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PROOF OF A CONJECTURE OF SUN ON SUMS OF

FOUR SQUARES

YUE-FENG SHE AND HAI-LIANG WU

Abstract. In 2016, while studying restricted sums of integral squares,
Sun posed the following conjecture: Every positive integer n can be writ-
ten as x2+y2+z2+w2 (x, y, z, w ∈ N = {0, 1, · · · }) with x+3y a square.
In this paper, we confirm this conjecture via some arithmetic theory of
ternary quadratic forms.

1. Introduction

The Lagrange four-square theorem states that every positive integer can

be written as the sum of four integral squares. Along this line, in 1917,

Ramanujan [8] claimed that there are at most 55 positive definite integral

diagonal quaternary quadratic forms that can represent all positive integers.

Later in the paper [2] Dickson confirmed that Ramanujan’s claim is true

for 54 forms in Ramanujan’s list and pointed out that the quaternary form

x2+2y2+5z2+5w2 included in his list represents all positive integers except

15.

In 2016, Sun [10] studied some refinements of Lagrange’s theorem. For

instance, he showed that for any k ∈ {4, 5, 6}, each positive integer n can be

written as xk+y2+z2+w2 with x, y, z, w ∈ N. In addition, let P (x, y, z, w) be

an integral polynomial. Sun called P (x, y, z, w) a suitable polynomial if every

positive integer n can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with

P (x, y, z, w) a square. In the same paper, Sun showed that the polynomials

x, 2x, x− y, 2x− 2y are all suitable. Also, he showed that every positive

integer n can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with x + 2y

a square and he conjectured that x + 2y is a suitable polynomial. This

conjecture was later confirmed by Sun and his cooperator Y.-C. Sun in [9].

Readers may consult [6, 9, 11, 13] for the recent progress on this topic.

Moreover, Sun [10] investigated the polynomial x+3y, and he [10, Theorem

1.3(ii)] obtained the following result:

Theorem 1.1 (Sun). Assuming the GRH (Generalized Riemann Hypothe-

sis), every positive integer n can be written as x2+y2+z2+w2 (x, y, z, w ∈ Z)

with x+ 3y a square.
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Based on calculations, Sun [10, Conjecture 4.1] posed the following con-

jecture.

Conjecture 1.2. x+3y is a suitable polynomial, i.e., each positive integer

n can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x+ 3y a square.

Remark 1.3. With the help of computer, Sun [12] verified this conjecture

up to 108. For example,

9996 = 582 + 142 + 62 + 802 and 58 + 3× 14 = 102.

99992 = 2862 + 662 + 682 + 962 and 286 + 3× 66 = 222.

In this paper, we confirm this conjecture via some arithmetic theory of

ternary quadratic forms.

Theorem 1.4. Every positive integer n can be written as x2 + y2+ z2 +w2

(x, y, z, w ∈ N) with x+ 3y a square.

In Section 2 we will introduce some notations and prove some lemmas

which are key elements in our proof of Theorem 1.4. We shall give the

detailed proof of Theorem 1.4 in Section 3.

2. Notations and some preparations

Throughout this paper, for any prime p, we let Zp denote the ring of

p-adic integers, and let Z×
p denote the group of invertible elements in Zp.

In addtion, we set Z×2
p = {x2 : x ∈ Z×

p } and let M3(Zp) denote the ring

of 3× 3 matrices with entries contained in Zp. We also adopt the standard

notations of quadratic forms (readers may refer to [1, 5, 7] for more details).

Let

f(x, y, z) = ax2 + by2 + cz2 + ryz + szx + txy

be an integral positive definite ternary quadratic form. Its associated matrix

is

Mf :=





a t/2 s/2
t/2 b r/2
s/2 r/2 c



 .

Let p be an arbitrary prime. We introduce the following notations.

q(f) := {f(x, y, z) : (x, y, z) ∈ Z3}.

qp(f) := {f(x, y, z) : (x, y, z) ∈ Z3
p}.

In addition, let p > 2 be a prime. We say that f is unimodular over Zp if its

associated matrix Mf ∈ M3(Zp) and is invertible. We also let gen(f) denote

the set of quadratic forms which are in the genus of f .
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For any positive integer n, we say that n can be represented by gen(f)

if there exists a form f ∗ ∈ gen(f) such that n ∈ q(f ∗). When this occurs,

we write n ∈ q(gen(f)). By [1, Theorem 1.3, p. 129] we know that

(2.1) n ∈ q(gen(f)) ⇔ n ∈ qp(f) for all primes p.

We now state our first lemma involving local representations over Z2 (cf. [4,

pp. 186–187]).

Lemma 2.1 (Jones). Let f be an integral positive definite ternary quadratic

form, and let n be a positive integer. Then n ∈ q2(f) if and only if

f(x, y, z) ≡ n (mod 2r+1)

is solvable, where r is the 2-adic order of 4n.

We now give our next lemma which concerns the global representations

by the form x2 + 10y2 + 10z2.

Lemma 2.2. (i) Let n ≡ 1, 2 (mod 4) be a positive integer, and let 0 < λ ≤√
10n be an odd integer with 5 ∤ λ. Then there exist x, y, z ∈ Z such that

10n− λ2 = x2 + 10y2 + 10z2.

(ii) Let n ≡ 3 (mod 4) be a positive integer, and let 0 < δ ≤
√
10n be an

integer with 4 | δ and 5 ∤ δ. Then there are x, y, z ∈ Z such that

10n− δ2 = x2 + 10y2 + 10z2.

(iii) Let n be a positive odd integer, and let 0 < µ ≤
√
10n be an integer

with µ ≡ 2 (mod 4) and 5 ∤ µ. Then there are x, y, z ∈ Z such that

10n− µ2 = x2 + 10y2 + 10z2.

Proof. (i). Let f(x, y, z) = x2 + 10y2 + 10z2. For any prime p 6= 2, 5, it is

clear that f(x, y, z) is unimodular over Zp and hence qp(f) = Zp. As 5 ∤ λ,

it is easy to see that 10n− λ2 ∈ q5(f). When p = 2, since n ≡ 1, 2 (mod 4),

we have 10n−λ2 ≡ 1, 3 (mod 8). By the local square theorem (cf. [7, 63:1])

we obtain that 10n− λ2 ∈ Z×2
2 if n ≡ 1 (mod 4) and that 10n− λ2 ∈ 3Z×2

2

if n ≡ 2 (mod 4). This implies 10n − λ2 ∈ q2(f) and hence 10n − λ2 ∈
q(gen(f)).

There are two classes in gen(f) and the one not containing f has a

representative g(x, y, z) = 4x2 + 5y2 + 6z2 + 4zx. By (2.1) we have either

10n− λ2 ∈ q(f) or 10n− λ2 ∈ q(g). If 10n− λ2 ∈ q(f), then we are done.

Suppose now 10n− λ2 ∈ q(g), i.e., there are x, y, z ∈ Z such that

10n− λ2 = g(x, y, z) = 4x2 + 5y2 + 6z2 + 4zx.
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Then clearly 2 ∤ y. As 10n − λ2 ≡ 2n − 1 ≡ 5 + 2z2 (mod 4), we obtain

z ≡ n + 1 (mod 2). If n ≡ 1 (mod 4), then we have 10n − λ2 ≡ 1 ≡
4x2+5 (mod 8) and hence x ≡ 1 (mod 2). Hence in the case n ≡ 1 (mod 4),

we have x−y−z ≡ 0 (mod 2). In the case n ≡ 2 (mod 4), as z ≡ 1 (mod 2),

by the equality

(2.2) g(x, y, z) = g(x+ z, y, −z),

there exist x′, y′, z′ ∈ Z with 2 | x′−y′−z′ such that 10n−λ2 = g(x′, y′, z′).

One can easily verify the following equality:

(2.3) f(x, y, z) = g

(

x− y − z

2
, −y + z, y + z

)

.

By this equality and the above discussion, it is easy to see that 10n− λ2 ∈
q(f).

(ii). Let notations be as above. With the same reasons as in (i), we have

10n − δ2 ∈ qp(f) for any prime p 6= 2. When p = 2, by the local square

theorem we have

Z×
2 ⊆ {2x2 + 5y2 + 5z2 : x, y, z ∈ Z2}.

Hence 5n−δ2/2 ≡ 2x2+5y2+5z2 (mod 8) is solvable. This implies that the

congruence equation 10n− δ2 ≡ f(x, y, z) (mod 16) is solvable. By Lemma

2.1 and the above, we obtain 10n− δ2 ∈ q(gen(f)).

By (2.1) we have either 10n− δ2 ∈ q(f) or 10n− δ2 ∈ q(g). If 10n− δ2 ∈
q(f), then we are done. Suppose now 10n− δ2 ∈ q(g), i.e., there are x, y, z

such that 10n − δ2 = g(x, y, z). Then clearly 2 | y. As 10n − δ2 ≡ 2 ≡
2z2 (mod 4), we obtain 2 ∤ z. Hence by Eq. (2.2) there must exist x′, y′, z′ ∈ Z

with x′ − y′ − z′ ≡ 0 (mod 2) such that 10n− δ2 = g(x′, y′, z′). By Eq. (2.3)

we clearly have 10n− δ2 ∈ q(f).

(iii) Let notations be as above. Clearly we have 10n−µ2 ∈ qp(f) for any

prime p 6= 2. When p = 2, as

Z×
2 ⊆ {2x2 + 5y2 + 5z2 : x, y, z ∈ Z2}.

The equation 5n−µ2/2 ≡ 2x2 +5y2+5z2 (mod 8) is solvable. This implies

that the equation 10n − µ2 ≡ x2 + 10y2 + 10z2 (mod 16) is solvable. By

Lemma 2.1 and the above, we have 10n− µ2 ∈ q(gen(f)).

By (2.1) we have either 10n−µ2 ∈ q(f) or 10n−µ2 ∈ q(g). If 10n−µ2 ∈
q(f), then we are done. Suppose now 10n− µ2 ∈ q(g), i.e., there are x, y, z

such that 10n − µ2 = g(x, y, z). Then clearly 2 | y. Since 10n − µ2 ≡ 2 ≡
2z2 (mod 4), we get 2 ∤ z. Then by Eq. (2.2) there are x′, y′, z′ ∈ Z with

x′ − y′ − z′ ≡ 0 (mod 2) such that 10n− µ2 = g(x′, y′, z′). By Eq. (2.3) we

clearly have 10n− µ2 ∈ q(f). This completes the proof. �
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Sun and his cooperator [9, Theorem 1.1(ii)] proved that every positive

integer n can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x + 2y

a square. Motivated by this, we obtain the following stronger result which

we need in the next Section.

Lemma 2.3. Every odd integer n ≥ 8×106 can be written as x2+y2+z2+w2

(x, y, z, w ∈ N) with x ≤ y and x+ 2y a square.

Proof. We first note that

8× 106 >

[(

2

51/4 − (4.5)1/4

)4]

,

where [·] denotes the floor function. If n ≥ 8×106, then (5n)1/4−(4.5n)1/4 >

2 and hence there is an integer (4.5n)1/4 ≤ m ≤ (5n)1/4 such that m ≡
n−1
2

(mod 2).

Now let h(x, y, z) = x2 + 5y2 + 5z2. By [3, pp. 112–113] we have

(2.4) q(h) = {x ∈ N : x 6≡ ±2 (mod 5) and x 6= 4k(8l+7) for any k, l ∈ N}.

As 5n−m4 ≥ 0, 5n−m4 ≡ 1, 2 (mod 4) and 5n−m4 6≡ ±2 (mod 5), we have

5n −m4 ∈ q(h) by (2.4). Hence there exist s ∈ Z and z, w ∈ N such that

5n−m4 = s2+5z2+5w2. Clearly −
√
5n−m4 ≤ s ≤

√
5n−m4. Replacing

s by −s if necessary, we may assume that s ∈ Z and s ≡ −2m2 (mod 5).

By the inequality

s+ 2m2 ≥ −
√
5n−m4 + 2m2 =

5m4 − 5n√
5n−m4 + 2m2

> 0

we may write s+ 2m2 = 5y for some y ∈ N. This gives

5n−m4 = (5y − 2m2)2 + 5z2 + 5w2,

and hence we get

(2.5) n = (m2 − 2y)2 + y2 + z2 + w2.

Let x := m2 − 2y. Then we have

5x = 5m2 − 10y = m2 − 2s ≥ m2 − 2
√
5n−m4 =

5(m4 − 4n)

m2 + 2
√
5n−m4

> 0.

This gives x > 0. Moreover,

5(y − x) = 3s+m2 ≥ −3
√
5n−m4 +m2 =

10(m4 − 4.5n)

m2 + 3
√
5n−m4

≥ 0.

This gives x ≤ y. In view of the above, we can write n = x2 + y2 + z2 + w2

with x, y, z, w ∈ N, x ≤ y and x+ 2y = m2. This completes the proof. �

We conclude this section with the following lemma.
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Lemma 2.4. For every integer n 6≡ 0 (mod 4) with n ≥ 4 × 108, we can

write n = x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x + 3y = 2m2 for some

m ∈ N.

Proof. We divide our proof into the following two cases.

Case 1. n ≡ 2 (mod 4).

In this case, we write n = 2n′ for some odd integer n′ ≥ 4 × 107. By

Lemma 2.3 we can write n′ = x′2 + y′2 + z′2 + w′2 (x′, y′, z′, w′ ∈ N) with

x′ ≤ y′, z′ ≤ w′ and x′ + 2y′ = m2
0 for some m0 ∈ N. Then

n = 2n′ = (y′ − x′)2 + (y′ + x′)2 + (w′ − z′)2 + (z′ + w′)2.

Letting x := y′ − x′, y := y′ + x′, z := w′ − z′ and w := z′ + w′, we obtain

that

n = x2 + y2 + z2 + w2

with x+ 3y = (y′ − x′) + 3(y′ + x′) = 2(x′ + 2y′) = 2m2
0.

Case 2. n is odd.

We first note that

4× 108 >

[(

4
√
2

101/4 − 91/4

)4]

.

If n ≥ 4× 108, then we have (10n)1/4√
2

− (9n)1/4√
2

> 4 and hence there exists an

integer (9n)1/4√
2

≤ m ≤ (10n)1/4√
2

such that 2 ∤ m and 5 ∤ m. By Lemma 2.2 (iii)

there exist t ∈ Z and z, w ∈ N such that

10n− 4m4 = t2 + 10z2 + 10w2.

Clearly −
√
10n− 4m4 ≤ t ≤

√
10n− 4m4. Replacing t by −t if necessary,

we may assume t ≡ −6m2 (mod 10). By the inequality

t + 6m2 ≥ −
√
10n− 4m4 + 6m2 =

10(4m4 − n)

6m2 +
√
10n− 4m4

> 0

we can write t+ 6m2 = 10y for some y ∈ N. This implies

10n− 4m4 = (10y − 6m2)2 + 10z2 + 10w2,

and hence we get

n = (2m2 − 3y)2 + y2 + z2 + w2.

Let x := 2m2 − 3y. Then we have

10x = 2m2 − 3t ≥ 2m2 − 3
√
10n− 4m4 =

10(4m4 − 9n)

2m2 + 3
√
10n− 4m4

≥ 0.

This gives x ≥ 0. In view of the above, we can write n = x2 + y2 + z2 + w2

(x, y, z, w ∈ N) with x+ 3y = 2m2.

This completes the proof of Lemma 2.4. �
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3. Proof of the main result

Proof of Theorem 1.4. We prove our result by induction on n. When

n < 4 × 109, we can verify the desired result by computer. Assume now

n ≥ 4× 109. We divide our remaining proof into following cases.

Case 1. n ≡ 0 (mod 4).

If 16 | n, then the desired result follows immediately from the induction

hypothesis. We now assume 16 ∤ n. Then we can write n = 4n′ with n′ 6≡
0 (mod 4). By Lemma 2.4 there exist x1, y1, z1, w1, m1 ∈ N such that n′ =

x2
1+y21+z21+w2

1 and x1+3y1 = 2m2
1. Clearly we can write n = 4n′ = x2+y2+

z2+w2 with x+3y = (2m1)
2, where x = 2x1, y = 2y1, z = 2z1, w = 2w1 ∈ N.

Case 2. n ≡ 1, 2, 3 (mod 4).

We first note that

4× 109 >

[(

8

101/4 − 91/4

)4]

>

[(

4

101/4 − 91/4

)4]

.

If n ≥ 4 × 109, then we have (10n)1/4 − (9n)1/4 > 8. Hence we can find an

integer (9n)1/4 ≤ m ≤ (10n)1/4 satisfying the following condition:
{

2 ∤ m and 5 ∤ m if n ≡ 1, 2 (mod 4),

4 | m and 5 ∤ m if n ≡ 3 (mod 4).

By Lemma 2.2 there exist u ∈ Z and z, w ∈ N such that

10n−m4 = u2 + 10z2 + 10w2.

Clearly −
√
10n−m4 ≤ u ≤

√
10n−m4. Replacing u by −u if necessary,

we may assume that u ∈ Z and u ≡ −3m2 (mod 10). By the inequality

u+ 3m2 ≥ −
√
10n−m4 + 3m2 =

10(m4 − n)√
10n−m4 + 3m2

> 0

we can write s+ 3m2 = 10y for some y ∈ N. This gives

10n−m4 = (10y − 3m2)2 + 10z2 + 10w2,

and hence

n = (m2 − 3y)2 + y2 + z2 + w2.

Let x := m2 − 3y. Then we have

10x = m2 − 3u ≥ m2 − 3
√
10n−m4 =

10(m4 − 9n)

m2 + 3
√
10n−m4

≥ 0.

This gives x ≥ 0 and hence we have n = x2 + y2 + z2 + w2 (x, y, z, w ∈ N)

with x+ 3y = m2.

In view of the above, we complete the proof. �
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