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SUMS OF FOUR SQUARES

WITH CERTAIN RESTRICTIONS

ZHI-WEI SUN

Abstract. Let a, b ∈ N = {0, 1, 2, . . .} and λ ∈ {2, 3}. We show that
4a(4b+1) can be written as x2+y2+z2+w2 with x, y, z, w ∈ N such that
x+2y+λz is a positive square. We also pose some open conjectures; for
example, we conjecture that any positive odd integer can be written as
x2 + y2 + z2 +w2 with x, y, z, w ∈ N such that x+ 2y + 3z is a positive
power of two.

1. Introduction

Lagrange’s four-square theorem established in 1770 states that each n ∈
N = {0, 1, 2, . . .} can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N. In
2017 the author [6] proved that this can be refined in various ways.

As in [6], we call a polynomial P (x, y, z, w) ∈ Z[x, y, z, w] suitable if any
n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N such that
P (x, y, z, w) is a square. The author [6] showed that the linear polynomial
x, 2x, x− y, 2(x− y) are suitable, and conjectured that

x+ 2y, x+ 3y, x+ 24y, 2x− y, 4x− 3y, 6x− 2y

are also suitable. Based on the idea of [6], Y.-C. Sun and the author [5]
proved that x + 2y is suitable, moreover any m ∈ Z+ = {1, 2, 3, . . .} can
be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N such that x + 2y is a
positive square. Recently, Y.-F. Sue and H.-L. Wu [4] proved that x + 3y
is also suitable via the arithmetic theory of ternary quadratic forms, and A.
Machiavelo et al. [3, 2] proved the author’s 1-3-5 conjecture which states
that x+ 3y + 5z is suitable by using Hamilton quaternions.

Conjecture 4.15(ii) of the author’s paper [7] states that for any m ∈ Z+ we
can write m2 = x2+ y2+ z2 +w2 with x, y, z, w ∈ N such that x+2y+3z ∈
{4a : a ∈ N}. This is implied by the author’s following new conjecture
formulated on Oct. 10, 2020.

Conjecture 1.1 (1-2-3 Conjecture). (i) (Weak version) Any positive odd

integer m can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) such that

x+ 2y + 3z ∈ {2a : a ∈ Z+}.
(ii) (Strong version) Any integer m > 4627 with m 6≡ 0, 2 (mod 8) can be

written as x2+y2+z2+w2 (x, y, z, w ∈ N) with x+2y+3z ∈ {4a : a ∈ Z+}.
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Remark 1.1. By [6, Theorem 1.2(v)], any positive integer can be written
as x2+y2+z2+4a with a, x, y, z ∈ N. We have verified the 1-2-3 Conjecture
for m ≤ 5 × 106. See [8, A338096 and A338103] for some data concerning
the 1-2-3 Conjecture.

Motivated by the 1-2-3 Conjecture, we establish the following result.

Theorem 1.1. Let m ∈ Z+ and let λ ∈ {2, 3}. If m = 4a(4b+ 1) for some

a, b ∈ N, then we can write m as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) such that

x+ 2y + λz is a positive square.

Remark 1.2. By [7, Theorem 1.4], any m ∈ Z+ can be written x2 + y2 +
z2 +w2 with x, y, z, w ∈ Z and x+2y +2z ∈ {4a : a ∈ N}. By [5, Theorem
1.7(iv)], any n ∈ N can be written as x2 + y2 + z2 +w2 (x, y, z, w ∈ Z) with
x+ 2y + 3z a square. Note that x, y, z here are just integers while x, y, z in
Theorem 1.1 are nonnegative integers.

As any positive square has the form 4a(8b+1) with a, b ∈ N, Theorem 1.1
has the following consequence.

Corollary 1.1. Let λ ∈ {2, 3}. Then any positive square can be written as

x2 + y2 + z2 +w2 (x, y, z, w ∈ N) such that x+ 2y + λz is a positive square.

Remark 1.3. Actually, our computation via a computer suggests that those
m ∈ Z+ which cannot be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with
x+ 2(y + z) a positive square are

7× 24a, 3× 24a+3, 15× 24a+3, 55 × 24a, 255× 24a

with a ∈ N, and that those m ∈ Z+ which cannot be written as x2 + y2 +
z2 +w2 (x, y, z, w ∈ N) with x+ 2y + 3z a positive square are

3× 24a+2, 9× 24a+3, 19× 24a+2, 23× 24a+2

with a ∈ N.

In contrast with the 1-2-3 Conjecture, we have the following result.

Theorem 1.2. Any integer m > 1 with m 6= 10 can be written as x2 + y2 +
z2 +w2 with x, y, z, w ∈ Z and x+ 2y + 3z ∈ {4a : a ∈ Z+}.
Remark 1.4. In [7, Conjecture 4.5(ii)], the author conjectured that any
m ∈ Z+ can be written as x2+ y2+ z2+w2 with x, y, z, w ∈ N and |x+2y−
3z| ∈ {4a : a ∈ N}.

We are going to provide three lemmas in the next section. We will prove
Theorems 1.1-1.2 in Section 3 and pose some conjectures in Section 4.

2. Three lemmas

For any real numbers a1, . . . , an, x1, . . . , xn, we have the Cauchy-Schwarz
inequality (cf. [1, p. 178])

(a1x1 + . . .+ anxn)
2 ≤ (a21 + . . .+ a2n)(x

2
1 + . . . x2n).

We will make use of the inequality in our proof of the following lemma.
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Lemma 2.1. Let a, b, c, d,m be nonnegative real numbers with a2+b2+c2+
d2 6= 0. Suppose that x, y, z, w are real numbers satisfying

{

x2 + y2 + z2 + w2 = m,

ax+ by + cz + dw = s,
(2.1)

where

s ≥
√

m(a2 + b2 + c2 + d2 −min({a2, b2, c2, d2} \ {0})). (2.2)

Then all the numbers ax, by, cz, dw are nonnegative.

Proof. Let

t = ay − bx+ cw − dz, u = az − bw − cx+ dy, v = aw + bz − cy − dx.

By Euler’s four-square identity, we have

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2) = s2 + t2 + u2 + v2. (2.3)

Solving the system of equations


















ax+ by + cz + dw = s,

ay − bx+ cw − dz = t,

az − bw − cx+ dy = u,

aw + bz − cy − dx = v,

(2.4)

as in [5], we find that


















x = as−bt−cu−dv
a2+b2+c2+d2 ,

y = bs+at+du−cv
a2+b2+c2+d2

,

z = cs−dt+au+bv
a2+b2+c2+d2

,

w = ds+ct−bu+av
a2+b2+c2+d2 .

(2.5)

Suppose that a > 0. Then

s2 ≥ m(a2 + b2 + c2 + d2 − a2) = (b2 + c2 + d2)m

and hence

(a2+b2+c2+d2)s2 ≥ (b2+c2+d2)(a2+b2+c2+d2)m = (b2+c2+d2)(s2+t2+u2+v2).

Thus a2s2 ≥ (b2 + c2 + d2)(t2 +u2+ v2). By the Cauchy-Schwarz inequality,

(bt+ cu+ dv)2 ≤ (b2 + c2 + d2)(t2 + u2 + v2).

Therefore as ≥ |bt+ cu+ dv| and hence x > 0 in view of (2.5).
Similarly, y ≥ 0 if b > 0, and z ≥ 0 if d > 0. This concludes the proof. �

The Gauss-Legendre theorem (cf. [1, p. 23]) states that n ∈ N can be
written as the sum of three squares if and only if n does not belong to the
set

E = {4s(8t+ 7) : s, t ∈ N}. (2.6)

Lemma 2.2. Let m,n ∈ Z+ with 3 ∤ n and 9m− n4 ∈ N \ E. Then m can

be written as x2 + y2 + z2 +w2 with x, y, z, w ∈ Z and x+ 2y + 2z = n2.
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Proof. By the Gauss-Legendre theorem, 9m − n4 = a2 + b2 + c2 for some
a, b, c ∈ Z. As 3 ∤ n, we have 3 | abc. Without loss of generality, we
suppose c = 3w with w ∈ Z. Since a2 + b2 ≡ −n4 ≡ 2 (mod 3), we have
3 ∤ ab. Without loss of generality, we may assume that a ≡ 2 (mod 3) and
b ≡ −2 (mod 3) (otherwise we may change the signs of a and b suitably).
Clearly, a = 3u+ 2n2 and b = 3v − 2n2 for some u, v ∈ Z. Observe that

12n2(u− v) + 8n4 ≡ (3u+ 2n2)2 + (3v − 2n2)2 = a2 + b2 ≡ −n4 (mod 9)

and hence u ≡ v (mod 3) since 3 ∤ n. Set

y = −2u+ v

3
and z =

u+ 2v

3
.

Then

9m− n4 =a2 + b2 + c2 = (3u+ 2n2)2 + (3v − 2n2)2 + 9w2

=(3(−2y − z) + 2n2)2 + (3(2z + y)− 2n2)2 + 9w2

=9(2y + z)2 + 9(2z + y)2 − 36n2(y + z) + 8n4 + 9w2

and hence

m = n4 +w2 + (2y + z)2 + (2z + y)2 − 4n2(y + z) = x2 + y2 + z2 + w2,

where x = n2 − 2(y + z). Note that x+ 2y + 2z = n2 as desired. �

Lemma 2.3. Let m,n ∈ Z+ with 14m − n4 ∈ N \ E. Then there are

x, y, z, w ∈ Z such that x2 + y2 + z2 + w2 = m and x+ 2y + 3z = n2.

Proof. The norm of the Hamilton quaternion ζ = 1+2i+3j +0k is N(ζ) =
12 + 22 + 32 + 02 = 14. Applying [3, Theorem 2], we immediately get the
desired result. �

3. Proof of Theorems 1.1-1.2

Proof of Theorem 1.1. If there are x, y, z, w ∈ N such that m = x2+y2+z2+
w2 with x+2y+λz a positive square, then 16m = (4x)2+(4y)2+(4z)2+(4w)2,
and 4x + 2(4y) + λ(4z) = 4(x + 2y + λz) is also a positive square. So, it
suffices to handle the case 16 ∤ m.

Below we suppose m = 4a(4b+ 1) with a ∈ {0, 1} and b ∈ N.
Case 1. λ = 2.
If m ≤ 40125453, then we can use a computer to verify that m can be

written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x + 2y + 2z a positive
square. Now assume that m = 4a(4b+ 1) ≥ 40125454. Then

m ≥
(

4

91/4 − 81/4

)4

≈ 40125453.161

and hence the interval I = [ 4
√
8m,

4
√
9m] has length at least four. It follows

that there is an integer n ∈ I with n ≡ ±2 (mod 6). Note that

9m− n4 ≡ 9m = 4a(4(9b + 2) + 1) (mod 16).
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So we have 9m − n4 ∈ N \ E. By Lemma 2.2, there are x, y, z, w ∈ Z such
that x2 + y2 + z2 + w2 = m and x+ 2y + 2z = n2 > 0. As

n2 ≥
√

m(12 + 22 + 22 + 02 − 12) =
√
8m,

by Lemma 2.1 we have x, y, z ∈ N as desired.
Case 2. λ = 3.
If m ≤ 10065600, then we can use a computer to verify that m2 can be

written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x + 2y + 3z a positive
square. Now assume that m = 4a(4b+ 1) ≥ 10065601. Then

m ≥
(

2

141/4 − 131/4

)4

≈ 10065600.518

and hence the interval J = [ 4
√
13m,

4
√
14m] has length at least two. It follows

that J contains an even integer n. If a = 0 then

14m− n4 ≡ 14(4b + 1) ≡ 6 (mod 8);

if a = 1 then

14m− n4 ≡ 56(4b + 1) ≡ 8 (mod 16).

So we have 14m− n4 ∈ N \ E. By Lemma 2.2, there are x, y, z, w ∈ Z such
that x2 + y2 + z2 + w2 = m and x+ 2y + 3z = n2 > 0. As

n2 ≥
√

m(12 + 22 + 32 + 02 − 12) =
√
13m,

by Lemma 2.1 we have x, y, z ∈ N as desired. �

Proof of Theorem 1.2. In view of Lemma 2.3, it suffices to find a ∈ Z+

with 14m − 24a ∈ N \ E. If 14m − 24a ∈ N \ E then 14(16m) − 24(a+1) =
42(14m − 24a) ∈ N \ E. Note also that

16 = 42+02+02+02 and 160 = 42+02+02+122 with 4+2×0+3×0 = 41.

So we only need to handle the case m 6≡ 0 (mod 16). If m ∈ {2, . . . , 18} \
{10, 16}, then we can verify the desired result directly.

Below we assume that m > 18 and 16 ∤ m. Note that 14m ≥ 14 × 19 =
266 > 28.

If 2 ∤ m, then 14m− 24 ∈ N \ E since 14m ≡ 2 (mod 4).
In the case m ≡ 2 (mod 4), we have 14m = 4q for some odd integer

q > 64. If q 6≡ 7 (mod 8), then 14m − 28 = 4(q − 64) ∈ N \ E. If
q ≡ 7 (mod 8), then 14m− 24 = 4(q − 4) ∈ N \E.

If m ≡ 4 (mod 8), then 14m ≡ 8 (mod 16) and hence 14m− 24 ∈ N \E.
In the case m ≡ 8 (mod 16), we have 14m = 16q for some odd integer

q > 16. If q 6≡ 7 (mod 8), then 14m − 28 = 16(q − 16) ∈ N \ E. If
q ≡ 7 (mod 8), then 14m− 24 = 16(q − 1) ∈ N \ E.

This completes the proof of Theorem 1.2. �
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4. Some conjectures

The following two conjectures are similar to the 1-2-3 Conjecture.

Conjecture 4.1 (2020-10-10). Any odd integer m > 1 can be written as

x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x + y ∈ {2a : a ∈ Z+}. Moreover,

the only positive integers m 6≡ 0, 6 (mod 8) which cannot be written as

x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x+ y ∈ {4a : a ∈ Z+} are

1, 2, 3, 4, 5, 7, 31, 43, 67, 79, 85, 87, 103, 115,

475, 643, 1015, 1399, 1495, 1723, 1819, 1939, 1987.

Remark 4.1. We have verified this for m up to 3 × 107. See [8, A338094
and A338121] for related data. By [7, Theorem 1.1(ii)], any positive integer
can be written as x2+y2+z2+w2 (x, y, z, w ∈ N) with x−y ∈ {2a : a ∈ N}.
Conjecture 4.2 (2020-10-10). Any positive odd integer m can be written

as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x + y + 2z ∈ {2a : a ∈ Z+}.
Moreover, any integer m > 10840 with m 6≡ 0, 2 (mod 8) can be written as

x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x+ y + 2z ∈ {4a : a ∈ Z+}.
Remark 4.2. We have verified this for m up to 5 × 106. See [8, A338095
and A338119] for related data. By [7, Theorem 1.4(i)], any m ∈ Z+ can be
written as x2+y2+z2+w2 with x, y, z, w ∈ Z and x+y+2z ∈ {4a : a ∈ N}.
Conjecture 4.3 (2020-10-12). Any m ∈ Z+ can be written as x2 + y2 +
z2 + w2 (x, y, z, w ∈ N) with 2x2 + 4y2 − 7xy ∈ {2a : a ∈ N}. Moreover,

any positive integer m ≡ 1, 2 (mod 4) can be written as x2 + y2 + z2 +
w2 (x, y, z, w ∈ N) with 2x2 + 4y2 − 7xy ∈ {4a : a ∈ Z+}.
Remark 4.3. We have verified this for m ≤ 108. See [8, A337082] for
related data.

Conjecture 4.4 (2020-10-12). Any m ∈ Z+ can be written as x2 + y2 +
z2 + w2 (x, y, z, w ∈ N) with x2 + 26y2 − 11xy ∈ {2a : a ∈ N}. Moreover,

any positive integer m ≡ 1, 2 (mod 4) can be written as x2 + y2 + z2 +
w2 (x, y, z, w ∈ N) with x2 + 26y2 − 11xy ∈ {4a : a ∈ N}.
Remark 4.4. We have verified this for m ≤ 108. See [8, A338139] for
related data.

Conjecture 4.5 (2018-02-21). Let λ ∈ {2, 3, 4}. Any positive square can be

written as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) with x+2y+2z+ λw a square.

Conjecture 4.6 (2018-02-22). For each λ ∈ {1, 2, 3}, any positive square

can be written as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) with x+ 2y + 4z + λw ∈
{2a : a ∈ N}. Also, any positive square can be written as x2 + y2 + z2 +
w2 (x, y, z, w ∈ N) with x+ 3y + 3z + 4w a power of two.

Similar to [7, Conjecture 4.16], we have the following conjectures.

Conjecture 4.7 (2018-03-01). Let δ ∈ {0, 1} and m ∈ N with m > δ.

Then m2 can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) such that

{22a+δ : a ∈ N} contains x+ 3y, and also x or y.
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Remark 4.5. Note that 815032 cannot be written as x2 + y2 + z2 + w2

(x, y, z, w ∈ N) with {x, x+ 3y} ⊆ {4a : a ∈ N}. However,

815032 = 163722 + 42 + 523722 + 602652

with 4 = 41 and 16372 + 3× 4 = 47.

Conjecture 4.8 (2018-03-04). Let λ ∈ {2, 8} and let δ ∈ {0, 1}. Then any

positive square can be written as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) such that

x or y is a power of 2, and x+ λy ∈ {22a+r : a ∈ N}.

Conjecture 4.9 (2018-03-04). Let δ ∈ {0, 1} and m ∈ N with m > δ. Then

m2 can be written as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) with {22a+δ : a ∈ N}
contains x+ 15y, and also x or 2y.

Conjecture 4.10 (2018-03-04). Let δ ∈ {0, 1} and m ∈ N with m > δ. Then

m2 can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with 16x − 15y ∈
{22a+δ : a ∈ N}.

Conjecture 4.11 (2018-03-05). Any positive square can be written as x2 +
y2 + z2 +w2 (x, y, z, w ∈ N) with x+63y ∈ {22a+1 : a ∈ N} such that 2x or

y is a power of 4.

For P (x, y, z, w) ∈ Z[x, y, z, w], we define its exceptional set E(P ) as the
set of all those n ∈ N for which there are no x, y, z, w ∈ N with n = x2 +
y2 + z2 + w2 such that P (x, y, z, w is a square.

Conjecture 4.12 (2020-10-09). Any m ∈ N not divisible by 8 can be written

as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) with x+ 3y + 4z a square. Moreover,

E(x+ 3y + 4z) = {24a+3q : a ∈ N, q ∈ {1, 3, 5, 43}}.

Remark 4.6. We have verified the former assertion for m ≤ 6 × 106. See
[8, A335624] for related data.

Conjecture 4.13 (2020-10-09). Any m ∈ N not divisible by 8 can be written

as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with 3x + 10y + 36z a positive square.

Moreover,

E(3x + 10y + 36z) = {24a+3q : a ∈ N, q ∈ {1, 3, 5, 61}}.

Remark 4.7. We have verified the former assertion for m ≤ 5 × 106. See
[8, A338019] for related data.

Conjecture 4.14 (2020-10-08). (i) We have

E(x− 2y) = {43× 24a : a ∈ N}, E(4x− y) = {7× 24a : a ∈ N},
E(3x− 2y) = E(5x− y) = E(7x − 3y) = E(32x − 15y) = {3× 24a+3 : a ∈ N},

E(x+ 4y) = {24a+2q : a ∈ N, q ∈ {3, 23}},
E(2x+ 7y) = {35 × 24a : a ∈ N}, E(8x + 9y) = {47× 24a : a ∈ N}.
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(ii) We have

E(x+ 2y + 4z) ={3× 24a : a ∈ N},
E(x+ 2y + 6z) ={15× 24a : a ∈ N},
E(2x+ 3y + 4z) ={3× 24a+1 : a ∈ N},
E(2x+ 4y + 5z) ={3× 24a+2 : a ∈ N},
E(4x+ 5y + 8z) ={23× 24a : a ∈ N},

E(2x + 6y + 14z) ={24a+2q : a ∈ N, q ∈ {7, 31}}.
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