SUMS OF FOUR SQUARES WITH CERTAIN RESTRICTIONS

ZHI-WEI SUN

Abstract

Let $a, b \in \mathbb{N}=\{0,1,2, \ldots\}$ and $\lambda \in\{2,3\}$. We show that $4^{a}(4 b+1)$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$ such that $x+2 y+\lambda z$ is a positive square. We also pose some open conjectures; for example, we conjecture that any positive odd integer can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$ such that $x+2 y+3 z$ is a positive power of two.

1. Introduction

Lagrange's four-square theorem established in 1770 states that each $n \in$ $\mathbb{N}=\{0,1,2, \ldots\}$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$. In 2017 the author [6] proved that this can be refined in various ways.

As in [6], we call a polynomial $P(x, y, z, w) \in \mathbb{Z}[x, y, z, w]$ suitable if any $n \in \mathbb{N}$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$ such that $P(x, y, z, w)$ is a square. The author [6] showed that the linear polynomial $x, 2 x, x-y, 2(x-y)$ are suitable, and conjectured that

$$
x+2 y, x+3 y, x+24 y, 2 x-y, 4 x-3 y, 6 x-2 y
$$

are also suitable. Based on the idea of [6], Y.-C. Sun and the author [5] proved that $x+2 y$ is suitable, moreover any $m \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$ such that $x+2 y$ is a positive square. Recently, Y.-F. Sue and H.-L. Wu [4] proved that $x+3 y$ is also suitable via the arithmetic theory of ternary quadratic forms, and A. Machiavelo et al. [3, 2] proved the author's 1-3-5 conjecture which states that $x+3 y+5 z$ is suitable by using Hamilton quaternions.

Conjecture 4.15 (ii) of the author's paper [7] states that for any $m \in \mathbb{Z}^{+}$we can write $m^{2}=x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$ such that $x+2 y+3 z \in$ $\left\{4^{a}: a \in \mathbb{N}\right\}$. This is implied by the author's following new conjecture formulated on Oct. 10, 2020.
Conjecture 1.1 (1-2-3 Conjecture). (i) (Weak version) Any positive odd integer m can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ such that $x+2 y+3 z \in\left\{2^{a}: a \in \mathbb{Z}^{+}\right\}$.
(ii) (Strong version) Any integer $m>4627$ with $m \not \equiv 0,2(\bmod 8)$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+2 y+3 z \in\left\{4^{a}: a \in \mathbb{Z}^{+}\right\}$.

[^0]Remark 1.1. By [6, Theorem 1.2(v)], any positive integer can be written as $x^{2}+y^{2}+z^{2}+4^{a}$ with $a, x, y, z \in \mathbb{N}$. We have verified the 1-2-3 Conjecture for $m \leq 5 \times 10^{6}$. See [8, A338096 and A338103] for some data concerning the 1-2-3 Conjecture.

Motivated by the 1-2-3 Conjecture, we establish the following result.
Theorem 1.1. Let $m \in \mathbb{Z}^{+}$and let $\lambda \in\{2,3\}$. If $m=4^{a}(4 b+1)$ for some $a, b \in \mathbb{N}$, then we can write m as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ such that $x+2 y+\lambda z$ is a positive square.
Remark 1.2. By [7, Theorem 1.4], any $m \in \mathbb{Z}^{+}$can be written $x^{2}+y^{2}+$ $z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{Z}$ and $x+2 y+2 z \in\left\{4^{a}: a \in \mathbb{N}\right\}$. By [5, Theorem 1.7 (iv)], any $n \in \mathbb{N}$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{Z})$ with $x+2 y+3 z$ a square. Note that x, y, z here are just integers while x, y, z in Theorem 1.1 are nonnegative integers.

As any positive square has the form $4^{a}(8 b+1)$ with $a, b \in \mathbb{N}$, Theorem 1.1 has the following consequence.
Corollary 1.1. Let $\lambda \in\{2,3\}$. Then any positive square can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ such that $x+2 y+\lambda z$ is a positive square.
Remark 1.3. Actually, our computation via a computer suggests that those $m \in \mathbb{Z}^{+}$which cannot be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+2(y+z)$ a positive square are

$$
7 \times 2^{4 a}, 3 \times 2^{4 a+3}, 15 \times 2^{4 a+3}, 55 \times 2^{4 a}, 255 \times 2^{4 a}
$$

with $a \in \mathbb{N}$, and that those $m \in \mathbb{Z}^{+}$which cannot be written as $x^{2}+y^{2}+$ $z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+2 y+3 z$ a positive square are

$$
3 \times 2^{4 a+2}, 9 \times 2^{4 a+3}, 19 \times 2^{4 a+2}, 23 \times 2^{4 a+2}
$$

with $a \in \mathbb{N}$.
In contrast with the 1-2-3 Conjecture, we have the following result.
Theorem 1.2. Any integer $m>1$ with $m \neq 10$ can be written as $x^{2}+y^{2}+$ $z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{Z}$ and $x+2 y+3 z \in\left\{4^{a}: a \in \mathbb{Z}^{+}\right\}$.
Remark 1.4. In [7, Conjecture 4.5(ii)], the author conjectured that any $m \in \mathbb{Z}^{+}$can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$ and $\mid x+2 y-$ $3 z \mid \in\left\{4^{a}: a \in \mathbb{N}\right\}$.

We are going to provide three lemmas in the next section. We will prove Theorems 1.1-1.2 in Section 3 and pose some conjectures in Section 4.

2. Three lemmas

For any real numbers $a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{n}$, we have the Cauchy-Schwarz inequality (cf. [1, p. 178])

$$
\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right)^{2} \leq\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)\left(x_{1}^{2}+\ldots x_{n}^{2}\right) .
$$

We will make use of the inequality in our proof of the following lemma.

Lemma 2.1. Let a, b, c, d, m be nonnegative real numbers with $a^{2}+b^{2}+c^{2}+$ $d^{2} \neq 0$. Suppose that x, y, z, w are real numbers satisfying

$$
\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2}+w^{2}=m \tag{2.1}\\
a x+b y+c z+d w=s
\end{array}\right.
$$

where

$$
\begin{equation*}
s \geq \sqrt{m\left(a^{2}+b^{2}+c^{2}+d^{2}-\min \left(\left\{a^{2}, b^{2}, c^{2}, d^{2}\right\} \backslash\{0\}\right)\right)} . \tag{2.2}
\end{equation*}
$$

Then all the numbers $a x, b y, c z, d w$ are nonnegative.
Proof. Let

$$
t=a y-b x+c w-d z, u=a z-b w-c x+d y, v=a w+b z-c y-d x
$$

By Euler's four-square identity, we have

$$
\begin{equation*}
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(x^{2}+y^{2}+z^{2}+w^{2}\right)=s^{2}+t^{2}+u^{2}+v^{2} . \tag{2.3}
\end{equation*}
$$

Solving the system of equations

$$
\left\{\begin{array}{l}
a x+b y+c z+d w=s, \tag{2.4}\\
a y-b x+c w-d z=t, \\
a z-b w-c x+d y=u, \\
a w+b z-c y-d x=v,
\end{array}\right.
$$

as in [5], we find that

$$
\left\{\begin{array}{l}
x=\frac{a s-b t-c u-d v}{a^{2}+b^{2}+c^{2}+d^{2}} \tag{2.5}\\
y=\frac{b s+d^{2}+d u}{a^{2}+b^{2}+c^{2}+d^{2}} \\
z=\frac{c s-t+a u v}{a^{2}+b^{2}+c^{2}+d^{2}} \\
w=\frac{d s+c t-b u}{a^{2}+b^{2}+c^{2}+d^{2}} .
\end{array}\right.
$$

Suppose that $a>0$. Then

$$
s^{2} \geq m\left(a^{2}+b^{2}+c^{2}+d^{2}-a^{2}\right)=\left(b^{2}+c^{2}+d^{2}\right) m
$$

and hence
$\left(a^{2}+b^{2}+c^{2}+d^{2}\right) s^{2} \geq\left(b^{2}+c^{2}+d^{2}\right)\left(a^{2}+b^{2}+c^{2}+d^{2}\right) m=\left(b^{2}+c^{2}+d^{2}\right)\left(s^{2}+t^{2}+u^{2}+v^{2}\right)$.
Thus $a^{2} s^{2} \geq\left(b^{2}+c^{2}+d^{2}\right)\left(t^{2}+u^{2}+v^{2}\right)$. By the Cauchy-Schwarz inequality,

$$
(b t+c u+d v)^{2} \leq\left(b^{2}+c^{2}+d^{2}\right)\left(t^{2}+u^{2}+v^{2}\right)
$$

Therefore $a s \geq|b t+c u+d v|$ and hence $x>0$ in view of (2.5).
Similarly, $y \geq 0$ if $b>0$, and $z \geq 0$ if $d>0$. This concludes the proof.
The Gauss-Legendre theorem (cf. [1, p. 23]) states that $n \in \mathbb{N}$ can be written as the sum of three squares if and only if n does not belong to the set

$$
\begin{equation*}
E=\left\{4^{s}(8 t+7): s, t \in \mathbb{N}\right\} \tag{2.6}
\end{equation*}
$$

Lemma 2.2. Let $m, n \in \mathbb{Z}^{+}$with $3 \nmid n$ and $9 m-n^{4} \in \mathbb{N} \backslash E$. Then m can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{Z}$ and $x+2 y+2 z=n^{2}$.

Proof. By the Gauss-Legendre theorem, $9 m-n^{4}=a^{2}+b^{2}+c^{2}$ for some $a, b, c \in \mathbb{Z}$. As $3 \nmid n$, we have $3 \mid a b c$. Without loss of generality, we suppose $c=3 w$ with $w \in \mathbb{Z}$. Since $a^{2}+b^{2} \equiv-n^{4} \equiv 2(\bmod 3)$, we have $3 \nmid a b$. Without loss of generality, we may assume that $a \equiv 2(\bmod 3)$ and $b \equiv-2(\bmod 3)$ (otherwise we may change the signs of a and b suitably). Clearly, $a=3 u+2 n^{2}$ and $b=3 v-2 n^{2}$ for some $u, v \in \mathbb{Z}$. Observe that

$$
12 n^{2}(u-v)+8 n^{4} \equiv\left(3 u+2 n^{2}\right)^{2}+\left(3 v-2 n^{2}\right)^{2}=a^{2}+b^{2} \equiv-n^{4}(\bmod 9)
$$

and hence $u \equiv v(\bmod 3)$ since $3 \nmid n$. Set

$$
y=-\frac{2 u+v}{3} \quad \text { and } z=\frac{u+2 v}{3}
$$

Then

$$
\begin{aligned}
9 m-n^{4} & =a^{2}+b^{2}+c^{2}=\left(3 u+2 n^{2}\right)^{2}+\left(3 v-2 n^{2}\right)^{2}+9 w^{2} \\
& =\left(3(-2 y-z)+2 n^{2}\right)^{2}+\left(3(2 z+y)-2 n^{2}\right)^{2}+9 w^{2} \\
& =9(2 y+z)^{2}+9(2 z+y)^{2}-36 n^{2}(y+z)+8 n^{4}+9 w^{2}
\end{aligned}
$$

and hence

$$
m=n^{4}+w^{2}+(2 y+z)^{2}+(2 z+y)^{2}-4 n^{2}(y+z)=x^{2}+y^{2}+z^{2}+w^{2}
$$

where $x=n^{2}-2(y+z)$. Note that $x+2 y+2 z=n^{2}$ as desired.
Lemma 2.3. Let $m, n \in \mathbb{Z}^{+}$with $14 m-n^{4} \in \mathbb{N} \backslash E$. Then there are $x, y, z, w \in \mathbb{Z}$ such that $x^{2}+y^{2}+z^{2}+w^{2}=m$ and $x+2 y+3 z=n^{2}$.

Proof. The norm of the Hamilton quaternion $\zeta=1+2 i+3 j+0 k$ is $N(\zeta)=$ $1^{2}+2^{2}+3^{2}+0^{2}=14$. Applying [3, Theorem 2], we immediately get the desired result.

3. Proof of Theorems 1.1-1.2

Proof of Theorem 1.1. If there are $x, y, z, w \in \mathbb{N}$ such that $m=x^{2}+y^{2}+z^{2}+$ w^{2} with $x+2 y+\lambda z$ a positive square, then $16 m=(4 x)^{2}+(4 y)^{2}+(4 z)^{2}+(4 w)^{2}$, and $4 x+2(4 y)+\lambda(4 z)=4(x+2 y+\lambda z)$ is also a positive square. So, it suffices to handle the case $16 \nmid m$.

Below we suppose $m=4^{a}(4 b+1)$ with $a \in\{0,1\}$ and $b \in \mathbb{N}$.
Case 1. $\lambda=2$.
If $m \leq 40125453$, then we can use a computer to verify that m can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+2 y+2 z$ a positive square. Now assume that $m=4^{a}(4 b+1) \geq 40125454$. Then

$$
m \geq\left(\frac{4}{9^{1 / 4}-8^{1 / 4}}\right)^{4} \approx 40125453.161
$$

and hence the interval $I=[\sqrt[4]{8 m}, \sqrt[4]{9 m}]$ has length at least four. It follows that there is an integer $n \in I$ with $n \equiv \pm 2(\bmod 6)$. Note that

$$
9 m-n^{4} \equiv 9 m=4^{a}(4(9 b+2)+1)(\bmod 16)
$$

So we have $9 m-n^{4} \in \mathbb{N} \backslash E$. By Lemma 2.2 , there are $x, y, z, w \in \mathbb{Z}$ such that $x^{2}+y^{2}+z^{2}+w^{2}=m$ and $x+2 y+2 z=n^{2}>0$. As

$$
n^{2} \geq \sqrt{m\left(1^{2}+2^{2}+2^{2}+0^{2}-1^{2}\right)}=\sqrt{8 m}
$$

by Lemma 2.1 we have $x, y, z \in \mathbb{N}$ as desired.
Case 2. $\lambda=3$.
If $m \leq 10065600$, then we can use a computer to verify that m^{2} can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+2 y+3 z$ a positive square. Now assume that $m=4^{a}(4 b+1) \geq 10065601$. Then

$$
m \geq\left(\frac{2}{14^{1 / 4}-13^{1 / 4}}\right)^{4} \approx 10065600.518
$$

and hence the interval $J=[\sqrt[4]{13 m}, \sqrt[4]{14 m}]$ has length at least two. It follows that J contains an even integer n. If $a=0$ then

$$
14 m-n^{4} \equiv 14(4 b+1) \equiv 6(\bmod 8)
$$

if $a=1$ then

$$
14 m-n^{4} \equiv 56(4 b+1) \equiv 8(\bmod 16)
$$

So we have $14 m-n^{4} \in \mathbb{N} \backslash E$. By Lemma 2.2, there are $x, y, z, w \in \mathbb{Z}$ such that $x^{2}+y^{2}+z^{2}+w^{2}=m$ and $x+2 y+3 z=n^{2}>0$. As

$$
n^{2} \geq \sqrt{m\left(1^{2}+2^{2}+3^{2}+0^{2}-1^{2}\right)}=\sqrt{13 m}
$$

by Lemma 2.1 we have $x, y, z \in \mathbb{N}$ as desired.
Proof of Theorem 1.2. In view of Lemma 2.3, it suffices to find $a \in \mathbb{Z}^{+}$ with $14 m-2^{4 a} \in \mathbb{N} \backslash E$. If $14 m-2^{4 a} \in \mathbb{N} \backslash E$ then $14(16 m)-2^{4(a+1)}=$ $4^{2}\left(14 m-2^{4 a}\right) \in \mathbb{N} \backslash E$. Note also that
$16=4^{2}+0^{2}+0^{2}+0^{2}$ and $160=4^{2}+0^{2}+0^{2}+12^{2}$ with $4+2 \times 0+3 \times 0=4^{1}$.
So we only need to handle the case $m \not \equiv 0(\bmod 16)$. If $m \in\{2, \ldots, 18\} \backslash$ $\{10,16\}$, then we can verify the desired result directly.

Below we assume that $m>18$ and $16 \nmid m$. Note that $14 m \geq 14 \times 19=$ $266>2^{8}$.

If $2 \nmid m$, then $14 m-2^{4} \in \mathbb{N} \backslash E$ since $14 m \equiv 2(\bmod 4)$.
In the case $m \equiv 2(\bmod 4)$, we have $14 m=4 q$ for some odd integer $q>64$. If $q \not \equiv 7(\bmod 8)$, then $14 m-2^{8}=4(q-64) \in \mathbb{N} \backslash E$. If $q \equiv 7(\bmod 8)$, then $14 m-2^{4}=4(q-4) \in \mathbb{N} \backslash E$.

If $m \equiv 4(\bmod 8)$, then $14 m \equiv 8(\bmod 16)$ and hence $14 m-2^{4} \in \mathbb{N} \backslash E$.
In the case $m \equiv 8(\bmod 16)$, we have $14 m=16 q$ for some odd integer $q>16$. If $q \not \equiv 7(\bmod 8)$, then $14 m-2^{8}=16(q-16) \in \mathbb{N} \backslash E$. If $q \equiv 7(\bmod 8)$, then $14 m-2^{4}=16(q-1) \in \mathbb{N} \backslash E$.

This completes the proof of Theorem 1.2.

4. Some conjectures

The following two conjectures are similar to the 1-2-3 Conjecture.
Conjecture 4.1 (2020-10-10). Any odd integer $m>1$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+y \in\left\{2^{a}: a \in \mathbb{Z}^{+}\right\}$. Moreover, the only positive integers $m \not \equiv 0,6(\bmod 8)$ which cannot be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+y \in\left\{4^{a}: a \in \mathbb{Z}^{+}\right\}$are

$$
\begin{gathered}
1,2,3,4,5,7,31,43,67,79,85,87,103,115 \\
475,643,1015,1399,1495,1723,1819,1939,1987 .
\end{gathered}
$$

Remark 4.1. We have verified this for m up to 3×10^{7}. See [8, A338094 and A338121] for related data. By [7, Theorem 1.1(ii)], any positive integer can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x-y \in\left\{2^{a}: a \in \mathbb{N}\right\}$.
Conjecture 4.2 (2020-10-10). Any positive odd integer m can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+y+2 z \in\left\{2^{a}: a \in \mathbb{Z}^{+}\right\}$. Moreover, any integer $m>10840$ with $m \not \equiv 0,2(\bmod 8)$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+y+2 z \in\left\{4^{a}: a \in \mathbb{Z}^{+}\right\}$.
Remark 4.2. We have verified this for m up to 5×10^{6}. See [8, A338095 and A338119] for related data. By [7, Theorem 1.4(i)], any $m \in \mathbb{Z}^{+}$can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{Z}$ and $x+y+2 z \in\left\{4^{a}: a \in \mathbb{N}\right\}$.
Conjecture 4.3 (2020-10-12). Any $m \in \mathbb{Z}^{+}$can be written as $x^{2}+y^{2}+$ $z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $2 x^{2}+4 y^{2}-7 x y \in\left\{2^{a}: a \in \mathbb{N}\right\}$. Moreover, any positive integer $m \equiv 1,2(\bmod 4)$ can be written as $x^{2}+y^{2}+z^{2}+$ $w^{2}(x, y, z, w \in \mathbb{N})$ with $2 x^{2}+4 y^{2}-7 x y \in\left\{4^{a}: a \in \mathbb{Z}^{+}\right\}$.
Remark 4.3. We have verified this for $m \leq 10^{8}$. See [8, A337082] for related data.
Conjecture 4.4 (2020-10-12). Any $m \in \mathbb{Z}^{+}$can be written as $x^{2}+y^{2}+$ $z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x^{2}+26 y^{2}-11 x y \in\left\{2^{a}: a \in \mathbb{N}\right\}$. Moreover, any positive integer $m \equiv 1,2(\bmod 4)$ can be written as $x^{2}+y^{2}+z^{2}+$ $w^{2}(x, y, z, w \in \mathbb{N})$ with $x^{2}+26 y^{2}-11 x y \in\left\{4^{a}: a \in \mathbb{N}\right\}$.
Remark 4.4. We have verified this for $m \leq 10^{8}$. See [8, A338139] for related data.
Conjecture 4.5 (2018-02-21). Let $\lambda \in\{2,3,4\}$. Any positive square can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+2 y+2 z+\lambda w$ a square.
Conjecture 4.6 (2018-02-22). For each $\lambda \in\{1,2,3\}$, any positive square can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+2 y+4 z+\lambda w \in$ $\left\{2^{a}: a \in \mathbb{N}\right\}$. Also, any positive square can be written as $x^{2}+y^{2}+z^{2}+$ $w^{2}(x, y, z, w \in \mathbb{N})$ with $x+3 y+3 z+4 w$ a power of two.

Similar to [7, Conjecture 4.16], we have the following conjectures.
Conjecture 4.7 (2018-03-01). Let $\delta \in\{0,1\}$ and $m \in \mathbb{N}$ with $m>\delta$. Then m^{2} can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ such that $\left\{2^{2 a+\delta}: a \in \mathbb{N}\right\}$ contains $x+3 y$, and also x or y.

Remark 4.5. Note that 81503^{2} cannot be written as $x^{2}+y^{2}+z^{2}+w^{2}$ $(x, y, z, w \in \mathbb{N})$ with $\{x, x+3 y\} \subseteq\left\{4^{a}: a \in \mathbb{N}\right\}$. However,

$$
81503^{2}=16372^{2}+4^{2}+52372^{2}+60265^{2}
$$

with $4=4^{1}$ and $16372+3 \times 4=4^{7}$.
Conjecture 4.8 (2018-03-04). Let $\lambda \in\{2,8\}$ and let $\delta \in\{0,1\}$. Then any positive square can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ such that x or y is a power of 2 , and $x+\lambda y \in\left\{2^{2 a+r}: a \in \mathbb{N}\right\}$.

Conjecture 4.9 (2018-03-04). Let $\delta \in\{0,1\}$ and $m \in \mathbb{N}$ with $m>\delta$. Then m^{2} can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $\left\{2^{2 a+\delta}: a \in \mathbb{N}\right\}$ contains $x+15 y$, and also x or $2 y$.

Conjecture 4.10 (2018-03-04). Let $\delta \in\{0,1\}$ and $m \in \mathbb{N}$ with $m>\delta$. Then m^{2} can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $16 x-15 y \in$ $\left\{2^{2 a+\delta}: a \in \mathbb{N}\right\}$.

Conjecture 4.11 (2018-03-05). Any positive square can be written as $x^{2}+$ $y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+63 y \in\left\{2^{2 a+1}: a \in \mathbb{N}\right\}$ such that $2 x$ or y is a power of 4 .

For $P(x, y, z, w) \in \mathbb{Z}[x, y, z, w]$, we define its exceptional set $E(P)$ as the set of all those $n \in \mathbb{N}$ for which there are no $x, y, z, w \in \mathbb{N}$ with $n=x^{2}+$ $y^{2}+z^{2}+w^{2}$ such that $P(x, y, z, w$ is a square.

Conjecture 4.12 (2020-10-09). Any $m \in \mathbb{N}$ not divisible by 8 can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $x+3 y+4 z$ a square. Moreover,

$$
E(x+3 y+4 z)=\left\{2^{4 a+3} q: a \in \mathbb{N}, q \in\{1,3,5,43\}\right\}
$$

Remark 4.6. We have verified the former assertion for $m \leq 6 \times 10^{6}$. See [8, A335624] for related data.

Conjecture 4.13 (2020-10-09). Any $m \in \mathbb{N}$ not divisible by 8 can be written as $x^{2}+y^{2}+z^{2}+w^{2}(x, y, z, w \in \mathbb{N})$ with $3 x+10 y+36 z$ a positive square. Moreover,

$$
E(3 x+10 y+36 z)=\left\{2^{4 a+3} q: a \in \mathbb{N}, q \in\{1,3,5,61\}\right\}
$$

Remark 4.7. We have verified the former assertion for $m \leq 5 \times 10^{6}$. See [8, A338019] for related data.
Conjecture 4.14 (2020-10-08). (i) We have

$$
\begin{gathered}
E(x-2 y)=\left\{43 \times 2^{4 a}: a \in \mathbb{N}\right\}, E(4 x-y)=\left\{7 \times 2^{4 a}: a \in \mathbb{N}\right\}, \\
E(3 x-2 y)=E(5 x-y)=E(7 x-3 y)=E(32 x-15 y)=\left\{3 \times 2^{4 a+3}: a \in \mathbb{N}\right\}, \\
E(x+4 y)=\left\{2^{4 a+2} q: a \in \mathbb{N}, q \in\{3,23\}\right\} \\
E(2 x+7 y)=\left\{35 \times 2^{4 a}: a \in \mathbb{N}\right\}, E(8 x+9 y)=\left\{47 \times 2^{4 a}: a \in \mathbb{N}\right\}
\end{gathered}
$$

(ii) We have

$$
\begin{aligned}
E(x+2 y+4 z) & =\left\{3 \times 2^{4 a}: a \in \mathbb{N}\right\} \\
E(x+2 y+6 z) & =\left\{15 \times 2^{4 a}: a \in \mathbb{N}\right\}, \\
E(2 x+3 y+4 z) & =\left\{3 \times 2^{4 a+1}: a \in \mathbb{N}\right\}, \\
E(2 x+4 y+5 z) & =\left\{3 \times 2^{4 a+2}: a \in \mathbb{N}\right\}, \\
E(4 x+5 y+8 z) & =\left\{23 \times 2^{4 a}: a \in \mathbb{N}\right\}, \\
E(2 x+6 y+14 z) & =\left\{2^{4 a+2} q: a \in \mathbb{N}, q \in\{7,31\}\right\}
\end{aligned}
$$

References

[1] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., Vol. 164, Springer, New York, 1996.
[2] A. Machiavelo, R. Reis and N. Tsopanidis, Report on Zhi-Wei Sun's "1-3-5 conjecture" and some of its refinements, arXiv:2005.13526 [math.NT], 2020.
[3] A. Machiavelo and N. Tsopanidis, Zhi-Wei Sun's 1-3-5 conjecture and variations, arXiv:2003.02592 [math.NT], 2020.
[4] Y.-F. She and H.-L. Wu, Proof of a conjecture of Sun on sums of four squares, preprint, arXiv:2010.02067 [math.NT], 2020.
[5] Y.-C. Sun and Z.-W. Sun, Some variants of Lagrange's four squares theorem, Acta Arith. 183 (2018), 339-356.
[6] Z.-W. Sun, Refining Lagrange's four-square theorem, J. Number Theory 175 (2017), 167-190.
[7] Z.-W. Sun, Restricted sums of four squares, Int. J. Number Theory 15 (2019), no. 9, 1863-1893.
[8] Z.-W. Sun, Sequences A335624, A337082, A338019, A338094, A338095, A338096, A338103, A338119, A338121, A338139 at OEIS, http://oeis.org.

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

Email address: zwsun@nju.edu.cn

[^0]: Key words and phrases. Sums of squares, Lagrange's theorem.
 2020 Mathematics Subject Classification. Primary 11E25; Secondary 11D85, 11E20.
 Supported by the Natural Science Foundation of China (grant no. 11971222).

