SUMS OF FOUR SQUARES WITH CERTAIN RESTRICTIONS

ZHI-WEI SUN

ABSTRACT. Let $a, b \in \mathbb{N} = \{0, 1, 2, \ldots\}$ and $\lambda \in \{2, 3\}$. We show that $4^{a}(4b+1)$ can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$ such that $x+2y+\lambda z$ is a positive square. We also pose some open conjectures; for example, we conjecture that any positive odd integer can be written as $x^{2}+y^{2}+z^{2}+w^{2}$ with $x, y, z, w \in \mathbb{N}$ such that x+2y+3z is a positive power of two.

1. INTRODUCTION

Lagrange's four-square theorem established in 1770 states that each $n \in \mathbb{N} = \{0, 1, 2, ...\}$ can be written as $x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{N}$. In 2017 the author [6] proved that this can be refined in various ways.

As in [6], we call a polynomial $P(x, y, z, w) \in \mathbb{Z}[x, y, z, w]$ suitable if any $n \in \mathbb{N}$ can be written as $x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{N}$ such that P(x, y, z, w) is a square. The author [6] showed that the linear polynomial x, 2x, x - y, 2(x - y) are suitable, and conjectured that

$$x + 2y, x + 3y, x + 24y, 2x - y, 4x - 3y, 6x - 2y$$

are also suitable. Based on the idea of [6], Y.-C. Sun and the author [5] proved that x + 2y is suitable, moreover any $m \in \mathbb{Z}^+ = \{1, 2, 3, ...\}$ can be written as $x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{N}$ such that x + 2y is a positive square. Recently, Y.-F. Sue and H.-L. Wu [4] proved that x + 3y is also suitable via the arithmetic theory of ternary quadratic forms, and A. Machiavelo et al. [3, 2] proved the author's 1-3-5 conjecture which states that x + 3y + 5z is suitable by using Hamilton quaternions.

Conjecture 4.15(ii) of the author's paper [7] states that for any $m \in \mathbb{Z}^+$ we can write $m^2 = x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{N}$ such that $x + 2y + 3z \in \{4^a : a \in \mathbb{N}\}$. This is implied by the author's following new conjecture formulated on Oct. 10, 2020.

Conjecture 1.1 (1-2-3 Conjecture). (i) (Weak version) Any positive odd integer m can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ such that $x + 2y + 3z \in \{2^a : a \in \mathbb{Z}^+\}$.

(ii) (Strong version) Any integer m > 4627 with $m \not\equiv 0, 2 \pmod{8}$ can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x + 2y + 3z \in \{4^a : a \in \mathbb{Z}^+\}$.

Key words and phrases. Sums of squares, Lagrange's theorem.

²⁰²⁰ Mathematics Subject Classification. Primary 11E25; Secondary 11D85, 11E20. Supported by the Natural Science Foundation of China (grant no. 11971222).

ZHI-WEI SUN

Remark 1.1. By [6, Theorem 1.2(v)], any positive integer can be written as $x^2 + y^2 + z^2 + 4^a$ with $a, x, y, z \in \mathbb{N}$. We have verified the 1-2-3 Conjecture for $m \leq 5 \times 10^6$. See [8, A338096 and A338103] for some data concerning the 1-2-3 Conjecture.

Motivated by the 1-2-3 Conjecture, we establish the following result.

Theorem 1.1. Let $m \in \mathbb{Z}^+$ and let $\lambda \in \{2,3\}$. If $m = 4^a(4b+1)$ for some $a, b \in \mathbb{N}$, then we can write m as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ such that $x + 2y + \lambda z$ is a positive square.

Remark 1.2. By [7, Theorem 1.4], any $m \in \mathbb{Z}^+$ can be written $x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{Z}$ and $x + 2y + 2z \in \{4^a : a \in \mathbb{N}\}$. By [5, Theorem 1.7(iv)], any $n \in \mathbb{N}$ can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{Z})$ with x + 2y + 3z a square. Note that x, y, z here are just integers while x, y, z in Theorem 1.1 are nonnegative integers.

As any positive square has the form $4^{a}(8b+1)$ with $a, b \in \mathbb{N}$, Theorem 1.1 has the following consequence.

Corollary 1.1. Let $\lambda \in \{2,3\}$. Then any positive square can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ such that $x + 2y + \lambda z$ is a positive square.

Remark 1.3. Actually, our computation via a computer suggests that those $m \in \mathbb{Z}^+$ which cannot be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with x + 2(y + z) a positive square are

$$7 \times 2^{4a}$$
, $3 \times 2^{4a+3}$, $15 \times 2^{4a+3}$, 55×2^{4a} , 255×2^{4a}

with $a \in \mathbb{N}$, and that those $m \in \mathbb{Z}^+$ which cannot be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with x + 2y + 3z a positive square are

 $3 \times 2^{4a+2}, \ 9 \times 2^{4a+3}, \ 19 \times 2^{4a+2}, \ 23 \times 2^{4a+2}$

with $a \in \mathbb{N}$.

In contrast with the 1-2-3 Conjecture, we have the following result.

Theorem 1.2. Any integer m > 1 with $m \neq 10$ can be written as $x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{Z}$ and $x + 2y + 3z \in \{4^a : a \in \mathbb{Z}^+\}$.

Remark 1.4. In [7, Conjecture 4.5(ii)], the author conjectured that any $m \in \mathbb{Z}^+$ can be written as $x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{N}$ and $|x + 2y - 3z| \in \{4^a : a \in \mathbb{N}\}.$

We are going to provide three lemmas in the next section. We will prove Theorems 1.1-1.2 in Section 3 and pose some conjectures in Section 4.

2. Three Lemmas

For any real numbers $a_1, \ldots, a_n, x_1, \ldots, x_n$, we have the Cauchy-Schwarz inequality (cf. [1, p. 178])

$$(a_1x_1 + \ldots + a_nx_n)^2 \le (a_1^2 + \ldots + a_n^2)(x_1^2 + \ldots x_n^2).$$

We will make use of the inequality in our proof of the following lemma.

Lemma 2.1. Let a, b, c, d, m be nonnegative real numbers with $a^2 + b^2 + c^2 + d^2 \neq 0$. Suppose that x, y, z, w are real numbers satisfying

$$\begin{cases} x^2 + y^2 + z^2 + w^2 = m, \\ ax + by + cz + dw = s, \end{cases}$$
(2.1)

where

$$s \ge \sqrt{m(a^2 + b^2 + c^2 + d^2 - \min(\{a^2, b^2, c^2, d^2\} \setminus \{0\}))}.$$
 (2.2)

Then all the numbers ax, by, cz, dw are nonnegative.

Proof. Let

$$t = ay - bx + cw - dz, \ u = az - bw - cx + dy, \ v = aw + bz - cy - dx.$$

By Euler's four-square identity, we have

$$(a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2) = s2 + t2 + u2 + v2.$$
 (2.3)

Solving the system of equations

$$\begin{cases}
ax + by + cz + dw = s, \\
ay - bx + cw - dz = t, \\
az - bw - cx + dy = u, \\
aw + bz - cy - dx = v,
\end{cases}$$
(2.4)

as in [5], we find that

$$\begin{cases} x = \frac{as - bt - cu - dv}{a^2 + b^2 + c^2 + d^2}, \\ y = \frac{bs + at + du - cv}{a^2 + b^2 + c^2 + d^2}, \\ z = \frac{cs - dt + au + bv}{a^2 + b^2 + c^2 + d^2}, \\ w = \frac{ds + ct - bu + av}{a^2 + b^2 + c^2 + d^2}. \end{cases}$$
(2.5)

Suppose that a > 0. Then

$$s^{2} \ge m(a^{2} + b^{2} + c^{2} + d^{2} - a^{2}) = (b^{2} + c^{2} + d^{2})m$$

and hence

 $\begin{aligned} (a^2+b^2+c^2+d^2)s^2 &\geq (b^2+c^2+d^2)(a^2+b^2+c^2+d^2)m = (b^2+c^2+d^2)(s^2+t^2+u^2+v^2).\\ \text{Thus } a^2s^2 &\geq (b^2+c^2+d^2)(t^2+u^2+v^2). \text{ By the Cauchy-Schwarz inequality,}\\ (bt+cu+dv)^2 &\leq (b^2+c^2+d^2)(t^2+u^2+v^2). \end{aligned}$

Therefore $as \ge |bt + cu + dv|$ and hence x > 0 in view of (2.5).

Similarly, $y \ge 0$ if b > 0, and $z \ge 0$ if d > 0. This concludes the proof. \Box

The Gauss-Legendre theorem (cf. [1, p.23]) states that $n \in \mathbb{N}$ can be written as the sum of three squares if and only if n does not belong to the set

$$E = \{4^s(8t+7): s, t \in \mathbb{N}\}.$$
(2.6)

Lemma 2.2. Let $m, n \in \mathbb{Z}^+$ with $3 \nmid n$ and $9m - n^4 \in \mathbb{N} \setminus E$. Then m can be written as $x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{Z}$ and $x + 2y + 2z = n^2$.

ZHI-WEI SUN

Proof. By the Gauss-Legendre theorem, $9m - n^4 = a^2 + b^2 + c^2$ for some $a, b, c \in \mathbb{Z}$. As $3 \nmid n$, we have $3 \mid abc$. Without loss of generality, we suppose c = 3w with $w \in \mathbb{Z}$. Since $a^2 + b^2 \equiv -n^4 \equiv 2 \pmod{3}$, we have $3 \nmid ab$. Without loss of generality, we may assume that $a \equiv 2 \pmod{3}$ and $b \equiv -2 \pmod{3}$ (otherwise we may change the signs of a and b suitably). Clearly, $a = 3u + 2n^2$ and $b = 3v - 2n^2$ for some $u, v \in \mathbb{Z}$. Observe that

 $12n^{2}(u-v) + 8n^{4} \equiv (3u+2n^{2})^{2} + (3v-2n^{2})^{2} = a^{2} + b^{2} \equiv -n^{4} \pmod{9}$

and hence $u \equiv v \pmod{3}$ since $3 \nmid n$. Set

$$y = -\frac{2u+v}{3}$$
 and $z = \frac{u+2v}{3}$

Then

$$9m - n^{4} = a^{2} + b^{2} + c^{2} = (3u + 2n^{2})^{2} + (3v - 2n^{2})^{2} + 9w^{2}$$
$$= (3(-2y - z) + 2n^{2})^{2} + (3(2z + y) - 2n^{2})^{2} + 9w^{2}$$
$$= 9(2y + z)^{2} + 9(2z + y)^{2} - 36n^{2}(y + z) + 8n^{4} + 9w^{2}$$

and hence

$$m = n^4 + w^2 + (2y+z)^2 + (2z+y)^2 - 4n^2(y+z) = x^2 + y^2 + z^2 + w^2,$$

where $x = n^2 - 2(y+z)$. Note that $x + 2y + 2z = n^2$ as desired. \Box

Lemma 2.3. Let $m, n \in \mathbb{Z}^+$ with $14m - n^4 \in \mathbb{N} \setminus E$. Then there are $x, y, z, w \in \mathbb{Z}$ such that $x^2 + y^2 + z^2 + w^2 = m$ and $x + 2y + 3z = n^2$.

Proof. The norm of the Hamilton quaternion $\zeta = 1 + 2i + 3j + 0k$ is $N(\zeta) = 1^2 + 2^2 + 3^2 + 0^2 = 14$. Applying [3, Theorem 2], we immediately get the desired result.

3. PROOF OF THEOREMS 1.1-1.2

Proof of Theorem 1.1. If there are $x, y, z, w \in \mathbb{N}$ such that $m = x^2 + y^2 + z^2 + w^2$ with $x + 2y + \lambda z$ a positive square, then $16m = (4x)^2 + (4y)^2 + (4z)^2 + (4w)^2$, and $4x + 2(4y) + \lambda(4z) = 4(x + 2y + \lambda z)$ is also a positive square. So, it suffices to handle the case $16 \nmid m$.

Below we suppose $m = 4^a(4b+1)$ with $a \in \{0,1\}$ and $b \in \mathbb{N}$. Case 1. $\lambda = 2$.

If $m \leq 40125453$, then we can use a computer to verify that m can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with x + 2y + 2z a positive square. Now assume that $m = 4^a(4b+1) \geq 40125454$. Then

$$m \ge \left(\frac{4}{9^{1/4} - 8^{1/4}}\right)^4 \approx 40125453.161$$

and hence the interval $I = [\sqrt[4]{8m}, \sqrt[4]{9m}]$ has length at least four. It follows that there is an integer $n \in I$ with $n \equiv \pm 2 \pmod{6}$. Note that

$$9m - n^4 \equiv 9m = 4^a(4(9b + 2) + 1) \pmod{16}$$
.

So we have $9m - n^4 \in \mathbb{N} \setminus E$. By Lemma 2.2, there are $x, y, z, w \in \mathbb{Z}$ such that $x^2 + y^2 + z^2 + w^2 = m$ and $x + 2y + 2z = n^2 > 0$. As

$$n^2 \ge \sqrt{m(1^2 + 2^2 + 2^2 + 0^2 - 1^2)} = \sqrt{8m},$$

by Lemma 2.1 we have $x, y, z \in \mathbb{N}$ as desired.

Case 2. $\lambda = 3$.

If $m \leq 10065600$, then we can use a computer to verify that m^2 can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with x + 2y + 3z a positive square. Now assume that $m = 4^a(4b+1) \geq 10065601$. Then

$$m \ge \left(\frac{2}{14^{1/4} - 13^{1/4}}\right)^4 \approx 10065600.518$$

and hence the interval $J = [\sqrt[4]{13m}, \sqrt[4]{14m}]$ has length at least two. It follows that J contains an even integer n. If a = 0 then

$$14m - n^4 \equiv 14(4b + 1) \equiv 6 \pmod{8};$$

if a = 1 then

$$14m - n^4 \equiv 56(4b + 1) \equiv 8 \pmod{16}$$
.

So we have $14m - n^4 \in \mathbb{N} \setminus E$. By Lemma 2.2, there are $x, y, z, w \in \mathbb{Z}$ such that $x^2 + y^2 + z^2 + w^2 = m$ and $x + 2y + 3z = n^2 > 0$. As

$$n^2 \ge \sqrt{m(1^2 + 2^2 + 3^2 + 0^2 - 1^2)} = \sqrt{13m},$$

by Lemma 2.1 we have $x, y, z \in \mathbb{N}$ as desired.

Proof of Theorem 1.2. In view of Lemma 2.3, it suffices to find $a \in \mathbb{Z}^+$ with $14m - 2^{4a} \in \mathbb{N} \setminus E$. If $14m - 2^{4a} \in \mathbb{N} \setminus E$ then $14(16m) - 2^{4(a+1)} = 4^2(14m - 2^{4a}) \in \mathbb{N} \setminus E$. Note also that

$$16 = 4^2 + 0^2 + 0^2 + 0^2$$
 and $160 = 4^2 + 0^2 + 0^2 + 12^2$ with $4 + 2 \times 0 + 3 \times 0 = 4^1$.

So we only need to handle the case $m \not\equiv 0 \pmod{16}$. If $m \in \{2, \ldots, 18\} \setminus \{10, 16\}$, then we can verify the desired result directly.

Below we assume that m > 18 and $16 \nmid m$. Note that $14m \ge 14 \times 19 = 266 > 2^8$.

If $2 \nmid m$, then $14m - 2^4 \in \mathbb{N} \setminus E$ since $14m \equiv 2 \pmod{4}$.

In the case $m \equiv 2 \pmod{4}$, we have 14m = 4q for some odd integer q > 64. If $q \not\equiv 7 \pmod{8}$, then $14m - 2^8 = 4(q - 64) \in \mathbb{N} \setminus E$. If $q \equiv 7 \pmod{8}$, then $14m - 2^4 = 4(q - 4) \in \mathbb{N} \setminus E$.

If $m \equiv 4 \pmod{8}$, then $14m \equiv 8 \pmod{16}$ and hence $14m - 2^4 \in \mathbb{N} \setminus E$. In the case $m \equiv 8 \pmod{16}$, we have 14m = 16q for some odd integer q > 16. If $q \not\equiv 7 \pmod{8}$, then $14m - 2^8 = 16(q - 16) \in \mathbb{N} \setminus E$. If $q \equiv 7 \pmod{8}$, then $14m - 2^4 = 16(q - 1) \in \mathbb{N} \setminus E$.

This completes the proof of Theorem 1.2.

ZHI-WEI SUN

4. Some conjectures

The following two conjectures are similar to the 1-2-3 Conjecture.

Conjecture 4.1 (2020-10-10). Any odd integer m > 1 can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x + y \in \{2^a : a \in \mathbb{Z}^+\}$. Moreover, the only positive integers $m \not\equiv 0, 6 \pmod{8}$ which cannot be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x + y \in \{4^a : a \in \mathbb{Z}^+\}$ are

1, 2, 3, 4, 5, 7, 31, 43, 67, 79, 85, 87, 103, 115,

475, 643, 1015, 1399, 1495, 1723, 1819, 1939, 1987.

Remark 4.1. We have verified this for m up to 3×10^7 . See [8, A338094 and A338121] for related data. By [7, Theorem 1.1(ii)], any positive integer can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x - y \in \{2^a : a \in \mathbb{N}\}$.

Conjecture 4.2 (2020-10-10). Any positive odd integer m can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x + y + 2z \in \{2^a : a \in \mathbb{Z}^+\}$. Moreover, any integer m > 10840 with $m \not\equiv 0, 2 \pmod{8}$ can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x + y + 2z \in \{4^a : a \in \mathbb{Z}^+\}$.

Remark 4.2. We have verified this for m up to 5×10^6 . See [8, A338095 and A338119] for related data. By [7, Theorem 1.4(i)], any $m \in \mathbb{Z}^+$ can be written as $x^2 + y^2 + z^2 + w^2$ with $x, y, z, w \in \mathbb{Z}$ and $x + y + 2z \in \{4^a : a \in \mathbb{N}\}$.

Conjecture 4.3 (2020-10-12). Any $m \in \mathbb{Z}^+$ can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $2x^2 + 4y^2 - 7xy \in \{2^a : a \in \mathbb{N}\}$. Moreover, any positive integer $m \equiv 1, 2 \pmod{4}$ can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $2x^2 + 4y^2 - 7xy \in \{4^a : a \in \mathbb{Z}^+\}$.

Remark 4.3. We have verified this for $m \leq 10^8$. See [8, A337082] for related data.

Conjecture 4.4 (2020-10-12). Any $m \in \mathbb{Z}^+$ can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x^2 + 26y^2 - 11xy \in \{2^a : a \in \mathbb{N}\}$. Moreover, any positive integer $m \equiv 1, 2 \pmod{4}$ can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x^2 + 26y^2 - 11xy \in \{4^a : a \in \mathbb{N}\}$.

Remark 4.4. We have verified this for $m \leq 10^8$. See [8, A338139] for related data.

Conjecture 4.5 (2018-02-21). Let $\lambda \in \{2,3,4\}$. Any positive square can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x + 2y + 2z + \lambda w$ a square.

Conjecture 4.6 (2018-02-22). For each $\lambda \in \{1, 2, 3\}$, any positive square can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x + 2y + 4z + \lambda w \in \{2^a : a \in \mathbb{N}\}$. Also, any positive square can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with x + 3y + 3z + 4w a power of two.

Similar to [7, Conjecture 4.16], we have the following conjectures.

Conjecture 4.7 (2018-03-01). Let $\delta \in \{0,1\}$ and $m \in \mathbb{N}$ with $m > \delta$. Then m^2 can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ such that $\{2^{2a+\delta}: a \in \mathbb{N}\}$ contains x + 3y, and also x or y. **Remark 4.5.** Note that 81503^2 cannot be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $\{x, x + 3y\} \subseteq \{4^a : a \in \mathbb{N}\}$. However,

$$81503^2 = 16372^2 + 4^2 + 52372^2 + 60265^2$$

with $4 = 4^1$ and $16372 + 3 \times 4 = 4^7$.

Conjecture 4.8 (2018-03-04). Let $\lambda \in \{2,8\}$ and let $\delta \in \{0,1\}$. Then any positive square can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ such that x or y is a power of 2, and $x + \lambda y \in \{2^{2a+r} : a \in \mathbb{N}\}$.

Conjecture 4.9 (2018-03-04). Let $\delta \in \{0,1\}$ and $m \in \mathbb{N}$ with $m > \delta$. Then m^2 can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $\{2^{2a+\delta} : a \in \mathbb{N}\}$ contains x + 15y, and also x or 2y.

Conjecture 4.10 (2018-03-04). Let $\delta \in \{0,1\}$ and $m \in \mathbb{N}$ with $m > \delta$. Then m^2 can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $16x - 15y \in \{2^{2a+\delta} : a \in \mathbb{N}\}.$

Conjecture 4.11 (2018-03-05). Any positive square can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with $x + 63y \in \{2^{2a+1} : a \in \mathbb{N}\}$ such that 2x or y is a power of 4.

For $P(x, y, z, w) \in \mathbb{Z}[x, y, z, w]$, we define its exceptional set E(P) as the set of all those $n \in \mathbb{N}$ for which there are no $x, y, z, w \in \mathbb{N}$ with $n = x^2 + y^2 + z^2 + w^2$ such that P(x, y, z, w) is a square.

Conjecture 4.12 (2020-10-09). Any $m \in \mathbb{N}$ not divisible by 8 can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with x + 3y + 4z a square. Moreover,

 $E(x+3y+4z) = \{2^{4a+3}q: a \in \mathbb{N}, q \in \{1,3,5,43\}\}.$

Remark 4.6. We have verified the former assertion for $m \le 6 \times 10^6$. See [8, A335624] for related data.

Conjecture 4.13 (2020-10-09). Any $m \in \mathbb{N}$ not divisible by 8 can be written as $x^2 + y^2 + z^2 + w^2$ $(x, y, z, w \in \mathbb{N})$ with 3x + 10y + 36z a positive square. Moreover,

$$E(3x+10y+36z) = \{2^{4a+3}q: a \in \mathbb{N}, q \in \{1,3,5,61\}\}.$$

Remark 4.7. We have verified the former assertion for $m \le 5 \times 10^6$. See [8, A338019] for related data.

Conjecture 4.14 (2020-10-08). (i) We have

$$E(x-2y) = \{43 \times 2^{4a} : a \in \mathbb{N}\}, \ E(4x-y) = \{7 \times 2^{4a} : a \in \mathbb{N}\},\$$

$$E(3x - 2y) = E(5x - y) = E(7x - 3y) = E(32x - 15y) = \{3 \times 2^{13} + 6: a \in \mathbb{N}\}$$
$$E(x + 4y) = \{2^{4a+2}q: a \in \mathbb{N}, q \in \{3, 23\}\},$$
$$E(2x + 7y) = \{35 \times 2^{4a}: a \in \mathbb{N}\}, E(8x + 9y) = \{47 \times 2^{4a}: a \in \mathbb{N}\}.$$

(ii) We have

$$E(x + 2y + 4z) = \{3 \times 2^{4a} : a \in \mathbb{N}\},\$$

$$E(x + 2y + 6z) = \{15 \times 2^{4a} : a \in \mathbb{N}\},\$$

$$E(2x + 3y + 4z) = \{3 \times 2^{4a+1} : a \in \mathbb{N}\},\$$

$$E(2x + 4y + 5z) = \{3 \times 2^{4a+2} : a \in \mathbb{N}\},\$$

$$E(4x + 5y + 8z) = \{23 \times 2^{4a} : a \in \mathbb{N}\},\$$

$$E(2x + 6y + 14z) = \{2^{4a+2}q : a \in \mathbb{N}, q \in \{7, 31\}\}.$$

References

- M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., Vol. 164, Springer, New York, 1996.
- [2] A. Machiavelo, R. Reis and N. Tsopanidis, Report on Zhi-Wei Sun's "1-3-5 conjecture" and some of its refinements, arXiv:2005.13526 [math.NT], 2020.
- [3] A. Machiavelo and N. Tsopanidis, Zhi-Wei Sun's 1-3-5 conjecture and variations, arXiv:2003.02592 [math.NT], 2020.
- [4] Y.-F. She and H.-L. Wu, Proof of a conjecture of Sun on sums of four squares, preprint, arXiv:2010.02067 [math.NT], 2020.
- Y.-C. Sun and Z.-W. Sun, Some variants of Lagrange's four squares theorem, Acta Arith. 183 (2018), 339–356.
- [6] Z.-W. Sun, Refining Lagrange's four-square theorem, J. Number Theory 175 (2017), 167–190.
- [7] Z.-W. Sun, Restricted sums of four squares, Int. J. Number Theory 15 (2019), no. 9, 1863–1893.
- [8] Z.-W. Sun, Sequences A335624, A337082, A338019, A338094, A338095, A338096, A338103, A338119, A338121, A338139 at OEIS, http://oeis.org.

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, PEOPLE'S REPUBLIC OF CHINA

Email address: zwsun@nju.edu.cn

8