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CHEBYSHEV POLYNOMIALS AND HIGHER ORDER LUCAS

LEHMER ALGORITHM

KOK SENG CHUA

Abstract. We extend the necessity part of Lucas Lehmer iteration for test-
ing Mersenne prime to all base and uniformly for both generalized Mersenne
and Wagstaff numbers(the later correspond to negative base). The role of
the quadratic iteration x → x2 − 2 is extended by Chebyshev polynomial
Tn(x) with an implied iteration algorithm because of the compositional iden-
tity Tn(Tm(x)) = Tnm(x). This results from a Chebyshev polynomial pri-

mality test based essentially on the Lucas pair (ωa, ωa), ωa = a +
√
a2 − 1,

where a 6= 0 ± 1. It seems interesting that the arithmetic are all coded in the
Chebyshev polynomials Tn(x).

1. Main results and proof

The Chebyshev polynomial of the first kind, which is explicitly defined [8] for
|x| ≥ 1, by

Tn(x) =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
=

ωn + ωn

2
,

where ωx := x +
√
x2 − 1, has a natural extension to negative value of n, with

T−n(x) = Tn(x) since ωω = 1 and this is in agreement with its hyperbolic (since
we are interested in |x| ≥ 1) characterization Tn(cosh θ) = cosh(nθ) or equivalently
Tn(a) = cosh(n log(ωa)). It also says that Tn(a) is just (half) the trace of the nth

power of the unit ωa in Q(
√
a2 − 1).

Lucas-Lehmer [2] states that if p is an odd prime, and if we let

(1.1) s0 = 4, sn+1 = s2n − 2,

then Mp = 2p − 1 is prime if and only if Mp divides sp−2. The iteration map
x → x2 − 2 is essentially the Chebyshev polynomial T2(x) = 2x2 − 1. If we let
sn = 2T2n(2), then sn satisfies the recurrence (1.1) because of the very special
compositional identity Tm(Tn(x)) = Tmn(x) so that T2n(x) = T n

2 (x) where the
power n on the right means iterated composition n times.

But there is no reason for the base 2 to be special for Chebyshev and the implied
algorithm Tqn(a) = T n

q (a) lead us to look at the residues T n
q (a) mod qn − 1. In

this note we extend the necessity part of Lucas-Lehmer to all base q 6= 0,±1 and
all staring values a 6= 0,±1 where the quadratic iteration (1.1) is replaced by the
order q Chebyshev map x → Tq(x). In addition, an unexpected surprise is that
we can also allow negative q which actually means testing for Wagstaff primes by
the same algorithm. Let Φp(x) = xp

−1
x−1 be the pth cyclotomic polynomial. Note

Φp(q) = qp−1
q−1 and Φp(−q) = qp+1

q+1 are the generalized Mersenne and Wagstaff
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numbers. Let Un(x) be the Chebyshev polynomials of the second kind. We note

that U−n(x) = −Un−2(x) and Un(x) =
ωn+1

−ωn+1

ω−ω .

Theorem 1.1. Let q, a be integers both not 0,±1 and p be an odd prime and let

ǫ =
(

a2
−1

Φp(q)

)

, if Φp(q) is a prime not dividing a2 − 1, then

(1.2) Tqp(a) = Tq+ǫ−1(a), Uqp−ǫ(q−1)−2(a) = 0 mod Φp(q).

Remark 1.2. This works also for −q, for example for q = −2, a = 2, ǫ =
(

p
3

)

, it says
Np = (2p + 1)/3 prime implies T2p(2) = T3−(p

3 )
(2) mod Np, which in term of (1.1)

is equivalent to Np divides sp − 104− 90
(

p
3

)

. This is a weakened form and we can

derive a stronger version later, namely Np divides sp−1 − 5 − 9
(

p
3

)

. Note also we
only need to code one program which will work for both ±q provided T−n(x) and
U−n(x) are implemented as Tn(x),−Un−2(x) as was the case with PARI-GP which
we used.

Remark 1.3. One can compute Tqp(a) efficiently as T p
q (a) but Un(x) does not sat-

isfies the compositional identity and in general they don’t commute, Un(Um(x)) 6=
Um(Un(x)). For large n of no special form, Un and also Tn can be computed in
O(log n) steps by the usual method of writing a linear recurrence as a matrix power
and applied the binary exponentiation as was observed in [3]. We give the formula
to compute Tn+1(a), Un(a) mod Q together via a coupled recurrence, which follows
from ωn+1 = ωnω and (2.2) below,

(1.3)

(

Tn+1(a)
Un(a)

)

=

(

a a2 − 1
1 a

)n (
a
1

)

mod Q.

If n = qp ± δ for small δ, one should use q-nary expansion of n.

Remark 1.4. One can express (1.2) in a simple Lucas-Lehmer form similar to (1.1),
let

s0 = a, sn+1 = Tq(sn),

if Φp(q) is prime, it divides sp − 2T
q+

(

a2
−1

Φp(q)

)

−1
(a). This is weaker than what is

provable but have a simple uniform form. Sufficiency actually failed in this weak
form for some small p for some choices of a. eg.

q = 11, p = 3, a = 2,M11 = (113 − 1)/10 = 133 = 7.19

q = −5, p = 3, a = 3, N = (53 + 1)/6 = 21 = 3.7

but this can be ruled out if we choose other starting point eg. use a = q. They also
failed the stronger Chebyshev test.

Remark 1.5. Theorem (1.1) can be ”seen” visually if we compute a list of values of
Tqp(a) mod Φp(q) for primes p up to say 200. There is clearly a dip in the number
of digits of the residues when Φp(q) is prime, and this is how we first saw them.

Theorem 1 follows immediately from the following lemma.

Lemma 1.6. Let Q be an odd prime and a 6= 0,±1, ω = a +
√
a2 − 1, as before,

and let ǫ =
(

a2
−1
Q

)

, δ =
(

2(a+1)
Q

)

, then

(1.4) ω
Q−ǫ

2 = δ mod Q,
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or equivalently,

(1.5) TQ−ǫ
2

(a) = δ, UQ−ǫ
2 −1(a) = 0 mod Q,

and this implies

TQ−ǫ
2

(a) = δ mod Q2.

Proof. We have computing mod Q,

(a− 1 +
√

a2 − 1)Q = a− 1 + ǫ
√

a2 − 1.

Multiplying by (a− 1− ǫ
√
a2 − 1) gives

(2− 2a)(1−ǫ)/2 = (a− 1 +
√

a2 − 1)(Q−ǫ),

and using (a− 1 +
√
a2 − 1)2 = 2(a− 1)ω gives us, (note (−1)

1−ǫ
2 = ǫ)

ω(Q−ǫ
2 ) =

(

2(a+ 1)

Q

)

mod Q.

But we have (without mod Q )

ω
Q−ǫ

2 = TQ−ǫ
2

(a) + UQ−ǫ
2 −1(a)

√

a2 − 1,

by (2.2) below, which give the equivalent (1.5). �

Remark 1.7. Writing n = Q−ǫ
2 , since ω is a unit , so is ωn, we must have the

Pell’s equation ωnωn = Tn(a)
2 − (a2 − 1)Un−1(a)

2 = 1. So we have Q2 divides
Tn(a)

2 − 1 = (Tn(a) − δ)(Tn(a) + δ). Since Q divides Tn(a) − δ, its prime divisor
cannot divide Tn(a) + δ, so we always have Tn(a) = δ mod Q2.

Proof. (Proof of theorem) Specialize to Q = Φp(q) =
qp−1
q−1 (q may be negative) in

(1.4) gives

ω
qp−1−ǫ(q−1)

2(q−1) = δ,

and raising to the 2(q − 1) power (this lose information) gives ωqp−1−ǫ(q−1) = 1,
which is the same as

Tqp(a) = Tǫ(q−1)+1(a) = Tq+ǫ−1(a), Uqp−ǫ(q−1)−2(a) = 0 mod Q.

�

Remark 1.8. Using (1.4), one can find similar divisibility criteria of the same se-
quence for many class of primes, eg q = ±2, a = 2 and sn the usual Lucas-Lehmer
sequence (1.1), we have

Mp = 2p − 1 prime implies Mp divides sp−2.
Np = (2p + 1)/3 prime implies Np divides sp−1 − 5− 9

(

p
3

)

n > 2,Mn = 3.2n − 1, prime implies Mn divides (s3n−1 − 3sn−1 − 4)
n > 2, Nn = 3.2n + 1, prime implies Nn divides (sn−1 + 1)(sn−1 − 2), etc...
The last two follows from setting a = 2, T3.2n−1(2) = T1(2) and T3.2n−1(2) = 1.

Remark 1.9. For a cubic example, let q = ±3, a = 2, and s0 = 2, sn+1 = sn(4s
2
n−3),

then Mp = (3p − 1)/2 prime implies it divides sp − 26 and Np = (3p + 1)/4 prime

implies it divides sp − 194 + (−1)(p−1)/2168.
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2. Chebyshev primality test

If Q is a prime and a an integer with gcd(a2 − 1, Q) = 1, by (1.5), we have

(2.1) TQ−ǫ
2

(a) =

(

2(a+ 1)

Q

)

, UQ−ǫ
2 −1(a) = 0 mod Q.

Clearly all odd primes Q pass this test to every base a. We shall called an odd
non-prime integer Q, with gcd(Q, a2 − 1) = 1, which pass this test a Chebyshev
pseudoprime to the base a. It depends only on a mod Q but there is no subgroup
structure. Chebyshev pseudoprimes are always squarefree except for some prime
squared.They are rare and seems rarer than Fermat pseudoprimes. There are only
seven of them to the base 2 upto 20000,

23.43, 37.73, 1032, 61.181, 5.7.443, 97.193, 31.607.

Is there a Chebyshev pseudoprime to every base mod Q ? A Sierpiński number [9]
is a positive odd integer k such that Nn = k2n + 1 is composite for every n ≥ 1.
k0 = 78557 is the smallest known Sierpiński number, because every Nn = k02

n + 1
is divisible by one of {3, 5, 7, 13, 19, 37, 73}. It may be possible that Nn fail a
Chebyshev test for every n for some a. Since Nn = 1 mod 8 for n ≥ 3. We get
ǫ = δ = 1 if we pick a = 3. So if s0 = 3, sk+1 = 2s2k − 1, and N2

n = (k2n + 1)2 does
not divide Tk(sn−1)−1 for every n ≥ 3, then k is Sierpiński. Note Nn+1 = 2Nn−1.
It is open if any of the following five numbers 21181, 22699, 24737, 55459, 67607 is
Sierpiński.

A Chebyshev pseudoprime for the base a is also a weak Chebyshev pseudoprime
as defined in [7] ie. TQ(a) = a mod Q since the condition on U means ωQ−ǫ = 1 or
ωQ = ωǫ and taking trace gives TQ(a) = T1(a) = a mod Q. There are composites
which pass the weak test for all base a OEIS A175530, but all of them fail the
strong Chebyshev test for all base from 2 to 10.

A square-free Q which pass the T test will also pass the U test.[Proof: We have

TQ−ǫ(a) = 1 so that (ω(Q−ǫ)/2 − ω(Q−ǫ)/2)2 = 0 and squarefreeness of Q implies
U(Q−ǫ)/2−1(a) = 0.] There are many non square-free integers which pass the T test
but the only non squarefree integer which can pass both tests are square of prime
(Proof ?). So the second part only serve to rule out non squarefree integer and
this is relevant since there is no known efficient algorithm to detect squarefreeness.
However we can always rule out perfect square as input

If (Q−ǫ)/2 = 2tQ1 is even , we can look at the profile [TQ1(a), T2Q1(a), ..., T(Q−ǫ)/2(a)]

as in the strong pseudoprime test. Since T2(x) = 2x2−1,if there is a 1 not preceded
by ±1 or a −1 not preceded by 0, Q cannot be prime. For the seven pseudoprimes
above, the profiles are

[1], [0,−1], [9083, 0,−1, 1], [0,−1, 1, 1, 1], [8416, 4431, 8861, 1],

[14063, 17370, 18527, 387, 1], [18791, 1301, 18720, 0,−1, 1],

so the strong test rule out 5.7.443 and 97.193 as primes. For square free Q, −1 is
always preceded by 0, since (ωm + ωm)/2 = −1 implies (ωm/2 + ωm/2)2 = 0 mod
Q.

We note that for a 6= 0± 1, (ωa, ωa) forms a Lucas pair in the sense of [1], since
ωa

ωa
is not a root of unity. The associated Lucas number un(ωa, ωa) = Un−1(a). It

seems to follow from [1] that for every n > 1, Un(a) has a primitive divisor, ie.
there is a prime p which divides Un(a) but not a(a

2 − 1)U0(a)...Un−1(a).
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2.1. Multiplicative order and sufficiency test. Many of the necessity criteria
seems to be sufficient in the range we can compute. It could be that when Q is
composite, the residue behave randomly and the chance they give divisibility is 1/Q
which is very small so we never see them.

Let ω = a +
√
a2 − 1 be the canonical unit. For an integer power n, we must

have ωn = P (a)+Q(a)
√
a2 − 1 for some P (x), Q(x) ∈ Z[x] but for ω, they are just

Chebyshev polynomials [8],or just by induction,

(2.2) ωn = Tn(a) + Un−1(a)
√

a2 − 1,

and n may be negative. Writing ωn+1 = ωnω gives the recurrence formula in (1.3).
For an odd integer Q, let OQ(ω) be the multiplicative order of ωa mod Q, ie. the

smallest integer m such that ωm = 1 mod Q. This is thus the same as the smallest
integer m such that Tm(a) = 1 and Um−1(a) = 0 mod Q. Note that for a prime
Q or a Chebyshev pseudoprime Q, we have ωQ−ǫ

a = δ2 = 1 so that OQ(ωa) divides
one of Q± 1, in particular it divides Q2 − 1 and OQ(ω) ≤ Q+ 1.

There seems to be only one argument to prove primality of Q. One shows that
ω has multiplicative order Q± 1 and hence Q cannot have any non trivial divisor,
since it will have the same order in Fp[

√
a2 − 1] for the smallest prime p dividing Q

of size t2 < Q±1. We can determine the order if we know the complete factorization
of Q± 1.

Lemma 2.1. Let Q be an odd integer and a 6= 0,±1, and assume
(

2(a+1)
Q

)

= −1.

Let ǫ =
(

a2
−1
Q

)

. If Q is prime, then T(Q−ǫ)/2(a) = −1 and U(Q−ǫ)/2−1(a) = 0.

Conversely if we know the complete factorization Q − ǫ =
∏k

j=0 q
nj

j , j = 0, .., k

where q0 = 2, and we have T(Q−ǫ)/2(a) = −1 and U(Q−ǫ)/2−1(a) = 0, and also

T(Q−ǫ)/qj(a) 6= 1 or U(Q−ǫ)/2−1(a) 6= 0, for j = 1, ..., k, then Q is prime.

For Q = 2p − 1, and a = 2, we get ω2p−1

= −1 so that OQ(ω2) = 2p = Q+1. So
2p − 1 is prime if and only if O2(ω2) = Q + 1 if an only if T2p−1(2) = −1 and this
is equivalent to T2p−2(2) = 0 mod Q. Instead of starting with a = 2, we can choose
any a of the form a = 1 + x2 so that a + 1 = 3y2 or a + 1 = 6y2 , we then have
ǫ = −1 = δ we still have 2p − 1 is prime if and only if T2p−2(a) = 0 mod Q. This
condition turns out to be necessary and sufficient and is given in OEIS A18844.

Lemma 2.1 is just the analogue of the usual computational definition of the
existence of a primitive root in the case of Z/Q∗ but there is one basic difference

here, since changing base a means changing the group Z[
√
a2 − 1]∗ also. We can

change a until we get the correct order.

Example 2.2. Let a = 2 and r = r1, ...rk be an odd square free integer not
divisible by 3 and let δ = 2− r ∈ {0, 1} mod 3, N = 2n+ δ and Q = r2N − 1. Let
s0 = 2, sn+1 = s2n − 2. Then Q is prime implies Q divides Tr(sN−2/2). Conversely
if Q is odd integer of the form r2N − 1, and divides Tr(sN−2/2)) and in addition,
T(r/rj)(sN/2) 6= 1 mod Q, for j = 1, ...k, then Q is prime.

Proof. The value of δ were chosen such that Q = 1 mod 3, so for a = 2, ǫ = −1 and
(

2(a+1)
Q

)

= −1 and we have ω(Q−ǫ)/2 = ωr2N−1

= −1, so that Tr2N−2(2) = 0. It

also implies the order OQ(ω) = t1...tk2
N where tj divides rj . If T(r/rj)(sN/2) 6= 1,

ω(r/rj)2
N 6= 1, we must have tj = rj and OM (ω) = M + 1. �
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If we let r = 5,then for n up to 3000, there are 29 primes and 5 of them at
n = 2, 18, 32, 1638, 2622, fail the sufficiency tests.

We also have an order q version

Example 2.3. Let Q = 12qn+1 be prime where q is an odd prime, then T3qn(2) = 0
mod Q. Conversely if an odd integer Q is of the form 12qn+1 satisfies T3qn(2) = 0,
and in addition T4qn(2), T12qn−1(2) are all not 1 mod Q, then Q is prime.

Proof. We have Q = 1 mod 3 and 5 mod 8. So if a = 2, ǫ = 1, δ = −1 so that
we have ω6qn = −1. So T3qn(2) = 0 and OQ(ω) = 4.3t1qt2 , t1 ≤ 1, t2 ≤ n. It is
12qn = Q− 1 iff T12qn−1(2) 6= 1 and T4qn(2) 6= 1. �

For q = 5, Q is prime when

n = 1[1, 1], 5, 7, 18, 19, 23, 46, 51, 55, 69[1, ∗], 126[∗, 1], 469, 1835[∗, 1], 3079, 3249, 4599, 4789
but the primality proof failed for 1, 69, 126, 1835, but we get a proof when we change
base.

Recall that a Proth’s number N = k2n +1, where k is odd and k < 2n, is prime
if and only if there ia an integer a such that a(N−1)/2 = 1 mod N .

We have an exact analogue

Lemma 2.4. Let N = k2n + 1 where k is odd and k < 2n. Let a be such that ǫ =
−δ = 1, then N is prime if and only if it pass the Chebyshev test, ie. ω

(N−1)/2
a = −1

or equivalently Tk2n−1(a) = −1, Uk2n−1
−1(a) = 0 mod N .

Proof. The necessity is just Chebyshev test. Conversely ω(N−ǫ)/2 = ωk2n−1

= −1
mod N implies the same mod any prime p dividing N , which implies p + 1 ≥
Op(ω) ≥ 2n, which means every prime divisor of N is greater than

√
N . �

A special case of this is a question in MathOverflow [5], where we set a = 4 (see
also answer by Ian Algol). The requirement ǫ = −δ = 1 translate to

(

5
N

)

= −1

and
(

N
3

)

(−1)(N−1)/2 = −1 since N = 1 mod 8 for n > 2, and note that Pn(x) =
2Tn(x/2).

For any fixed k and n, there is always some choice of a to give a necessary and
sufficient condition. What we want is for a fixed k to find an a which works for all
n but for k = 3, this does not seem to be possible.

Example 2.5. In the same way if n > 1 and Fn = 22
n

+ 1 and set a = 4, we

have ǫ = 1 = −δ, so ω22
n−1

4 = −1 so that OFn
(ω4) = 22

n

= Fn − 1 and also

ω22
n
−2

4 + ω22
n
−2

4 = 0. So Fn is prime if and only if T22n−2(4) = 0 mod Fn. In
Lucas-Lehmer term if s0 = 8, sn+1 = s2n − 2, then Fn is prime if and only if Fn

divides s2n−2.
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