following Taylor series expansion

Σg(x+ 1) =

∞∑

k=1

(Σg)(k)(1)
xk

k!
(57)
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holds in some neighborhood of x = 0. For instance, for g(x) = ln x we obtain

ln Γ(x + 1) = − γx+

∞∑

k=2

(−1)k
ζ(k)

k
xk , |x| < 1.

Exponential generating function for the sequence σ[g(n)]. Suppose that g
lies in C∞ ∩ Dp ∩ Kp for some p ∈ N and that g(k) lies in K0 for any k ∈ N.
Identity (56) enables us to write formally the following power series

∞∑

k=0

σ[g(k)]
xk

k!
= σ[g] +

∫x+1

1

g(t)dt − Σg(x+ 1) . (58)

Thus, the right side of (58) is precisely the exponential generating function
egfσ[g](x) for the sequence n 7→ σ[g(n)]. We then have

egfσ[g](x) = − J1[Σg](x + 1) , x > 0,

and hence

σ[g(k)] = (egfσ[g])
(k)(0) = − (J1[Σg])(k)(1) , k ∈ N.

For instance, if g(x) = ln x, then we have σ[g] = −1 + 1

2

ln(2π), σ[g ′] = γ,
and for any integer k > 2

σ[g(k)] = (−1)k(k − 2)! (1− (k − 1)ζ(k)) .

Similarly, if the sequence n 7→ σ[g(n)] is defined, then the corresponding
exponential generating function egfσ[g](x) is

∞∑

k=0

σ[g(k)]
xk

k!
= σ[g] +

∫x

0

g(t)dt − Σg(x+ 1).

Now, if p = 1+ degg, then by Propositions 4.8, 6.23, and 6.25 we also have

σ[g(k)] = γ[g(k)] +

(p−k)+∑

j=1

Gj∆
j−1g(k)(1) , k ∈ N

and hence the exponential generating function for the sequence n 7→ γ[g(n)] is
the function

egfγ[g](x) = egfσ[g](x) −

p∑

j=1

Gj

p−j∑

k=0

xk

k!
∆j−1g(k)(1).

Analogues of Euler’s series representation of γ. Integrating both sides of
(57) on (0, 1) (assuming that the series can be integrated term by term), we
obtain the identity

σ[g] =

∞∑

k=1

(Σg)(k)(1)

(k + 1)!
. (59)

56



Similarly, integrating both sides of (58) on (0, 1) (assuming that the series can
be integrated term by term), we obtain the identity

∞∑

k=0

σ[g(k)]

(k + 1)!
=

∫
2

1

(2− t)g(t)dt. (60)

Taking for instance g(x) = 1/x in (59), we immediately retrieve Euler’s series
representation of γ (see, e.g., [76, p. 272])

γ =

∞∑

k=2

(−1)k
ζ(k)

k
.

This formula can also be obtained by taking g(x) = 1/x in (60) and using the
straightforward identity

σ[g(k)] = (−1)kk!

(
ζ(k+ 1) −

1

k

)
, k ∈ N∗

.

Considering different functions g(x) in (59) and (60) enables one to derive
various interesting identities.

Example 7.7. Taking g(x) = ψ(x) in (60) and using the straightforward iden-
tity

σ[g(k)] = (−1)k−1(k − 1)(k− 1)! ζ(k) k ∈ N, k > 2,

we obtain
∞∑

k=2

(−1)k
k− 1

k(k + 1)
ζ(k) = 2− ln(2π) .

Similarly, taking g(x) = ln x and then g(x) = ln Γ(x) in (59) and (60) we obtain
the identities

∞∑

k=2

(−1)k
1

k(k + 1)
ζ(k) =

1

2

γ− 1+
1

2

ln(2π) ,

∞∑

k=2

(−1)k
1

(k + 1)(k + 2)
ζ(k) =

1

2

+
1

6

γ− 2 lnA ,

∞∑

k=2

(−1)k
k − 1

k(k + 1)(k + 2)
ζ(k) =

5

4

−
1

4

ln(2π) − 3 lnA ,

where A is Glaisher-Kinkelin’s constant; see also [76, Section 3.4].

7.2 Finding solutions from derivatives

Given r ∈ N∗ and a function g ∈ Cr, a solution f ∈ Cr to the equation ∆f = g

can sometimes be found by first searching for an appropriate solution ϕ ∈ C0
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to the equation ∆ϕ = g(r) and then calculating f as an rth antiderivative of ϕ.
To our knowledge, this approach was investigated thoroughly by Krull [47] and
then by Dufresnoy and Pisot [30]. Here we present a general theory based on
this idea.

We first observe that if ϕ ∈ C0 is a solution to the equation ∆ϕ = g(r), then
the map

x 7→
∫x+1

x

ϕ(t)dt − g(r−1)(x)

has a zero derivative and hence it is constant on R+. In particular, it has a finite
right limit at x = 0. Recall also that the Bernoulli numbers B

0

,B
1

,B
2

, . . . are
defined implicitly by the single equation (see, e.g., [34, p. 284])

m∑

j=0

(
m+1

j

)
Bj = 0

m
, integer m > 0.

Theorem 7.8. Let r ∈ N∗, a > 0, g ∈ Cr, and let ϕ : R+ → R be a continuous
solution to the equation ∆ϕ = g(r). Then there exists a solution f ∈ Cr to
the equation ∆f = g such that f(r) = ϕ if and only if

∫a+1

a

ϕ(t)dt = g(r−1)(a). (61)

If any of these equivalent conditions holds, then f is uniquely determined
(up to an additive constant) by

f(x) = f(a) +

r−1∑

k=1

ck
(x − a)k

k!
+

∫x

a

(x− t)r−1

(r− 1)!
ϕ(t)dt, (62)

where, for k = 1, . . . , r − 1,

ck =

r−k−1∑

j=0

Bj

j!

(
g(j+k−1)(a) −

∫a+1

a

(a+ 1− t)r−j−k

(r − j− k)!
ϕ(t)dt

)
. (63)

Proof. Condition (61) is clearly necessary. Indeed, we have
∫a+1

a

ϕ(t)dt = f(r−1)(a+ 1) − f(r−1)(a) = g(r−1)(a).

Let us show that it is sufficient. Since ϕ is continuous, there exists f ∈ Cr

such that f(r) = ϕ. Taylor’s theorem then provides the expansion formula (62)
with arbitrary parameters ck = f(k)(a) for k = 1, . . . , r − 1. Now we need
to determine the parameters c

1

, . . . , ck for f to be a solution to the equation
∆f = g. To this extent, we need the following claim.

Claim. The function f satisfies the equation ∆f = g if and only if f(r) satisfies
the equation ∆f(r) = g(r) and ∆f(j)(a) = g(j)(a) for j = 0, . . . , r− 1.
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Proof of the claim. The condition is clearly necessary. To see that it is suffi-
cient, we simply show by decreasing induction on j that ∆f(j) = g(j). Clearly,
this is true for j = r. Suppose that it is true for some integer j satisfying
1 6 j 6 r. For any x > 0 we have

∆f(j−1)(x) − ∆f(j−1)(a) =

∫x

a

∆f(j)(t)dt =

∫x

a

g(j)(t)dt

= g(j−1)(x) − g(j−1)(a) = g(j−1)(x) − ∆f(j−1)(a),

which shows that the result still holds for j− 1.

By the claim, f satisfies the equation ∆f = g if and only if ∆f(j)(a) = g(j)(a)

for j = 0, . . . , r − 1. When j = r − 1, the latter condition is nothing other than
condition (61) and hence it is satisfied. Applying Taylor’s theorem to f(j), we
obtain

f(j)(a+ 1) − f(j)(a) =

r−j−1∑

k=1

1

k!
f(j+k)(a) +

∫a+1

a

(a + 1− t)r−j−1

(r− j− 1)!
ϕ(t)dt ,

and hence we see that the remaining r− 1 conditions are

r−j−1∑

k=1

1

k!
cj+k = dj, j = 0, . . . , r − 2,

where

dj = g(j)(a) −

∫a+1

a

(a + 1− t)r−j−1

(r− j− 1)!
ϕ(t)dt, j = 0, . . . , r− 2,

ck = f(k)(a), k = 1, . . . , r− 1.

It is not difficult to see that these r− 1 conditions form a consistent triangular
system of r − 1 linear equations in the r − 1 unknowns c

1

, . . . , cr−1

. This
establishes the uniqueness of f up to an additive constant.

Let us now show that formula (63) holds. For k = 1, . . . , r − 1, we have

r−k−1∑

j=0

Bj

j!
dj+k−1

=

r−k−1∑

j=0

Bj

j!

r−j−k∑

i=1

1

i!
ci+j+k−1

.

Replacing i by i − j− k + 1 and then permuting the resulting sums, the latter
expression reduces to

r−k−1∑

j=0

Bj

j!

r−1∑

i=j+k

1

(i − j− k + 1)!
ci =

r−1∑

i=k

ci

(i − k + 1)!

i−k∑

j=0

(
i−k+1

j

)
Bj

=

r−1∑

i=k

ci

(i − k + 1)!
0

i−k = ck.

This completes the proof of the theorem.
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Adding an appropriate constant to ϕ if necessary in Theorem 7.8, we can
always assume that condition (61) holds. More precisely, the function ϕ⋆ =

ϕ+ C, where

C = g(r−1)(a) −

∫a+1

a

ϕ(t)dt,

satisfies
∫a+1

a
ϕ⋆(t)dt = g(r−1)(a). In fact, this is exactly what we did in

Proposition 7.4, where (56) represents the equation

f(r)(x) −ϕ(x) = g(r−1)(1) −

∫
2

1

ϕ(t)dt.

Example 7.9. Let g ∈ C0, let G ∈ C1 be defined by the equation

G(x) =

∫x

1

g(t)dt,

and let f ∈ C0 be any solution to the equation ∆f = g. Then the function F ∈ C1

defined by the equation

F(x) =

∫x

1

f(t)dt− (x− 1)

∫
2

1

f(t)dt,

is a solution to the equation ∆F = G. Moreover, if f ∈ Kp for some p ∈ N,
then F ∈ Kp+1 by Lemma 2.2(g). For similar results, see [47, p. 254] and [50,
Section 2].

Now, using Theorem 7.2, Proposition 7.4, and Theorem 7.8, we can easily
derive the following useful corollary.

Corollary 7.10. Let g ∈ Cr ∩Dp ∩Kp for some p ∈ N and some r ∈ N∗. If
r > p, we further assume that the derivatives g(p+1)

,g(p+2)
, . . . ,g(r) lie in

K0. Then Σg ∈ Cr ∩Dp+1 ∩Kp and

(Σg)(r) − Σg(r) = g(r−1)(1) − σ[g(r)].

(This value reduces to −
∑∞
k=1

g(r)(k) if r > p.) Moreover, for any a > 0,
we have Σg = fa − fa(1), where fa ∈ Cr is defined by

fa(x) =

r−1∑

k=1

ck(a)
(x − a)k

k!
+

∫x

a

(x− t)r−1

(r− 1)!
(Σg)(r)(t)dt

and, for k = 1, . . . , r− 1,

ck(a) =

r−k−1∑

j=0

Bj

j!

(
g(j+k−1)(a) −

∫a+1

a

(a+ 1− t)r−j−k

(r− j− k)!
(Σg)(r)(t)dt

)
.
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Corollary 7.10 has an important practical value. It provides an explicit
integral expression for Σg from an explicit expression for Σg(r). The following
two examples illustrate the use of this result.

Example 7.11. The function g(x) =
∫x
0

(x − t) ln t dt lies in C∞ ∩ D3 ∩ K∞.
Choosing r = 2 and a = 0 (as a limiting value) in Corollary 7.10, we get

g ′′(x) = ln x ,

Σg ′′(x) = ln Γ(x) ,

(Σg)′′(x) = ln Γ(x) − 1

2

ln(2π),

and

Σg(x) = − (lnA) x −
1

4

ln(2π) x2 +

∫x

0

(x− t) ln Γ(t)dt,

where A is Glaisher-Kinkelin’s constant and the integral is the polygamma
function ψ−3

(x). Using Theorem 6.5, we also obtain the following asymptotic
behavior of Σg

Σg(x) +
1

72

(22x3 − 27x2 + 9x) −
1

48

x2(8x− 15) lnx

−
1

12

(x+ 1)2 ln(x + 1) +
1

48

(x + 2)2 ln(x+ 2) → ζ(3)

8π2
as x→ ∞.

Example 7.12. The function g(x) = ar
tan(x) lies in C∞∩D1∩K∞. Choosing
r = 1 and a = 0 (as a limiting value) in Corollary 7.10, we get

g ′(x) = (x2 + 1)−1 = − ℑ(x+ i)−1

,

Σg ′(x) = ℑψ(1+ i) − ℑψ(x+ i),

(Σg)′(x) = π
2

− ℑψ(x+ i),

and

Σg(x) =
π

2

(x − 1) + ℑ ln Γ(1+ i) − ℑ ln Γ(x+ i)

= c+
π

2

x +
i

2

ln

Γ(x+ i)

Γ(x− i)

for some c ∈ R. Using Theorem 6.5, we also obtain the inequality

∣∣∣∣Σg(x) −
(
x−

1

2

)
ar
tan(x) +

1

2

ln(x2 + 1) − 1+
π

4

− ℑ ln Γ(1+ i)

∣∣∣∣

6
1

2

ar
tan

1

x2 + x+ 1

and hence the left side approaches zero as x→ ∞.
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7.3 An alternative uniqueness result

The following theorem provides a uniqueness result for differentiable solutions
to the equation ∆f = g. These solutions can be computed from their derivatives
using Theorem 7.8.

Fact 7.13. A periodic function ω : R+ → R is constant if and only if it lies
in K0.

Theorem 7.14. Let r ∈ N∗ and g ∈ Cr, and assume that there exists ϕ ∈ Cr

such that ∆ϕ = g and ϕ(r) ∈ R0

N
. Then, the following assertions hold.

(i) For each x > 0, the series
∞∑

k=0

g(r)(x+ k)

converges.

(ii) For any f ∈ Cr ∩Kr−1 such that ∆f = g, we have f = c + ϕ for some
c ∈ R and

f(r)(x) = −

∞∑

k=0

g(r)(x + k) .

Proof. Assertion (i) follows immediately from (12) and we clearly have

ϕ(r)(x) = −

∞∑

k=0

g(r)(x+ k) , x > 0.

Now, let f ∈ Cr ∩Kr−1 be such that ∆f = g. Negating f, ϕ, and g if necessary,
we can assume that f ∈ Kr−1

+ , which implies that f(r) is eventually nonnegative
by Lemma 2.2(e). To complete the proof, by Proposition 4.4 and Fact 7.13 it
is enough to show that the 1-periodic function ω = f − ϕ lies in Kr−1, i.e., it
satisfies ω(r) > 0 on R+. Suppose on the contrary that ω(r)(z) < 0 for some
z > 0. Since ω is 1-periodic, we have

0 6 f(r)(z +m) < ϕ(r)(z +m), for large integer m.

In particular, we have

0 < −ω(r)(z) = −ω(r)(z +m) 6 ϕ(r)(z +m)

for large integer m, which contradicts the assumption that ϕ(r) ∈ R0

N
. This

proves assertion (ii).

Example 7.15. The assumptions of Theorem 7.14 hold if g(x) = ln x, ϕ(x) =
ln Γ(x), and r = 2. It follows from Theorem 7.14 that all solutions to the
equation ∆f = g that lie in C2 ∩ K1 are of the form f(x) = c + ln Γ(x), where
c ∈ R. We thus retrieve the Bohr-Mollerup-Artin Theorem with the additional
assumption that f lies in C2.
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8 Further results

Keeping in mind the objective of generalizing Webster’s formulas to multiple
log Γ -type functions, we now explore further questions related to our main
results. In particular, we provide for multiple log Γ -type functions analogues
of Euler’s infinite product, Weierstrass’ infinite product, Raabe’s formula,
Gauss’ multiplication formula, and Wallis’s product formula.

8.1 Series representation and Eulerian form

Let g ∈ Dp ∩Kp for some p ∈ N. As we already observed in the Introduction,
the representation of Σg as the pointwise limit of the sequence n 7→ fpn[g] is the
analogue of Gauss’ limit for the gamma function. Using identity (18), we can
see that this form of Σg can be easily translated into a series, namely

Σg(x) = fp
1

[g](x) −

∞∑

k=1

ρp+1

k [g](x), x > 0.

We also observe that, when g(x) = ln x and p = 1, the multiplicative version
of this series representation reduces to the classical Euler product form of the
gamma function (see, e.g., [76, p. 3]), as given in Example 8.2 below. Thus, for
any multiple log Γ -type function, the series representation above is the analogue
of the Eulerian form of the gamma function. Rewriting this identity explicitly
and using the uniform convergence of the sequence n 7→ f

p
n[g] (cf. Theorem 3.4),

we immediately obtain the following result.

Theorem 8.1 (Eulerian form). Let g ∈ Dp ∩Kp for some p ∈ N. Then

Σg(x) = − g(x) +

p∑

j=1

(
x
j

)
∆j−1g(1) −

∞∑

k=1



g(x + k) −
p∑

j=0

(
x
j

)
∆jg(k)





and the series converges uniformly on any bounded subset of R+.

Recall also that the uniform convergence enables one to integrate the series
above term by term on any bounded interval (see Proposition 5.8). We can also
differentiate the series term by term as shown in Theorem 7.2.

Example 8.2. Considering the function g(x) = ln x for which p = 1+degg = 1,
we obtain the following infinite product representations for any x > 0:

Γ(x) =
1

x

∞∏

k=1

(1+ 1/k)x

1+ x/k
, eψ(x) = e−

1

x

∞∏

k=1

(1 + 1/k) e−
1

x+k
,

and

e
∫x
0

lnΓ(t)dt =
ex

xx

∞∏

k=1

ex(1 + 1/k)x
2/2

(1+ x/k)x+k
.
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8.2 Weierstrassian form

We now show that the classical Weierstrass factorization of the gamma function
(see Example 8.6 below) can be generalized to any log Γp-type function that is
of class Cp. The following two theorems deal separately with the cases p = 0

and p > 1. Note that the case p = 1 was previously established by John [42,
Theorem B’] and in the multiplicative notation by Webster [80, Theorem 7.1].

Theorem 8.3 (Weierstrassian form). For any g ∈ C0 ∩ D0 ∩ K0, we have
γ[g] = σ[g] and

Σg(x) = σ[g] − g(x) −

∞∑

k=1

(
g(x+ k) −

∫k+1

k

g(t)dt

)

and the series converges uniformly on any bounded subset of R+.

Proof. The result immediately follows from Proposition 6.23, Eq. (48), and
Theorem 8.1.

Lemma 8.4. Let g ∈ C1 ∩Dp ∩Kp for some p ∈ N∗. Then

∆g(x) −

p−2∑

j=0

Gj∆
jg ′(x) → 0 as x→ ∞.

If, in addition, g ∈ Cp−1, then ∆p−1g(x) − g(p−1)(x) → 0 as x→ ∞.

Proof. The first convergence result follows immediately from (41). Let us now
assume that g ∈ Cp−1. For every i ∈ {0, . . . ,p−2}, the function gi = ∆ig(p−2−i)

lies in C1∩D2∩K2 and hence, using the first result, we see that ∆gi(x)−g ′
i(x) →

0 as x → ∞. Summing these limits for i = 0, . . . ,p − 2, we obtain the claimed
limit.

Theorem 8.5 (Weierstrassian form). Let g ∈ Cp∩Dp∩Kp with degg = p−1

for some p ∈ N∗. Then we have

γ[g(p)] = σ[g(p)] = g(p−1)(1) − (Σg)(p)(1)

and

Σg(x) =

p−1∑

j=1

(
x
j

)
∆j−1g(1) +

(
x
p

)
(Σg)(p)(1)

−g(x) −

∞∑

k=1



g(x + k) −
p−1∑

j=0

(
x
j

)
∆jg(k) −

(
x
p

)
g(p)(k)





and the series converges uniformly on any bounded subset of R+.
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Proof. The identities involving the constants follow from Propositions 4.8, 6.23,
and 7.4. Now, using (48) we get

γ[g(p)] =

∞∑

k=1

(g(p)(k) − ∆g(p−1)(k)).

Using Theorem 8.1, we then obtain

Σg(x) =

p−1∑

j=1

(
x
j

)
∆j−1g(1) +

(
x
p

) (
g(p−1)(1) − γ[g(p)]

)

−g(x) − lim

n→∞

n−1∑

k=1


g(x + k) −

p−1∑

j=0

(
x
j

)
∆jg(k) −

(
x
p

)
g(p)(k)




+ lim

n→∞

(
x
p

)(
∆p−1g(n) − g(p−1)(n)

)
,

where the latter limit is zero by Lemma 8.4. Also, the uniform convergence is
ensured by Theorem 8.1.

It is important to note that, just as the series given in Theorem 8.1, the
series given in Theorems 8.3 and 8.5 also represent the limit of the sequence n 7→
fpn[g](x). Thus, by Theorem 7.2, those series can be integrated and differentiated
term by term.

Example 8.6. Considering the function g(x) = ln x for which p = 1+ degg =

1, we retrieve the following Weierstrassian form of the gamma function in an
effortless way

Γ(x) =
e−γx

x

∞∏

k=1

e
x
k

1+ x
k

, x > 0.

Remark 8.7. Under the assumptions of Lemma 8.4, by Propositions 4.5 and
4.8 we have g ′ ∈ R

p−1

R
, i.e., for any a > 0

g ′(x+ a) −
p−2∑

j=0

(
a
j

)
∆jg ′(x) → 0 as x→ ∞.

Combining this with Lemma 8.4, we can derive surprising limits. For instance,
if p ∈ {1, 2, 3}, then ∆g(x) − g ′(x + 1

2

) → 0 as x→ ∞.

8.3 Raabe’s formula

Recall that Raabe’s formula yields, for any x > 0, a simple explicit expression
for the integral of the log-gamma function over the interval (x, x+ 1). That is,

∫x+1

x

ln Γ(t)dt =
1

2

ln(2π) + x lnx− x , x > 0. (64)
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In particular, setting x = 1, we obtain the identity
∫
2

1

ln Γ(t)dt = − 1+
1

2

ln(2π) ,

which is precisely the value of σ[g] when g(x) = ln x. For recent references on
Raabe’s formula, see, e.g., [27] and see [76, p. 29].

Clearly, identities (36) and (37) enable us to define for any continuous mul-
tiple log Γ -type function Σg the analogue of Raabe’s formula. Thus defined, this
new formula can be obtained simply by computing the value σ[g], or even the
value σ[g] (see Definition 6.14) when g is integrable at 0.

In general, the value of σ[g] can be computed using Proposition 5.8(c2).
Specifically, if g ∈ C0 ∩Dp ∩Kp for some p ∈ N, we have

σ[g] = lim

n→∞

∫
1

0

(fpn[g](t) + g(t))dt

= lim

n→∞



n−1∑

k=1

g(k) −

∫n

1

g(t)dt+

p∑

j=1

Gj∆
j−1g(n)




. (65)

which is nothing other than the restriction of the generalized Stirling formula
(40) to the natural integers. Equivalently, this value can be obtained by in-
tegrating on the interval (0, 1) the series representation of Σg + g given in
Theorem 8.1. That is,

σ[g] =

p∑

j=1

Gj∆
j−1g(1) −

∞∑

k=1




∫k+1

k

g(t)dt−

p∑

j=0

Gj∆
jg(k)




. (66)

Note also that, under certain assumptions, the series above converges to zero as
p→N ∞; see Proposition 6.8.

Example 8.8. If g(x) = 1

x
, we obtain

σ[g] =

∞∑

k=1

(
1

k
− ln

(
1+

1

k

))
,

which is the Euler constant γ. Identity (37) then immediately provides the
following analogue of Raabe’s formula

∫x+1

x

ψ(t)dt = ln x , x > 0.

8.4 Gauss’ multiplication formula

Webster [80, Theorem 5.2] showed how an analogue of Gauss’ multiplication
formula can be constructed for any Γ -type function. His proof is very easy and
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essentially uses the uniqueness theorem. We now show that this formula can
be further extended to multiple Γ -type functions. As usual, we use the additive
notation.

Theorem 8.9 (Gauss’ multiplication formula). Let p ∈ N, m ∈ N∗, and
g ∈ Dp ∩Kp. Define also the functions gm,hm : R+ → R by the equations
gm(x) = g( x

m
) and hm(x) = g(x) − gm(x) for x > 0. Then gm ∈ Dp ∩ Kp

and, for x > 0,

m−1∑

j=0

(Σg)

(
x+ j

m

)
=

m−1∑

j=1

(Σg)

(
j

m

)
+ Σgm(x). (67)

If hm ∈ Dp ∩Kp, then for x > 0,

m−1∑

j=0

(Σg)

(
x+ j

m

)
+ Σhm(x) =

m−1∑

j=1

(Σg)

(
j

m

)
+ Σg(x).

Proof. We clearly have gm ∈ Kp. Also, it is easy to see that gm ∈ Dp ∩ Kp

(we can use Proposition 4.15 for instance). Now, we can readily check that the
function f : R+ → R defined by

f(x) =

m−1∑

j=0

(Σg)

(
x+ j

m

)
−

m−1∑

j=1

(Σg)

(
j

m

)

is a solution to the equation ∆f = gm that lies in Kp and such that f(1) = 0. By
the uniqueness Theorem 3.1, it follows that f = Σgm. Now, if hm ∈ Dp ∩Kp,
then we also have f = Σg− Σhm.

Corollary 8.10. Let g ∈ C0 ∩ Dp ∩ Kp for some p ∈ N. Define also the
functions gm : R+ → R (m ∈ N∗) by the equation gm(x) = g( x

m
). Then we

have

lim

m→∞

(Σgm)(mx) − (Σgm)(m)

m
=

∫x

1

g(t)dt , x > 0.

Moreover, if g is integrable at 0, then

lim

m→∞

1

m
(Σgm)(mx) =

∫x

0

g(t)dt , x > 0.

Proof. Replacing x by mx in (67) and dividing through by m, we obtain two
Riemann sums that converge, letting m →N ∞, to the integrals of Σg(x + t)
and Σg(t) over t ∈ (0, 1). Combining the resulting equation with (37) gives the
result.

To use Theorem 8.9 to its full capacity, a closed-form expression for the
right-hand sum of identity (67) would be welcome. The following proposition
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brings a partial answer to this natural question. Recall first that Bk denotes
the kth Bernoulli number (see Subsection 7.2). Also, for n, r ∈ N, brn(x) stands
for the function Drx

(
x
n+r

)
. Finally, ∆[h] denotes the forward difference operator

with step h.

Lemma 8.11. For any m,q ∈ N∗, we have

m∑

i=1

(
i/m
q

)
= mGq +

(
1

q

)
+

q+1∑

i=1

Bi

i!mi−1

(
bi−1

q−i+1

(1) − bi−1

q−i+1

(0)
)

= mGq +
(
1

q

)
−

q+1∑

i=1

Gi

(
(∆i−1

[ 1

m
]
b0q)(1) − (∆i−1

[ 1

m
]
b0q)(0)

)
.

Also, for i = 1, . . . ,q+ 1, we have

bi−1

q−i+1

(1) − bi−1

q−i+1

(0) =
1

q!

q∑

k=i

(−1)k−q
[
q

k

]
k!

(k − i+ 1)!
,

where
[
q
k

]
is the number of ways to arrange q objects into k cycles (Stirling

number of the first kind).

Proof. The first formula results from a straightforward application of the Euler-
Maclaurin formula (Proposition 6.21) with a = 0, b = 1, and N = m. We
prove the second formula similarly using the general form of Gregory’s formula
(Proposition 6.20) with a = 0, n = m, and h = 1

m
. The last part follows from

the classical linear decomposition of binomial coefficients into ordinary powers
(see, e.g., [34, p. 263]).

Proposition 8.12. Let p ∈ N, m ∈ N∗, g ∈ C0 ∩Dp ∩Kp, and set

cm,j =

m∑

i=1

(
i/m
j

)
, for j = 1, . . . ,p.

Then

m∑

j=1

(Σg)

(
j

m

)
= mσ[g] − σ[gm]

+ lim

n→∞

(
m

∫n

1

g(t)dt−

∫mn+1

1

gm(t)dt

+

p∑

j=1

(
(cm,j −mGj)∆

j−1g(n) + Gj∆
j−1gm(mn + 1)

))
,

where the numbers cm,j can be computed using Lemma 8.11 and the func-
tion gm : R+ → R is defined by the equation gm(x) = g( x

m
).
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Proof. We have

m∑

j=1

(Σg)

(
j

m

)
= lim

n→∞

m∑

j=1

fpn[g]

(
j

m

)
= −

m∑

j=1

g

(
j

m

)

+ lim

n→∞



n−1∑

k=1


mg(k) −

m∑

j=1

g

(
j

m
+ k

)
+

p∑

j=1

cm,j∆
j−1g(n)




.

Also,

n−1∑

k=1

m∑

j=1

g

(
j

m
+ k

)
=

n−1∑

k=1

∆k

km∑

j=1

g

(
j

m

)
=

mn∑

j=1

g

(
j

m

)
−

m∑

j=1

g

(
j

m

)
.

Thus, we have

m∑

j=1

(Σg)

(
j

m

)
= lim

n→∞


m

n−1∑

k=1

g(k) −

mn∑

k=1

g

(
k

m

)
+

p∑

j=1

cm,j ∆
j−1g(n)




.

The claimed formula then follows from identity (65).

Example 8.13. Let us apply Theorem 8.9 to the function g(x) = lnx. We have
gm(x) = ln x − lnm and Σgm(x) = ln Γ(x) − (x − 1) lnm. Hence, we retrieve
the following Gauss multiplication formula

m−1∏

j=0

Γ

(
x+ j

m

)
=

Γ(x)

mx−1

m−1∏

j=1

Γ

(
j

m

)
, x > 0,

and it can be proved using Proposition 8.12 that the right-hand product is

m− 1

2 (2π)
m−1

2

.

When m = 2, this identity reduces to Legendre’s duplication formula

Γ
(x
2

)
Γ

(
x+ 1

2

)
=

Γ(x)

2

x−1

√
π , x > 0.

The following result provides an asymptotic expansion of the left-hand sum
of identity (67). This expansion can be used for instance to estimate the integral
(37) (and hence also the asymptotic constant σ[g]), e.g, using Richardson’s
extrapolation method. As a byproduct, this result also provides an asymptotic
expansion of Σg (or even of the difference between Σg and its trend) in terms
of the higher derivatives of g. We omit the proof for it is a straightforward
application of Euler-Maclaurin’s formula (Proposition 6.21) with a = 0, b = 1,
and N = m.
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Proposition 8.14. Let g ∈ C2q∩Dp∩Kp for some p ∈ N and some q ∈ N∗.
Then, for any m ∈ N∗ and any x > 0, we have

1

m

m−1∑

j=0

(Σg)

(
x+

j

m

)
=

∫x+1

x

Σg(t)dt

−
1

2m
g(x) +

q∑

k=1

1

m2k

B
2k

(2k)!
D2k−1g(x) + Rm,q(x) ,

with

|Rm,q(x)| 6
1

m2q

|B
2q|

(2q)!

∫x+1

x

|D2qΣg(t)|dt.

In particular,

Σg(x) = σ[g] +

∫x

1

g(t)dt −
1

2

g(x) +

q∑

k=1

B
2k

(2k)!
D2k−1g(x) + R

1,q(x).

Example 8.15. Taking g(x) = ln x in the second part of Proposition 8.14,
for any q ∈ N∗ we obtain the following asymptotic expansion as x → ∞ (see,
e.g., [76, p. 7])

ln Γ(x) =
1

2

ln(2π) − x+

(
x−

1

2

)
ln x+

q∑

k=1

(−1)k−1 Bk+1

k(k + 1) xk
+O

(
1

xq+1

)
.

Remark 8.16. A similar asymptotic expansion of the left-hand sum in (67)
can be obtained using the general form of GregoryâĂŹs formula (see Propo-
sition 6.20). Setting m = 1 in this expansion, we then retrieve the Gregory
formula-based series expression of Σg given in Proposition 6.8.

8.5 Wallis’s product formula

One of the different versions of Wallis’s formula is given by the following limit
(see, e.g., [32, p. 21])

lim

n→∞

1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)
√
n =

1√
π
. (68)

The following proposition gives an analogue of this formula in the additive
notation for any function g lying in ∪p>0

(C0 ∩Dp ∩Kp).

Proposition 8.17. Let g ∈ C0 ∩ Dp ∩ Kp for some p ∈ N. Let ~g : R+ → R

be the function defined by the equation ~g(x) = 2g(2x). Let also h : N∗ → R

be the sequence defined by the equation

h(n) = σ[~g] − σ[g] +

∫
2

1

(g(2n + t) − g(t))dt

+

p∑

j=1

Gj
(
∆j−1g(2n + 1) − ∆j−1

~g(n + 1)
)
.
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Then we have

lim

n→∞

(
h(n) +

2n∑

k=1

(−1)k−1g(k)

)
= 0. (69)

Proof. It is clear that the function ~g also lies in C0 ∩Dp ∩Kp. We then have

2n∑

k=1

(−1)k−1g(k) =

2n∑

k=1

g(k) −

n∑

k=1

~g(k) = (Σg)(2n + 1) − (Σ~g)(n + 1).

Using (65), we then obtain the claimed formula.

Formula (69) actually holds for infinitely many sequences n 7→ h(n). Indeed,
if it holds for a sequence h(n), then it also holds for the sequence h(n) + n−q

for any q ∈ N∗. Thus, to obtain an elegant analogue of Wallis’s formula, it
is advisable to choose h among the simplest functions. For instance, we could
consider the sequence obtained from the series expansion for h(n) about infinity
after removing all the summands that vanish at infinity.

Example 8.18. If g(x) = ln x, then we have

h(n) = 2n ln

2n+ 2

2n+ 1

−
1

2

ln(2n+ 1) + ln(n + 1) − 1+
1

2

ln(2π)

=
1

2

ln(πn) +O

(
1

n2

)
.

Replacing h(n) with 1

2

ln(πn) in (69) as recommended, we retrieve Wallis’s
formula. If g(x) = Hx is the harmonic number function, then we have

h(n) =
1

2

H
2n+1

+
1

2

ln 2+ ln(n+ 1) −ψ(2n+ 3)

=
1

2

(γ+ lnn) +O

(
1

n

)
.

We then obtain the following analogue of Wallis’s formula

lim

n→∞

(
− lnn + 2

2n∑

k=1

(−1)kHk

)
= γ ,

which provides an alternative definition of Euler’s constant γ. To give an ad-
ditional example, if g(x) = H

(2)
x = ζ(2) − ζ(2, x + 1) is the harmonic number

function of order 2, we obtain the following analogue of Wallis’s formula

lim

n→∞

2n∑

k=1

(−1)kH
(2)

k =
π2

24

.
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8.6 Euler’s reflection formula

Recall that the identity Γ(z)Γ(1 − z) = π 
s
(πx) holds for any z ∈ C \ Z. This
identity, known as Euler’s reflection formula (see, e.g., [76, p. 3]), can be proved
for instance by using the Weierstrassian form of the gamma function.

Motivated by this and similar examples, it is then natural to wonder if an
analogue of Euler’s reflection formula holds for any multiple log Γ -type function,
at least on the interval (0, 1). Unfortunately, we do not have any answer to this
interesting question. Thus, results along this line would be most welcome.

Actually, reflection formulas may take various forms. For instance, for the
digamma function ψ we have

ψ(x) −ψ(1− x) = − π 
ot(πx) , (70)

while for the Barnes G-function, we have

lnG(1+ x) − lnG(1− x) = x ln(2π) −

∫x

0

πt 
ot(πt)dt . (71)

We also observe that the right sides of some reflection formulas are 1-periodic.
Now, given a function g in ∪p>0

(Dp ∩ Kp), the discussion above suggests
searching for an expression for either

Σg(x)± Σg(1− x) or Σg(1 + x)± Σg(1− x)
on the interval (0, 1) by means of the Eulerian form or the Weierstrassian form of
Σg. If the resulting expression is rather simple, then we have found a reflection
formula for Σg on (0, 1) and we may try to find an extension of this formula to a
more general domain by analytic continuation. For instance, using the Eulerian
form of the digamma function

ψ(x) = − γ−
1

x
+

∞∑

k=1

(
1

k
−

1

x+ k

)
,

we obtain

ψ(x) −ψ(1− x) = −
1

x
+

1

1− x
+

∞∑

k=1

(
−

1

x+ k
+

1

1− x+ k

)

and we can show (see, e.g., [15, p. 4] and [34, Eq. (6.88)]) that the latter expres-
sion reduces to the 1-periodic function −π 
ot(πx), thus retrieving the reflection
formula (70) on the interval (0, 1), which can then be extended to the domain
C \ Z.

Regarding reflection formulas involving 1-periodic functions, we can make
the following interesting observation. Let f,g : C \ Z → C be two complex
functions and suppose that ∆f = g on C \ Z. Define the functions h+,h− : C \

Z→ C by h±(z) = f(z)± f(1− z). Then we have ∆zh±(z) = g(z)∓ g(−z) and
hence the function h+ (resp. h−) is 1-periodic if and only if g is even (resp.
odd).
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8.7 Gauss’ digamma theorem

The following formula, due to Gauss, enables one to compute the values of the
digamma function ψ for rational arguments. If a,b ∈ N∗ with a < b, then we
have

ψ
(a
b

)
= −γ− ln(2b)−

π

2


ot

aπ

b
+ 2

⌊(b−1)/2⌋∑

j=1


os

(
2jπ

a

b

)
ln

(
sin

jπ

b

)
(72)

(see, e.g., [45, p. 95] and [76, p. 30]). This formula can be extended to all
integers a,b ∈ N∗ by means of the difference equation ψ(x+ 1) − ψ(x) = 1

x
.

For instance, we have

ψ

(
3

4

)
= − γ+

π

2

− 3 ln 2.

It is natural to wonder if an analogue of formula (72) holds for any multiple
log Γ -type function. Finding an analogue as beautiful as this formula seems to
be hard. However, we have the following partial result.

Proposition 8.19. Let g ∈ D0 ∩K0 and let a,b ∈ N∗ with a < b. Then

Σg
(a
b

)
=

1

b

b−1∑

j=0

(
1−ω

−aj
b

)
Sbj [g],

where

ωb = e
2πi
b and Sbj [g] =

∞∑

k=1

ωjkb g

(
k

b

)
.

Proof. By definition of the map Σ, we have

Σg
(a
b

)
= lim

n→∞

(
n−1∑

k=1

g

(
bk

b

)
−

n−1∑

k=0

g

(
bk + a

b

))

= lim

n→∞

bn−1∑

k=1

(ub(k) − ub(k − a))g

(
k

b

)
,

where ub(k) = 1, if b divides k, and ub(k) = 0, otherwise; that is,

ub(k) =
1

b

b−1∑

j=0

ω
jk
b .

This completes the proof.

Proposition 8.19 provides a first step in the search for an explicit expression
for Σg(a

b
). Depending upon the function g, more computations may be nec-

essary to obtain a useful expression. In this respect, the derivation of formula
(72) by means of Proposition 8.19 can be found in [57, p. 13].
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Example 8.20. Let us apply Proposition 8.19 to the function gs(x) = −x−s,
where s > 1. This function lies in D0 ∩K0 and we have Σgs(x) = ζ(s, x)− ζ(s);
see Example 1.3. Let a,b ∈ N∗ with a < b. For j = 0, . . . ,b− 1, we then have

Sbj [gs] = − bs Lis(ω
j
b),

where Lis(z) is the polylogarithm function. Using Proposition 8.19, we then
obtain

ζ
(
s,
a

b

)
= ζ(s) − bs−1

b−1∑

j=0

(
1−ω

−aj
b

)
Lis(ω

j
b)

= bs−1

b−1∑

j=0

ω−aj
b Lis(ω

j
b).

The inverse conversion formula is simply given by

Lis(ω
j
b) = b−s

b∑

k=1

ωjkb ζ

(
s,
k

b

)
, j = 1, . . . ,b− 1.

8.8 Webster’s functional equation

In the framework of Γ -type functions, Webster [80, Section 8] investigated the
multiplicative version of the functional equation

f(x) + f(x + 1

2

) = h(x), x > 0,

and, more generally, of the functional equation

m−1∑

j=0

f

(
x+

j

m

)
= h(x), x > 0, (73)

for any m ∈ N∗, where h is a given function satisfying certain conditions. On
this subject, we present the following result, a variant of which was established
by Webster [80, Theorem 8.1] in the case when p = 1.

Theorem 8.21 (Webster’s functional equation). Let p ∈ N, m ∈ N∗, and
h ∈ ∪q>0

(Dq∩Kq) be such that ∆h ∈ Dp∩K
p
+ (resp. ∆h ∈ Dp∩K

p
−). Then

there is a unique solution to equation (73) lying in Kp, namely

f(x) = (Σh)

(
x +

1

m

)
− (Σh)(x).

Moreover, this solution lies in K
p
− (resp. K

p
+).
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Proof. Let g : R+ → R and gm : R+ → R be defined by the equations

g(x) = h

(
x+

1

m

)
− h(x) and gm(x) = g

( x
m

)
,

respectively. It is easy to see that gm lies in Dp∩Kp+ (resp. Dp∩Kp−) and hence
so does g. Let f : R+ → R be a solution to equation (73). Then necessarily

g(x) =

m−1∑

j=0

∆jf

(
x+

j

m

)
= ∆f(x).

If f lies in Kp, then by the uniqueness and existence theorems and Proposi-
tion 5.5, there exists c ∈ R such that

f(x) = c+ (Σh)

(
x+

1

m

)
− (Σh)(x). (74)

But the function f specified by (74) satisfies (73) if and only if c = 0.

Theorem 8.21 can be somewhat generalized by considering the functional
equation

m−1∑

j=0

f (x+ aj) = h(x), x > 0,

for some a > 0. Indeed, if we define the function g : R+ → R by the equation
g(x) = h(amx + a) − h(amx), we see that any solution f : R+ → R to the
equation above satisfies g(x) = ∆xf(amx). It then remains to add appropriate
assumptions on function h to ensure the uniqueness of the solution.

Example 8.22. We can show that the unique convex or decreasing solution to
the functional equation

f(x)f(x+ a) xp = 1, x > 0, a > 0, p > 0,

is the function

f(x) =

(
Γ( x

2a
)√

2a Γ(x+a
2a

)

)p
.

This result was established by Thielman [78] (see also [4]). The special case
when p = 1 was previously shown by Mayer [59].

9 Application to some special functions

We now apply our results to certain multiple Γ -type functions and multiple log Γ -
type functions that are known to be well-studied special functions, namely: the
gamma function, the digamma function, the polygamma functions, the Barnes
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G-function, the Hurwitz zeta function and its higher derivatives, the generalized
Stieltjes constants, and the Catalan number function. We also introduce and
investigate the principal indefinite sum of the Hurwitz zeta function. For recent
background on some of these functions, see, e.g., Srivastava and Choi [76].
Further examples will be briefly discussed in Section 10.

All these examples illustrate how powerful are some of our results to produce
formulas and identities methodically. Although many of these formulas and
identities are already known, they had never been derived from such a general
and unified setting.

We begin this section with gathering our most relevant and useful results to
perform a systematic treatment of these special functions.

9.1 A toolbox for multiple log Γ -type functions

Let g ∈ Cr ∩Dp ∩Kp for some p, r ∈ N. Based on the results of this paper, we
can now describe the steps to follow in order to investigate certain properties
of the function Σg. Note that the function g can also be chosen from a given
multiple log Γ -type function F by taking g = ∆F.

ID card. Given a function g ∈ Cr ∩Dp ∩Kp for some p, r ∈ N, we determine
the asymptotic degree of g and, whenever possible, a simple expression for Σg.

Characterization. A characterization of the function Σg as a solution to the dif-
ference equation ∆f = g immediately follows from the uniqueness Theorem 3.1.
This characterization states that if f : R+ → R is a solution to the equation
∆f = g, then it lies in Kp if and only if f = c+ Σg for some c ∈ R.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula. Expressions for σ[g], σ[g], and γ[g] can be obtained from Eqs. (36),
(65), (66), Definition 6.14, and Propositions 6.23 and 6.25. Recall also that γ[g]
is subject to inequality (50) and that σ[g] is defined if and only if g is integrable
at 0. An integral form of γ[g] is given in Proposition 6.24. Finally, the analogue
of Raabe’s formula is identity (37).

Restriction to the natural integers. The restriction of Σg to N∗ is given in
(24). Series representations are given in Propositions 6.8 and 6.18. If degg = 0,
we also have the representation given in (51).

Derivatives of Σg(x) at x = 1. A formula for the derivatives of Σg(x) at
x = 1 is given in Proposition 7.4. If Σg(x) is real analytic at x = 1, then we
can also write the Taylor series expansion of Σg(x + 1) about x = 0. Also, the
exponential generating function for the sequence n 7→ σ[g(n)] is given in (58).

Asymptotic analysis. The asymptotic behavior of Σg is summarized in Theo-
rems 6.2 and 6.5 and Proposition 6.25. The Binet-like function Jp+1[Σg](x) is
given in (38). As shown in Corollary 7.6, the convergence formulas stated in
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Theorems 6.2 and 6.5 can also be differentiated to derive the asymptotic behav-
ior of the derivatives of Σg. In particular, the Binet-like function Jp+1[Σg](x)

and its derivatives vanish at infinity. Further asymptotic results, including the
analogue of Burnside’s formula, are given in Corollary 6.13 and Proposition 6.26.

Eulerian and Weierstrassian forms (series and infinite product representa-
tions). The Eulerian and Weierstrassian forms are given in Theorems 8.1, 8.3,
and 8.5. These series can be integrated and differentiated term by term. Also,
the analogue of Gauss’ limit for the gamma function is given by the definition
of Σg as the limit of the sequence n 7→ fpn[g].

Alternative series expression and Fontana-Mascheroni’s series. These se-
ries representations are given in Proposition 6.8.

Alternative representation. An alternative expression (e.g., an integral rep-
resentation) for Σg can sometimes be obtained from Theorem 7.8 and Corol-
lary 7.10 by first searching for an appropriate solution to the equation ∆ϕ =

g(r).

Gauss’ multiplication formula. A general multiplication formula is given in
both Theorem 8.9 and its companion Proposition 8.12. It should be noted,
however, that this formula leads to an interesting identity only when a rather
simple expression for Σgm, where gm(x) = g( x

m
), is available. In addition, an

asymptotic expansion of Σg is given in Proposition 8.14.

Wallis’s and reflection formulas. These formulas are discussed in Subsec-
tions 8.5 and 8.6.

Webster’s functional equation. This part is described in Theorem 8.21.

9.2 The gamma function

As the gamma function was Webster’s motivating example in his introduction of
the Γ -type functions, it is natural to test our results on this function first. Note
that Webster also mentioned the q-gamma functions as noteworthy examples
of Γ -type functions. Recall that for any 0 < q < 1 the q-gamma function Γq is
defined by the equation

ln Γq(x) = Σx
1− qx

1− q
, x > 0.

The following investigation of the gamma function does not reveal quite new
formulas. However, it clearly demonstrates how our results can be used to carry
out this investigation in a systematic way.

ID card.
g(x) Membership degg Σg(x)

ln x C∞ ∩D1 ∩K∞
0 ln Γ(x)
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Characterization. A characterization of the gamma function is given in Bohr-
Mollerup-Artin’s theorem (see Example 3.2).

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

exp(σ[g]) σ[g] γ[g]√
2π −1+ 1

2

ln(2π) γ[g] = σ[g]

We have the inequality |σ[g]| 6 1

2

ln 2 and the following representations

σ[g] = limn→∞

(
lnn! + n − 1−

(
n + 1

2

)
lnn

)
;

σ[g] =
∑∞
k=1

(
1−

(
k + 1

2

)
ln

(
1+ 1

k

))
;

σ[g] =
∫∞
1

(
1

2

ln(⌊t⌋2 + ⌊t⌋) − ln t
)
dt ;

σ[g] =
∫∞
1

t−⌊t⌋−1/2

t
dt ;

σ[g] =
∫
1

0

ln Γ(t + 1)dt.

Also, Raabe’s formula is given in (64).

Restriction to the natural integers. For any n ∈ N we have Γ(n + 1) = n!.
Gregory’s formula states that for any n ∈ N∗ and any q ∈ N we have

lnn! = 1− n + (n + 1) lnn−

q∑

j=1

Gj
(
∆j−1g(n) − ∆j−1g(1)

)
− Rq,n ,

with
|Rq,n| 6 Gq |∆

qg(n) − ∆qg(1)|.

Moreover, Proposition 6.8 gives the following series representation

lnn! =
1

2

ln(2π) − n + (n + 1) lnn−

∞∑

k=0

Gk+1

∆kg(n) , n ∈ N∗
. (75)

Finally, recall Liu’s formula (see Subsection 6.4)

lnn! =
1

2

ln(2π) +

(
n +

1

2

)
lnn − n +

∫∞

n

1

2

− {t}

t
dt .

Derivatives of Σg(x) at x = 1. We have ψ(1) = (ln Γ)′(1) = −σ[g ′] = −γ and,
for any integer k > 2,

ψk−1

(1) = (ln Γ)(k)(1) = (−1)k(k − 2)!− σ[g(k)]

= (−1)k(k − 1)! ζ(k) ,

and hence
σ[g(k)] = (−1)k(k − 2)! (1− (k − 1)ζ(k)) .
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The Taylor series expansion of ln Γ(x+ 1) about x = 0 is

ln Γ(x+ 1) = − γx+

∞∑

k=2

ζ(k)

k
(−x)k , |x| < 1.

Integrating this equation on (0, 1), we obtain

∞∑

k=2

(−1)k
1

k(k + 1)
ζ(k) =

1

2

γ− 1+
1

2

ln(2π) .

Also, the exponential generating function for the sequence n 7→ σ[g(n)] is

egfσ[g](x) = σ[g] − x+ (x+ 1) ln(x+ 1) − ln Γ(x+ 1).

Asymptotic analysis. For every a > 0, we have

Γ(x + a) ∼ xa Γ(x) ∼
√
2πe−xxx+a−

1

2 as x→ ∞ ;

ln Γ(x+ a) ∼ x ln x− x as x→ ∞ .

We also have the results given in Examples 6.3 and 6.7.
Considering Binet’s function

J(x) = ln Γ(x) − 1

2

ln(2π) + x−
(
x− 1

2

)
ln x ,

for any x > 0 we also have the inequalities

∣∣
ln Γ

(
x+ 1

2

)
− 1

2

ln(2π) + x− x ln x
∣∣ 6 |J(x)| 6 1

2

∣∣
ln

(
1+ 1

x

)∣∣
,

which confirm that Burnside’s formula (43) provides a better approximation of
ln Γ(x) than Stirling’s formula.

Since all the derivatives of J(x) vanish at infinity, for any k ∈ N∗ we get

ψ(x) − ln x → 0 and ψk(x) → 0 as x→ ∞.

Eulerian and Weierstrassian forms. For any x > 0, we have

Γ(x) =
1

x

∞∏

k=1

(1+ 1

k
)x

1+ x
k

=
e−γx

x

∞∏

k=1

e
x
k

1+ x
k

and the corresponding series can be integrated and differentiated term by term
(see Examples 8.2 and 8.6). These identities can also be written as follows

Γ(x) = lim

n→∞

n!nx

x(x+ 1) · · · (x+ n) = lim

n→∞

n! exψ(n)

x(x+ 1) · · · (x+ n) .
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The inequality in Theorem 3.4 gives

(
1+

1

n

)−⌈x⌉ |x−1|

6
Γ(x)

(n−1)!nx

x(x+1) ··· (x+n−1)

6

(
1+

1

n

)⌈x⌉ |x−1|

.

Alternative series expression and Fontana-Mascheroni’s series. Identity
(75) is also valid for a real argument: for any x > 0 we have

ln Γ(x) =
1

2

ln(2π) − x+ x ln x−

∞∑

n=0

Gn+1

∆ng(x)

=
1

2

ln(2π) − x+ x ln x−

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
ln(x + k)

(see Example 6.9). Setting x = 1 in this identity yields the analogue of Fontana-
Mascheroni series:

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
ln(k + 1) = − 1+

1

2

ln(2π).

Alternative representation. Considering the antiderivative of the solution ϕ =

ψ to the equation ∆ϕ = g ′, we obtain

ln Γ(x) = ψ−1

(x) =

∫x

1

ψ(t)dt.

Gauss’ multiplication formula. As described in Example 8.13, for anym ∈ N∗

and any x > 0, we have

m−1∏

j=0

Γ

(
x+ j

m

)
= (2π)

m−1

2 m
1

2

−x Γ(x).

Also, Corollary 8.10 provides the following formula for any x > 0

Γ(mx)
1

m ∼ e−xxxmx as m→N ∞,

which also follows from Stirling’s formula. Moreover, Proposition 8.14 yields
the following asymptotic expansion as x→ ∞. For any m,q ∈ N∗ we have

1

m

m−1∑

j=0

ln Γ

(
x+

j

m

)
=

1

2

ln(2π) + x ln x− x−
1

2m
ln x

+

q∑

k=1

(−1)k−1

Bk+1

k(k + 1)

1

xkmk+1

+O

(
1

xq+1

)
.
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Setting m = 1 in this formula, we obtain (see, e.g., [76, p. 7])

ln Γ(x) =
1

2

ln(2π) − x+

(
x−

1

2

)
ln x+

q∑

k=1

(−1)k−1 Bk+1

k(k + 1) xk
+O

(
1

xq+1

)
.

Thus, we have

ln Γ(x) =
1

2

ln(2π) − x+

(
x−

1

2

)
ln x+

1

12x
−

1

360x3
+O

(
1

x5

)
,

which is consistent with the analogue of Stirling’s formula

− log Γ(x) +
1

2

ln(2π) − x+

(
x−

1

2

)
ln x → 0 as x→ ∞.

Wallis’s product formula. The original Wallis formula is presented in (68).

Reflection formula. For any x ∈ (0, 1), we have Γ(x)Γ(1− x) = π 
s
(πx).

Webster’s functional equation. For any m ∈ N∗, there is a unique solution
f : R+ → R+ to the equation

∏m−1

j=0

f(x + j
m
) = x such that ln f is eventually

monotone, namely

f(x) =
Γ(x+ 1

m
)

Γ(x)
.

More generally, for any m ∈ N∗ and any a > 0, there is a unique solution
f : R+ → R+ to the equation

∏m−1

j=0

f(x + aj) = x such that ln f is eventually
monotone, namely

f(x) = (am)
1

m
Γ( x
am

+ 1

m
)

Γ( x
am

)
.

9.3 The digamma and harmonic number functions

Let us now see what we get if we apply our results to the digamma function
x 7→ ψ(x) and the harmonic number function x 7→ Hx. Recall first that the
identity Hx−1

= ψ(x) + γ holds for any x > 0.

ID card.
g(x) Membership degg Σg(x)

1/x C∞ ∩D0 ∩K∞ −1 Hx−1

= ψ(x) + γ

Characterization. The digamma function can be characterized as follows:

All eventually monotone solutions f : R+ → R to the equation
f(x+1)− f(x) = 1/x are of the form f(x) = c+ψ(x), where c ∈ R.
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Interestingly, this characterization enables us to establish almost instantly the
following identities for every x > 0,

Hx−1

= ψ(x) + γ =

∫
1

0

1− tx−1

1− t
dt .

Indeed, each of the three expressions above vanishes at x = 1 and is an eventually
increasing solution to the equation f(x + 1) − f(x) = 1/x. Hence, they must
coincide on R+. We can prove the following Gauss representation (see, e.g., [76,
p. 26]) similarly

ψ(x) =

∫∞

0

(
e−t

t
−

e−xt

1− e−1

)
dt , x > 0.

Kairies [44] obtained a variant of the characterization of the digamma function
above by replacing the eventual monotonicity with the convexity property. This
variant is also immediate from our results since g also lies in D1 ∩K1.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

σ[g] σ[g] γ[g]

∞ γ γ

We have the following representations

γ = lim

n→∞

(
n∑

k=1

1

k
− lnn

)
=

∞∑

k=1

(
1

k
− ln

(
1+

1

k

))
;

γ =

∫∞

1

(
1

⌊t⌋ −
1

t

)
dt =

∫
1

0

Ht dt.

Also, the analogue of Raabe’s formula is
∫x+1

x

ψ(t)dt = ln x , x > 0.

We also have for any q ∈ N and any x > 0

Jq+1[Σg](x) = ψ(x) − ln x+

q∑

j=1

|Gj|B(x, j),

where (x,y) 7→ B(x,y) is the beta function.

Restriction to the natural integers. For any n ∈ N we have Hn =
∑n
k=1

1

k
.

Gregory’s formula states that for any n ∈ N∗ and any q ∈ N we have

Hn−1

= lnn −

q∑

j=1

|Gj|

(
B(n, j) −

1

j

)
− Rq,n ,

82



with

|Rq,n| 6 Gq

∣∣∣∣B(n,q + 1) −
1

q

∣∣∣∣ .

Derivatives of Σg(x) at x = 1. We have ψ(1) = −γ and, for any k ∈ N∗,

ψk(1) = (−1)k−1(k − 1)!− σ[g(k)] = (−1)k−1k! ζ(k+ 1)

and hence
σ[g(k)] = (−1)k−1(k − 1)! (1− k ζ(k+ 1)) .

The Taylor series expansion of ψ(x+ 1) about x = 0 is

Hx = ψ(x+ 1) + γ =

∞∑

k=1

(−1)k−1ζ(k+ 1) xk , |x| < 1.

Integrating this equation on (0, 1), we retrieve Euler’s series representation of γ

γ =

∞∑

k=2

(−1)k
ζ(k)

k
.

Also, the exponential generating function for the sequence n 7→ σ[g(n)] is

egfσ[g](x) = ln(x+ 1) −ψ(x+ 1).

Asymptotic analysis. For any a > 0 and any x > 0, we have

|ψ(x+ a) −ψ(x)| 6
⌈a⌉
x

and |ψ(x) − ln x| 6
1

x
.

Considering the value p = 1 in Theorem 6.5, we see that the latter inequality
can be refined into

−
x+ 2

2x(x+ 1)
6 ψ(x) − ln x 6 −

1

2(x+ 1)
.

We also have ψ(x + a) − ψ(x) → 0, ψ(x) − ln x → 0, and ψ(x + a) ∼ ln x as
x→ ∞. Since all the derivatives of J1[Σg] vanish at infinity, so do the functions
ψk for any k ∈ N∗. Finally, for any x > 0 we also have the inequalities

∣∣ψ
(
x+ 1

2

)
− ln x

∣∣ 6 |J1[Σg](x)| 6
1

x
,

which shows that the analogue of Burnside’s formula

ψ(x) − ln(x − 1

2

) → 0 , as x→ ∞,

provides a better approximation of ψ than generalized Stirling’s formula.
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Eulerian and Weierstrassian forms. For any x > 0, we have

ψ(x) = −γ−
1

x
+

∞∑

k=1

(
1

k
−

1

x+ k

)

= −
1

x
+

∞∑

k=1

(
ln

(
1+

1

k

)
−

1

x + k

)

and these series can be integrated and differentiated term by term. In particular,
we retrieve the product form of eψ(x) obtained in Example 8.2. Also, the
inequality in Theorem 3.4 gives

∣∣∣∣∣ψ(x) + γ+
1

x
−

n−1∑

k=1

(
1

k
−

1

x+ k

)∣∣∣∣∣ 6
⌈x⌉
n

, x > 0, n ∈ N∗
.

Alternative series expression and Fontana-Mascheroni’s series. Proposi-
tion 6.8 yields the following series representation

ψ(x) = ln x−

∞∑

n=1

|Gn|B(x,n) = ln x−

∞∑

n=1

|Gn|

n
(
x+n−1

n

)
, x > 0.

Setting x = 1 in this identity, we retrieve Fontana-Mascheroni series:

γ =

∞∑

n=1

|Gn|

n
.

Setting x = 2, we get

1− ln 2 =

∞∑

n=1

|Gn|

n + 1

,

which is consistent with the last identity given in Example 6.11.

Alternative representation. We have Hx−1

= Hx −
1

x
= ψ(x) + γ.

Gauss’ multiplication formula. For any m ∈ N∗ and any x > 0, we have (see,
e.g., [15, p. 5])

m−1∑

j=0

ψ

(
x+ j

m

)
= m(ψ(x) − lnm)

and
m−1∑

j=0

H(x+j)/m = m(Hx+m−1

− lnm) .

Also, Corollary 8.10 provides the following formula for any x > 0

lim

m→∞
(Hmx−1

−Hm−1

) = ln x.
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Moreover, Proposition 8.14 yields the following asymptotic expansion as x→ ∞.
For any m,q ∈ N∗ we have

1

m

m−1∑

j=0

ψ

(
x+

j

m

)
= ln x+

q∑

k=1

(−1)k−1 Bk

k (mx)k
+O

(
1

xq+1

)
.

Setting m = 1 in this formula, we obtain (see, e.g., [76, p. 36])

ψ(x) = ln x+

q∑

k=1

(−1)k−1 Bk

k xk
+O

(
1

xq+1

)
.

Wallis’s product formula. The analogue of Wallis’s formula is the classical
identity

∞∑

k=1

(−1)k−1

1

k
= ln 2 .

Interestingly, the analogue of Wallis’s formula for the function g(x) = ψ(x) gives

lim

n→∞

(
− ln(4n) + 2

2n∑

k=1

(−1)kψ(k)

)
= γ ,

which provides yet another formula to define Euler’s constant γ. This latter
formula is obtained by first considering the duplication formula 2ψ(2x) = ψ(x)+

ψ(x+ 1

2

) + 2 ln 2.

Reflection formula. For any x ∈ (0, 1), we have ψ(x)−ψ(1− x) = −π 
ot(πx).

Webster’s functional equation. For any m ∈ N∗, there is a unique eventually
monotone solution f : R+ → R to the equation

∑m−1

j=0

f(x+ j
m
) = 1

x
, namely

f(x) = ψ

(
x +

1

m

)
−ψ(x) .

More generally, for any m ∈ N∗ and any a > 0, there is a unique eventually
monotone solution f : R+ → R to the equation

∑m−1

j=0

f(x+ aj) = 1

x
, namely

f(x) =
1

am
ψ

(
x

am
+

1

m

)
−

1

am
ψ
( x

am

)
.

Example 9.1. Suppose we wish to prove that ln Γ(x) ∼ xψ(x) − x as x → ∞.
Considering the function g(x) = ψ(x) + 1/x, we have degg = 0 and Σg(x) =

xψ(x) − x+ 1+ γ. Then, the generalized Stirling formula yields

(xψ(x) − x+ 1) − ln Γ(x) − ln x + 1

2

ψ(x) → 1

2

− 1

2

ln(2π) as x→ ∞.
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Dividing through by ln Γ(x), we obtain the claim asymptotic equivalence. We
can also derive the equivalence

ln Γ(x) ∼ (x − 1

2

)ψ(x) − x as x→ ∞

from taking the derivative of the generalized Stirling formula applied to g(x) =
ln Γ(x). Finally, we also have the equivalence

ln Γ(x) ∼ x lnx− x as x→ ∞,

which is nothing other than Proposition 6.26 with g(x) = ln x.

9.4 The polygamma functions

We now investigate the polygamma functions ψν (ν ∈ Z). Our results will
prove to be particularly useful when ν < −1 since, in this case, the function ψν
has a strictly positive asymptotic degree.

For any ν ∈ Z, we set gν = ∆ψν; hence g ′
ν = gν+1

and ψ ′
ν = ψν+1

. We
then have Σgν(x) = ψν(x)−ψν(1). (The cases ν = 0 and ν = −1 correspond to
the functions ψ and ln Γ , respectively, and have been already considered above.)
Let us deal with the cases ν ∈ N∗ and ν ∈ Z \ N separately. In the latter case,
we often consider the value ν = −2 for simplicity and brevity.

9.4.1 Case ν ∈ N∗

ID card.

gν(x) Membership deggν Σgν(x)

(−1)νν! x−ν−1 C∞ ∩ D̃−1

N
∩K∞ −1 ψν(x) −ψν(1)

Recall that ψν(1) = (−1)ν+1ν! ζ(ν+ 1) (cf. derivatives of ψ(x) at x = 1).

Characterization. The function ψν can be characterized as follows:

All eventually monotone solutions f : R+ → R to the equation
f(x + 1) − f(x) = gν(x) are of the form f(x) = cν + ψν(x), where
cν ∈ R.

This characterization enables us to prove almost immediately the following iden-
tity

ψν(x) = (−1)ν−1

∫∞

0

tν e−xt

1− e−1

dt , x > 0.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

σ[gν] σ[gν] γ[gν]

∞ gν−1

(1) −ψν(1) γ[gν] = σ[gν]
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We have the inequality |σ[gν]| 6 ν! and the following representations

σ[gν] = limn→∞ (
∑n
k=1

gν(k) + gν−1

(1)) ;

σ[gν] =
∑∞
k=1

(gν(k) + gν−1

(k) − gν−1

(k + 1)) ;

σ[gν] = (−1)νν!
∫∞
1

(
⌊t⌋−ν−1 − t−ν−1

)
dt ;

σ[gν] =
∫
1

0

(ψν(t+ 1) − ψν(1))dt.

Also, the analogue of Raabe’s formula is

∫x+1

x

ψν(t)dt = gν−1

(x) , x > 0.

We also have for any q ∈ N and any x > 0

Jq+1[Σgν](x) = ψν(x) − gν−1

(x) +

q∑

j=1

Gj∆
j−1gν(x).

Restriction to the natural integers. For any n ∈ N∗, we have

ψν(n) −ψν(1) = (−1)νν!

n−1∑

k=1

k−ν−1

.

Gregory’s formula states that for any n ∈ N∗ and any q ∈ N we have

n−1∑

k=1

gν(k) = gν−1

(n) − gν−1

(1)

−

q∑

j=1

Gj
(
∆j−1gν(n) − ∆

j−1gν(1)
)
− Rq,n ,

with
|Rq,n| 6 Gq |∆

qgν(n) − ∆
qgν(1)| .

Derivatives of Σgν(x) at x = 1. We have ψν(1) = (−1)ν+1ν! ζ(ν+ 1) and, for
any k ∈ N∗,

ψν+k(1) = gν+k−1

(1) − σ[g(k)ν ] = (−1)ν+k−1(ν+ k)! ζ(ν + k + 1)

and hence

σ[g(k)ν ] = gν+k−1

(1) + (−1)ν+k(ν+ k)! ζ(ν + k + 1) .

The exponential generating function for the sequence n 7→ σ[g
(n)
ν ] is

egfσ[gν](x) = gν−1

(x + 1) −ψν(x+ 1).
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Asymptotic analysis. For any a > 0 and any x > 0, we have

|ψν(x+ a) −ψν(x)| 6 ⌈a⌉ |gν(x)| and |ψν(x) − gν−1

(x)| 6 |gν(x)| .

Considering the value p = 1 in Theorem 6.5, we see that the latter inequality
can be refined into

∣∣∣∣ψν(x) − gν−1

(x) +
1

2

gν(x)

∣∣∣∣ 6
1

2

|∆gν(x)|.

We also have, ψν(x) → 0 and ψν(x + a) ∼ gν−1

(x) as x→ ∞. Finally, for any
x > 0 we have the inequalities

∣∣ψν
(
x+ 1

2

)
− gν−1

(x)
∣∣ 6 |J1[Σgν](x)| 6 |gν(x)| ,

which shows that the analogue of Burnside’s formula

ψν(x) − gν−1

(x− 1

2

) → 0 , as x→ ∞,

provides a better approximation of ψν than generalized Stirling’s formula.

Eulerian and Weierstrassian forms. For any x > 0, we have

ψν(x) = −

∞∑

k=0

gν(x + k).

and this series can be integrated and differentiated term by term.

Alternative series expression and Fontana-Mascheroni’s series. Proposi-
tion 6.8 gives the following series representation: for any x > 0 we have

ψν(x) = gν−1

(x) −

∞∑

n=0

Gn+1

∆ngν(x)

= gν−1

(x) −

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
gν(x+ k) .

Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series.
For instance, taking ν = 1, we derive the identity

∞∑

n=1

|Gn|
Hn

n
=
π2

6

− 1 .

Taking ν = 2, we obtain

∞∑

n=1

|Gn|
ψ

1

(n + 1) −H2

n

n
= 1− 2 ζ(3) + γ

π2

6

.
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Gauss’ multiplication formula. Differentiating the multiplication formula for
ψ, we obtain the following formula. For any m ∈ N∗ and any x > 0, we have

m−1∑

j=0

ψν

(
x+ j

m

)
= mν+1ψν(x).

Also, Corollary 8.10 provides the following limit

lim

m→∞
mνψν(mx) = gν−1

(x), x > 0.

Moreover, Proposition 8.14 yields the following asymptotic expansion as x→ ∞.
For any m,q ∈ N∗ we have

1

m

m−1∑

j=0

ψν

(
x+

j

m

)
=

q∑

k=0

Bk

mk k!
gν+k−1

(x) +O(gν+q(x)) .

Setting m = 1 in this formula, we obtain

ψν(x) =

q∑

k=0

Bk

k!
gν+k−1

(x) +O(gν+q(x)) .

Wallis’s product formula. We have

∞∑

k=1

(−1)k−1gν(k) = (−1)ν(1− 2

−ν)ν! ζ(ν+ 1),

that is,
∞∑

k=1

(−1)k−1gν(k) = (−1)ν ν! η(ν+ 1),

where η is Dirichlet’s eta function.

Reflection formula. Differentiating the reflection formula for ψ, we obtain the
following formula. For any x ∈ (0, 1), we have

ψν(x) − (−1)νψν(1 − x) = − πDν 
ot(πx).

Webster’s functional equation. For any m ∈ N∗, there is a unique eventually
monotone solution f : R+ → R to the equation

∑m−1

j=0

f(x+ j
m
) = gν(x), namely

f(x) = ψν

(
x +

1

m

)
−ψν(x) .
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9.4.2 Case ν ∈ Z \ N

ID card.

gν(x) Membership deggν Σgν(x)

see below C∞ ∩D−ν ∩K∞ −ν− 1 ψν(x) −ψν(1)

Using (37), we obtain the following recursive way to compute gν. For any
integer ν 6 −1,

gν−1

(x) =

∫x+1

x

ψν(t)dt =

∫x

0

gν(t)dt+

∫
1

0

ψν(t)dt

=

∫x

0

gν(t)dt+ψν−1

(1).

Solving this recurrence equation, we obtain g−1

(x) = ln x and for any integer
ν 6 −2,

gν(x) =

∫x

0

(x− t)−ν−2

(−ν− 2)!
ln t dt+

−ν−2∑

j=0

ψν+j(1)
xj

j!
.

For instance, g−2

(x) = x lnx− x + 1

2

ln(2π) and

g−3

(x) =
1

2

x2 ln x −
3

4

x2 +

(
1

2

x+
1

4

)
ln(2π) + lnA.

Characterization. The function ψν can be characterized as follows:

All solutions f : R+ → R to the equation f(x + 1) − f(x) = gν(x)

that lie in K−ν are of the form f(x) = c+ ψν(x), where c ∈ R.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

σ[gν] σ[gν] γ[gν]

ψν−1

(1) −ψν(1) gν−1

(1) −ψν(1) σ[gν] −
∑−ν
j=1

Gj∆
j−1gν(1)

σ[g−2

] σ[g−2

] γ[g−2

]

lnA− 1

4

ln(2π) lnA + 1

4

ln(2π) − 3

4

lnA + 1

6

ln 2− 1

3

We have

|γ[gν]| 6 G−ν |∆
−νgν(1)| ,

γ[gν] =

∫∞

1




−ν∑

j=0

Gj∆
jgν(⌊t⌋) − gν(t)


dt ,

σ[gν] =

∫
1

0

(ψν(t + 1) −ψν(1))dt ,
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and

σ[gν] = lim

n→∞



n−1∑

k=1

gν(k) + gν−1

(1) − gν−1

(n) +

−ν∑

j=1

Gj∆
j−1gν(n)




,

σ[gν] =

−ν∑

j=1

Gj∆
j−1gν(1)

+

∞∑

k=1




−ν∑

j=0

Gj∆
jgν(k) + gν−1

(k) − gν−1

(k + 1)




.

Also, the analogue of Raabe’s formula is

∫x+1

x

ψν(t)dt = gν−1

(x) , x > 0.

We also have for any q ∈ N and any x > 0

Jq+1[Σgν](x) = ψν(x) − gν−1

(x) +

q∑

j=1

Gj∆
j−1gν(x).

For instance,

J3[Σg−2

](x) = ψ−2

(x) −
1

12

(x + 1) ln(x+ 1) +
1

12

(3x− 1)2

−
1

12

x(6x− 7) ln x−
1

2

x ln(2π) − lnA.

Derivatives of Σgν(x) at x = 1. For any k ∈ N∗ we have

ψk−2

(1) = (Σg−2

)(k)(1) = g
(k−1)
−2

(1) − σ[g
(k)
−2

].

We have σ[g ′
−2

] = σ[ln] = −1+ 1

2

ln(2π), σ[g ′′
−2

] = γ, and for any integer k > 3,

σ[g
(k)
−2

] = (−1)k−1(k − 3)!(1 − (k − 2) ζ(k− 1)).

The exponential generating function for the sequence n 7→ σ[g
(n)
ν ] is

egfσ[gν](x) = gν−1

(x + 1) −ψν(x+ 1).

Integrating this equation for ν = −2 on (0, 1) (i.e., we use (60)), we obtain after
some algebra

∞∑

k=2

(−1)k
ζ(k)

k(k + 1)(k + 2)
=

1

6

γ−
3

4

+
1

4

ln(2π) + lnA .
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Asymptotic analysis. For every a > 0, we have

ψν(x+ a) −ψν(x) −

−ν−1∑

j=0

(
a
j+1

)
∆jgν(x) → 0 as x→ ∞ ;

gν(x+ a) −

−ν−1∑

j=0

(
a
j

)
∆jgν(x) → 0 as x→ ∞.

For instance, when ν = −2 the first limit reduces to
∫x+a

x

ln Γ(t)dt − a ln

(√
2π
xx

ex

)
−
(
a
2

)
ln

(
(x + 1)x+1

e xx

)
→ 0 as x→ ∞,

with equality if a ∈ {0, 1, 2}. Also, for any x > 0, we have
∣∣J−ν+1[Σgν](x)

∣∣ 6 G−ν

∣∣∆−νgν(x)
∣∣

and

ψν(x) − gν−1

(x) +

−ν∑

j=1

Gj∆
j−1gν(x) → 0 as x→ ∞;

∆gν−1

(x) −

−ν−1∑

j=0

Gj∆
jgν(x) → 0 as x→ ∞.

Also,
ψν(x+ a) ∼ gν−1

(x) as x→ ∞.

For instance, if ν = −2, then the first limit above reduces to

ψ−2

(x) −
1

12

(x+ 1) ln(x + 1) +
1

12

(3x− 1)2

−
1

12

x(6x− 7) lnx−
1

2

x ln(2π) → lnA .

Eulerian and Weierstrassian forms. For any x > 0, we have

ψν(x) −ψν(1) = −gν(x) +

−ν−1∑

j=0

(
x
j+1

)
∆jgν(1)

+

∞∑

k=1



−gν(x+ k) +

−ν∑

j=0

(
x
j

)
∆jgν(k)





and

ψν(x) − ψν(1) = −gν(x) +

−ν−2∑

j=0

(
x
j+1

)
∆jgν(1) − γ

(
x
−ν

)

+

∞∑

k=1



−gν(x + k) +

−ν−1∑

j=0

(
x
j

)
∆jgν(k) +

(
x
−ν

)
1

k




.
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When ν = −2, these identities reduce to

ψ−2

(x) = ln

(
(2π)

1

2

x( 4
e
)(

x
2

)

xx

∞∏

k=1

(1+ 2/k)(k+2)(x
2

)

(1+ x/k)x+k (1 + 1/k)(k+1)x(x−2)

)

and

ψ−2

(x) = ln

(
(2π)

1

2

xe−γ(
x
2

)

xx

∞∏

k=1

e
1

k(
x
2

) (1+ 1/k)(k+1)x

(1 + x/k)x+k

)
.

Integrating both the Eulerian and Weierstrassian forms of ψ−1

(x) = ln Γ(x), we
obtain the following representations (which are simpler than the previous ones
since less terms are involved; see also Example 8.2)

ψ−2

(x) = ln

(
ex

xx

∞∏

k=1

ex(1+ 1/k)x
2/2

(1+ x/k)x+k

)

= ln

(
e−γx

2/2 e
x

xx

∞∏

k=1

ex+x
2/(2k)

(1+ x/k)x+k

)
.

We also have the analogue of Gauss’ limit for the gamma function

ψ−2

(x) = x− x ln x+ lim

n→∞

(
n−1∑

k=1

(
x− (x + k) ln

(
1+

x

k

))
+
x2

2

lnn

)
.

Alternative series expression and Fontana-Mascheroni’s series. Here the
formulas are the same as in the case when ν ∈ N∗.

Gauss’ multiplication formula. For any m ∈ N∗ and any x > 0, we have

m−1∑

j=0

ψν

(
x+ j

m

)
=

m−1∑

j=1

ψν

(
j

m

)
+ ψν(1) + Σx gν

( x
m

)
.

Let us expand this formula in the case when ν = −2. First, we have

g−2

( x
m

)
=

1

m
g−2

(x) − x
lnm

m
+
m − 1

m
ψ−2

(1)

and hence

Σx g−2

( x
m

)
=

1

m
ψ−2

(x) −
(
x
2

)
lnm

m
+

(
m − 1

m
x− 1

)
ψ−2

(1).

Also, we have

m−1∑

j=1

ψ−2

(
j

m

)
=

(
1−

1

m

)
lnA −

lnm

12m
+ (m − 1) ln((2π)

1

4A).

93



Thus, we obtain the following multiplication formula for ψ−2

m−1∑

j=0

ψ−2

(
x+ j

m

)
=

(
1−

1

m

)
ln((2π)

x
2A) + (m − 1) ln((2π)

1

4A)

−
1

12m
(6x2 − 6x+ 1) lnm +

1

m
ψ−2

(x).

This formula can also be derived by integrating the multiplication formula ob-
tained from g−1

(x) = ln x. Taking m = 2, we obtain the following analogue of
Legendre’s duplication formula

ψ−2

(x
2

)
+ψ−2

(
x+ 1

2

)
=

1

2

ln((2π)
x
2A) + ln((2π)

1

4A)

−
1

24

(6x2 − 6x+ 1) ln 2+
1

2

ψ−2

(x).

Setting x = 0 in this latter identity, we obtain

ψ−2

(
1

2

)
=

5

24

ln 2+
3

2

lnA +
1

4

lnπ .

We also observe that Proposition 8.14 yields the same asymptotic expansions
as in the case when ν ∈ N∗.

Wallis’s product formula. We have for instance

lim

n→∞

(
h(n) +

2n∑

k=1

(−1)k−1g−2

(k)

)
=

1

12

ln 2− 3 lnA.

where h(n) =
(
n + 1

4

)
lnn − n(1 − ln 2). Incidentally, the analogue of Wallis’s

formula for the function g(x) = ψ−2

(x) is

lim

n→∞

(
h(n) +

2n∑

k=1

(−1)k−1ψ−2

(k)

)
= lnA−

1

12

ln 2 ,

where h(n) = n2

ln(2n) − 3

2

n2 + 1

2

n ln(2π) − 1

12

lnn. This latter formula is a
little harder to obtain than the former one; it requires the computation of both
functions Σψ−2

(x) and 2Σxψ−2

(2x) using Corollary 7.10 with r = 2. That is,

Σψ−2

(x) = −
1

12

x(x− 1)(2x− 1) +
1

4

x(x+ 1) ln(2π)

+ 2x lnA + (x− 1)ψ−2

(x) − 2ψ−3

(x)

and

2Σxψ−2

(2x) = −
1

6

x(2x− 1)(4x− 1) + (4x+ 3) lnA

+
1

12

(−24x2 + 48x+ 5) ln 2− 4ψ−2

(x)

+ 2xψ−2

(2x) − 2ψ−2

(
x+

1

2

)
− 2ψ−3

(2x).
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Reflection formula. A reflection formula can be obtained by integrating the
identity ln Γ(x)+ ln Γ(1− x) = lnπ− ln sin(πx). For example, for any x ∈ (0, 1),
we have

ψ−2

(x) −ψ−2

(1− x) = x lnπ−
1

2

ln(2π) −

∫x

0

ln sin(πt)dt.

In particular, we obtain
∫
1/2

0

ln sin(πt)dt = − 1

2

ln 2.

Webster’s functional equation. For any m ∈ N∗, there is a unique solution
f : R+ → R to the equation

∑m−1

j=0

f(x+ j
m
) = gν(x) that lies in K−ν−1, namely

f(x) = ψν

(
x +

1

m

)
−ψν(x) .

9.5 The Barnes G-function

The Barnes function G : R+ → R+ is the function G = 1/Γ
2

(see Subsection 5.2).
Hence, it can be defined by the equation lnG = Σ ln Γ = Σψ−1

.

ID card.
g(x) Membership degg Σg(x)

ln Γ(x) C∞ ∩D2 ∩K∞
1 lnG(x)

Characterization. The function G can be characterized as follows:

All solutions f : R+ → R+ to the equation f(x + 1) = Γ(x)f(x) for
which ln f lies in K2 are of the form f(x) = cG(x), where c > 0.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

exp(σ[g]) σ[g] γ[g]

e1/12(2π)−1/4A−2

1

12

+ 1

4

ln(2π) − 2 lnA γ[g] = σ[g]

We have the inequality |γ[g]| 6 5

12

ln 2 as well as the following representations

σ[g] =
1

2

ln(2π) + lim

n→∞

(
n∑

k=1

ln Γ(k) −ψ−2

(n) −
1

2

ln Γ(n) −
1

12

lnn

)
;

σ[g] =

∞∑

k=1

ln


 Γ(k) ek

√
k

(
1+ 1

k

) 1

12 kk
√
2π




;

σ[g] =

∫∞

1

(
ln

Γ(⌊t⌋)
Γ(t)

+ ln

⌊t⌋7/12
⌊t+ 1⌋1/12

)
dt ;

σ[g] =

∫
1

0

lnG(t+ 1)dt.
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Also, the analogue of Raabe’s formula is
∫x+1

x

lnG(t)dt = σ[g] +ψ−2

(x) , x > 0.

We also have for any q ∈ N and any x > 0

Jq+1[Σg](x) = lnG(x) −ψ−2

(x) +
1

4

ln(2π) −
1

12

+ 2 lnA

+

q∑

j=1

Gj∆
j−1g(x).

For instance,

J3[Σg](x) = lnG(x) −ψ−2

(x) +
1

4

ln(2π) −
1

12

+ 2 lnA+
1

2

ln Γ(x) −
1

12

ln x.

Note that the functions lnG(x) and ψ−2

(x) are strongly related (see (76) below)
in the sense that we can easily express one of it in terms of the other.

Restriction to the natural integers. For any n ∈ N∗ we have G(n) =
∏n−2

k=0

k!.

Derivatives of Σg(x) at x = 1. For any k ∈ N∗ we have

(Σg)(k)(1) = g(k−1)(1) − σ[g(k)].

We also have σ[g ′] = σ[ψ] = 1

2

(1 − ln(2π)), σ[g ′′] = σ[ψ
1

] = 1 and for any
integer k > 3,

σ[g(k)] = (−1)k(k − 2)(k − 2)! ζ(k− 1).

The Taylor series expansion of lnG(x+ 1) about x = 0 is (see, e.g., [76, p. 311])

lnG(x+ 1) =
1

2

(
ln(2π) − 1

) x−
γ+ 1

2

x2 −

∞∑

k=2

ζ(k)

k + 1

(−x)k+1

, |x| < 1.

Integrating this equation on (0, 1), we obtain

∞∑

k=2

(−1)k
ζ(k)

(k + 1)(k + 2)
=

1

2

+
1

6

γ− 2 lnA.

Also, the exponential generating functions for the sequences n 7→ σ[g(n)] and
n 7→ γ[g(n)] are

egfσ[g](x) = lnG(x+ 1) − ψ−2

(x + 1) +
1

4

ln(2π) −
1

12

+ 2 lnA

and
egfγ[g](x) = egfσ[g](x) +

1

2

γ x,
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respectively. Integrating the first of these equations on (0, 1) (i.e., we use (60)),
we obtain after some algebra

∞∑

k=2

(−1)k
k− 1

k(k + 1)(k + 2)
ζ(k) =

5

4

− 3 lnA−
1

4

ln(2π) .

Asymptotic analysis. For any x > 0 and any a > 0 we have

(
1+

1

x

)−⌈a⌉|(a−1

2

)|
6

G(x+ a)

G(x) Γ(x)a x(
a
2

)
6

(
1+

1

x

)⌈a⌉|(a−1

2

)|
,

with equality if a ∈ {1, 2}. Thus,

G(x+ a) ∼ G(x) Γ(x)a x(
a
2

) as x→ ∞,

In view of Wendel’s inequalities for the gamma function (see Example 6.3),
we conjecture that the inequalities above can be simplified and tightened by
replacing the extreme functions by (1+ a/x)−|(

a−1

2

)| and (1+ a/x)|(
a−1

2

)|.
We also have

|J3[Σg](x)| 6
5

12

ln

(
1+ 1

x

)
, x > 0,

that is, in the multiplicative notation,

(
1+

1

x

)−5/12

6
G(x) Γ(x)1/2

eψ−2

(x)+σ[g] x1/12
6

(
1+

1

x

)
5/12

, x > 0.

Thus, we obtain the following analogues of Stirling’s formula

G(x) ∼ exp(ψ−2

(x) + σ[g]) Γ(x)−
1

2 x
1

12 as x→ ∞;

G(x+ 1) ∼ exp(ψ−2

(x) + σ[g]) Γ(x)
1

2 x
1

12 as x→ ∞.

Using the definition of G in terms of ψ−2

(x) (see (76) below) as well as the
Stirling formula for the gamma function, we obtain the following simpler form

G(x+ 1) ∼ A−1 x
1

2

x2− 1

12 (2π)
x
2 e−

3

4

x2+ 1

12 as x→ ∞.

We also have, for any a > 0

lnG(x+ a) ∼ ψ−2

(x) as x→ ∞.

Finally, recall that all the derivatives of J3[Σg](x) vanish at infinity. For instance,
the first derivative yields the convergence result

ln Γ(x) −

(
x−

1

2

)
ψ(x) + x → 1

2

(1+ ln(2π)) as x→ ∞
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while the second derivative gives xψ
1

(x) → 0 as x→ ∞.

Eulerian and Weierstrassian forms. For any x > 0, we have

G(x) =
1

Γ(x)

∞∏

k=1

Γ(k)

Γ(x+ k)
kx(1+ 1/k)(

x
2

)

=
e(−γ−1)(x

2

)

Γ(x)

∞∏

k=1

Γ(k)

Γ(x + k)
kxeψ1

(k)(x
2

)
.

Also, the analogue of Gauss’ limit for the gamma function is

G(x) = lim

n→∞

Γ(1)Γ(2) · · · Γ(n)
Γ(x)Γ(x+ 1) · · · Γ(x+ n) n!

x n(
x
2

)
.

Alternative series expression and Fontana-Mascheroni’s series. Using Propo-
sition 6.8, we also derive the following product representation: for any x > 0

we have

lnG(x) = ψ−2

(x) + σ[g] −
1

2

ln Γ(x) −

∞∑

n=0

Gn+2

∆n+1g(x)

= ψ−2

(x) + σ[g] −
1

2

ln Γ(x) −

∞∑

n=0

|Gn+2

|

n∑

k=0

(−1)k
(
n
k

)
ln(x+ k).

In the multiplicative notation:

G(x) = exp(ψ−2

(x) + σ[g]) Γ(x)−
1

2 x
1

12

(
x+ 1

x

)− 1

24

×
(
(x+ 2)x

(x+ 1)2

) 19

720

(
(x + 3)(x+ 1)3

(x + 2)3x

)− 3

160

· · ·

Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series:

σ[g] = −
1

2

ln(2π) +

∞∑

n=0

|Gn+2

|

n∑

k=0

(−1)k
(
n
k

)
ln(k+ 1).

Alternative representation. Considering the antiderivative of the solution

ϕ(x) = (x− 1)ψ(x) − x+ 1

2

+ 1

2

ln(2π)

to the equation ∆ϕ = g ′ = ψ, we obtain

lnG(x) = −
(
x
2

)
+ (x − 1) ln Γ(x) + 1

2

ln(2π) x−ψ−2

(x). (76)

This identity can also be proved directly using the characterization result; in-
deed, both sides vanish at x = 1 and are eventually 2-convex solutions to the
equation f(x+ 1) − f(x) = ln Γ(x). Hence, they must coincide on R+.
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Gauss’ multiplication formula. For any m ∈ N∗ and any x > 0, we have

m−1∏

j=0

G

(
x+ j

m

)
= eΣx lnΓ( x

m
)

m−1∏

j=1

G

(
j

m

)
.

For instance, setting m = 2 in this identity, we obtain

lnG

(
x+ 1

2

)
+ lnG

(x
2

)
− lnG

(
1

2

)
= Σx ln Γ

(x
2

)
.

However, to make this multiplication formula interesting and usable, we need to
find a simple expression for its right side. In particular, we need a closed-form
expression for the function Σx ln Γ( xm ).

Proposition 8.14 yields the following asymptotic expansion as x → ∞. For
any m,q ∈ N∗ we have

1

m

m−1∑

j=0

lnG

(
x+

j

m

)
= σ[g] +

q∑

k=0

Bk

mk k!
ψk−2

(x) +O(ψq−1

(x)) .

Setting m = 1 in this formula, we obtain

lnG(x) = σ[g] +

q∑

k=0

Bk

k!
ψk−2

(x) +O(ψq−1

(x)) .

Thus, we have

lnG(x) = σ[g] +ψ−2

(x) −
1

2

ψ−1

(x) +
1

12

ψ(x) −
1

720

ψ
2

(x) +O

(
1

x4

)
,

which is consistent with the analogue of Stirling’s formula

− lnG(x) + σ[g] +ψ−2

(x) −
1

2

ψ−1

(x) +
1

12

ln(x) → 0 as x→ ∞.

Wallis’s product formula. Using Legendre’s duplication formula for the gamma
function, we obtain

Σx ln Γ(2x) = lnG(x) + lnG(x+ 1

2

) − lnG(1
2

)

+ (x2 + 1) ln 2− x
2

ln(16π).

Using this identity, we can derive the surprising analogue of Wallis’s formula

lim

n→∞

Γ(1)Γ(3) · · · Γ(2n− 1)

Γ(2)Γ(4) · · · Γ(2n)

(
2n

e

)n
=

1√
2

.

Incidentally, the analogue of Wallis’s formula for the function g(x) = lnG(x) is

lim

n→∞

G(1)G(3) · · · G(2n− 1)

G(2)G(4) · · · G(2n)
nn

2− 1

2

n− 1

24

2

n2− 7

24 π
1

2

n

e
3

2

n2− 1

2

n− 1

24

= A
1

2

,
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which could be used to provide a new definition of the Glaisher-Kinkelin con-
stant. This latter formula is a little harder to obtain than the former one; it
requires the computation of both functions Σ lnG(x) and 2Σx lnG(2x) using
Corollary 7.10 with r = 1. That is,

Σ lnG(x) = −
1

8

x(x− 1)(2x− 5) +
1

4

x(x− 3) ln(2π) − x lnA

+
1

2

(x− 1)(x − 2) ln Γ(x) −
1

2

(2x− 3)ψ−2

(x) +ψ−3

(x)

and

2Σx lnG(2x) = −
1

4

x(2x− 1)(4x− 7) − 2x lnA

+
1

2

(2x2 − 3x− 1) ln 2+ x(x− 2) lnπ

+
1

2

ln Γ(x) +
1

2

(2x− 1)(2x− 3) ln Γ(2x)

− 2(x− 1)ψ−2

(2x) +ψ−3

(2x).

Reflection formula. A reflection formula for the Barnes G-function is given in
(71); see, e.g., [76, p. 45].

Webster’s functional equation. For any m ∈ N∗, there is a unique solution
f : R+ → R+ to the equation

∏m−1

j=0

f(x + j
m
) = Γ(x) such that ln f lies in K1,

namely

f(x) =
G(x+ 1

m
)

G(x)
.

9.6 The Hurwitz zeta function

For any x > 0, the function s 7→ ζ(s, x) is defined as an analytic continuation
to C \ {1} of the series (see, e.g., [76])

∞∑

k=0

(x+ k)−s =
1

Γ(s)

∫∞

0

ts−1e−xt

1− e−t
dt, ℜ(s) > 1.

It is known (see, e.g., [76, p. 160]) that this function satisfies the difference
equation

ζ(s, x+ 1) − ζ(s, x) = − x−s , x > 0. (77)

For any fixed s ∈ R \ {1}, define the function gs : R+ → R by gs(x) = −x−s.
We then have gs ∈ K∞. If s > 0 and s 6= 1, then gs ∈ D0

N
. If s > 1, then

gs ∈ D̃−1

N
. If −p < s < 1 for some p ∈ N, then gs ∈ D

p
N
, and hence we can

consider p = 1+ deggs = ⌊1− s⌋. In all cases, we have Σgs(x) = ζ(s, x) − ζ(s).
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ID card.

gs(x) Membership deggs Σgs(x)

− x−s
C∞ ∩ D̃−1

N
∩K∞

, if s > 1,

C∞ ∩D⌊1−s⌋ ∩K∞
, if s < 1.

−1+ ⌊1− s⌋+ ζ(s, x) − ζ(s)

Characterization. The function ζ(s, x) can be characterized as follows:

All solutions fs : R+ → R to the equation fs(x+1)− fs(x) = −x−s

that lie in K⌊1−s⌋+ are of the form fs(x) = cs + ζ(s, x), where
cs ∈ R.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

σ[gs] σ[gs] γ[gs]

∞, if s > 1,

−ζ(s), if s < 1.

1

s−1

− ζ(s) σ[gs] −
∑⌊1−s⌋+
j=1

Gj∆
j−1gs(1)

We have the inequality

|γ[gs]| 6 G⌊1−s⌋+ |∆⌊1−s⌋+gs(1)|

as well as the following representations

σ[gs] =

∫
1

0

(ζ(s, t+ 1) − ζ(s))dt ,

γ[gs] =

∫∞

1

( ⌊1−s⌋+∑

j=0

Gj∆
jgs(⌊t⌋) − gs(t)

)
dt ,

σ[gs] = lim

n→∞


1− n1−s

s − 1

−

n−1∑

k=1

k−s −

⌊1−s⌋+∑

j=1

Gj∆
j−1gs(n)




,

σ[gs] =

⌊1−s⌋+∑

j=1

Gj∆
j−1gs(1)

+

∞∑

k=1


k

1−s − (k + 1)1−s

s− 1

+

⌊1−s⌋+∑

j=0

Gj∆
jgs(k)




.

Also, the analogue of Raabe’s formula is

∫x+1

x

ζ(s, t)dt =
x1−s

s− 1

, x > 0.
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We also have for any q ∈ N and any x > 0

Jq+1[Σgs](x) = ζ(s, x) −
x1−s

s − 1

+

q∑

j=1

Gj∆
j−1g(x).

Restriction to the natural integers. For any n ∈ N∗ we have

ζ(s,n) − ζ(s) = −

n−1∑

k=1

k−s and ζ(s,n) =

∞∑

k=n

k−s.

Gregory’s formula states that for any n ∈ N∗ and any q ∈ N we have

n−1∑

k=1

k−s =
1− n1−s

s− 1

+

q∑

j=1

Gj
(
∆j−1gs(n) − ∆

j−1gs(1)
)
+ Rqs,n ,

with
|Rqs,n| 6 Gq |∆

qgs(n) − ∆
qgs(1)|.

Moreover, Proposition 6.8 gives the following series representation

n−1∑

k=1

k−s = ζ(s) −
x1−s

s− 1

+

∞∑

k=1

Gk∆
k−1gs(n) , n ∈ N∗

. (78)

Derivatives of Σgs(x) at x = 1. We have

(Σgs)
(k)(1) = (−s)k ζ(s+ k), k ∈ N∗

,

and
σ[g(k)s ] = − (−s)k−1 (1+ (−s− k + 1) ζ(s+ k)), k ∈ N.

The Taylor series expansion of ζ(s, x+ 1) about x = 0 is

ζ(s, x+ 1) =

∞∑

k=0

(
−s
k

)
ζ(s + k) xk , |x| < 1.

Integrating this equation on (0, 1), we obtain the identity

∞∑

k=0

(
−s
k

) ζ(s+ k)
k + 1

=
1

s − 1

, s < 2, s /∈ Z .

(When s > 2, the summand in the series above does not approach zero as k
increases.) Also, the exponential generating function for the sequence n 7→
σ[g

(n)
s ] is

egfσ[gs](x) =
(x+ 1)1−s

s− 1

− ζ(s, x+ 1).
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Asymptotic analysis. For any a > 0 and any x > 0, we have
∣∣∣∣∣∣
ζ(s, x+ a) − ζ(s, x) −

⌊1−s⌋+∑

j=1

(
a
j

)
∆j−1gs(x)

∣∣∣∣∣∣
6 ⌈a⌉

∣∣∣
(
a−1

⌊1−s⌋+
)∣∣∣
∣∣∣∆⌊1−s⌋+gs(x)

∣∣∣ .

In particular,

ζ(s, x+ a) − ζ(s, x) −

⌊1−s⌋+∑

j=1

(
a
j

)
∆j−1gs(x) → 0 as x→ ∞,

with equality if a ∈ {1, 2, . . . , ⌊1− s⌋+}. Also, for any x > 0, we have
∣∣∣∣∣∣
ζ(s, x) −

x1−s

s− 1

+

⌊1−s⌋+∑

j=1

Gj∆
j−1gs(x)

∣∣∣∣∣∣
6 G⌊1−s⌋+

∣∣∣∆⌊1−s⌋+gs(x)
∣∣∣ ,

from which we derive the following analogue of Stirling’s formula

ζ(s, x) −
x1−s

s− 1

+

⌊1−s⌋+∑

j=1

Gj∆
j−1gs(x) → 0 as x→ ∞.

In particular, if s > 1, then ζ(s, x) → 0 as x→ ∞.
The results above enable us to investigate the asymptotic behavior of ζ(s, x)

for large values of x. For instance, when s = − 3

2

we obtain that for every a > 0

the expression

ζ
(
− 3

2

, x+ a
)
+ 2

5

x5/2 +
(
a−

(
a
2

)
− 7

12

)
x3/2 +

((
a
2

)
+ 1

12

)
(x+ 1)3/2

approaches zero as x→ ∞.
We also have

ζ(s, x+ a) ∼
x1−s

s− 1

as x→ ∞.

Finally, if s > −1, then we have the analogue of Burnside’s formula

ζ(s, x) − 1

s−1

(x − 1

2

)1−s → 0 , as x→ ∞,

which provides a better approximation of ζ(s, x) than generalized Stirling’s for-
mula.

Eulerian and Weierstrassian forms. If s > 1, then for any x > 0, we simply
have

ζ(s, x) =

∞∑

k=0

(x + k)−s

and this series can be integrated and differentiated term by term. In particular,
we observe that

ψν(x) = (−1)ν+1ν! ζ(ν+ 1, x) , ν ∈ N∗
, x > 0.
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If s < 1, then for any x > 0, we have

ζ(s, x) − ζ(s) = −gs(x) +

⌊−s⌋∑

j=0

(
x
j+1

)
∆jgs(1)

+

∞∑

k=1


−gs(x+ k) +

⌊1−s⌋∑

j=0

(
x
j

)
∆jgs(k)




and the Weierstrassian form can be obtained similarly. Again, both series can
be integrated and differentiated term by term.

For instance, we have

ζ
(
− 3

2

, x
)
− ζ

(
− 3

2

)
= x

3

2 + lim

n→∞

(
n−1∑

k=1

(
(x+ k)

3

2 − k
3

2

)
− xn

3

2 −
(
x
2

)
∆nn

3

2

)

= x
3

2 − x − (2
√
2− 1)

(
x
2

)
+

∞∑

k=1

(
(x+ k)

3

2 − k
3

2 − x∆kk
3

2 −
(
x
2

)
∆2

kk
3

2

)

= x
3

2 − x + 3

4

ζ
(
1

2

)(
x
2

)
+

∞∑

k=1

(
(x + k)

3

2 − k
3

2 − x∆kk
3

2 − 3

4

(
x
2

)
k−

1

2

)
.

Alternative series expression and Fontana-Mascheroni’s series. Identity
(78) is also valid for a real argument: for any x > 0 we have

ζ(s, x) =
x1−s

s − 1

−

∞∑

n=0

Gn+1

∆ngs(x)

=
x1−s

s − 1

+

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
(x + k)−s .

Setting x = 1 in this identity yields a known series expression for ζ(s) that is
the analogue of Fontana-Mascheroni series

ζ(s) =
1

s− 1

+

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
(k + 1)−s .

Gauss’ multiplication formula. For any m ∈ N∗ and any x > 0, we have

m−1∑

j=0

ζ

(
s,
x + j

m

)
=

m−1∑

j=1

ζ

(
s,
j

m

)
+ ζ(s) +ms(ζ(s, x) − ζ(s)).

Since
∑m
j=1

ζ(s, j/m) =msζ(s), the formula above actually reduces to

m−1∑

j=0

ζ

(
s,
x+ j

m

)
= msζ(s, x).
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Also, Corollary 8.10 provides the following limits

lim

m→∞
ms−1ζ(s,mx) =

x1−s

s − 1

, x > 0, s < 1,

lim

m→∞
ms−1(ζ(s,mx) − ζ(s,m)) =

x1−s − 1

s− 1

, x > 0, s 6= 1.

Moreover, Proposition 8.14 yields the following asymptotic expansion as x→ ∞.
For any m,q ∈ N∗ we have

1

m

m−1∑

j=0

ζ

(
s, x+

j

m

)
=

x1−s

s− 1

−

q∑

k=1

(
−s
k−1

) Bk

kmk xk+s−1

+O

(
1

xq+s

)

=
1

s− 1

q∑

k=0

(
1−s
k

) Bk

mk xk+s−1

+O

(
1

xq+s

)
.

Setting m = 1 in this formula, we obtain

ζ(s, x) =
1

s− 1

q∑

k=0

(
1−s
k

) Bk

xk+s−1

+O

(
1

xq+s

)
.

Wallis’s product formula. If s > 1, then we have
∞∑

k=1

(−1)k−1

ks
= (1 − 2

1−s) ζ(s) = η(s), (79)

where s 7→ η(s) is Dirichlet’s eta function. When s < 1, the form of the formula
strongly depends upon the value of s. When s = − 3

2

for instance, we obtain

lim

n→∞

(
h(n) +

2n∑

k=1

(−1)kk
3

2

)
= (4

√
2− 1) ζ(− 3

2

).

where h(n) = − 8n+3

4

√
n
2

.

Reflection formula. If s is an integer, then the extension to the domain R \ Z

of the function ζ(s, x) + (−1)sζ(s, 1− x) is 1-periodic. However, no closed-form
expression for this function seems to be known.

Webster’s functional equation. For any m ∈ N∗, there is a unique solution
fs : R+ → R to the equation

∑m−1

j=0

fs(x + j
m
) = −x−s that lies in K⌊−s⌋+ ,

namely

fs(x) = ζ

(
s, x+

1

m

)
− ζ(s, x) .

Example 9.2. Consider the function g(x) = x2(x+1)−
1

2 . We then have g(x) =
(x+ 1)

3

2 − 2(x+ 1)
1

2 + (x + 1)−
1

2 and hence

Σg(x) = c− ζ(− 3

2

, x+ 1) + 2ζ(− 1

2

, x+ 1) − ζ(1
2

, x+ 1)

for some c ∈ R.
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9.7 The generalized Stieltjes constants

Recall that the generalized Stieltjes constants are the numbers γn(x) that
occur in the Laurent series expansion of the Hurwitz zeta function

ζ(s, x) =
1

s− 1

+

∞∑

n=0

(−1)n

n!
γn(x)(s − 1)n. (80)

Here we naturally restrict the values of x to the set R+. Recall also that the num-
bers γn = γn(1), where n ∈ N, are called the Stieltjes constants. For recent
background on these constants, see, e.g., Blagouchine [16, 17] and Blagouchine
and Coppo [19] (see also Nan-Yue and Williams [68]).

These constants are known to satisfy γ
0

(x) = −ψ(x) and γ
0

= γ as well as
the following identities for every q ∈ N

γq = lim

n→∞

(
n∑

k=1

(ln k)q

k
−

(lnn)q+1

q+ 1

)
,

γq(x) = lim

n→∞

(
n∑

k=0

(ln(x + k))q

x + k
−

(ln(x + n))q+1

q+ 1

)
.

Interestingly, the generalized Stieltjes constants also satisfy the difference equa-
tion

γq(x+ 1) − γq(x) = gq(x),

where gq : R+ → R is the function defined by the equation

gq(x) = −
1

x
(ln x)q.

Thus, our theory is particularly suitable to investigate these constants. For any
q ∈ N, the function gq lies in C∞ ∩D0 ∩K∞ and is eventually increasing. By
uniqueness of Σgq, it follows that Σgq(x) = γq(x) − γq.

ID card.

gq(x) Membership deggq Σgq(x)

− 1

x
(ln x)q C∞ ∩D0 ∩K∞ −1 γq(x) − γq

Characterization. The function γq can be characterized as follows:

All eventually monotone solutions f : R+ → R to the equation
f(x + 1) − f(x) = gq(x) are of the form f(x) = cq + γq(x), where
cq ∈ R.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

σ[gq] σ[gq] γ[gq]

∞ −γq −γq
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We thus observe that the asymptotic constant σ[gq] is exactly the opposite of
the Stieltjes constant γq. We also have the following representations

γq =

∞∑

k=1

(
(ln k)q

k
−

(ln(k + 1))q+1 − (ln(k))q+1

q+ 1

)
;

γq =

∫∞

1

(
(ln⌊t⌋)q

⌊t⌋ −
(ln t)q

t

)
dt.

The analogue of Raabe’s formula is
∫x+1

x

γq(t)dt = −
(ln x)q+1

q+ 1

, x > 0.

We also have for any r ∈ N and any x > 0

Jr+1[Σgq](x) = γq(x) +
(ln x)q+1

q+ 1

+

r∑

j=1

Gj∆
j−1gq(x).

Derivatives of Σgq(x) at x = 1. We have

γ(k)q (1) = g(k−1)
q (1) − σ[g(k)q ] = −

∞∑

j=1

g(k)q (j), k ∈ N∗
.

The exponential generating function for the sequence n 7→ σ[g
(n)
q ] is

egfσ[gq](x) = − γq(x + 1) −
1

q+ 1

(ln(x+ 1))q+1

.

Asymptotic analysis. Let x > 0 be so that gq is increasing on [x,∞). Then
for any a > 0, we have

|γq(x + a) − γq(x)| 6 ⌈a⌉
∣∣∣∣
(ln x)q

x

∣∣∣∣ ;
∣∣∣∣γq(x) +

(ln x)q+1

q+ 1

∣∣∣∣ 6

∣∣∣∣
(ln x)q

x

∣∣∣∣ .

In particular, we have

γq(x+ a) − γq(x) → 0 and γq(x) +
(ln x)q+1

q+ 1

→ 0 as x→ ∞.

The latter convergence result is the analogue of Stirling’s formula. It expresses
the fact that the function J1[Σgq] vanishes at infinity. We also note that so do
all its derivatives. For instance, we have

γ ′
q(x) +

(ln x)q

x
→ 0 as x→ ∞.
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Also, for any a > 0, we have

γq(x + a) ∼ −
(ln x)q+1

q+ 1

as x→ ∞.

Finally, for any x > 0 we have the inequalities

∣∣γq
(
x+ 1

2

)
− gq(x)

∣∣ 6 |J1[Σgq](x)| 6 |gq(x)| ,

which shows that the analogue of Burnside’s formula

γq(x) +
1

q+1

(ln(x− 1

2

))q+1 → 0 , as x→ ∞,

provides a better approximation of γq(x) for large values of x than the gener-
alized Stirling formula. For 0 < x 6 1, we use the following approximations
(see [68, p. 148])
∣∣∣∣γ0(x) −

1

x

∣∣∣∣ 6 γ and

∣∣∣∣γq(x) −
(ln x)q

x

∣∣∣∣ 6
(3+ (−1)q)(2q)!

qq+1(2π)q
, n ∈ N∗

.

Eulerian and Weierstrassian forms. For any x > 0, we have

γq(x) = γq +
(ln x)q

x
+

∞∑

k=1

(
(ln(x+ k))q

x+ k
−

(ln k)q

k

)

and

γq(x) =
(ln x)q

x
+

∞∑

k=1

(
(ln(x+ k))q

x+ k
−

(ln(k+ 1))q+1 − (ln k)q+1

q+ 1

)
.

Both series can be differentiated and integrated term by term. Also, if n ∈ N∗

is so that gq is increasing on [n,∞), then for any x > 0

∣∣∣∣∣γq(x) − γq −
(ln x)q

x
−

n−1∑

k=1

(
(ln(x+ k))q

x+ k
−

(ln k)q

k

)∣∣∣∣∣ 6 ⌈x⌉
∣∣∣∣
(lnn)q

n

∣∣∣∣ .

Alternative series expression and Fontana-Mascheroni’s series. For any
x > 0 satisfying the assumptions of Proposition 6.8, we obtain

γq(x) +
(ln x)q+1

q+ 1

=

∞∑

n=0

Gn+1

∆nx
(ln x)q

x

=

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

) (ln(x+ k))q
x+ k

.
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Setting x = 1 in this identity (provided that x = 1 satisfies the assumptions
of Proposition 6.8), we obtain the Fontana-MascheroniâĂŹs series expression of
γq

γq =

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

) (ln(k + 1))q

k + 1

.

This latter expression was obtained by Blagouchine [17, p. 383].

Antiderivative of γq(x). All eventually concave solutions f : R+ → R to the
equation

f(x+ 1) − f(x) = Gq(x),

where

Gq(x) =

∫x

1

gq(t)dt = −
(ln x)q+1

q+ 1

=

∫x+1

x

γq(t)dt

are of the form

f(x) = cq +

∫x

1

γq(t)dt

for some cq ∈ R.

Gauss’ multiplication formula. The following analogue of Gauss’ multiplica-
tion formula was previously known (see also [16, p. 542]) but it can be derived
straightforwardly from our results. For any m ∈ N∗ and any x > 0, we have

m−1∑

j=0

γq

(
x+ j

m

)
= −

m

q+ 1

(
ln

1

m

)q+1

+m

q∑

j=0

(
q
j

)(
ln

1

m

)j
γq−j(x).

In particular,

m∑

j=1

γq

(
j

m

)
= −

m

q+ 1

(
ln

1

m

)q+1

+m

q∑

j=0

(
q
j

)(
ln

1

m

)j
γq−j .

Also, Corollary 8.10 provides the following limits for x > 0

lim

m→∞

q∑

j=0

(
q
j

)(
ln

1

m

)j
(γq−j(mx) − γq−j(m)) = −

(ln x)q+1

q+ 1

,

lim

m→∞



−
1

q+ 1

(
ln

1

m

)q+1

+

q∑

j=0

(
q
j

)(
ln

1

m

)j
γq−j(mx)



 = −
(ln x)q+1

q+ 1

.

For instance, setting q = 1 in these formulas yields

lim

m→∞
γ
1

(mx) − γ
1

(m) + (lnm)(ψ(mx) −ψ(m)) = −
1

2

(ln x)2 ,

lim

m→∞
γ
1

(mx) −
1

2

(lnm)2 +ψ(mx) lnm = −
1

2

(ln x)2 .

109



Setting m = 2 in the multiplication formula, we obtain the following analogue
of Legendre’s duplication formula

γq

(x
2

)
+ γq

(
x+ 1

2

)
= −

2

q+ 1

(
ln

1

2

)q+1

+ 2

q∑

j=0

(
q
j

)(
ln

1

2

)j
γq−j(x).

When q = 0 and q = 1, the multiplication formula reduces to the known
formulas

m−1∑

j=0

ψ

(
x + j

m

)
= m(ψ(x) − lnm) ;

m−1∑

j=0

γ
1

(
x + j

m

)
= −

m

2

(lnm)2 +m(lnm)ψ(x) +mγ
1

(x).

Moreover, Proposition 8.14 yields the following asymptotic expansion as x→ ∞.
For any m,q ∈ N∗ we have

1

m

m−1∑

j=0

γ
1

(
x+

j

m

)
=

(ln x)2

2

− (ln x)
1

m

m−1∑

j=0

ψ

(
x+

j

m

)

+

q∑

k=1

(−1)k−1 BkHk−1

k(mx)k
+O

(
1

xq+1

)
.

Setting m = 1 in this latter formula, we obtain

γ
1

(x) =
(ln x)2

2

−ψ(x) ln x+

q∑

k=1

(−1)k−1 BkHk−1

k xk
+O

(
1

xq+1

)
.

Thus, we have

γ
1

(x) =
(ln x)2

2

−ψ(x) ln x−
1

12x2
+

11

720x4
+O

(
1

x6

)
.

Wallis’s product formula. The analogue of Wallis’s formula for the function
gq(x) is

∞∑

k=1

(−1)k
(ln k)q

k
= −

(ln 2)q+1

q+ 1

+

q−1∑

j=0

(
q
j

)
(ln 2)q−jγj . (81)

This formula was established by Briggs and Chowla [22, Eq. (8)]. For q = 1, it
reduces to

∞∑

k=1

(−1)k
ln k

k
= −

(ln 2)2

2

+ γ ln 2 .
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For q = 2, we obtain

∞∑

k=1

(−1)k
(ln k)2

k
= −

(ln 2)3

3

+ γ(ln 2)2 + 2γ
1

ln 2 .

These latter two formulas were also established by Hardy [40].
As an aside, let us establish conversion formulas between the sequences

q 7→ γq and q 7→ η(q)(1), where η(s) is the Dirichlet eta function introduced
in (79) and η(q)(1) stands for the limiting value of η(q)(s) as s → 1. To ease
the computations, let us instead consider the conversion formulas between the
sequences q 7→ γq and q 7→ λq, where

λq =
1

q+ 1

(ln 2)q+1 + (−1)q+1 η(q)(1) , q ∈ N.

Using (81), we can readily derive the following equations

λq =

q−1∑

k=0

(
q
k

)
(ln 2)q−k γk , q ∈ N. (82)

These equations actually consist of an infinite consistent triangular system.
Solving this system provides the following conversion formula

γq =

q∑

k=0

(
q
k

) Bq−k
k+ 1

(ln 2)q−k−1 λk+1

, q ∈ N, (83)

that is,

γq = −
Bq+1

q+ 1

(ln 2)q+1 +

q∑

k=0

(−1)k
(
q
k

) Bq−k
k+ 1

(ln 2)q−k−1η(k+1)(1) , q ∈ N.

Indeed, plugging (83) in the right side of (82) we obtain for any q ∈ N

q−1∑

k=0

(
q
k

)
(ln 2)q−k γk =

q−1∑

k=0

(
q
k

)
(ln 2)q−k

k∑

j=0

(
k
j

) Bk−j
j+ 1

(ln 2)k−j−1 λj+1

=

q−1∑

j=0

(
q
j

)
(ln 2)q−j−1

λj+1

j+ 1

q−1∑

k=j

(
q−j
k−j

)
Bk−j ,

where the inner sum reduces to 0

q−j−1. The latter quantity then reduces to λq,
as expected.

Remark 9.3. The conversion formulas (82) and (83) are not new. In essence,
they were established by Liang and Todd [54, Eq. (3.6)] and Nan-Yue and
Williams [68, Eqs. (1.9) and (7.1)].
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Webster’s functional equation. For any m ∈ N∗, there is a unique eventually
monotone solution f : R+ → R to the equation

∑m−1

j=0

f(x+ j
m
) = gq(x), namely

f(x) = γq

(
x +

1

m

)
− γq(x) .

Rational arguments theorem. Let us apply Proposition 8.19 to the function
gq(x). For any a,b ∈ N∗ with a < b and any j ∈ {0, . . . ,b− 1} we have

Sbj [gq] = b (−1)q+1

q∑

i=0

(
q
i

)
(lnb)q−iDis Lis(z)

∣∣
(s,z)=(1,ω

j
b)

and hence

γq

(a
b

)
− γq = (−1)q+1

q∑

i=0

(
q
i

)
(lnb)q−i

b−1∑

j=0

(1−ω
−aj
b )Dis Lis(z)

∣∣
(s,z)=(1,ω

j
b)

.

We note that a more a practical formula was derived in the special case when
q = 1 by Blagouchine [16] as a generalization of Gauss’ digamma theorem.

9.8 Higher derivatives of the Hurwitz zeta function

Let s ∈ R \ {1} and q ∈ N. Differentiating q times both sides of (77) we obtain

ζ(q)(s, x+ 1) − ζ(q)(s, x) = (−1)q+1x−s(ln x)q , x > 0,

where ζ(q)(s, x) stands for Dqs ζ(s, x). This equation shows that the investiga-
tion of the higher derivatives of the Hurwitz zeta function can be carried out
using our results. For an earlier investigation, see, e.g., [15, p. 36 et seq.].

ID card.

gs,q(x) Membership deggs,q Σgs,q(x)

− x−s(− ln x)q
C∞ ∩ D̃−1

N
∩K∞

, if s > 1,

C∞ ∩D⌊1−s⌋ ∩K∞
, if s < 1.

−1

+ ⌊1− s⌋+
ζ(q)(s, x)

−ζ(q)(s)

We also observe that this investigation can be regarded as a simultaneous gener-
alization of the studies of the Hurwitz zeta function and the generalized Stieltjes
constants. For the latter, we observe that

(−1)q lim

s→1

gs,q(x) = −
1

x
(ln x)q.

Setting s = 0 in our results may also be very informative as it produces formulas
involving the well-studied quantities ζ(q)(0) and ζ(q)(0, x) − ζ(q)(0) for any
q ∈ N.

Characterization. The function ζ(q)(s, x) can be characterized as follows:
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All solutions fs,q : R+ → R to the equation fs,q(x+ 1) − fs,q(x) =

gs,q(x) that lie in K⌊1−s⌋+ are of the form fs,q(x) = cs,q +

ζ(q)(s, x), where cs,q ∈ R.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

σ[gs,q] σ[gs,q] γ[gs,q]

∞, if s > 1,

−ζ(q)(s), if s < 1.

−q!
(1−s)q+1

− ζ(q)(s) σ[gs,q] −
∑⌊1−s⌋+
j=1

Gj∆
j−1gs,q(1)

We have

σ[gs,q] = lim

n→∞




n−1∑

k=1

gs,q(k) −

∫n

1

gs,q(t)dt+

⌊1−s⌋+∑

j=1

Gj∆
j−1gs,q(n)





=

⌊1−s⌋+∑

j=1

Gj∆
j−1gs,q(1)

−

∞∑

k=1




∫k+1

k

gs,q(t)dt−

⌊1−s⌋+∑

j=0

Gj∆
jgs,q(k)




.

Setting s = 0 in the previous formulas, we obtain

(−1)q(q! + ζ(q)(0)) = lim

n→∞

(
n∑

k=1

(ln k)q −

∫n

1

(ln t)q dt−
1

2

(lnn)q

)

=

∞∑

k=1

(
1

2

(ln k)q −

∫k+1

k

(ln t)q dt

)
.

On differentiating both sides of (80), we also obtain the following surprising
identity

(−1)q(q! + ζ(q)(0)) =

∞∑

n=0

γn+q

n!
.

We also have
∫x

1

gs,q(t)dt =
q! − Γ(q+ 1, (s− 1) ln x)

(1 − s)q+1

, x > 0,

and hence the analogue of Raabe’s formula is
∫x+1

x

ζ(q)(s, t)dt = −
Γ(q+ 1, (s− 1) ln x)

(1− s)q+1

= −q!
x1−s

(1− s)q+1

q∑

j=0

((s − 1) lnx)j

j!
, x > 0.
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We also have for any r ∈ N and any x > 0

Jr+1[Σgs,q](x) = ζ(q)(s, x) −

∫x+1

x

ζ(q)(s, t)dt+

r∑

j=1

Gj∆
j−1gs,q(x).

Restriction to the natural integers. For any n ∈ N∗ we have

ζ(q)(s,n) − ζ(q)(s) =

n−1∑

k=1

gs,q(k).

Gregory’s formula states that for any n ∈ N∗ and any r ∈ N we have

n−1∑

k=1

gs,q(k) =

∫n

1

gs,q(t)dt−

r∑

j=1

Gj
(
∆j−1gs(n) − ∆

j−1gs(1)
)
− Rrs,q,n ,

with
|Rrs,q,n| 6 Gr |∆

rgs,q(n) − ∆
rgs,q(1)|.

Asymptotic analysis. We have

ζ(q)(s, x + a) − ζ(q)(s, x) −

⌊1−s⌋+∑

j=1

(
a
j

)
∆j−1gs,q(x) → 0 as x→ ∞,

with equality if a ∈ {1, 2, . . . , ⌊1− s⌋+}. Also, we have the following analogue of
Stirling’s formula

ζ(q)(s, x) −

∫x+1

x

ζ(q)(s, t)dt+

⌊1−s⌋+∑

j=1

Gj∆
j−1gs,q(x) → 0 as x→ ∞.

Setting s = 0 in this latter formula, we obtain

ζ(q)(0, x) + Γ(q+ 1,− lnx) +
1

2

(−1)q+1(ln x)q → 0 as x→ ∞.

We also have

ζ(q)(s, x+ a) ∼

∫x+1

x

ζ(q)(s, t)dt as x→ ∞.

Finally, if s > −1, then we have the analogue of Burnside’s formula

ζ(q)(s, x) −
∫x+ 1

2

x− 1

2

ζ(q)(s, t)dt → 0 , as x→ ∞,

which provides a better approximation of ζ(s, x) than the analogue of Stirling’s
formula.
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Eulerian and Weierstrassian forms. If s > 1, then for any x > 0, we simply
have

ζ(q)(s, x) = −

∞∑

k=0

gs,q(x+ k)

and this series can be integrated and differentiated term by term. If s < 1, then
for any x > 0, the analogue of Gauss’ limit is

ζ(q)(s, x) − ζ(q)(s) = − gs,q(x)

+ lim

n→∞




n−1∑

k=1

(gs,q(k) − gs,q(x+ k)) +

⌊1−s⌋∑

j=1

(
x
j

)
∆j−1gs,q(n)




.

Also, the analogue of Euler’s product form is

ζ(q)(s, x) − ζ(q)(s) = −gs,q(x) +

⌊−s⌋∑

j=0

(
x
j+1

)
∆jgs,q(1)

+

∞∑

k=1



−gs,q(x+ k) +

⌊1−s⌋∑

j=0

(
x
j

)
∆jgs,q(k)





and the Weierstrassian form can be obtained similarly. Again, the series can be
integrated and differentiated term by term. Note that the case where (s,q) =

(0, 2) can be found in Ramanujan’s second notebook [15, p. 26–27].

Alternative series expression and Fontana-Mascheroni’s series. For any
x > 0 satisfying the assumptions of Proposition 6.8, we obtain

ζ(q)(s, x) =

∫x+1

x

ζ(q)(s, t)dt−

∞∑

n=0

Gn+1

∆ngs,q(x)

=

∫x+1

x

ζ(q)(s, t)dt−

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
gs,q(x + k) .

Setting x = 1 in this identity (provided that x = 1 satisfies the assumptions
of Proposition 6.8) yields a series expression for ζ(q)(s) that is the analogue of
Fontana-Mascheroni series

ζ(q)(s) =
−q!

(1− s)q+1

−

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
gs,q(k + 1) ,

which can also be obtained differentiating the analogue of Fontana-Mascheroni
series for the Hurwitz zeta function. For instance, we have

ζ ′′(0) = − 2+

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
(ln(k + 1))2
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and this value is also known to be (see, e.g., [15, p. 25])

1

2

γ2 −
π2

24

−
1

2

(ln(2π))2 + γ
1

.

Gauss’ multiplication formula. Upon differentiating the analogue of Gauss’
multiplication formula for the Hurwitz zeta function, we immediately obtain
the following multiplication formula. For any m ∈ N∗ and any x > 0, we have

m−1∑

j=0

ζ(q)
(
s,
x+ j

m

)
= ms

q∑

j=0

(
q
j

)
(lnm)q−j ζ(j)(s, x).

Also, Corollary 8.10 provides the following limit for any x > 0 and any s < 1

lim

m→∞

q∑

j=0

(
q
j

)
(lnm)q−j

ζ(j)(s,mx)

m1−s
= −

Γ(q+ 1, (s− 1) ln x)

(1− s)q+1

.

Also, for any s 6= 1, we have

lim

m→∞

q∑

j=0

(
q
j

)
(lnm)q−j

ζ(j)(s,mx) − ζ(j)(s,m)

m1−s
=
q! − Γ(q+ 1, (s− 1) ln x)

(1− s)q+1

.

Wallis’s product formula. When s < 1, the form of the analogue of Wallis’s
product formula strongly depends upon the value of s. If s > 1, then we have

η(q)(s) =

∞∑

k=1

(−1)k−1

ks
(− ln k)q

= ζ(q)(s) − 2

1−s

q∑

j=0

(
q
j

)(
ln

1

2

)q−j
ζ(j)(s),

where s 7→ η(s) is Dirichlet’s eta function. Just as we did for the formulas (82)
and (83), we can easily establish the following conversion formulas for s > 1

µq(s) =

q−1∑

k=0

(
q
k

)(
ln

1

2

)q−k
ζ(k)(s) , q ∈ N ,

ζ(q)(s) =

q∑

k=0

(
q
k

) Bq−k
k+ 1

(
ln

1

2

)q−k−1

µk+1

(s) , q ∈ N ,

where
µq(s) = 2

s−1(ζ(q)(s) − η(q)(s)) − ζ(q)(s) , q ∈ N.

Webster’s functional equation. For any m ∈ N∗, there is a unique solution
fs,q : R+ → R to the equation

∑m−1

j=0

fs,q(x+
j
m
) = gs,q(x) that lies in K⌊−s⌋+ ,

namely

fs,q(x) = ζ(q)
(
s, x+

1

m

)
− ζ(q)(s, x) .
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9.9 The principal indefinite sum of the Hurwitz zeta func-

tion

For any s ∈ R \ {1}, we define the function ζ
2

(s, ·) : R+ → R by the equation

ζ
2

(s, x) = Σxζ(s, x).

Thus defined, this function can be studied through our results. Contrary to
the previous examples, here we introduce a completely new function that has
seemingly no closed form in terms of known elementary functions. Hence we
give it a new symbol and a new name. To keep this investigation simple we
restrict ourselves to the case when s > 2, for which the sequence n 7→ ζ(s,n) is
summable. We then introduce

κ(s) =

∞∑

k=1

ζ(s, k)

and we note that ∫∞

1

ζ(s, t)dt =
ζ(s− 1)

s− 1

.

ID card.
gs(x) Membership deggs Σgs(x)

ζ(s, x) C∞ ∩ D̃−1

N
∩K∞ −1 ζ

2

(s, x)

Characterization. The function ζ(s, x) can be characterized as follows:

All eventually monotone solutions fs : R+ → R to the equation
fs(x + 1) − fs(x) = ζ(s, x) are of the form fs(x) = cs + ζ2(s, x),
where cs ∈ R.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

σ[gs] σ[gs] γ[gs]

∞ κ(s) −
ζ(s−1)

s−1

γ[gs] = σ[gs]

We have the inequality |σ[gs]| 6 ζ(s) and the following representations

σ[gs] =

∫
1

0

ζ
2

(s, t+ 1)dt =

∫∞

1

(ζ(s, ⌊t⌋) − ζ(s, t)) dt .

Also, the analogue of Raabe’s formula is

∫x+1

x

ζ
2

(s, t)dt = κ(s) −
ζ(s− 1, x)

s− 1

, x > 0.
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We also have for any q ∈ N and any x > 0

Jq+1[Σgs](x) = ζ
2

(s, x) − κ(s) +
ζ(s− 1, x)

s− 1

+

q∑

j=1

Gj∆
j−1

x ζ(s, x).

Derivatives of Σgs(x) at x = 1. We have

(Σgs)
(k)(1) = (−1)k−1k!

(
s
k

)
κ(s+ k), k ∈ N∗

,

and

σ[g(k)s ] = (−1)k−1(k− 1)!
(
s
k−1

)
ζ(s+ k− 1) + (−1)kk!

(
s
k

)
κ(s + k), k ∈ N∗

.

The Taylor series expansion of ζ
2

(s, x+ 1) about x = 0 is

ζ
2

(s, x + 1) = −

∞∑

k=1

(
s
k

)
κ(s+ k)(−x)k .

Asymptotic analysis. For any a > 0 and any x > 0, we have

|ζ
2

(s, x+ a) − ζ
2

(s, x)| 6 ⌈a⌉ ζ(s, x) ;∣∣∣∣ζ2(s, x) − κ(s) +
ζ(s− 1, x)

s − 1

∣∣∣∣ 6 ζ(s, x).

In particular, we have ζ
2

(s, x) → κ(s) as x→ ∞.
We also have

ζ
2

(s, x) ∼ κ(s) −
ζ(s− 1, x− 1

2

)

s− 1

as x→ ∞.

Eulerian and Weierstrassian forms. For any x > 0, we have

ζ
2

(s, x) = κ(s) −

∞∑

k=0

ζ(s, x+ k).

and this series can be integrated and differentiated term by term. In particular,
∣∣∣∣∣
ζ(s − 1, x)

s − 1

−

∞∑

k=0

ζ(s, x+ k)

∣∣∣∣∣ 6 ζ(s, x)

and
∞∑

k=0

ζ(s, x+ k) → 0 as x→ ∞.
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Alternative series expression and Fontana-Mascheroni’s series. Proposi-
tion 6.8 gives the following series representation: for any x > 0 we have

ζ
2

(s, x) = κ(s) −
ζ(s− 1, x)

s− 1

−

∞∑

n=0

Gn+1

∆nx ζ(s, x)

= κ(s) −
ζ(s− 1, x)

s− 1

−

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
ζ(s, x+ k) .

Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series:

∞∑

n=0

|Gn+1

|

n∑

k=0

(−1)k
(
n
k

)
ζ(s, k+ 1) = κ(s) −

ζ(s− 1)

s − 1

.

Wallis’s product formula. We have

∞∑

k=1

(−1)k−1ζ(s, k) = (2 − 2

1−s)ζ(s) + (1− 2

1−s)κ(s)

− 2

1−s

∞∑

k=0

ζ

(
s, k +

1

2

)
.

This formula is obtained by combining Proposition 6.4 with the duplication
formula for the Hurwitz zeta function

2 ζ(s, 2x) = 2

1−sζ(s, x) + 2

1−sζ

(
s, x+

1

2

)
.

Webster’s functional equation. For any m ∈ N∗, there is a unique eventually
monotone solution f : R+ → R to the equation

∑m−1

j=0

f(x+ j
m
) = ζ(s, x), namely

f(x) = ζ
2

(
s, x+

1

m

)
− ζ

2

(s, x) .

9.10 The Catalan number function

The Catalan number function is the restriction to R+ of the map x 7→ Cx
defined on (− 1

2

,∞) by Cx = 1

x+1

(
2x
x

)
. This function satisfies the equation

Cx+1

=

(
4−

6

x+ 2

)
Cx .

The additive version of this equation reads ∆f = g, where the function g is
the logarithm of a rational function. We observe that such equations have been
thoroughly investigated by Anastassiadis [6, p. 41] (see also [49]).
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ID card.
g(x) Membership degg Σg(x)

ln

(
4− 6

x+2

)
C∞ ∩D1 ∩K∞

0 lnCx

Characterization. The function Cx can be characterized as follows:

All solutions f : R+ → R+ to the equation (x + 2)f(x+ 1) = (4x+

2)f(x) for which ln f lies in K1 are of the form f(x) = cCx, where
c > 0.

Asymptotic constant, generalized Stirling’s and Euler’s constants, Raabe’s
formula.

exp(σ[g]) σ[g] γ[g]
1

2

√
2π
e3/2 1

2

(
3+ ln

8

27π

)
1

2

(
3+ ln

4

27π

)

We have the inequality |γ[g]| 6 1

2

ln

5

4

and the following representations

γ[g] =
∫∞
1

(t− ⌊t⌋− 1

2

) 3

(t+2)(2t+1)
dt ;

σ[g] =
∫
1

0

lnCt+1

dt.

Also, Raabe’s formula is

∫x+1

x

lnCt dt = ln

(
e
3

2 (4x+ 2)x+
1

2

√
π (x + 2)x+2

)
, x > 0.

Restriction to the natural integers. For any n ∈ N∗ we have Cn = 1

n+1

(
2n
n

)
.

Asymptotic analysis. For any a > 0, we have

Cx+a

Cx
∼ 4

a and Cx ∼
4

x

x3/2
√
π

as x→ ∞.

Also, the analogue of Burnside’s formula gives

lnCx − ln

(
e
3

2 (4x)x
√
π (x + 3

2

)x+
3

2

)
→ 0 as x→ ∞.

Eulerian and Weierstrassian forms. For any x > 0, we have

Cx =
x+ 2

4x+ 2

2

x

∞∏

k=1

(
2− 3

k+3

)x
(
2− 3

k+2

)x−1

(
2− 3

x+k+2

)

and

Cx =
x + 2

4x+ 2

e−
x
2

∞∏

k=1

1+ x
k+2

1+ 2x
2k+1

e
3x

(k+2)(2k+1)
.
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10 Further examples

The scope of applications of our theory is very wide since it applies to any
function lying in ∪p>0

(Dp∩Kp). In Section 9, we have made a thorough study
of some special functions. In the present section, we briefly discuss further
examples that the reader may want to explore in more detail.

10.1 The multiple gamma functions

The multiple gamma functions introduced in Subsection 5.2 can also be studied
through the sequence of functions G

0

,G
1

, . . ., defined by (see [76, p. 56])

Gp(x) = Γp(x)
(−1)p−1

, p ∈ N.

Equivalently, we have G
0

(x) = x and lnGp = Σ lnGp−1

for all p ∈ N∗. Clearly,
the function lnGp−1

lies in C∞ ∩ Dp ∩ K∞ and we have deg lnGp = p. Also,
the sequence can naturally be extended to p = −1 by setting G−1

(x) = 1+1/x.
Just as for the gamma function and the Barnes G-function, we can derive

the following asymptotic equivalence: for any a > 0,

Gp(x + a)

Gp(x)
∼

p−1∏

j=0

Gp−j−1

(x)(
a

j+1

) as x→ ∞,

with equality if a ∈ {1, 2, . . . ,p}. We also have the following product represen-
tation

Gp(x) =
1

Gp−1

(x)

∞∏

k=1

Gp−1

(k)

Gp−1

(x + k)
Gp−2

(k)xGp−3

(k)(
x
2

) · · · G−1

(k)(
x
p)

and the recurrence formula

lnGp(x) = − (x − 1)σ[D lnGp−1

] +

∫x

1

ΣD lnGp−1

(t)dt.

For example, one can show that

lnG
3

(x) = −
1

8

x(x− 1)(2x− 5) +
1

4

x(x− 2) ln(2π) +
(
x−1

2

)
ln Γ(x)

−
1

2

(2x− 3)ψ−2

(x) +ψ−3

(x) − xψ−3

(1).

(This formula can also be checked by means of the characterization of G
3

as a
3-convex solution to the equation ∆f = lnG

2

.) More generally, from the known
expressions for G

0

, G
1

, G
2

, and G
3

, we can derive the general formula

lnGp(x) = hp(x) +

p−1∑

j=0

(−1)p−1−j
(
x−1

j

)
(ψj−p(x) − xψj−p(1)) ,
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where h
0

(x) = ln x, h
1

(x) = 0, h
2

(x) = −
(
x
2

)
, and

h
3

(x) = −
1

8

x(x− 1)(2x− 5) −
1

2

x2ψ−2

(1) +
1

2

ψ−2

(x).

10.2 The hyperfactorial function

The hyperfactorial function (or K-function) is the solution K : R+ → R to the
equation K(x + 1) = xxK(x) defined by the identity lnK = Σ∆ lnK. Consider
the function g = ∆ lnK, that is, g(x) = x ln x. Using the identity

∆ψ−2

(x) =

∫x

0

ln t dt+ ψ−2

(1),

we derive g(x) = x+ ∆ψ−2

(x) −ψ−2

(1), and hence

lnK(x) = Σg(x) =
(
x
2

)
+ψ−2

(x) − xψ−2

(1) = (x− 1) ln Γ(x) − lnG(x).

The integer sequence n 7→ K(n) has entry A002109 in the OEIS database [75].

10.3 The Hurwitz Lerch transcendent

The Hurwitz Lerch transcendent Φ(z, s,a) is a generalization of the Hurwitz
zeta function defined as an analytic continuation of the series

∑∞
k=0

zk(a+k)−s

when |z| < 1 and a ∈ C \ N (see, e.g., [76]). It satisfies the difference equation

Φ(z, s,a+ 1) − z−1Φ(z, s,a) = − z−1a−s.

It follows that the modified function Φ(z, s,a) = −zaΦ(z, s,a) satisfies the
difference equation

Φ(z, s,a+ 1) −Φ(z, s,a) = zaa−s.

Thus, for some real values of z and s, the restriction to R+ of the map a 7→
Φ(z, s,a) fits the assumptions of our theory. Its complete investigation through
our results is left to the reader.

10.4 The regularized incomplete gamma function

Consider the 2-variable function Q(x, s) = Γ(x, s)/Γ(x) on R2

+, where Γ(x, s)
is the upper incomplete gamma function. Thus defined, the function Q(x, s)

satisfies the difference equation

Q(x+ 1, s) −Q(x, s) = e−ssx/Γ(x+ 1).

For any s > 0, we define the function gs : R+ → R by gs(x) = e−ssx/Γ(x + 1).
This function lies in C∞ ∩ D̃−1

N
∩ K∞ and has the property that Σgs(x) =

Q(x, s) − e−s.
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We also note that the Eulerian form of Q(x, s) is

Q(x, s) = 1−

∞∑

k=0

gs(x+ k) = 1−
e−ssx

Γ(x+ 1)

∞∑

k=0

Γ(x+ 1)

Γ(x+ k + 1)
sk

= 1−
e−ssx

Γ(x+ 1)

∞∑

k=0

x−k sk.

10.5 The regularized incomplete beta functions

Consider the restriction to (0, 1]× R2

+ of the map

(x,a,b) 7→ Ix(a,b) =
B(x;a,b)

B(a,b)
,

where B(x;a,b) is the incomplete beta function. Thus defined, the function
Ix(a,b) satisfies the difference equation

Ix(a+ 1,b) − Ix(a,b) = −
xa(1− x)b

aB(a,b)
.

Defining the function gb,x : R+ → R by gb,x(a) = −xa(1 − x)b/(aB(a,b)) for
any fixed x and b, we can investigate the difference equation above. We leave
it as an exercise.

10.6 The error function

The function g : R+ → R defined by the equation

g(x) = 2√
π
e−x

2

lies in C∞ ∩ D̃−1

N
∩K∞ and satisfies the equation erf(x) =

∫x
0

g(t)dt, where erf

is the Gauss error function. For x > 0 we then have

Σg(x) =
2√
π

∞∑

k=0

(e−(k+1)2 − e−(k+x)2)

The generalized Stirling formula yields the following convergence result

erf(x) +
2√
π

∞∑

k=0

e−(k+x)2 → 1 as x→ ∞.

Also, the analogue of Legendre’s duplication formula provides the surprising
identity

∞∑

k=0

(−e−(k+x
2

)2+e−(k+1)2−e−(k+x+1

2

)2+e−(k+ 1

2

)2−e−(k+1

2

)2+e−(k+x
2

)2) = 0.
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10.7 The exponential integral

The function g : R+ → R defined by the equation g(x) = e−x/x lies in C∞∩D̃−1

N
∩

K∞ and satisfies the equation E
1

(x) =
∫∞

x
g(t)dt, where E

1

is the exponential
integral. For x > 0 we then have

Σg(x) =

∞∑

k=0

(
e−(k+1)

k+ 1

−
e−(k+x)

k + x

)
.

The generalized Stirling formula easily provides the following convergence result

E
1

(x) −

∞∑

k=0

e−(k+x)

k+ x
→ 0 as x→ ∞.

Also, the analogue of Raabe’s formula is

∫x+1

x

Σg(t)dt = 1− ln(e− 1) − E
1

(x), x > 0.

10.8 The Bernoulli polynomials

Recall that, for any n ∈ N, the nth degree Bernoulli polynomial Bn(x) is defined
by the equation

Bn(x) =

n∑

k=0

(
n
k

)
Bn−k x

k
,

where Bk is the kth Bernoulli number. These polynomials satisfy the difference
equation Bn(x+ 1) − Bn(x) = nx

n−1. Thus, the function gn : R+ → R defined
by the equation gn(x) = nxn−1 lies in C∞ ∩ Dn ∩ K∞ and has the property
that Σgn(x) = Bn(x) − Bn(1). The form of the function gn also shows that

Bn(x) − Bn(1) = nζ(1− n) − nζ(1− n, x) , n ∈ N.

Thus, the Bernoulli polynomials can be characterized as follows:

All solutions fn : R+ → R to the equation fn(x + 1) − fn(x) =

nxn−1 that lie in Kn are of the form fn(x) = cn + Bn(x), where
cn ∈ R.

We also easily retrieve the multiplication formula:

m−1∑

j=0

Bn

(
x+ j

m

)
=

1

mn−1

Bn(x) x > 0.
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10.9 The Bernoulli polynomials of the second kind

For any n ∈ N, the nth degree Bernoulli polynomial of the second kind is
defined by the equation

ψn(x) =

∫x+1

x

(
t
n

)
dt.

In particular, we have ψn(0) = Gn. Also, these polynomials satisfy the differ-
ence equation

ψn+1

(x + 1) − ψn+1

(x) = ψn(x).

Thus, the function gn : R+ → R defined by the equation gn(x) = ψn(x) lies in
C∞ ∩Dn+1 ∩K∞ and has the property that Σgn(x) = ψn+1

(x) −ψn+1

(1).
Thus, the Bernoulli polynomials of the second kind can be characterized as

follows:

All solutions fn : R+ → R to the equation fn(x+1)−fn(x) = ψn(x)

that lie in Kn+1 are of the form fn(x) = cn + ψn+1

(x), where
cn ∈ R.

11 Conclusion

Krull-Webster’s theory has proved to be a very nice and useful contribution to
the resolution of the difference equation ∆f = g on the real half-line R+. In this
paper, we have provided a significant generalization of Krull-Webster’s theory by
considerably relaxing the asymptotic condition imposed on function g, and we
have demonstrated through various examples how this generalization provides
a unified framework to investigate the properties of many special functions.
This framework has indeed enabled us to derive several general formulas that
now constitute a powerful toolbox and even a genuine Swiss Army knife to
investigate a large variety of functions.

The key point of this generalization was the discovery of expression (2) for
the sequences n 7→ fpn[g](x), p ∈ N. We also observe that our uniqueness
and existence results strongly rely on Lemma 2.4 together with identities (13)
and (18). These results actually constitute the common core and even the
fundamental cornerstone of all the subsequent formulas that we derived in this
paper. For instance, the generalized Stirling formula (40) has been obtained
almost miraculously by merely integrating both sides of the inequality given in
Lemma 2.4. Also, Gregory’s summation formula (44) has been derived instantly
by integrating both sides of identity (18), and we have shown how its remainder
can be controlled using Lemma 2.4 again.

Our results clearly shed light on the way many of the classical special func-
tions, such as the polygamma functions and the derivatives of the Hurwitz zeta
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function, can be systematically studied, sometimes by deriving identities and
formulas almost mechanically.

Beyond this systematization aspect, our theory has enabled us to introduce
a number of new important and useful objects. For instance, the map Σ itself
is a new concept that appears to be as fundamental as the basic antiderivative
operation (cf. Definition 5.1). In this respect, it would be interesting to extend
the map Σ to a larger domain, e.g., a linear space of functions that would
include not only the current admissible functions but also every function that
has an exponential growth. Other concepts such as the Binet-like function and
the asymptotic constant also appear to be new fundamental objects that merit
further study.

In conclusion, we can clearly see that this area of investigation is very in-
triguing. We have just skimmed the surface, and there are a lot of questions
that emerge naturally. We now list a few below.

� Find necessary and sufficient conditions on function g to ensure both the
uniqueness and existence of solutions lying in Kp to the equation ∆f = g
(cf. Webster’s question in Appendix B).

� Find general methods to determine analogues of Euler’s reflection formula
and Gauss’ digamma theorem for any multiple log Γ -type function.

� Find necessary and sufficient conditions on function g for the function Σg
to be real analytic.

� Show how our results can be used and interpreted when extending some
multiple log Γ -type functions to complex domains.

Remark 11.1. At some places in this paper (e.g., in Theorem 6.5), we have
made the assumption that g (resp. g(r) for some r ∈ N∗) is continuous to ensure
the existence of certain integrals. Although we can often relax this condition
by simply requiring that g (resp. g(r)) is locally integrable, we have kept this
continuity assumption for simplicity and consistency with similar results where
higher order differentiability is assumed.

Recall also that any monotone function f defined on a compact interval [a,b]
is integrable. Thus, for any function g lying in ∪p>0

(Dp ∩Kp), the integral of
Σg on [x, x+ 1] exists for sufficiently large x. Nevertheless, most of our results
that involve this latter integral also use the asymptotic constant σ[g] and the
integral of g on the interval [1, x]. Thus, for the sake of simplicity, we have
always ensured integrability on compact intervals by assuming continuity on
the whole of R+.
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A On Krull-Webster’s asymptotic condition

Summary: We show that our uniqueness and existence results fully generalize a

recent attempt by Rassias and Trif [72] to solve the particular case when p = 2.

Recall that the asymptotic condition imposed by Krull and Webster on
function g is that, for each x > 0, g(t + x) − g(t) → 0 as t → ∞. Using
our notation, this means that the function g lies in R1

R
. Geometrically, this

condition also means that the chord to the graph of g on any fixed length
interval has an asymptotic zero slope. Only fixed length intervals whose left
endpoints are integers are to be considered if the condition reduces to requiring
that g ∈ R1

N
. Our uniqueness and existence results show that this condition

can actually be relaxed into g ∈ D1

N
, which means that the chord to the graph

of g on any interval of the form [n,n + 1], n ∈ N∗, has an asymptotic zero
slope. The function g(x) = ln x is a typical example that shows, just as does
every function whose derivative vanishes at infinity, that those functions need
not behave asymptotically like constant functions.

It remains, however, that Krull-Webster’s asymptotic condition is rather
restrictive. For instance, it is not satisfied for the functions g(x) = ln Γ(x)

and g(x) = x ln x. To overcome this restriction, Rassias and Trif [72] proposed
a modification of Webster’s results by considering solutions lying in K2 and
replacing the asymptotic condition with a more appropriate one. Specifically,
they considered any function g : R+ → R for which there exists a number a > 0

such that

lim

t→∞
g(x + t) − g(t) − x ln t = x lna, for all x > 0. (84)

It turns out that both functions g(x) = ln Γ(x) and g(x) = x lnx satisfy this
alternative condition.

Let us now show that our asymptotic condition that g ∈ D2

R
generalizes not

only Rassias and Trif’s (84) but also many other similar conditions.

Proposition A.1. Let ϕ : R+ → R and suppose that g : R+ → R has the
property that, for each x > 0, g(x + t) − g(t) − xϕ(t) → 0 as t→ ∞. Then
g lies in R2

R
⊂ D2

R
. In particular, R2

R
contains all the functions that satisfy

Rassias and Trif’s condition.

Proof. For any t > 0 and any g : R+ → R, define the function ρϕt [g] : [0,∞) → R

by
ρϕt [g](x) = g(x + t) − g(t) − xϕ(t).

Let also Rϕ
R

be the set of functions g : R+ → R with the property that, for each
x > 0, ρϕt [g](x) → 0 as t→ ∞. Then we immediately see that

ρ2t [g](x) = ρϕt [g](x) − xρ
ϕ
t [g](1),
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which shows that Rϕ
R

⊆ R2

R
. Now, if g satisfies Rassias and Trif’s condition,

then it lies in the set ∪a>0

Rϕa

R
, where ϕa(x) = ln(ax), and hence it also lies in

R2

R
.

Proposition A.1 can be generalized to R
p
R

for any value of p > 2 as follows.

Proposition A.2. Let p > 2 be an integer, let ϕ
1

, . . . ,ϕp−1

: R+ → R, and
suppose that g : R+ → R has the property that, for each x > 0,

g(x+ t) − g(t) −

p−1∑

j=1

(
x
j

)
ϕj(t) → 0 as t→ ∞.

Then g lies in R
p
R
⊂ D

p
R
.

Proof. For any t > 0 and any g : R+ → R, define the function ρϕt [g] : [0,∞) → R

by

ρϕt [g](x) = g(x + t) − g(t) −

p−1∑

j=1

(
x
j

)
ϕj(t).

Define also the functionsψϕ,1

t [g], . . . ,ψ
ϕ,p
t [g] : [0,∞) → R recursively byψϕ,1

t [g] =

ρϕt [g] and

ψ
ϕ,j+1

t [g] = ψ
ϕ,j
t [g] −

(
x
j

)
ψ

ϕ,j
t [g](j), j = 1, . . . ,p− 1.

Then, it is not difficult to see that

ψ
ϕ,j
t [g](x) = ρϕt [g](x) −

j−1∑

i=1

(
x
i

)
(∆ig(t) − ϕi(t))

and hence ψϕ,p
t [g] = ρ

p
t [g]. Thus, if the function g : R+ → R has the property

that, for each x > 0, ρϕt [g](x) → 0 as t→ ∞, then it lies in R
p
R
.

B On a question raised by Webster

Summary: We discuss conditions on function g to ensure both the uniqueness

(up to an additive constant) and existence of solutions to the equation ∆f = g

that lie in Kp.

A natural question raised by Webster [80, p. 606], and that we now extend to
any value of p ∈ N, is the following: Find necessary and sufficient conditions
on function g to ensure both the uniqueness (up to an additive constant)
and existence of solutions lying in K

p
+ (resp. K

p
−) to the equation ∆f = g.

Lemma 2.2(b) shows that a necessary condition for this to occur is that
g ∈ K

p−1

+ (resp. g ∈ K
p−1

− ). Also, our uniqueness and existence results show
that a sufficient condition is that g ∈ Dp ∩ K

p
− (resp. g ∈ Dp ∩ K

p
+). It is

tempting to believe that this latter condition is also necessary. The following
two examples support this idea.
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(a) Both functions ln Γ(x) and ln(1+ 1

2

sin(2πx))+ ln Γ(x) are solutions to the
equation ∆f = g that lie in K0

+, where g(x) = ln x does not lie in D0∪K0

−.

(b) Both functions 2

x and 2

x + sin(2πx) are solutions to the equation ∆f = g
that lie in K

p
+ for any p ∈ N, where g(x) = 2

x does not lie in Dp ∪K
p
−.

Nevertheless, the following proposition shows that in general the condition
above is not necessary.

Proposition B.1. There exists a function f ∈ C0 ∩K0 such that

(a) ∆f does not lie in D0 ∪K0, and

(b) for any function ϕ ∈ K0 satisfying ∆ϕ = ∆f we have that f − ϕ is
constant.

Proof. Let f ∈ K0

+ be the function whose graph is the polygonal line through
the points (4n, 4n) and (4n + 2, 4n + 4) for all n ∈ N. Thus the sequence
n 7→ ∆f(n) is the 4-periodic sequence 2, 0, 0, 2, 2, 0, 0, 2, . . . and hence condition
(a) holds. Now, let ϕ ∈ K0 be such that ∆ϕ = ∆f. Clearly, we must have
ϕ ∈ K0

+. For the sake of a contradiction, suppose that the 1-periodic function
ω = f − ϕ is not constant. That is, there exist 0 < x < y 6 1 such that
ω(x) 6= ω(y). There are two exclusive cases to consider.

(a) Suppose that ω(x) < ω(y). For large integer n, we then have

0 6 ϕ(y+ 4n+ 2) −ϕ(x + 4n+ 2) = ω(x) −ω(y) < 0.

(a) Suppose that ω(x) > ω(y). For large integer n, we then have

0 6 ϕ(x+ 4n+ 3) −ϕ(y + 4n+ 2) = ω(y) −ω(x) < 0.

In both cases we reach a contradiction, and hence condition (b) holds.

We note that the function f arising from Propositon B.1 is such that g = ∆f

does not lie in D0 ∪ K0. The following proposition shows that if the equation
∆f = g has a unique solution (up to an additive constant) and if g ∈ Kp for
some p ∈ N, then necessarily g ∈ Dp ∩Kp (see also Corollary 4.13).

Proposition B.2. Let g : R+ → R and p ∈ N, and suppose that the sequence
n 7→ ∆pg(n) is eventually decreasing. Suppose also that there exists a
unique (up to an additive constant) function f ∈ K

p
+ satisfying the equation

∆f = g. Then g lies in D
p
N
.

Proof. For the sake of a contradiction, suppose that the assumptions are sat-
isfied and that the sequence n 7→ ∆pg(n) does not approach zero. Since
this sequence is eventually nonnegative (because we eventually have ∆pg =
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∆p+1f > 0), it must converge to a value C > 0. It follows that the function
~g(x) = g(x) − C

(
x
p

)
lies in Dp ∩ K

p
− and hence Σ~g lies in K

p
+. Now, for any

0 < τ < C/(2π)p, the functions

f(x) = Σ~g(x) + C
(
x
p+1

)
,

ϕ(x) = Σ~g(x) + C
(
x
p+1

)
+ τ sin(2πx),

lie in K
p
+; indeed, we have

Dp+1(C
(
x
p+1

)
+ τ sin(2πx)) > C+ τ(2π)p > 0.

Moreover, these functions are solutions to the equation ∆f = g and satisfy
ϕ(1) = f(1). This contradicts the uniqueness assumption.

Remark B.3. We observe that if f and ϕ are solutions to ∆f = g, then for any
x > 0 and any p ∈ N∗, we have ∆pf(x) > 0 if and only if ∆pϕ(x) > 0. Indeed,
suppose on the contrary that ∆pf(x) > 0 and ∆pϕ(x) < 0 for some x > 0. Then

0 6 ∆pf(x) = ∆p−1g(x) = ∆pϕ(x) < 0,

a contradiction.

Thus, Webster’s question still remains a very interesting open problem whose
solution would certainly shed light on the theory developed here.

Regarding uniqueness issues only, the following two results due to John [42]
are also worth mentioning. Generalizations of these results to higher convexity
properties would be welcome.

Proposition B.4 (see [42]). Let g : R+ → R have the property that

inf

x∈R+

g(x) = 0.

Then there is at most one (up to an additive constant) solution f to the
equation ∆f = g that is increasing.

Proposition B.5 (see [42]). Let g : R+ → R have the property that

lim inf

x→∞

g(x)

x
= 0.

Then there is at most one (up to an additive constant) solution f to the
equation ∆f = g that is convex.

C Asymptotic behaviors and bracketing

Summary: We show that by considering higher and higher values of p in Theo-

rem 6.5 we obtain closer and closer bounds for the Binet-like function Jp+1[Σg].
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We have seen in Example 6.7 that the inequalities

(
1+

1

x

)− 1

2

6
Γ(x)√

2πe−x xx−
1

2

6

(
1+

1

x

) 1

2

hold for any x > 0 and that tighter inequalities can also be obtained by using
different values of the integer p > 1 in Theorem 6.5. In this appendix we show
that and how this feature applies in general to multiple log Γ -type functions.

Let g ∈ C0 ∩Dp ∩Kp, where p = 1+ degp. By Theorem 6.5, for any x > 0

such that g is p-convex or p-concave on [x,∞) we have the inequalities

−Gp |∆
pg(x)| 6 Jp+1[Σg](x) 6 Gp |∆

pg(x)| .

Let us now show how tighter inequalities can be obtained. For any r ∈ N,
define the functions αr[Σg] : R+ → R and βr[Σg] : R+ → R by the equations

αr[Σg](x) = −Gp+r
∣∣∆p+rg(x)

∣∣−
p+r∑

j=p+1

Gj∆
j−1g(x) ;

βr[Σg](x) = Gp+r
∣∣∆p+rg(x)

∣∣−
p+r∑

j=p+1

Gj∆
j−1g(x) .

We immediately see that the equality αr[Σg](x) = βr[Σg](x) holds if and
only if ∆p+rg(x) = 0. Also, by Theorem 6.5, if g ∈ Kp+r and if x > 0 is so that
g is (p+ r)-convex or (p+ r)-concave on [x,∞), then the following inequalities
hold:

αr[Σg](x) 6 Jp+1[Σg](x) 6 βr[Σg](x).

The following proposition shows that these inequalities get tighter and tighter
as the value of r increases.

Proposition C.1. Let g ∈ C0 ∩ Dp ∩ Kp+r+1 for some r ∈ N, where p =

1+ degg. Let x > 0 be so that g|[x,∞) lies in Kp+r([x,∞)) ∩Kp+r+1([x,∞)).
Then, we have

αr[Σg](x) 6 αr+1

[Σg](x) 6 βr+1

[Σg](x) 6 βr[Σg](x).

These inequalities are strict if ∆p+rg(x+ 1) 6= 0.

Proof. We already know that the central inequality holds. Now, using Corol-
lary 4.14, we can assume that g is (p + r)-convex and (p + r + 1)-concave on
[x,∞); the other case can be dealt with similarly. By Lemma 2.3, it follows that
∆p+rg 6 0 and ∆p+r+1g > 0 on [x,∞). Let us show that the first inequality
holds; the third one can be established similarly.

We have two exclusive cases to consider.
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� If Gp+r+1

< 0, then

∆r αr[Σg](x) = −Gp+r+1

(
∆p+r+1g(x) + ∆p+rg(x)

)

= −Gp+r+1

∆p+rg(x + 1).

� If Gp+r+1

> 0, then

∆r αr[Σg](x) = −Gp+r∆
p+rg(x+1)+Gp+r+1

(
∆p+r+1g(x) − ∆p+rg(x)

)
.

In both cases, we can see that ∆r αr[Σg](x) > 0. Moreover, we have ∆r αr[Σg](x)
> 0 if ∆p+rg(x+ 1) 6= 0.

It is natural to wonder how the inequalities in Proposition C.1 behave as
r→N ∞. The following proposition, which is a reformulation of Proposition 6.8,
answers this question and provides a series representation for Jp+1[Σg].

Proposition C.2. Let g ∈ C0 ∩ Dp ∩ K∞, where p = 1 + degg, and let
x > 0. Suppose that for every integer q > p the function g is q-convex
or q-concave on [x,∞). Suppose also that the sequence q 7→ ∆qg(x) is
bounded. Then the following assertions hold.

(a) The sequence q 7→ βq[Σg](x) − αq[Σg](x) converges to zero.

(b) The sequence n 7→ Gn∆
n−1g(x) is summable.

(c) We have

Σg(x) = σ[g] +

∫x

1

g(t)dt −

∞∑

j=1

Gj∆
j−1g(x).

Equivalently,

Jp+1[Σg](x) = −

∞∑

j=p+1

Gj∆
j−1g(x).
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