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SUMS OF FOUR SQUARES
WITH CERTAIN RESTRICTIONS

ZHI-WEI SUN

ABSTRACT. Let a,b € N={0,1,2,...} and A € {2,3}. We show that
4°(4b+1) can be written as 2 +y*+ 2> +w? with z,y, z, w € N such that
x4 2y + Az is a positive square. We also pose some open conjectures; for
example, we conjecture that any positive odd integer can be written as
2% +y? + 2% + w? with z,y, z, w € N such that 4+ 2y + 3z is a positive
power of two.

1. INTRODUCTION

Lagrange’s four-square theorem established in 1770 states that each n €
N ={0,1,2,...} can be written as 2% + y? + 2% + w? with z,y,z,w € N. In
2017 the author [6] proved that this can be refined in various ways.

As in [6], we call a polynomial P(x,y,z,w) € Z[z,y, z,w] suitable if any
n € N can be written as 22 + y? + 22 + w? with z,9,2,w € N such that
P(z,y,z,w) is a square. The author [6] showed that the linear polynomial
x,2x,x —y,2(x — y) are suitable, and conjectured that

r+ 2y, x+ 3y, x+ 24y, 2z —y, dxr — 3y, 6 — 2y

are also suitable. Based on the idea of [6], Y.-C. Sun and the author [5]
proved that x + 2y is suitable, moreover any m € Z* = {1,2,3,...} can
be written as 22 + y? + 22 + w? with z,y,z,w € N such that = + 2y is a
positive square. Recently, Y.-F. Sue and H.-L. Wu [4] proved that x + 3y
is also suitable via the arithmetic theory of ternary quadratic forms, and A.
Machiavelo et al. [3, 2] proved the author’s 1-3-5 conjecture which states
that « + 3y 4 5z is suitable by using Hamilton quaternions.

Conjecture 4.15(ii) of the author’s paper [7] states that for any m € Z* we
can write m? = x? +y? + 22 + w? with z,y, z,w € N such that 4+ 2y + 3z €
{4* : a € N}. This is implied by the author’s following new conjecture
formulated on Oct. 10, 2020.

Conjecture 1.1 (1-2-3 Conjecture). (i) (Weak version) Any positive odd
integer m can be written as x* + y® + 2% + w? (x,y,z,w € N) such that
r+2y+32€{2°: a€Z"}.

(ii) (Strong version) Any integer m > 4627 with m # 0,2 (mod 8) can be
written as 22 +y? + 22 +w? (2,y, z,w € N) with v +2y+32z € {4*: a € ZT}.
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Remark 1.1. By [6, Theorem 1.2(v)], any positive integer can be written
as x2 +y? + 22 + 4% with a,z,y, = € N. We have verified the 1-2-3 Conjecture
for m < 5 x 105, See [8, A338096 and A338103] for some data concerning
the 1-2-3 Conjecture.

Motivated by the 1-2-3 Conjecture, we establish the following result.

Theorem 1.1. Let m € Z1 and let X € {2,3}. If m = 4%(4b + 1) for some
a,b € N, then we can write m as x> +y?> + 2> + w? (x,y, z,w € N) such that
T+ 2y + Az is a positive square.

Remark 1.2. By [7, Theorem 1.4], any m € Z* can be written 22 + 3 +
22+ w? with x,y,z,w € Z and z + 2y + 2z € {4* : a € N}. By [5, Theorem
1.7(iv)], any n € N can be written as 22 + y? + 22 + w? (z,y, z,w € Z) with
x + 2y + 3z a square. Note that x,y, z here are just integers while x,y, z in
Theorem 1.1 are nonnegative integers.

As any positive square has the form 4%(80+ 1) with a,b € N, Theorem 1.1
has the following consequence.

Corollary 1.1. Let A € {2,3}. Then any positive square can be written as
22 4 y% + 22 + w? (z,y,z,w € N) such that x + 2y + Az is a positive square.

Remark 1.3. Actually, our computation via a computer suggests that those
m € Z which cannot be written as 2% + 3% + 22 + w? (z,y, z,w € N) with
x4+ 2(y + z) a positive square are

7 x 2% 3 x 210t 15 « 24at3 55 i 94 955 x 9te

with @ € N, and that those m € Z* which cannot be written as z? + y? +
22 +w? (z,y,z,w € N) with 4+ 2y + 3z a positive square are

3 x 24a+2 9 x 24a+3 19 x 24a+2 23 % 24(1+2
with a € N.
In contrast with the 1-2-3 Conjecture, we have the following result.

Theorem 1.2. Any integer m > 1 with m # 10 can be written as 2 +y* +
22 +w? with v,y,z,w € Z and x + 2y + 3z € {4°: a € Z*}.

Remark 1.4. In [7, Conjecture 4.5(ii)], the author conjectured that any
m € Z7T can be written as 22 + y? + 22 + w? with x,y, z,w € N and |z + 2y —
3z| € {4*: a € N}.

We are going to provide three lemmas in the next section. We will prove
Theorems 1.1-1.2 in Section 3 and pose some conjectures in Section 4.

2. THREE LEMMAS

For any real numbers aq,...,an,x1,...,Z,, we have the Cauchy-Schwarz
inequality (cf. [1, p.178])

(@114 ... 4 apxp)® < (af + ...+ a2)(2? +...22).

We will make use of the inequality in our proof of the following lemma.
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Lemma 2.1. Let a,b, c,d, m be nonnegative real numbers with a®+b* + c +
d?> # 0. Suppose that x,y,z,w are real numbers satisfying

{x2+y2+z2—|—w2:m, 21
ax + by + cz + dw = s,
where

s> v/m(a®+ b2 + 2 + d? — min({a?, b2, c2,d2} \ {0})). (2.2)
Then all the numbers ax, by, cz, dw are nonnegative.
Proof. Let

t=ay—br+cw—dz, u=az—bw—cxr+dy, v=aw+bz—cy—dx.
By Euler’s four-square identity, we have
(@ + 02+ +d)@? +y? + 22+ w?) =87+ 2+ u? ok (2.3)
Solving the system of equations

ar + by + cz + dw = s,
ay — br + cw — dz = t,
az —bw — cx + dy = u,
aw + bz —cy —dxr = v,
as in [5], we find that
as—bt—cu—dv
- a2+b2+02+d27
betatd e,
sttty (25)
a2+b2+62+d27
__ ds+ct—butav
T a?+bZ4c24d?
Suppose that a > 0. Then
S2>m+ VP +E+d—a?) =+ +d)m
and hence
(a* 40>+ 4d%)s? > (B +2+d?) (a®+02+P+d?)m = (D242 +d?) (s2 -2 Hu’+0?).
Thus a?s? > (b + ¢ + d?)(t? + u? + v?). By the Cauchy-Schwarz inequality,
(bt + cu + dv)? < (b + & + d®)(t2 + u® + 0?).

Therefore as > |bt + cu + dv| and hence z > 0 in view of (2.5).
Similarly, y > 0if b > 0, and z > 0 if d > 0. This concludes the proof. [

The Gauss-Legendre theorem (cf. [1, p.23]) states that n € N can be
written as the sum of three squares if and only if n does not belong to the
set

E={4°8t+7): s,t € N}. (2.6)

Lemma 2.2. Let m,n € Z* with 3tn and 9m —n* € N\ E. Then m can
be written as x2 + y* + 22 + w? with x,y, z,w € Z and = + 2y + 2z = n>.
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Proof. By the Gauss-Legendre theorem, 9m — n* = a? + b? + ¢? for some
a,b,c € Z. As 3 f n, we have 3 | abc. Without loss of generality, we
suppose ¢ = 3w with w € Z. Since a® + b?> = —n* = 2 (mod 3), we have
3t ab. Without loss of generality, we may assume that ¢ = 2 (mod 3) and
b= -2 (mod 3) (otherwise we may change the signs of a and b suitably).
Clearly, a = 3u + 2n? and b = 3v — 2n? for some u,v € Z. Observe that

12n%(u — v) + 8n* = (3u + 2n?)* + (3v — 2n?)? = a® + b? = —n* (mod 9)

and hence u = v (mod 3) since 3 {n. Set

2u+w u+ 2v
y=-"3 and z = 5
Then
9m —nt =a? + % + & = (3u+2n%)% + (3v — 2n%)? + Jw?
=(3(—=2y — 2) +2n)% + (3(2z + y) — 2n?)? + 9w?
=9(2y + 2)? +9(22 + y)? — 36n(y + 2) + 8n* + 9w?
and hence
m=n'+ 0 + 2y +2)° + (22 + ) —dn’(y +2) = 2" + 7 + 2+
where x = n? — 2(y + 2). Note that = + 2y + 2z = n? as desired. O

Lemma 2.3. Let m,n € Z* with 14m —n* € N\ E. Then there are
x,y,2,w € Z such that x* + y? + 22 + w? = m and x + 2y + 3z = n?.

Proof. The norm of the Hamilton quaternion ¢ = 1+ 2i+ 35 + 0k is N({) =
12 4+ 22 4+ 32 + 02 = 14. Applying [3, Theorem 2], we immediately get the
desired result. g

3. PROOF OF THEOREMS 1.1-1.2

Proof of Theorem 1.1. If there are z, vy, z,w € N such that m = 22 +y%+ 22+
w? with z-+2y-+\z a positive square, then 16m = (4x)2+(4y)?+(42)? +(4w)?,
and 4z + 2(4y) + A(4z) = 4(z + 2y + Az) is also a positive square. So, it
suffices to handle the case 16 t m.

Below we suppose m = 4%(4b + 1) with a € {0,1} and b € N.

Case 1. A =2.

If m < 40125453, then we can use a computer to verify that m can be
written as 22 + y? + 22 + w? (2,y,2,w € N) with x + 2y + 2z a positive
square. Now assume that m = 4%(4b + 1) > 40125454. Then

4 4
m > <W> ~ 40125453.161

and hence the interval I = [v/8m, v/9m] has length at least four. It follows
that there is an integer n € I with n = £2 (mod 6). Note that

9m —nt = 9m = 4%(4(9b +2) + 1) (mod 16).
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So we have 9m —n* € N\ E. By Lemma 2.2, there are x,%,z,w € Z such
that 22 + 42 + 22+ w?> =m and x + 2y + 2z =n? > 0. As

n? > /m(12+22+22+ 02— 12) = V8m,

by Lemma 2.1 we have z,y, 2z € N as desired.

Case 2. A = 3.

If m < 10065600, then we can use a computer to verify that m? can be
written as 22 + y? + 22 + w? (2,y,2,w € N) with = + 2y + 3z a positive
square. Now assume that m = 4%(4b + 1) > 10065601. Then

2 4

and hence the interval J = [v/13m, v/14m] has length at least two. It follows
that J contains an even integer n. If @ = 0 then

14m —n* = 14(4b+ 1) = 6 (mod 8);
if a = 1 then
14m —n* =56(4b + 1) =8 (mod 16).

So we have 14m —n* € N\ E. By Lemma 2.2, there are x,y, z,w € Z such
that 22 + 92+ 22+ w? =m and . + 2y + 32z =n? > 0. As

n? > /m(12 +22 4+ 32 4 02 — 12) = V13m,
by Lemma 2.1 we have z,y, 2 € N as desired. O

Proof of Theorem 1.2. In view of Lemma 2.3, it suffices to find a € Z*
with 14m — 2% € N\ E. If 14m — 2** € N\ E then 14(16m) — 24+ =
42(14m — 2%%) € N\ E. Note also that

16 =424+ 0240%+0% and 160 = 42+ 0?4+ 0%+ 122 with 4+2x 0+ 3 x 0 = 4.

So we only need to handle the case m # 0 (mod 16). If m € {2,...,18}\
{10, 16}, then we can verify the desired result directly.

Below we assume that m > 18 and 16 { m. Note that 14m > 14 x 19 =
266 > 2°.

If 24 m, then 14m — 2% € N\ E since 14m = 2 (mod 4).

In the case m = 2 (mod 4), we have 14m = 4q for some odd integer
q > 64. If ¢ # 7 (mod 8), then 14m — 28 = 4(¢ —64) € N\ E. If
q¢=7 (mod 8), then 14m — 2* =4(q —4) € N\ E.

If m =4 (mod 8), then 14m = 8 (mod 16) and hence 14m —2* € N\ E.

In the case m = 8 (mod 16), we have 14m = 16¢ for some odd integer
q > 16. If ¢ # 7 (mod 8), then 14m — 2% = 16(q — 16) € N\ E. If
q¢=7 (mod 8), then 14m — 2* =16(¢ — 1) € N\ E.

This completes the proof of Theorem 1.2. O
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4. SOME CONJECTURES

The following two conjectures are similar to the 1-2-3 Conjecture.

Conjecture 4.1 (2020-10-10). Any odd integer m > 1 can be written as
22+ + 22+ w? (z,y,z,w € N) withx +y € {2¢: a € Z*}. Moreover,
the only positive integers m % 0,6 (mod 8) which cannot be written as
2?24y + 224w (ny,z,w €N) withe +y € {4°: a € ZT} are
1,2,3,4,5,7, 31, 43, 67, 79, 85, 87, 103, 115,
475, 643, 1015, 1399, 1495, 1723, 1819, 1939, 1987.

Remark 4.1. We have verified this for m up to 3 x 107. See [8, A338094
and A338121] for related data. By [7, Theorem 1.1(ii)], any positive integer
can be written as 22 4+ 4%+ 22 +w? (2,9, 2, w € N) with z —y € {2 : a € N}.
Conjecture 4.2 (2020-10-10). Any positive odd integer m can be written
as 22+ y? + 22 + w? (z,y,2,w € N) with x +y+22 € {2°: a € ZT}.
Moreover, any integer m > 10840 with m # 0,2 (mod 8) can be written as
2?2+ y? 4+ 22+ w? (z,y,2,w €EN) withz +y+22€{4%: acZt}.

Remark 4.2. We have verified this for m up to 5 x 10%. See [8, A338095

and A338119] for related data. By [7, Theorem 1.4(i)], any m € Z* can be
written as 22 +y? + 22 +w? with x,y, z,w € Z and x +y+2z € {4* : a € N}.

Conjecture 4.3 (2020-10-12). Any m € Z* can be written as x° + y* +
22 +w? (z,y,2,w € N) with 22% + 4y* — Tzy € {2% : a € N}. Moreover,
any positive integer m = 1,2 (mod 4) can be written as 2% + y? + 22 +
w? (z,y,2,w € N) with 22 + 4y? — Tey € {4*: a € Z}.

Remark 4.3. We have verified this for m < 108. See [8, A337082] for
related data.

Conjecture 4.4 (2020-10-12). Any m € Z* can be written as x° + y* +
22+ w? (z,y,z,w € N) with 22 4+ 26y*> — 1lzy € {2 : a € N}. Moreover,
any positive integer m = 1,2 (mod 4) can be written as 2% + y? + 22 +
w? (z,y,z,w € N) with 2% + 26y* — 1lzy € {4* : a € N},

Remark 4.4. We have verified this for m < 108. See [8, A338139] for
related data.

Conjecture 4.5 (2018-02-21). Let A\ € {2,3,4}. Any positive square can be
written as 2%+ y? + 22 + w? (z,y, z,w € N) with x + 2y + 22 + \w a square.
Conjecture 4.6 (2018-02-22). For each \ € {1,2,3}, any positive square
can be written as x> +y? + 22 +w? (x,y,z,w € N) with x + 2y + 4z + \w €
{2% . a € N}. Also, any positive square can be written as x* + y* + 2% +
w? (z,y,z,w € N) with  + 3y + 32 + 4w a power of two.

Similar to [7, Conjecture 4.16], we have the following conjectures.

Conjecture 4.7 (2018-03-01). Let § € {0,1} and m € N with m > 0.
Then m? can be written as x> + y*> + 22 + w? (z,y,2,w € N) such that
{22049 . 4 € N} contains x + 3y, and also x ory.
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Remark 4.5. Note that 815032 cannot be written as 22 + y? + 22 + w?
(x,y,z,w € N) with {z,z + 3y} C {4*: a € N}. However,
81503% = 163722 + 42 + 523722 + 602652
with 4 = 4! and 16372 4+ 3 x 4 = 47.

Conjecture 4.8 (2018-03-04). Let A € {2,8} and let § € {0,1}. Then any
positive square can be written as x> +y* + 22 +w? (z,y,2,w € N) such that
x ory is a power of 2, and x + \y € {22477 : a € N}.

Conjecture 4.9 (2018-03-04). Let 6 € {0,1} and m € N with m > §. Then
m? can be written as x> +y* + 2> + w? (z,y, z,w € N) with {2270 : ¢ € N}
contains x + 15y, and also x or 2y.

Conjecture 4.10 (2018-03-04). Leto € {0,1} and m € N withm > 6. Then
m? can be written as v + y* + 22 + w? (2,y,2z,w € N) with 16x — 15y €
{220+ . q € N},

Conjecture 4.11 (2018-03-05). Any positive square can be written as 2+
Y2+ 22 +w? (2,9, 2, w € N) with x + 63y € {2291 . a € N} such that 2z or
y is a power of 4.

For P(x,y,z,w) € Z[x,y, z,w], we define its exceptional set E(P) as the
set of all those n € N for which there are no z,v, z,w € N with n = z? +
y? + 22 + w? such that P(z,y, z,w is a square.

Conjecture 4.12 (2020-10-09). Any m € N not divisible by 8 can be written
as 22+ y? + 22 + w? (2,9, z,w € N) with  + 3y + 42 a square. Moreover,

E(x+3y+42) ={2'¢: aeN, qe{1,3,5,43}}.

Remark 4.6. We have verified the former assertion for m < 6 x 10°. See
[8, A335624] for related data.

Conjecture 4.13 (2020-10-09). Any m € N not divisible by 8 can be written
as 22 +y? + 22 +w? (z,y, z,w € N) with 3z + 10y + 362 a positive square.
Moreover,

B3z + 10y + 362) = {2'%T3¢: a €N, ¢ € {1,3,5,61}}.

Remark 4.7. We have verified the former assertion for m < 5 x 10%. See
[8, A338019] for related data.

Conjecture 4.14 (2020-10-08). (i) We have
E(x —2y) ={43x2%: a €N}, E(de —y) = {Tx 2" a € N},
E(3z —2y) = E(5z — y) = E(Tz — 3y) = E(32z — 15y) = {3 x 2%¢T3 . 4 € N},
Bz +4y) = {2*"2¢: a e N, ¢ e {3,23}},
E(2x+Ty) = {35 x 219 : a € N}, E(8z + 9y) = {47 x 21% . 4 € N}.
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(ii) We have

E(z+2y+42) ={3x 2': a €N},
E(z 42y + 62) ={15x 2% : ¢ € N},
E(2x + 3y + 42) ={3 x 21¢T1 . 4 € N},
E(2x + 4y + 52) ={3 x 21972 ;. ¢ € N},
E(4x + 5y + 82) ={23 x 21% . 4 € N},
E(2z + 6y + 142) ={2'"%¢: a €N, ¢ e {7,31}}.
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