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Abstract

We study Feynman checkers, the most elementary model of electron motion introduced by
R. Feynman. For the model, we prove that the probability to find an electron vanishes nowhere
inside the light cone. We also prove several results on the average electron velocity. In addition,
we present a lot of identities related to the model.
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1 Introduction
This paper is on the most elementary model of one-dimensional electron motion that is known as
“Feynman checkers”. This model was introduced by R. Feynman around the 1950s and published in
1965; see [3, Problem 2.6]. Afterwards, a large amount of physical articles on the model appeared (see,
for example, [1, 5, 6, 7, 9]). But the first mathematical work [10] on the subject appeared, apparently,
only in 2020. We use the inessential modification of the model from [3] that was presented in [10].
Many properties of our model are parallel to usual quantum mechanics: there are analogues of Dirac
equation (Proposition 1), probability/charge conservation (Proposition 4), Klein–Gordon equation [10,
Proposition 7], Fourier integral [10, Propositions 12-13], concentration of measure on the light cone [10,
Corollary 6] etc. Other striking properties have sharp contrast with both continuum quantum theory
and the classical random walks: the (essentially) maximal electron velocity is strictly less than the
speed of light [1, Theorem 1], [10, Theorem 1(B)]; adding absorbing boundary increases the probability
of returning to the initial point [1, Theorems 8 and 10].

It should be noted that Feynman checkers almost completely identical to one-dimensional quantum
walk and Hadamard walk. These notions are discussed in [1, 6]; see [11] for a comprehensive survey.

Our main (new) result states that the probability to find an electron at a lattice point is nonzero
if there is at least one checker path from the origin to that point (Theorem 1), answering a question
by A. Ustinov. Also we present several results on the average velocity of the electron (S5). We prove
that the expectation of the average electron velocity equals the time-average of the expectation of the
instantaneous velocity (Proposition 8), answering a question by D. Treschev. Also we compute the
limit value of the average electron velocity when time tends to infinity (Theorem 2). This result has
been proven in [4, Theorem 1] (see also an exposition in [10, S12.2]), but we present a short elementary
proof. In addition, we state a lot of new identities related to the model, which were found in numeric
experiments (See S6). A few of these identities are proven and the rest are interesting open problems.

2 Definition and examples
In this section we present the definition and physical interpretation of Feynman checkers from [10].

Definition 1 ([10, Definition 2]). Fix 𝜀 > 0 and 𝑚 > 0 called lattice step and particle mass respectively.
Consider the lattice 𝜀Z2 = { (𝑥, 𝑡) : 𝑥/𝜀, 𝑡/𝜀 ∈ Z }. The elements of 𝜀Z2 are called lattice points. A
checker path is a finite sequence of points of 𝜀Z2 such that the vector from each point (except the last
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one) to the next one equals either (𝜀, 𝜀) or (−𝜀, 𝜀). A turn is a point of the path (not the first and not
the last one) such that the vectors from the point to the next and to the previous ones are orthogonal.
For (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 0, denote

𝑎(𝑥, 𝑡,𝑚, 𝜀) := (1 +𝑚2𝜀2)(1−𝑡/𝜀)/2 𝑖
∑︁
𝑠

(−𝑖𝑚𝜀)turns(𝑠),

where the sum is over all checker paths 𝑠 from (0, 0) to (𝑥, 𝑡) with the first step to (𝜀, 𝜀), and turns(𝑠)
is the number of turns in 𝑠. Denote

𝑃 (𝑥, 𝑡,𝑚, 𝜀) := |𝑎(𝑥, 𝑡,𝑚, 𝜀)|2.

Denote by 𝑎1(𝑥, 𝑡,𝑚, 𝜀) and 𝑎2(𝑥, 𝑡,𝑚, 𝜀) the real and the imaginary part of 𝑎(𝑥, 𝑡,𝑚, 𝜀) respectively.

Remark 1 (Physical interpretation of the model, [10]). We use the natural system of units, where
both the speed of light and the Plank constant equal 1. The 𝑡− and 𝑥−coordinates are interpreted
as time and position of the particle of spin 1/2 and mass 𝑚 respectively. Thus any checker path is
interpreted as motion of a particle in 1D space with the speed of light (with change of direction). The
line 𝑥 = 𝑡 represents motion in one direction with the speed of light. In what follows, we consider the
motion of an electron (so that 𝑚 is the mass of an electron). The number 𝑃 (𝑥, 𝑡,𝑚, 𝜀) is called the
probability to find an electron at the lattice point (𝑥, 𝑡), if the electron was emitted from the point (0, 0).
Such terminology is confirmed by the fact that all the numbers 𝑃 (𝑥, 𝑡,𝑚, 𝜀) on one horizontal sum up
to 1 (see Proposition 4). Figure 1 shows 𝑃 (𝑥, 1000, 1, 1) for |𝑥| 6 1000. Note that if 𝑥 is greater than
750, then the probability is very small but still non-zero (see Theorem 1).

Figure 1: The graph of 𝑃 (𝑥, 1000, 1, 1) (A. Daniyarkhodzhaev–F. Kuyanov). Note that for |𝑥| > 750
the probability is very small (but still non-zero).

Example 1. Let us compute 𝑎(0, 4𝜀,𝑚, 𝜀). Figure 2 shows all three checker paths from (0, 0) to (0, 4𝜀)
starting with an upward-right move. Thus by definition 𝑎(0, 4𝜀,𝑚, 𝜀) = − 𝑚2𝜀2

(1+𝑚2𝜀2)3/2
𝑖.
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Figure 2: Checker paths contributing to 𝑎(0, 4𝜀,𝑚, 𝜀)

Example 2. It is easy to show that for each 𝑥 ∈ 𝜀Z+ we have:
1) 𝑎(𝑥, 𝑥,𝑚, 𝜀) = (1 +𝑚2𝜀2)(1−𝑥/𝜀)/2 𝑖;
2) 𝑎(−𝑥, 𝑥+ 2𝜀,𝑚, 𝜀) = 𝑚𝜀 (1 +𝑚2𝜀2)−(1+𝑥/𝜀)/2.

Let us present several tables that show 𝑎(𝑥, 𝑡,𝑚, 𝜀) and 𝑃 (𝑥, 𝑡,𝑚, 𝜀) for small 𝑥 and 𝑡. In Table 1,
the number in a cell (𝑥, 𝑡) is 𝑎(𝑥, 𝑡,𝑚, 𝜀), and an empty cell means that 𝑎(𝑥, 𝑡,𝑚, 𝜀) = 0. Analogously,
in Table 2, the number in a cell (𝑥, 𝑡) is 𝑃 (𝑥, 𝑡,𝑚, 𝜀), and an empty cell means that 𝑃 (𝑥, 𝑡,𝑚, 𝜀) = 0.
Note that for fixed 𝑡 the sum of the probabilities equals 1.

4𝜀 𝑚𝜀
(1+𝑚2𝜀2)3/2

(𝑚𝜀−𝑚3𝜀3)−𝑚2𝜀2𝑖

(1+𝑚2𝜀2)3/2
𝑚𝜀−2𝑚2𝜀2𝑖
(1+𝑚2𝜀2)3/2

1
(1+𝑚2𝜀2)3/2

𝑖

3𝜀 𝑚𝜀
1+𝑚2𝜀2

𝑚𝜀−𝑚2𝜀2𝑖
1+𝑚2𝜀2

𝑚2𝜀2

(1+𝑚2𝜀2)
𝑖

2𝜀 𝑚𝜀√
1+𝑚2𝜀2

1√
1+𝑚2𝜀2

𝑖

𝜀 𝑖
𝑡

𝑥 −2𝜀 −𝜀 0 𝜀 2𝜀 3𝜀 4𝜀

Table 1: 𝑎(𝑥, 𝑡,𝑚, 𝜀) for small 𝑥 and 𝑡.

4𝜀 𝑚2𝜀2

(1+𝑚2𝜀2)3
𝑚2𝜀2(1−𝑚2𝜀2+𝑚4𝜀4)

(1+𝑚2𝜀2)3
𝑚2𝜀2(1+4𝑚2𝜀2)

(1+𝑚2𝜀2)3
1

(1+𝑚2𝜀2)3

3𝜀 𝑚2𝜀2

(1+𝑚2𝜀2)2
𝑚2𝜀2

1+𝑚2𝜀2
1

(1+𝑚2𝜀2)2

2𝜀 𝑚2𝜀2

1+𝑚2𝜀2
1

1+𝑚2𝜀2

𝜀 1
𝑡

𝑥 −2𝜀 −𝜀 0 𝜀 2𝜀 3𝜀 4𝜀

Table 2: 𝑃 (𝑥, 𝑡,𝑚, 𝜀) for small 𝑥 and 𝑡.

3 Known results
In this section, we state some properties of the model, Propositions 1-5 being folklore. They (and
Propositions 6-7) are proved and discussed in [10] and [2].
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Notation 1. In what follows, we use the following notation:

𝜀Z2 = { (𝑥, 𝑡) : 𝑥/𝜀, 𝑡/𝜀 ∈ Z };
𝜀Z = { 𝑡 : 𝑡/𝜀 ∈ Z };
𝜀Z+ = { 𝑡 > 0 : 𝑡/𝜀 ∈ Z };
Z+ = { 𝑡 > 0 : 𝑡 ∈ Z }.

Proposition 1 (Dirac equation; [10, Proposition 5]). For each (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 2𝜀, we have:

1) 𝑎1(𝑥, 𝑡,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎1(𝑥+ 𝜀, 𝑡− 𝜀,𝑚, 𝜀) +𝑚𝜀𝑎2(𝑥+ 𝜀, 𝑡− 𝜀,𝑚, 𝜀));

2) 𝑎2(𝑥, 𝑡,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎2(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀)−𝑚𝜀𝑎1(𝑥− 𝜀, 𝑡− 𝜀,𝑚, 𝜀)).

Proposition 2 ([10, Lemma 1]). For each (𝑥, 𝑡) ∈ 𝜀Z2 , where 𝑡 > 2𝜀, we have:

1) 𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎1(𝑥− 𝜀, 𝑡,𝑚, 𝜀)−𝑚𝜀𝑎2(𝑥+ 𝜀, 𝑡,𝑚, 𝜀));

2) 𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎2(𝑥+ 𝜀, 𝑡,𝑚, 𝜀) +𝑚𝜀𝑎1(𝑥− 𝜀, 𝑡,𝑚, 𝜀)).

Proposition 3 (Formulae for 𝑎1(𝑥, 𝑡,𝑚, 𝜀) and 𝑎2(𝑥, 𝑡,𝑚, 𝜀); [10, Proposition 11]). For all (𝑥, 𝑡) ∈ 𝜀Z2

such that 𝑡 > |𝑥| and (𝑥+ 𝑡)/𝜀 is even we have:

𝑎1(𝑥, 𝑡,𝑚, 𝜀) = (1 +𝑚2𝜀2)(1−𝑡/𝜀)/2

(𝑡−|𝑥|)/2𝜀∑︁
𝑟=0

(−1)𝑟
(︂
(𝑡+ 𝑥− 2𝜀)/2𝜀

𝑟

)︂(︂
(𝑡− 𝑥− 2𝜀)/2𝜀

𝑟

)︂
(𝑚𝜀)2𝑟+1;

𝑎2(𝑥, 𝑡,𝑚, 𝜀) = (1 +𝑚2𝜀2)(1−𝑡/𝜀)/2

(𝑡−|𝑥|)/2𝜀∑︁
𝑟=1

(−1)𝑟
(︂
(𝑡+ 𝑥− 2𝜀)/2𝜀

𝑟

)︂(︂
(𝑡− 𝑥− 2𝜀)/2𝜀

𝑟 − 1

)︂
(𝑚𝜀)2𝑟.

Proposition 4 (Probability conservation law; [10, Proposition 6]). For each 𝑡∈𝜀Z+ we get∑︁
𝑥∈𝜀Z

𝑃 (𝑥, 𝑡,𝑚, 𝜀) = 1.

Proposition 5 (Symmetry; [10, Proposition 8]). For all (𝑥, 𝑡) ∈ 𝜀Z2 with 𝑡 > 0 we have:
1) 𝑎1(𝑥, 𝑡,𝑚, 𝜀) = 𝑎1(−𝑥, 𝑡,𝑚, 𝜀);
2) (𝑡− 𝑥)𝑎2(𝑥, 𝑡,𝑚, 𝜀) = (𝑡+ 𝑥− 2𝜀)𝑎2(2𝜀− 𝑥, 𝑡,𝑚, 𝜀).

Proposition 6 ([10, Theorem 5, its proof, and Remark 1]). If 𝑡 ∈ 𝜀Z+ and 𝑚𝜀 = 1, then

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 =
1

2

⌊𝑡/2𝜀⌋−1∑︁
𝑘=0

1

(−4)𝑘

(︂
2𝑘

𝑘

)︂
=

1

2
√
2
+ O

(︂√︂
𝜀

𝑡

)︂
.

Hereafter notation 𝑓(𝑡,𝑚, 𝜀) = O(𝑔(𝑡,𝑚, 𝜀)) means there is a constant 𝐶 (not depending on
𝑡,𝑚, 𝜀) such that for each 𝑡,𝑚, 𝜀 satisfying the assumptions of the proposition we have |𝑓(𝑡,𝑚, 𝜀)| 6
𝐶𝑔(𝑡,𝑚, 𝜀).

The following genealization of Proposition 6 was conjectured by I. Gaidai-Turlov, T. Kovalev,
A. Lvov in 2019, and proved by I. Bogdanov in 2020.

Proposition 7 ([2, Theorem 2]). If 0 6 𝑚𝜀 6 1, then

lim
𝑡→+∞
𝑡∈𝜀Z+

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 =
𝑚𝜀

2
√
1 +𝑚2𝜀2

.
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4 Main result: the probability to find an electron van-
ishes nowhere inside the light cone

The goal of this section is to prove the following theorem.

Theorem 1. For each 𝑚 > 0 and a point (𝑥, 𝑡) ∈ 𝜀Z2 such that (𝑥+ 𝑡)/𝜀 is even and 𝑡 > |𝑥| we have
𝑃 (𝑥, 𝑡,𝑚, 𝜀) ̸= 0.

Remark 2. Thus 𝑃 (𝑥, 𝑡,𝑚, 𝜀) ̸= 0 if and only if (𝑥+ 𝑡)/𝜀 is even and either 𝑡 > |𝑥| or 𝑡 = 𝑥 > 0. In
other words, 𝑃 (𝑥, 𝑡,𝑚, 𝜀) ̸= 0 if and only if there exists at least one checker path from (0, 0) to (𝑥, 𝑡).

Remark 3. Note that the assertion of the theorem is not obvious at all. It follows neither from
Definition 1 nor from the explicit formulae from Proposition 3. Figure 1 shows that for some pairs
(𝑥, 𝑡) the probability can be a very small number. But Proposition 5 and a simple trick helps us to
prove the theorem.

Proof of Theorem 1. Denote 𝑀 = {(𝑥, 𝑡) ∈ 𝜀Z2 : (𝑥 + 𝑡)/𝜀 is even, 𝑡 > |𝑥|, 𝑃 (𝑥, 𝑡,𝑚, 𝜀) = 0}. If
𝑀 = ∅, then there is nothing to prove. Assume that 𝑀 ̸= ∅. Among the points of 𝑀 , select the one
with the minimal 𝑡−coordinate (if there are several such points, select any of them). Denote by (𝑥0, 𝑡0)
the selected point. By Example 2, for all 𝑡 ∈ 𝜀Z+ we have 𝑃 (−𝑡+2𝜀, 𝑡) = 𝑚2𝜀2(1+𝑚2𝜀2)(1−𝑡/𝜀) ̸= 0, and
thus 𝑥0 ̸= −𝑡0+2𝜀. Subsequently, by Proposition 5 it follows that 𝑎1(−𝑥0, 𝑡0,𝑚, 𝜀) = 𝑎1(𝑥0, 𝑡0,𝑚, 𝜀) = 0

and 𝑎2(2𝜀− 𝑥0, 𝑡0,𝑚, 𝜀) = (𝑡0 − 𝑥0)
𝑎2(𝑥0,𝑡0,𝑚,𝜀)
𝑡0+𝑥0−2𝜀

= 0. See Figure 3. By Proposition 2 we get

𝑎1(−𝑥0 + 𝜀, 𝑡0 − 𝜀,𝑚, 𝜀) =
𝑎1(−𝑥0, 𝑡0,𝑚, 𝜀)−𝑚𝜀𝑎2(−𝑥0 + 2𝜀, 𝑡0,𝑚, 𝜀)√

1 +𝑚2𝜀2
= 0 and

𝑎2(−𝑥0 + 𝜀, 𝑡0 − 𝜀,𝑚, 𝜀) =
𝑎2(−𝑥0 + 2𝜀, 𝑡0,𝑚, 𝜀) +𝑚𝜀𝑎1(−𝑥0, 𝑡0,𝑚, 𝜀)√

1 +𝑚2𝜀2
= 0.

Thus 𝑃 (−𝑥0 + 𝜀, 𝑡0 − 𝜀,𝑚, 𝜀) = 0. This contradicts to the minimality of 𝑡0, because (𝑥0 − 𝜀+ 𝑡0 − 𝜀)/𝜀
is even and 𝑡0 − 𝜀 > |𝑥0 − 𝜀| by the condition 𝑥0 ̸= −𝑡0 + 2𝜀 above.

Figure 3: The pair in a cell (𝑥, 𝑡) is
(𝑎1(𝑥, 𝑡), 𝑎2(𝑥, 𝑡))

5 On the electron velocity
In this section we prove Proposition 8 and Theorem 2 stated below. The former answers a question
by D. Treschev. For the statements, we need the following definitions.
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5.1 The expectation of the average electron velocity equals the
time-average of the expectation of the instantaneous elec-
tron velocity

It goes almost without saying to consider the electron as being in one of the two states depending
on the last-move direction: right-moving or left-moving (or just ‘right’ or ‘left’ for brevity). Actually,
these two states are exactly (1+1)-dimensional analogue of chirality states for a spin 1/2 particle. See,
for example, a discussion on this topic in [10]. Let us give a few new definitions.

Definition 2 ([10]). The probability 𝑃𝑡,𝑚,𝜀(𝑥,+) to find a right electron at the lattice point (𝑥, 𝑡) ∈ 𝜀Z2,
if the right electron was emitted from the point (0, 0), is the length square of the vector 𝑎(𝑥, 𝑡,𝑚, 𝜀,+) :=
(1 + 𝑚2𝜀2)(1−𝑡/𝜀)/2 𝑖

∑︀
𝑠(−𝑖𝑚𝜀)turns(𝑠), where the sum is over only those checker paths from (0, 0) to

(𝑥, 𝑡) that both start and finish with an upwards-right move, and turns(𝑠) is the number of turns in 𝑠.
The probability 𝑃𝑡,𝑚,𝜀(𝑥,−) to find a left electron is defined analogously, only the sum is taken over
checker paths that start with an upwards-right move but finish with an upwards-left move.

Remark 4 ([10]). Clearly, the above probabilities equal 𝑎2(𝑥, 𝑡,𝑚, 𝜀)2 and 𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 respectively,
because the last move is directed upwards-right if and only if the number of turns is even. By Propo-
sition 4, 𝑃𝑡,𝑚,𝜀(𝑥,±) is indeed a probability measure on the set {(𝑥,±) : 𝑥 ∈ 𝜀Z}.

Definition 3. The average electron velocity is the random variable on the set {(𝑥,±) : 𝑥 ∈ 𝜀Z} given
by

𝑣𝑡(𝑥,±) = 𝑣𝑡(𝑥) = 𝑥/𝑡.

The instantaneous electron velocity is the random variable on the same set given by

𝑢𝑡(𝑥, 𝜎) =

{︃
+1, if 𝜎 = +,

−1, if 𝜎 = −.

Remark 5. The random variables in the above definition depend on 𝑡,𝑚, 𝜀. To emphasize that, we
use the notation E𝑡,𝑚,𝜀 for their expectation.

Proposition 8. The expectation of the average electron velocity equals the time-average of the ex-
pectation of the instantaneous electron velocity, i.e., for each 𝑇 ∈ 𝜀Z+ we have

E𝑇,𝑚,𝜀 (𝑣𝑇 ) =
𝜀

𝑇

[︃ ∑︁
𝑡=𝜀,...,𝑇

E𝑡,𝑚,𝜀 (𝑢𝑡)

]︃
.

Remark 6. This is not at all automatic because the model does not give any probability distribution on
the set of checker paths. Moreover, notice that in the expression

∑︀
𝑡=𝜀,...,𝑇

E𝑡,𝑚,𝜀 (𝑢𝑡) we take expectations

in 𝑇/𝜀 different probability spaces.

Proof of Proposition 8. If 𝑇 = 𝜀, then there is nothing to prove. Thus we assume that 𝑇 > 2𝜀.
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By Proposition 1 for each 𝑡 > 𝜀 we have:∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡,𝑚, 𝜀)2 −
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 =

=
1

1 +𝑚2𝜀2

[︂∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2 +𝑚2𝜀2
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2−

− 2𝑚𝜀
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀)

]︂
−

− 1

1 +𝑚2𝜀2

[︂∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2 +𝑚2𝜀2
∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2+

+ 2𝑚𝜀
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀)

]︂
=

=
1−𝑚2𝜀2

1 +𝑚2𝜀2

(︃∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2 −
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2

)︃
−

− 4𝑚𝜀

1 +𝑚2𝜀2

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀).

This implies that

𝜀
∑︁

𝑡=𝜀,...,𝑇

E𝑡,𝑚,𝜀 (𝑢𝑡) = 𝜀
∑︁

𝑡=𝜀,...,𝑇

(︃∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡,𝑚, 𝜀)2 −
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2

)︃
=

= 𝜀+ 𝜀
1−𝑚2𝜀2

1 +𝑚2𝜀2

∑︁
𝑡=2𝜀,...,𝑇

(︃∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2 −
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2

)︃
−

− 𝜀
4𝑚𝜀

1 +𝑚2𝜀2

∑︁
𝑡=2𝜀,...,𝑇

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀), (1)

where we use the obvious equality 𝜀

(︂ ∑︀
𝑥∈𝜀Z

𝑎2(𝑥, 𝜀,𝑚, 𝜀)2 −
∑︀
𝑥∈𝜀Z

𝑎1(𝑥, 𝜀,𝑚, 𝜀)2
)︂

= 𝜀. On the other hand,
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by Proposition 1 we have:

𝑇 · E𝑇,𝑚,𝜀 (𝑣𝑇 ) =
∑︁
𝑥∈𝜀Z

𝑥𝑎1(𝑥, 𝑇,𝑚, 𝜀)2 +
∑︁
𝑥∈𝜀Z

𝑥𝑎2(𝑥, 𝑇,𝑚, 𝜀)2 =

=
∑︁
𝑥∈𝜀Z

(𝑥− 𝜀)𝑎1(𝑥− 𝜀, 𝑇,𝑚, 𝜀)2 +
∑︁
𝑥∈𝜀Z

(𝑥+ 𝜀)𝑎2(𝑥+ 𝜀, 𝑇,𝑚, 𝜀)2 =

=
1

1 +𝑚2𝜀2

∑︁
𝑥∈𝜀Z

[︂
(𝑥− 𝜀)𝑎1(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)2 + (𝑥− 𝜀)𝑚2𝜀2 𝑎2(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)2+

+ 2(𝑥− 𝜀)𝑚𝜀𝑎1(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)𝑎2(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)

]︂
+

+
1

1 +𝑚2𝜀2

∑︁
𝑥∈𝜀Z

[︂
(𝑥+ 𝜀)𝑎2(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)2 + (𝑥+ 𝜀)𝑚2𝜀2 𝑎1(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)2−

− 2(𝑥+ 𝜀)𝑚𝜀𝑎1(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)𝑎2(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)

]︂
=

=
∑︁
𝑥∈𝜀Z

𝑥𝑎1(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)2 +
∑︁
𝑥∈𝜀Z

𝑥𝑎2(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)2+

+ 𝜀
1−𝑚2𝜀2

1 +𝑚2𝜀2

(︃∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)2 −
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)2

)︃
−

− 4𝑚𝜀2

1 +𝑚2𝜀2

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑇 − 𝜀,𝑚, 𝜀)𝑎2(𝑥, 𝑇 − 𝜀,𝑚, 𝜀) =

= 𝜀+ 𝜀
1−𝑚2𝜀2

1 +𝑚2𝜀2

∑︁
𝑡=2𝜀,...,𝑇

(︃∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2 −
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)2

)︃
−

− 4𝑚𝜀2

1 +𝑚2𝜀2

∑︁
𝑡=2𝜀,...,𝑇

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡− 𝜀,𝑚, 𝜀)𝑎2(𝑥, 𝑡− 𝜀,𝑚, 𝜀), (2)

where the latter equality is obtained by repeating the same transformation 𝑇 − 2𝜀 times.
Comparing (1) and (2), we get the required result.

5.2 Analogue of Proposition 8 for classical random walks
To show that the statement of Proposition 8 is natural, let us give its analogue for classical random
walks. Let us consider a flea that makes a random walk on the integer number line starting from
0. If the flea is situated in the number 𝑁 at the time 𝑡0, then at the time 𝑡0 + 1 it is situated in
the number 𝑁 + 1 with the probability 𝑝 or in the number 𝑁 − 1 with the probability 𝑞 = 1 − 𝑝.
If we denote the probability to find the flea at 𝑥 ∈ N at the time 𝑡 by ̂︀𝑃 (𝑥, 𝑡), then ̂︀𝑃 (𝑥, 𝑡) =

𝑝 ̂︀𝑃 (𝑥− 1, 𝑡− 1) + 𝑞 ̂︀𝑃 (𝑥+ 1, 𝑡− 1).

Definition 4. For a point (𝑥, 𝑡) ∈ Z2 (𝑡 > 0), we define the probability ̂︀𝑃 (𝑥, 𝑡) to find the flea at the
lattice point (𝑥, 𝑡), if the flea makes a random walk by induction on 𝑡:̂︀𝑃 (𝑥, 0) =

{︃
1, if 𝑥 = 0,

0, if 𝑥 ̸= 0.̂︀𝑃 (𝑥, 𝑡) = 𝑝 ̂︀𝑃 (𝑥− 1, 𝑡− 1) + 𝑞 ̂︀𝑃 (𝑥+ 1, 𝑡− 1) for 𝑡 > 1.

Remark 7. As in Definition 1, 𝑥 is interpreted as position and 𝑡 is interpreted as time.
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Remark 8. It is easy to prove that for fixed 𝑡 we have
∑︀

𝑥∈Z
̂︀𝑃 (𝑥, 𝑡) = 1.

The average flea velocity ̂︀𝑣𝑡 and the instantaneous flea velocity ̂︀𝑢𝑡 are defined literally as in Defini-
tion 3. The random variables ̂︀𝑣𝑡 and ̂︀𝑢𝑡 depend on 𝑡 ∈ Z+; we write E𝑡 for their expectations.

The following easy well-known proposition is an analogue of Proposition 8.

Proposition 9 (An analogue of Proposition 8 for classical random walks). The expectation of the
average flea velocity equals the time-average of the expectation of the instantaneous flea velocity, i.e.,
for each 𝑇 ∈ Z+ we have

E𝑇 (̂︀𝑣𝑇 ) = 1

𝑇

[︃
𝑇∑︁
𝑡=1

E𝑡 (̂︀𝑢𝑡)

]︃
.

Proof. Clearly, for each 𝑇 ∈ Z+ we have E𝑇 (̂︀𝑢𝑇 ) = 𝑝 − 𝑞. Let us prove by induction on 𝑇 ∈ Z+ that
for each 𝑇 we have E𝑇 (̂︀𝑣𝑇 ) = 𝑝− 𝑞. The base is obvious. To perform the induction step, suppose that
for 𝑇 ∈ Z+ we have E𝑇 (̂︀𝑣𝑇 ) = 𝑝− 𝑞. Then

E𝑇+1(̂︀𝑣𝑇+1) =
1

𝑇 + 1

∑︁
𝑥∈Z

𝑥 ̂︀𝑃 (𝑥, 𝑇 + 1) =
1

𝑇 + 1

∑︁
𝑥∈Z

𝑥𝑝 ̂︀𝑃 (𝑥− 1, 𝑇 ) +
1

𝑇 + 1

∑︁
𝑥∈Z

𝑥𝑞 ̂︀𝑃 (𝑥+ 1, 𝑇 )

=
1

𝑇 + 1

∑︁
𝑥∈Z

(𝑥+ 1)𝑝 ̂︀𝑃 (𝑥, 𝑇 ) +
1

𝑇 + 1

∑︁
𝑥∈Z

(𝑥− 1)𝑞 ̂︀𝑃 (𝑥, 𝑇 ) =

1

𝑇 + 1

∑︁
𝑥∈Z

(︁
𝑥𝑝 ̂︀𝑃 (𝑥, 𝑇 ) + 𝑥𝑞 ̂︀𝑃 (𝑥, 𝑇 )

)︁
+

1

𝑇 + 1

∑︁
𝑥∈Z

(𝑝− 𝑞) ̂︀𝑃 (𝑥, 𝑇 ) =

(𝑎)
=

1

𝑇 + 1
E𝑇 (̂︀𝑣𝑇 ) + 𝑝− 𝑞

𝑇 + 1

(𝑏)
=

𝑇 (𝑝− 𝑞)

𝑇 + 1
+

𝑝− 𝑞

𝑇 + 1
= 𝑝− 𝑞,

where (a) follows from the identity
∑︀

𝑥∈Z
̂︀𝑃 (𝑥, 𝑇 ) = 1 for fixed 𝑇 , and (b) follows from the inductive

hypothesis. Thus E𝑇 (̂︀𝑣𝑇 ) = 𝑝− 𝑞 for all 𝑇 ∈ Z+.

5.3 The limit value of the average electron velocity
The following theorem gives us the limit value of the average electron velocity when time tends to
infinity. This theorem and Proposition 10 are corollaries of a more general result [4, (18)], but we
present short elementary proofs.

Theorem 2. If 0 6 𝑚𝜀 6 1, then we have

lim
𝑇→+∞
𝑇∈𝜀Z+

E𝑇,𝑚,𝜀 (𝑣𝑇 ) = 1− 𝑚𝜀√
1 +𝑚2𝜀2

.

Proof. By Propositions 8 and 4 we have

E𝑇,𝑚,𝜀 (𝑣𝑇 ) =
𝜀

𝑇

(︃ ∑︁
𝑡=𝜀,...,𝑇

E𝑡,𝑚,𝜀 (𝑢𝑡)

)︃
=

𝜀

𝑇

∑︁
𝑡=𝜀,...,𝑇

(︃∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡,𝑚, 𝜀)2 −
∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2

)︃
=

=
𝜀

𝑇

∑︁
𝑡=𝜀,...,𝑇

(︃
1− 2

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2

)︃
=

𝜀

𝑇

𝑇

𝜀
− 2𝜀

𝑇

∑︁
𝑡=𝜀,...,𝑇

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 =

= 1− 𝑚𝜀√
1 +𝑚2𝜀2

− 2𝜀

𝑇

∑︁
𝑡=𝜀,...,𝑇

(︃∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 − 𝑚𝜀

2
√
1 +𝑚2𝜀2

)︃
=: 1− 𝑚𝜀√

1 +𝑚2𝜀2
−Δ(𝑇,𝑚, 𝜀).
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Thus it remains to prove that Δ(𝑇,𝑚, 𝜀) → 0 as 𝑇 → +∞.
Take 𝛿 > 0. By Proposition 7 there exists 𝑡0 ∈ 𝜀Z+ such that for any 𝑡 > 𝑡0 we have⃒⃒⃒⃒

⃒∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 − 𝑚𝜀

2
√
1 +𝑚2𝜀2

⃒⃒⃒⃒
⃒ < 𝛿

3
.

Then by Proposition 4 we have

|Δ(𝑇,𝑚, 𝜀)| 6 2𝜀

𝑇

∑︁
𝑡=𝜀,...,𝑡0

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 +
2𝜀

𝑇

∑︁
𝑡=𝜀,...,𝑡0

𝑚𝜀

2
√
1 +𝑚2𝜀2

+

+
2𝜀

𝑇

∑︁
𝑡=𝑡0+𝜀,...,𝑇

⃒⃒⃒⃒
⃒∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 − 𝑚𝜀

2
√
1 +𝑚2𝜀2

⃒⃒⃒⃒
⃒ 6

6
2𝜀

𝑇

𝑡0
𝜀
+

2𝜀

𝑇

𝑡0
𝜀
+

2𝜀

𝑇

𝑇

𝜀

𝛿

3
6

4𝑡0
𝑇

+
2𝛿

3
< 𝛿 for 𝑇 >

12𝑡0
𝛿

.

Since 𝛿 is arbitrary, it follows that lim
𝑇→+∞

Δ(𝑇,𝑚, 𝜀) = 0 and the theorem follows.

Theorem 2 provides the limit value, but tells nothing about the convergence rate. But the following
proposition provides both for the particular case 𝑚𝜀 = 1.

Proposition 10. For each 𝜀 > 0 an each 𝑇 ∈ 𝜀Z+ we have

E𝑇,1/𝜀,𝜀 (𝑣𝑇 ) = 1− 1√
2
+ O

(︁ 𝜀

𝑇

)︁
.

Proof. Analogously to the proof of Theorem 2, for each 𝑇 ∈ 𝜀Z+ we have

E𝑇,1/𝜀,𝜀 (𝑣𝑇 ) = 1− 1√
2
− 2𝜀

𝑇

∑︁
𝑡=𝜀,...,𝑇

(︃∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡, 1/𝜀, 𝜀)
2 − 1

2
√
2

)︃
.

It remains to show that

∑︁
𝑡=𝜀,...,𝑇

(︃∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡, 1/𝜀, 𝜀)
2 − 1

2
√
2

)︃
=:

∑︁
𝑡=𝜀,...,𝑇

𝑐𝑡 = O(1).

This follows from the following facts:

(i) If 𝑡 = 2𝑛𝜀, where 𝑛 ∈ Z, then 𝑐𝑡 = 𝑐𝑡+𝜀;

(ii) 𝑐𝑡 → 0 as 𝑡 → ∞;

(iii) For each 𝑡 ∈ 𝜀Z, 𝑡 > 𝜀, the signs of 𝑐𝑡 and 𝑐𝑡+2𝜀 are opposite;

(iv) For each 𝑡 ∈ 𝜀Z, 𝑡 > 𝜀, we have |𝑐𝑡| > |𝑐𝑡+2𝜀|.

Here (i) and (ii) follow directly from Proposition 6. Assertion (iii) follows from Proposition 6 and the
fact that 1

4𝑘

(︀
2𝑘
𝑘

)︀
> 1

4𝑘+1

(︀
2(𝑘+1)
𝑘+1

)︀
for 𝑘 ∈ 𝑍+. Also note that from Proposition 6 and (iii) we know that

𝑐𝑡 is positive if 𝑡 = (4𝑛+ 2)𝜀 for some 𝑛 ∈ Z+ ∪ {0}, and 𝑐𝑡 is negative if 𝑡 = 4𝑛𝜀 for some 𝑛 ∈ Z+.
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Let us prove (iv). Fix any 𝑡 = (4𝑛+ 2)𝜀, where 𝑛 ∈ Z+. By Proposition 6 we have

𝑐𝑡+2𝑚𝜀 = − 1

2
√
2
+

1

2

2𝑛+𝑚∑︁
𝑘=0

1

(−4)𝑘

(︂
2𝑘

𝑘

)︂
(here 𝑚 ∈ Z+).

Note that

𝑐𝑡+6𝜀 + 𝑐𝑡+4𝜀 = 𝑐𝑡+2𝜀 + 𝑐𝑡 +
1

2

(︂
− 1

42𝑛+1

(︂
4𝑛+ 2

2𝑛+ 1

)︂
+

2

42𝑛+2

(︂
4𝑛+ 4

2𝑛+ 2

)︂
− 1

42𝑛+3

(︂
4𝑛+ 6

2𝑛+ 3

)︂)︂
.

It easy to show that the latter expression in parentheses is negative for any 𝑛 ∈ Z+. Thus

𝑐𝑡+2𝜀 + 𝑐𝑡 > 𝑐𝑡+6𝜀 + 𝑐𝑡+4𝜀 > 𝑐𝑡+10𝜀 + 𝑐𝑡+8𝜀 > . . . (3)

To prove (iv), we want to show that |𝑐𝑡| > |𝑐𝑡+2𝜀|. Equivalently, we want to prove that 𝑐𝑡 + 𝑐𝑡+2𝜀 > 0.
Suppose that this is not true. Then by (3) the sequence {𝑐𝑡+(2𝑚+2)𝜀 + 𝑐𝑡+2𝑚𝜀}𝑚∈Z+ does not have 0 as
its limit. On the other hand, by (ii) this sequence should have 0 as its limit. This is a contradiction.
One can obtain a similar contradiction for the case when 𝑡 = 4𝑛𝜀.

Hence by (i)-(iv) we have

⃒⃒⃒⃒
⃒ ∑︀𝑡=𝜀,...,𝑇

𝑐𝑡

⃒⃒⃒⃒
⃒ 6 2𝑐2𝜀 for each 𝑇 , and thus

∑︀
𝑡=𝜀,...,𝑇

𝑐𝑡 = O(1).

6 Identities
In this section, we present several identities in Feynman checkers. Not all of them pretend to be
new, but we could not find them in the literature. All the identities were first discovered in Wolfram
Mathematica, sometimes with the help of the On-Line Encyclopedia of Integer Sequences [8]. The
identities in this subsection should be considered as just some combinatorial equalities, which have
absolutely no physical meaning. In all the identities below we assume that 𝑚 > 0.

6.1 Linear identities
From Proposition 4 we know that for each 𝑡∈ 𝜀Z+ we have

∑︀
𝑥∈𝜀Z

(𝑎1(𝑥, 𝑡,𝑚, 𝜀)2 + 𝑎2(𝑥, 𝑡,𝑚, 𝜀)2) = 1.

But what if we consider not the sum of squares, but the sum of 𝑎1-s and 𝑎2-s themselves? The following
proposition gives the answer.

Proposition 11. For each 𝑡 ∈ 𝜀Z+ we have∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀) = sin

(︂
𝑡− 𝜀

𝜀
arctan𝑚𝜀

)︂
and

∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡,𝑚, 𝜀) = cos

(︂
𝑡− 𝜀

𝜀
arctan𝑚𝜀

)︂
.

Proof. We prove both formulae simultaneously by induction on 𝑡. The base 𝑡 = 𝜀 is obvious. To
perform the induction step, suppose that for 𝑡 ∈ 𝜀Z+ the formulae from the statement hold. Then by
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Proposition 1 and by the summation formulae for the sine and the cosine we have∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡+ 𝜀,𝑚, 𝜀) =
1√

1 +𝑚2𝜀2

∑︁
𝑥∈𝜀Z

𝑎1(𝑥, 𝑡,𝑚, 𝜀) +
𝑚𝜀√

1 +𝑚2𝜀2

∑︁
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡,𝑚, 𝜀) =

=
sin ((𝑡/𝜀− 1) arctan𝑚𝜀)√

1 +𝑚2𝜀2
+

𝑚𝜀 cos ((𝑡/𝜀− 1) arctan𝑚𝜀)√
1 +𝑚2𝜀2

=

=

[︂
sin ((𝑡/𝜀) arctan𝑚𝜀)

1 +𝑚2𝜀2
− 𝑚𝜀 cos ((𝑡/𝜀) arctan𝑚𝜀)

1 +𝑚2𝜀2

]︂
+

+

[︂
𝑚𝜀 cos ((𝑡/𝜀) arctan𝑚𝜀)

1 +𝑚2𝜀2
+

𝑚2𝜀2 sin ((𝑡/𝜀) arctan𝑚𝜀)

1 +𝑚2𝜀2

]︂
=

= sin

(︂
𝑡

𝜀
arctan𝑚𝜀

)︂
.

The formula for
∑︀
𝑥∈𝜀Z

𝑎2(𝑥, 𝑡,𝑚, 𝜀) is proved analogously.

Corollary 1. For each 𝑡 ∈ 𝜀Z+ we have∑︁
𝑥∈𝜀Z

𝑎(𝑥, 𝑡,𝑚, 𝜀) = 𝑖 exp

(︂
−𝑖

𝑡− 𝜀

𝜀
arctan𝑚𝜀

)︂
.

Proof. Follows directly from Proposition 11 and Euler’s formula.

Now, perform a change of the coordinates: (𝑥, 𝑡) ↦→ (𝜆, 𝜇) = ( 𝑡+𝑥
2𝜀

, 𝑡−𝑥
2𝜀

). We just rotate the
coordinate axes through 90∘ about zero, and afterwards we scale everything 1/𝜀 times (see Figure 4).
For positive integers 𝜆, 𝜇 denote 𝑏(𝜆, 𝜇,𝑚, 𝜀) := 𝑎(𝜀(𝜆 − 𝜇), 𝜀(𝜆 + 𝜇),𝑚, 𝜀). We use the notation
𝑏1(𝜆, 𝜇,𝑚, 𝜀) and 𝑏2(𝜆, 𝜇,𝑚, 𝜀) for the real and the imaginary part of 𝑏(𝜆, 𝜇,𝑚, 𝜀).

Change of the coordinates−−−−−−−−−−−−−−→

Figure 4

The following table shows 𝑏(𝜆, 𝜇,𝑚, 𝜀) for small 𝜆 and 𝜇. The number in a cell (𝜆, 𝜇) is 𝑏(𝜆, 𝜇,𝑚, 𝜀).
(Compare this table with Table 1.)
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3 𝑚𝜀
(1+𝑚2𝜀2)3/2

(𝑚𝜀−2𝑚3𝜀3)−𝑚2𝜀2𝑖
(1+𝑚2𝜀2)2

(𝑚𝜀−4𝑚3𝜀3+𝑚5𝜀5)+2(𝑚4𝜀4−𝑚2𝜀2)𝑖

(1+𝑚2𝜀2)5/2
(𝑚𝜀−6𝑚3𝜀3+3𝑚5𝜀5)−(3𝑚2𝜀2−6𝑚4𝜀4+𝑚6𝜀6)𝑖

(1+𝑚2𝜀2)3

2 𝑚𝜀
1+𝑚2𝜀2

(𝑚𝜀−𝑚3𝜀3)−𝑚2𝜀2𝑖

(1+𝑚2𝜀2)3/2
(𝑚𝜀−𝑚3𝜀3)+(𝑚4𝜀4−2𝑚2𝜀2)𝑖

(1+𝑚2𝜀2)2
(𝑚𝜀−𝑚3𝜀3)+3(𝑚4𝜀4−𝑚2𝜀2)𝑖

(1+𝑚2𝜀2)5/2

1 𝑚𝜀√
1+𝑚2𝜀2

𝑚𝜀−𝑚2𝜀2𝑖
1+𝑚2𝜀2

𝑚𝜀−2𝑚2𝜀2𝑖
(1+𝑚2𝜀2)3/2

𝑚𝜀−3𝑚2𝜀2𝑖
(1+𝑚2𝜀2)2

0 𝑖 1√
1+𝑚2𝜀2

𝑖 1
1+𝑚2𝜀2

𝑖 1
(1+𝑚2𝜀2)3/2

𝑖

𝜇
𝜆 1 2 3 4

Table 3: 𝑏(𝜆, 𝜇,𝑚, 𝜀) for small 𝜆 and 𝜇.

Proposition 12.
1) For each fixed 𝜇 ∈ Z+ we have

∞∑︁
𝜆=1

𝑏1(𝜆, 𝜇,𝑚, 𝜀) = (−1)𝜇+11 +
√
𝑚2𝜀2 + 1

𝑚𝜀
and

∞∑︁
𝜆=1

𝑏2(𝜆, 𝜇,𝑚, 𝜀) = (−1)𝜇
2 +𝑚2𝜀2 + 2

√
𝑚2𝜀2 + 1

𝑚2𝜀2
.

2) For each fixed 𝜆 ∈ Z+ we have

∞∑︁
𝜇=0

𝑏1(𝜆, 𝜇,𝑚, 𝜀) = (−1)𝜆+11 +
√
𝑚2𝜀2 + 1

𝑚𝜀
and

∞∑︁
𝜇=0

𝑏2(𝜆, 𝜇,𝑚, 𝜀) = (−1)𝜆+1.

Proposition 12 easily follows from Proposition 1. We omit the proof.

6.2 Quadratic identities
Proposition 13.
1) For each fixed 𝜇 ∈ Z+ we have:

∞∑︁
𝜆=1

𝑏1(𝜆, 𝜇,𝑚, 𝜀)2 = 1.

2) For each fixed 𝜆 ∈ Z+ we have:

𝑎)
∞∑︁
𝜇=0

𝑏1(𝜆, 𝜇,𝑚, 𝜀)2 = 1;

𝑏)
∞∑︁
𝜇=0

𝑏2(𝜆, 𝜇,𝑚, 𝜀)2 = 1.

In the proof of quadratic identities, Proposition 1 does not help much. To prove Proposition 13,
we need a generalization of Proposition 4. For this purpose, we need an auxiliary definition.

Definition 5 ([10]). For a set 𝑇 ⊂ 𝜀Z2 and a point (𝑥, 𝑡) ∈ 𝜀Z2 with 𝑡 > 0, we define 𝑎(𝑥, 𝑡 bypass 𝑇 ;𝑚, 𝜀)
analogously to 𝑎(𝑥, 𝑡,𝑚, 𝜀), only the sum is over those checker paths that do not pass through
the points of the set 𝑇 . Denote 𝑃 (𝑥, 𝑡 bypass 𝑇 ;𝑚, 𝜀) = |𝑎(𝑥, 𝑡 bypass 𝑇 ;𝑚, 𝜀)|2. We denote by
𝑎1(𝑥, 𝑡 bypass 𝑇 ;𝑚, 𝜀) and 𝑎2(𝑥, 𝑡 bypass 𝑇 ;𝑚, 𝜀) the real and the imaginary part of 𝑎(𝑥, 𝑡 bypass 𝑇 ;𝑚, 𝜀)
respectively.
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Example 3. Let us compute 𝑃 (0, 4 bypass (2𝜀, 2𝜀);𝑚, 𝜀). Now, we must not consider the leftmost
checker path from Figure 2. Thus

𝑎(0, 4𝜀 bypass (2𝜀, 2𝜀);𝑚, 𝜀) =
−𝑚2𝜀2 −𝑚3𝜀3𝑖

(1 +𝑚2𝜀2)3/2
;

𝑃 (0, 4𝜀 bypass (2𝜀, 2𝜀);𝑚, 𝜀) =
𝑚4𝜀4 +𝑚6𝜀6

(1 +𝑚2𝜀2)3
=

𝑚4𝜀4

(1 +𝑚2𝜀2)2
.

The following proposition generalizes Proposition 1. We do not give the proof because it is essen-
tially the same as the proof of Proposition 1 (See proof of Proposition 4 from [10]).

Proposition 14. For each set 𝑇 ⊂ 𝜀Z2 and each point (𝑥, 𝑡) ∈ 𝜀Z2 such that (𝑥, 𝑡) /∈ 𝑇 and 𝑡 > 2𝜀
we have:

1) 𝑎1(𝑥, 𝑡 bypass 𝑇 ;𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎1(𝑥+ 𝜀, 𝑡− 𝜀 bypass 𝑇 ;𝑚, 𝜀) +𝑚𝜀𝑎2(𝑥+ 𝜀, 𝑡− 𝜀 bypass 𝑇 ;𝑚, 𝜀);

2) 𝑎2(𝑥, 𝑡 bypass 𝑇 ;𝑚, 𝜀) =
1√

1 +𝑚2𝜀2
(𝑎2(𝑥− 𝜀, 𝑡− 𝜀 bypass 𝑇 ;𝑚, 𝜀)−𝑚𝜀𝑎1(𝑥− 𝜀, 𝑡− 𝜀 bypass 𝑇 ;𝑚, 𝜀)).

Remark 9. If we apply the above proposition for 𝑇 = ∅, then we obtain Proposition 1.

The following proposition was first stated and proven by G. Minaev and I. Russkikh, but their
proof was quite complicated and technical. We present a simple alternative proof.

Proposition 15 (Generalized probability conservation law, Minaev-Russkikh, private communica-
tion). For each finite set 𝑇 ∈ 𝜀Z2 such that there is no infinite checker path from (0, 0) bypassing the
points of 𝑇 we have ∑︁

(𝑥,𝑡)∈𝑇

𝑃 (𝑥, 𝑡 bypass 𝑇 ∖ (𝑥, 𝑡);𝑚, 𝜀) = 1.

Remark 10. If we apply the above proposition for the set 𝑇𝑡 = {(𝑥, 𝑡) ∈ 𝜀Z2 : −𝑡 6 𝑥 6 𝑡)} (where
𝑡 is fixed), then we obtain Proposition 4.

Proof of Proposition 15. (See Figure 5a) Join each point (𝑥, 𝑡) ∈ 𝜀Z2, where 𝑡 > 0 and (𝑡 + 𝑥)/𝜀 is
even, with the points (𝑥−𝜀, 𝑡−𝜀) and (𝑥+𝜀, 𝑡−𝜀). Assign the numbers 𝑎2(𝑥, 𝑡 bypass 𝑇 ∖ (𝑥, 𝑡);𝑚, 𝜀)2

and 𝑎1(𝑥, 𝑡 bypass 𝑇 ∖ (𝑥, 𝑡);𝑚, 𝜀)2 respectively to the resulting edges. An edge joining (𝑥 ± 𝜀, 𝑡 − 𝜀)
and (𝑥, 𝑡) is painted red, if (𝑥, 𝑡) ∈ 𝑇 and (𝑥± 𝜀, 𝑡− 𝜀) /∈ 𝑇 (see Figure 5b).

It is clear that ∑︁
(𝑥,𝑡)∈𝑇

𝑃 (𝑥, 𝑡 bypass 𝑇 ∖ (𝑥, 𝑡);𝑚, 𝜀) =
∑︁

red edges 𝑒

𝑗(𝑒),

where 𝑗(𝑒) is the number assigned to the edge 𝑒. Now, the required assertion follows from the following
two observations:
1) 𝑗((0, 0)-(𝜀, 𝜀)) = 1 (We denote by 𝑎-𝑏 the edge joining points 𝑎 and 𝑏);
2) (see Figure 5c) For each point (𝑥, 𝑡) ∈ 𝜀Z2 (with positive 𝑡 and even (𝑥+ 𝑡)/𝜀) we have

𝑗((𝑥, 𝑡)-(𝑥+ 𝜀, 𝑡− 𝜀)) + 𝑗((𝑥, 𝑡)-(𝑥− 𝜀, 𝑡− 𝜀)) = 𝑗((𝑥, 𝑡)-(𝑥+ 𝜀, 𝑡+ 𝜀)) + 𝑗((𝑥, 𝑡)-(𝑥− 𝜀, 𝑡+ 𝜀)). (4)

The latter observation easily follows from Proposition 14.

Remark 11. Suppose that in Figure 5c there is electrical current, which flows into the point (𝑥, 𝑡)
from the points (𝑥± 𝜀, 𝑡− 𝜀), and out of the point (𝑥, 𝑡) to the points (𝑥± 𝜀, 𝑡+ 𝜀). Then equation (4)
is just Kirchhoff’s current law.
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(a)
(b) (c)

Figure 5: In (b) the red (dash) edges for a particular set 𝑇 consisting of the red (square) points

Using the latter proposition, we finally prove Proposition 13.

Proof of Proposition 13. Let us prove assertion 1). Fix ̂︀𝜇 ∈ Z+. Consider two sequences of sets of
points in Z2, 𝑆𝑛 and 𝑇𝑛, defined as follows: 𝑆𝑛 = {(𝜆, 𝜇) ∈ Z2 | 1 6 𝜆 6 𝑛, 𝜇 = ̂︀𝜇}, 𝑇𝑛 = {(𝜆, 𝜇) ∈
Z2 | 0 6 𝜇 < ̂︀𝜇, 𝜆 + 𝜇 = 𝑛 + ̂︀𝜇}. Table 4 shows sets 𝑇𝑛 and 𝑆𝑛 for small 𝑛, ̂︀𝜇. By Proposition 15 for
each 𝑛 ∈ Z+ we have

1 =
∑︁

(𝜆,𝜇)∈𝑇𝑛∪𝑆𝑛

𝑃 (𝜆, 𝜇 bypass (𝑇𝑛∪𝑆𝑛)∖(𝜆, 𝜇);𝑚, 𝜀) =
𝑛∑︁

𝜆=1

𝑏1(𝜆, ̂︀𝜇,𝑚, 𝜀)2+

̂︀𝜇−1∑︁
𝜇=0

(︀
𝑏1(𝑛, 𝜇,𝑚, 𝜀)2 + 𝑏2(𝑛, 𝜇,𝑚, 𝜀)2

)︀
,

where the last equality holds because any checker path to a point of 𝑇𝑛 cannot pass through other
points of 𝑇𝑛 ∪𝑆𝑛, and also because a checker path to a point of 𝑆𝑛 does not pass through other points
of 𝑇𝑛 ∪ 𝑆𝑛 if and only if the checker path finishes with an upwards-left move.

Thus it remains to prove that for each fixed 𝜇 we have 𝑏1(𝑛, 𝜇,𝑚, 𝜀) → 0 and 𝑏2(𝑛, 𝜇,𝑚, 𝜀) → 0 as
𝑛 → +∞. By Proposition 3 for 𝜆 > 𝜇 we have

𝑏1(𝑛, 𝜇,𝑚, 𝜀) =

𝜇−1∑︁
𝑟=0

(1 +𝑚2𝜀2)(1−𝑛−𝜇)/2(−1)𝑟(𝑚𝜀)2𝑟+1

(︂
𝜇− 1

𝑟

)︂(︂
𝑛− 1

𝑟

)︂
.

Each summand in the sum tends to 0 as 𝑛 → +∞. Since for each fixed 𝜇 the number of summands
is finite, it follows that 𝑏1(𝑛, 𝜇,𝑚, 𝜀) → 0 as 𝑛 → +∞. Analogously 𝑏2(𝑛, 𝜇,𝑚, 𝜀) → 0. Assertion 1) is
proved.

Assertion 2a) follows from 1) by the first identity of Proposition 5, and assertion 2b) is proved
analogously to 1).
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Table 4: Sets 𝑇𝑛 and 𝑆𝑛 for small 𝑛, ̂︀𝜇

2

1̂︀𝜇
𝑛 1 2 3

In conclusion, we state a conjecture.

Conjecture 1. For each fixed 𝜇 ∈ Z+ we have

1)
∞∑︁
𝜆=1

𝑏2(𝜆, 𝜇,𝑚, 𝜀)2 =
𝑚2𝜀2 + 2

𝑚2𝜀2
;

2)
∞∑︁
𝜆=1

𝜆𝑏1(𝜆, 𝜇, 1/𝜀, 𝜀)
2 = 3𝜇− 1;

3)
∞∑︁
𝜆=1

𝜆2𝑏1(𝜆, 𝜇, 1/𝜀, 𝜀)
2 = 13𝜇2 − 10𝜇+ 3;

4)
∞∑︁
𝜆=1

1

𝜆
𝑏1(𝜆, 𝜇, 1/𝜀, 𝜀)

2 = 2𝜇−1 log 2−
𝜇−1∑︁
𝑗=1

1

𝑗 · 2𝑗
;

5)
∞∑︁
𝜆=1

1

2𝜆
𝑏1(𝜆, 𝜇, 1/𝜀, 𝜀)

2 =
2𝜇−1

(︀
2𝜇−2
𝜇−1

)︀
32𝜇+1

.

Remark 12. Despite the fact that the first equality in the conjecture is similar to the equalities in
Proposition 13, it cannot be proved analogously.

7 Conclusions
In this work, we presented a lot of combinatorial identities in Feynman checkers. We used some of
these identities to prove the following results: if there is at least one checker path to the point, then the
probability to find an electron at this point is non-zero (Theorem 1); the expectation of the average
electron velocity equals the time-average of the expectation of the instantaneous electron velocity
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(Proposition 8). We also found the limit value of the average electron velocity (Theorem 2). There
are several identities that are yet to be proved and possibly there are many interesting identities that
are yet to be discovered.
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