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CHAPTER 1

Counting, grafting and evolving binary trees

Thomas Wiehe∗

Binary trees are fundamental objects in models of evolutionary biology and

population genetics. Here, we discuss some of their combinatorial and structural

properties as they depend on the tree class considered. Furthermore, the process

by which trees are generated determines the probability distribution in tree space.

Yule trees, for instance, are generated by a pure birth process. When considered as

unordered, they have neither a closed-form enumeration nor a simple probability

distribution. But their ordered siblings have both. They present the object of

choice when studying tree structure in the framework of evolving genealogies.

1.1. Introduction

Trees appear in different contexts and with different properties. In graph

theory, they are defined as connected, acyclic graphs: any pair of vertices (nodes) is

connected by exactly one concatenated sequence of edges (branches). Tagging one

node, called root of the tree, implicitly establishes a directionality of the graph. In

theoretical biology, trees are used to describe genealogies of cells, genes, individuals

or species. Depending on the biological context, planarity of the tree, degree

and labelling of nodes, directionality and length of branches may or may not be

of interest. Cardinality and probability distribution depend strongly on these

properties.

The study of trees as mathematical objects reaches back at least to the 1850s,

when Cayley [9] derived recursion formulas for the enumeration of trees with a

finite number of nodes, and also recognised the link to isomer chemistry. As an

alternative to recursions, bijections between trees and permutations can help to

solve certain counting problems [2, 16]. More generally, and yielding insight into

asymptotic behaviour for large trees, the tools of analytic combinatorics are par-

ticularly powerful. Comprehensive treatments are found in the classical textbook

by Flajolet and Sedgwick [23] and, focusing on random trees only, in the textbook
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by Drmota [17]. With a view from computer science, where they appear primarily

as data structures, trees are covered in the epitomic opus by Knuth [30, Vol. 1].

The link of ‘tree theory’ with biology has been established by Yule’s seminal

paper of 1925 [53], when seeking to explain the distribution of the number of

species within genera. It initiated a long tradition of research in phylogenetics and

macro-evolution on enumeration, topology and distribution of trees generated by

random processes [8, 20, 44, 34, 29, 36, 46, 5, 31]. The border between macro-

and micro-evolution is fuzzy, but intensely investigated in the context of gene tree

embeddings in species trees [41, 13, 31, 15]. Perhaps the most genuine application

of Yule’s original model, and with most ramifications, lies in population genetics as

a model of individual gene genealogies and their statistical properties. Kingman’s

[28] coalescent is its backward-in-time analogue and — in the guise of its evolved

descendants — features in several chapters of this volume. The genetic operation

of recombination translates into subtree-prune and -regraft operations, opening

a field of active theoretical research on tree transformations [45], in part also

covered in this volume. Standard references on the coalescent are the textbooks

by Wakeley [49] and Durett [18]. Aldous [1] offers a view on Yule’s paper from a

modern perspective.

Given that trees are treated in different disciplines, and with different degree

of mathematical rigour, it is not surprising to find oneself confronted with a non-

unified, sometimes even inconsistent, terminology and nomenclature, which alone

can make it difficult to identify the relevant theoretical features of some tree class

for a specific biological application. Without claiming to authoritatively clarify

this problem, we start the section below with an (incomplete) catalogue of tree

classes and their enumerations (Section 1.2). We will then devote special attention

to Yule trees and explore some of their structural properties (Sections 1.3 and 1.4).

Since they represent the scaffold of the widely used coalescent model in population

genetics, we will consider two such applications (Sections 1.5 and 1.6).

1.2. Counting trees

1.2.1. Preliminaries

We consider rooted, binary, finite trees: there is a unique node, the root,

defining a directionality for all branches. Each branch is delimited by a parent

and a child node. The root is ancestor of all other nodes. They are subdivided

into n <∞ external and m = n−1 internal nodes, including the root. All internal

nodes have exactly two children. External nodes have no descendants and are also

called leaves. The size of a tree is the number of its leaves. A subtree is a tree

that is rooted at some node of the original tree. Subtrees of size 2 are also called

cherries , subtrees of size 3 pitchforks . A caterpillar is a tree for which at least one

of the subtrees at each of its internal nodes has size 1. Slightly more generally,
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Figure 1.2.1. The six ordered ranked trees of size n = 4 and the corresponding

six permutations of {1, 2, 3} obtained by reading out internal labels during in-

order tree traversal [30]. Note, for example, the difference between {2, 1, 3} and

{3, 1, 2}.

a c-caterpillar is a (sub-)tree of size c that is a caterpillar. Thus, a cherry is

a 2-caterpillar, and a pitchfork is a 3-caterpillar. Since trees here are binary, all

internal nodes have a left and a right subtree, which are rooted at the left and right

child. Trees are ordered (plane), if left and right can be distinguished, otherwise

they are un-ordered (non-plane).

1.2.2. Classification of binary trees

Tree enumerations depend crucially on the presence and the kind of node

labels. Among the many possibilities, we restrict ourselves to the following cases:

presence or absence of alphanumeric labels at external nodes, and presence or

absence of totally ordered numeric labels at internal nodes. Trees without any

node labels are called shape trees or topologies [8, 40]. We call a tree ranked or

a history [25, 47, 13], if the internal nodes are labelled with integers 1, . . . , n− 1

such that (i) the root has label 1, (ii) distinct nodes have distinct labels and (iii)

every child has a larger label than its parent. We call a tree labelled , if the leaves

carry labels. Labelled trees can be thought of as phylogenies with species names as

leaf labels. Without internal labels, they are also called cladograms, with internal

labels they are ranked phylogenies or labelled histories [47]. Their cardinality

follows, for instance, from a coalsecent-like construction: randomly selecting two

out of k labelled lineages to coalesce, there are
(

k
2

)

possibilities [31]. The product

is
∏n

k=2

(

k
2

)

= n!(n− 1)!/2n−1.

When shape trees have a left/right orientation, they are called Catalan trees,

because they are enumerated by the Catalan numbers Cm =
(

2m
m

)

/(m + 1), [43,

A000108], where m = n − 1 is the number of internal nodes of such trees. Fi-

nally, ordered histories are ordered ranked trees. Since they map bijectively to

permutations of m = n−1 integers, we also call them permutation trees . They are

enumerated by the factorials m!. To see this, one can read the labels of all ordered

ranked trees of a given size in an in-order [30] tree traversal, observing that all

subtrees, except cherries, have a distinguishable left-right order (Figure 1.2.1).

We denote ordered trees of size n by
◦

Λ..
n and un-ordered trees by Λ..

n. The

exponent is a placeholder to indicate presence or absence of internal or external
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labels. The tree classes mentioned above are summarised in Table 1.2.1. Note

Table 1.2.1. Classes of un-ordered (Λ) and ordered (
◦

Λ) trees of size n. Presence

(+) or absence (−) of internal or external labels is indicated by superscripts.

Cardinalities are |Λn| and |
◦

Λn|.

name alias int. ext. symbol cardinality OEIS1 ID

lab. lab.

unordered trees

shape trees topologies2 − − Λ−−
n Eq. (1.2.1) A001190

ranked trees histories3 + − Λ+−
n Eq. (1.2.2) A000111

labelled trees phylogenies4 − + Λ−+
n

(2n−3)!
2n−2(n−2)! A001147

labelled

ranked trees5
ranked

phylogenies
+ + Λ++

n
n!(n−1)!
2n−1 A006472

ordered trees

Catalan trees6
ordered

topologies
− −

◦

Λ−−
n

1
n

(2(n−1)
(n−1)

)

A000108

permutation trees
ordered

histories7
+ −

◦

Λ+−
n (n− 1)! A000142

1 www.oeis.org, [43]

2 [8, 40]; called topological types in [44]

3 [25, 47, 13]

4 [1, 44]; called rooted phylogeny in [20] or tree form in [8]

5 cf. [31], there in the context of Kingman’s coalescent

6 [17, p. 5]

7 called shapes in [25]

that these classes represent only a subset of the possibilities. For instance, Felsen-

stein [20] discusses phylogenies with non-numeric labels at internal nodes. This

constitutes a class that is different from Λ++
n and that has a different cardinality:

it leads to Cayley’s formula [10], enumerating non-binary trees (cf. [43, A000169]

and [25]). Not all tree classes have closed form enumerations. Often, ordered

trees do, while un-ordered trees do not [23, p. 87]. In our list (Table 1.2.1), the

cardinalities of un-ordered shape and ranked trees are given only implicitly via

generating functions, but their ordered versions have closed formulae.

The (ordinary) generating function and the exponential generating function of

an integer sequence (an)n are given by the formal power series

f(x) =
∑

n>0

anx
n and F (x) =

∑

n>0

an
xn

n!
,

www.oeis.org
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respectively. If f or F are holomorphic functions defined in a neighbourhood

around x = 0, the series can be interpreted as their Taylor expansions and, for

instance, their asymptotic properties can be studied by analytic means.

In 1922, Wedderburn [50] showed that the cardinalities of shape trees can be

implicitly represented via a functional equation of a generating function. De Bruijn

and Klarner derived the somewhat simpler representation

(1.2.1) f(x) = x+ 1/2
(

f2(x) + f(x2)
)

and showed [7] that its solution f generates the cardinalities of shape trees of size

n, via

f(x) =
∑

n

|Λ−−
n |xn .

For 1 6 n 6 10, the coefficients are 1, 1, 1, 2, 3, 6, 11, 23, 46, 98.

For unordered ranked trees (histories), the cardinalities are identical with the

Euler numbers and are given by the coefficients of the exponential generating

function

(1.2.2) F (x) = sec(x) + tan(x) =
∑

n

|Λ+−
n+1|

xn

n!
,

for 1 6 n 6 10, they are 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936.

A natural way to construct unordered ranked trees of any finite size is by

recursion: given a ranked tree of size m = n − 1, construct a tree of size n by

randomly choosing one of the m leaves to give rise to two children and label

the chosen leaf with the integer n. Following other authors [47, 11], we call trees

generated in this way Yule trees and the underlying model (process) the Yule model

(Yule process). In the equivalent backward process, one starts from n leaves and

their n parental branches. One randomly, and iteratively, selects two branches

to coalesce into a single one until all are coalesced. When, in addition, a time

axis for the coalescent times is introduced, and when these times are exponentially

distributed with a parameter proportional to
(

k
2

)

, where k is the current number

of branches, Yule trees are called coalescent trees, generated by the (Kingman-)

coalescent process [28]. They are the basis of a plethora of genealogical models in

population genetics.

1.3. Properties of ranked trees

Note that the Yule process does not generate uniformly distributed trees in

Λ+−
n . For instance, in Fig 1.2.1 the 4-caterpillar is generated with probability 2/3

and the balanced tree, corresponding to the permutations {2, 1, 3} and {3, 1, 2},
with probability 1/3. Only when considered as trees in

◦

Λ+−
n , they become uni-

formly distributed under the Yule process, each with probability 1/(n−1)!. Other

tree generating processes may lead to still other probability distributions [34].



6 1. COUNTING, GRAFTING AND EVOLVING BINARY TREES

ranked trees |C2| |C3| |Λ| factor |
◦

Λ|
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Figure 1.2.2. The sixteen possible un-ordered ranked trees of size n = 6,

classified by shape. Within each class, all admissible orderings of the internal

nodes are displayed. Number of cherries (|C2|) and pitchforks (|C3|) are indicated.

The number of all ordered ranked trees, classified by shape, is obtained by

multiplying with the factor 2m−|C2|. The total number is 5! = 120. Branch

lengths are without meaning; position of an internal node in a tree is given by

the node label, not by the actual drawing of its position. External nodes and

branches are shown in grey. Removing them leads to the reduced trees of size 5.

They can be uniquely identified with the original trees of size 6.

Since ordered and un-ordered trees are identical up to left/right order of sub-

trees that are not cherries, there are exactly 2n−1−o different ordered trees for

each unordered one with o cherries. Thus, given a ranked tree, one also knows the

probability with which it is generated, by simply counting its cherries (cf. [48]).

With O denoting the random variable for the number of cherries, we have

(1.3.1) Prob(given ranked tree of size n with O = o cherries) =
2n−1−o

(n− 1)!
.

To explore the unconditional distribution of Yule trees, we remark that all exter-

nal nodes and branches (shown in grey in Figure 1.2.2) may be stripped from a
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ranked tree of size n without loss of information. Such stripping leads to a reduced

tree with m = n − 1 nodes with ordered labels, all of out-degree 0, 1 or 2 [14].

Nodes of out-degree 0 represent cherries in the original tree. Sometimes, reduced

trees are called pruned trees [23], a term which we avoid, to not confuse it with

‘tree pruning’ discussed later. Reduced trees with m nodes can be constructed

recursively, starting from a reduced tree with one node, according to the following

production rule

(o,m) −→ (o,m+ 1)o(o+ 1,m+ 1)m−2o+1 ,

where o is the number of cherries and m the total number of nodes in the current

tree. The exponent counts how many new trees with o (or o+1) cherries and m+1

nodes are produced. Note that in each step m is increased by one and the number

of cherries may either remain unchanged or also increase by one. The former

happens when the new branch and node are appended at a node of out-degree 0,

the latter, when appended at a node of out-degree 1. At nodes of out-degree 2

(true internal nodes) nothing can be appended. For instance, starting with (1, 1),

the production rule generates the sequence

(1, 2)1(2, 2)0, (1, 3)1(2, 3)1, (1, 4)1(2, 4)2 and (2, 4)2(3, 4)0, . . . .

Consider now the bivariate exponential generating function

(1.3.2) F (x, z) =
∑

reduced trees with o
cherries and m nodes

xo z
m

m!
.

The production rule can then be translated into algebraic terms as

F (x, z) = xz +
∑ oxozm+1

(m+ 1) !
+
∑ (m− 2o+ 1)(xo+1zm+1)

(m+ 1) !

= xz + (1 − 2x)
∑ oxozm+1

(m+ 1) !
+ xz

∑ xozm

m !
,

where the summations are over all reduced trees with o cherries and m nodes and

the first summand represents a tree of size m = 1. Differentiating both sides with

respect to the variable z, one obtains a partial differential equation for F

x(1 − 2x)
∂F

∂x
(x, z) + (xz − 1)

∂F

∂z
(x, z) = −xF (x, z)− x ,

which admits a solution in closed form [14] as

(1.3.3) F (x, z) =
2
(

x exp(z
√
−2x+ 1)− x

)

(
√
−2x+ 1− 1) exp(z

√
−2x+ 1) +

√
−2x+ 1 + 1

.

One direct application of F is to determine the probability that two randomly

generated Yule trees are identical ([14, Thm. 1], with F replaced by Y ). Further-

more, F can be used to find a partition of the Euler numbers em in such a way
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Table 1.3.1. Partitions em,o of Euler numbers [43, A000111]. O: number of

cherries. Column sums
∑

o
em,o = em. For instance, for m = 5 (i.e., n = 6)

there are one ranked tree with one cherry (the caterpillar), 11 trees with two

cherries and 4 trees with three cherries.

O m

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 0 0 1 4 11 26 57 120 247 502

3 0 0 0 0 4 34 180 768 2904 10194

4 0 0 0 0 0 0 34 496 4288 28768

5 0 0 0 0 0 0 0 0 496 11056
∑

1 1 2 5 16 61 272 1385 7936 50521

that em,o represents the number of (unreduced) ranked trees of size n = m + 1

with o cherries. As shown in [14],

em,o = m! · [xozm]F ,

where the brackets [·] denote coefficient extraction. The partitions of em for m =

1, . . . , 10 and o = 1, . . . , 5 are shown in Table 1.3.1. Other applications involve

simple transformations of F . For instance, with

F̃ (x, z) = zF
(

x
2 , 2z

)

one obtains the weighted (ordinary) generating function

(1.3.4) F̃ (x, z) =
zx exp

(

2z
√
−x+ 1

)

− zx
(√
−x+ 1− 1

)

exp
(

2z
√
−x+ 1

)

+ 1 +
√
−x+ 1

,

for the coefficients of xozn, such that

F̃ (x, z) =
∑

ranked trees of size n

2n−1−o

(n− 1)!
xozn ,

leading to the following [14] consequence.

Result 1.3.1. The probability that a Yule tree of size n has o cherries is given by

the coefficient of xozn in the Taylor expansion of F̃ around z = 0, i.e.,

Pn(O = o) = [xozn]F̃ (x, z) .

By differentiating F̃ , one can easily derive the moments of O. For instance,

the mean number of cherries in ranked trees of size n is

E(O) = [zn]
∂F̃

∂x
(x, z)

∣

∣

∣

∣

∣

x=1

= [zn]
z4 − 3z3 + 3z2

3(z − 1)2
.
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If n > 2, this simplifies to

E(O) = n

3
.

The second moment is

E(O2) = [zn]
∂(x∂F̃ (x,z)

∂x )

∂x

∣

∣

∣

∣

∣

x=1

= [zn]
∂2F̃ (x, z)

∂x2

∣

∣

∣

∣

∣

x=1

+ [zn]
∂F̃ (x, z)

∂x

∣

∣

∣

∣

∣

x=1

= [zn]

(

2

(z − 1)3

(

z7

45
− 2z6

15
+

z5

3
− z4

3

))

+ E(O) .

If n > 6, and using V(O) = E(O2)− E
2(O), one obtains

V(O) = 2n

45
.

The distribution of O [35], and mean and variance of c-caterpillars [40], have

been derived before, however with different methods not employing generating

functions. The latter represent a powerful tool to handle the recursive production

rules of binary trees, and readily offer a somewhat deeper look into tree structure.

Focusing on general c-caterpillars, let

F (x2, x3, x4, . . . , xk, z) =
∑

trees of size n > 1

xo
2x

c
3

3 x
c
4

4 . . . x
ck
k

zn−1

(n− 1)!

be a multi-variate exponential generating function, where ci is the number of

caterpillars of size i > 2, and o the number of cherries. This function satisfies the

partial differential equation

∂F

∂z
= x2 + x2F + x2z

∂F

∂z
+ (x2x3 − 2x2

2)
∂F

∂x2

+
k−1
∑

i=3

(

xixi+1 − x2
i + x2(1 − xi)

(

1 +
i−3
∑

j=1

1

xi−1xi−2 . . . xi−j

)) ∂F

∂xi

+
(

xk − x2
k + x2(1− xk)

(

1 +

k−3
∑

j=1

1

xk−1xk−2 . . . xk−j

)) ∂F

∂xk

,

which leads to a recursively determined family of polynomials (Fm)m>1 with

Fm =
∑

trees t of sizen=m+1

x
o(t)
2 x3

c3(t)x4
c4(t) . . . x

ck(t)
k zn−1

(n− 1)!
.

Defining the operator

G(F ) =
∂F

∂z
− x2 ,
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the recursion for (Fm)m>1 is given by

F1 = x2z ,

Fm+1 =

∫

G(Fm) dz .
(1.3.5)

As an example, fix k = 5. Then, for m = 1, 2, 3, 4, 5, one has

F1 = x2z ,

F2 =
1

2
x3x2z

2 ,

F3 =
1

6
x3x4x2z

3 +
1

6
x2
2z

3 ,

F4 =
1

24
x3x4x5x2z

4 +
1

24
x2
2z

4 +
1

8
x3x

2
2z

4 ,

F5 =
1

120
x3x4x5x2z

5 +
1

120
x2
2z

5 +
1

40
x3x

2
2z

5+

1

40
x3

2x2
2z

5 +
1

30
x3x4x

2
2z

5 +
1

30
x3
2z

5.

Recursion (1.3.5) yields both the joint distribution of cherries and caterpillars of

different sizes and the conditional distribution of caterpillars, conditioned on the

number of cherries. Summarising, one can state the following result (cf. [14]).

Result 1.3.2. Given an (unordered) ranked tree T of size n = m+ 1. Then,

i) the probability that T contains c-caterpillars of size k is

Pm(Ck = c) = [xc
k]Fm

(1

2
, 1, 1, . . . , xk, 2

)

;

ii) the joint probability that T contains o cherries and c caterpillars of size

k is

Pm(O = o, Ck = c) = [xo
2x

c
k]Fm

(x2

2
, 1, 1, . . . , xk, 2

)

;

iii) the conditional probability that T contains c caterpillars of size k, given

it has o cherries is

Pm(Ck = c | O = o) =
Pm(O = o, Ck = c)

Pm(O = o)
=

[xo
2x

c
k]Fm

(x
2

2 , 1, 1, . . . , xk, 2
)

[xo
2]Fm

(x
2

2 , 1, 1, . . . , 1, 2
) ;

iv) the probability that T contains c′ caterpillars of size i, with 3 6 i < k,

and c caterpillars of size k is

Pm(Ci = c′, Ck = c) = [xc′

i x
c
k]Fm

(1

2
, 1, . . . 1, xi, 1, . . . , xk, 2

)

;
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Figure 1.3.1. Ranked trees of size n = 54. Conditional expectation of the

number of c-caterpillars (left y-axis, c = 3, 4, 5, 6), given the number of cherries

(curves with triangles, diamonds and squares). Vertical black line at x = 18:

expected number of cherries in unconstrained trees; horizontal black bars: un-

conditional expected number of c-caterpillars. Curves with filled circles: fraction

of trees (right y-axis) with given number of cherries generated under the Yule

process (black) and in uniformly generated trees (grey). Equivalently, this is the

distribution of cherries (O) in ranked trees. V(O)/E(O) ≈ 0.13. Dotted line:

diagonal x = y.

v) the conditional probability that T contains c caterpillars of size k, given

it has c′ caterpillars of size i, with 3 6 i < k, is

Pm(Ck = c | Ci = c′) =
Pm(Ci = c′, Ck = c)

Pm(Ci = c′)

=
[xc′

i x
c
k]Fm

(

1
2 , 1, . . . , 1, xi, 1, . . . , xk, 2

)

[xc′
i ]Fm

(

1
2 , 1, . . . , 1, xi, 1, . . . , 1, 2

) .

The distribution of O, both under the Yule process and when trees are gener-

ated uniformly, as well as the conditional expectations for some c-caterpillars, are

shown in Figure 1.3.1 for the example of size n = 54.

1.4. Induced subtrees

Induced subtrees occur as embedded genealogies of a subset of the leaves of

a tree [42]. Let Tn be a ranked, labelled tree of size n with leaf labels L =

{l1, l2, . . . , ln}. Choose n′ 6 n, and select labels L′ = {l′1, l′2, . . . , l′n′}, such that for



12 1. COUNTING, GRAFTING AND EVOLVING BINARY TREES

each 1 6 i 6 n′ there is exactly one j with l′i = lj . Then, the induced subtree T ′

is the tree that is obtained from T by maintaining only the branches connecting

a leaf l′i with the most recent common ancestor of all leaves L′. We write T ′ ⊳ T

for short. Note that the root of T ′ is not necessarily identical with the root of T

and that the topologies of different induced subtrees of the same supertree T may

be different. There are
(

n
n′

)

possible subsets of size n′. When conditioned on a

fixed tree T , number and distribution of induced subtrees are obviously different

from independently generated trees. There is no general enumeration formula for

induced subtrees since the number depends on the topology of T . For instance,

take a caterpillar of size n. Then all induced subtrees are caterpillars. Only when

averaging over all Yule super-trees of size n, induced subtrees and independently

generated trees are identical in number and distribution. We introduce now the

notion of node balance.

Definition 1.4.1. For an internal node νi of a binary rooted tree T let Ti(L) and

Ti(R) be the left and right subtrees at node νi. We call the minimum

ωi = min{|Ti(L)|, |Ti(R)|}

node balance at node νi. In particular, ω1 is the root balance.

It is a standard exercise to calculate the probability that T and T ′ have the

same root (ν1). Given T and fixing ω1, one has

Prob(ν′1 = ν1 |T, ω1) =

n′−1
∑

i=1

(

ω
1

i

)(

n−ω
1

n′−i

)

(

n
n′

) = 1−
(

ω
1

n′

)

+
(

n−ω
1

n′

)

(

n
n′

) .

When n is large, one may replace the hypergeometric terms by binomials and get

(1.4.1) Prob(ν′1 = ν1 |T, ω1) ≈
n′−1
∑

i=1

(

n′

i

)

pi(1− p)n
′−i = 1− (1− p)n

′ − pn
′

,

where p = ω1/n, 0 < p 6 1/2. For trees generated by the Yule process, node

balance is (nearly) uniformly distributed on 1, . . . , ⌊n/2⌋, hence p is uniform on

]0, 1/2[. Integrating Eq. (1.4.1) with respect to p and multiplying with uniform

weights, one obtains the well known result (cf. [42])

Prob(ν′1 = ν1) ≈ 2

∫ 1/2

0

(

1− (1− p)n
′ − pn

′

)

dp =
n′ − 1

n′ + 1
.

We now consider node balance in induced subtrees. Let the random variable

Ω1 be root balance in a Yule tree of size n. One has

Prob(Ω1 = ω1) =
2− δω

1
,n/2

n− 1
.
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Fixing T and selecting an arbitrary induced subtree T ′ ⊳ T , consider the random

variable Ω′
1 | Ω1. To calculate the conditional distribution, one may use the

auxiliary terms

p(ω′
1 | ω1) ≈ Prob(υ1 = υ′

1) ·
(
(ω

1

ω′

1

)(n−ω
1

n′−ω′

1

)

+
(n−ω

1

ω′

1

)( ω
1

n′−ω′

1

)

(

n
n′

)

−
(ω

1

n′

)

−
(n−ω

1

n′

)

)(

1

1 + δω′

1
,n′/2

)

+ Prob(υ1 6= υ′
1) ·
(

2− δω′

1
,n′/2

n′ − 1

)

,

assuming that the induced subtree T ′ is a random tree of size n′ when roots of T

and T ′ are different. Normalising, one obtains

(1.4.2) Prob(ω′
1 | ω1) =





⌊n′/2⌋
∑

ω′

1
=1

p(ω′
1 | ω1)





−1

· p(ω′
1 | ω1).

Different roots, and the ensuing ‘approximation’, are likely to occur when ω1

is small. Analytical, however lengthy, expressions of the conditional expectation

E(Ω′
1 | Ω1) are then easily derived with software for symbolic algebra.

This computation can be extended to the balance Ω2 of the root of the largest

root subtree, to obtain the conditional expectation of Ω′
2 | (Ω1,Ω2) and of Ω′

2 | Ω2

(Disanto and Wiehe, unpublished results). In Fig. 1.4.1, we show E(Ω′
1 | ω1) and

E(Ω′
2 | ω2) as functions of ω1 and ω2 and compare them to simulated values. Shown

are averages across arbitrary trees of fixed size n and arbitrary induced subtrees

of fixed size n′. Note that induced subtrees, when conditioned on a fixed super-

tree, reflect node balance of the supertree only when the latter is not extremal. In

principle, these calculations could be continued to further internal nodes. However,

a full probabilistic treatment and the involved expressions become very clumsy.

Application: Neutrality test using node balance

Tree balance statistics [12, 29, 5] have traditionally been used to investigate

evolutionary hypotheses in the context of phylogenetic species trees. However, they

can also be defined and examined for gene genealogies modelled by the coalescent

process and be integrated into powerful tests of the neutral evolution hypothesis

[32, 33, 22]. Published versions of such tests, however, are typically a mixture of

tree shape and branch length statistics. Relying, in contrast, only on node balance,

one may define the statistic (cf. [33])

(1.4.3) T 3 = 2

3
∑

i=1

(

2
Ωi

n
i

− 1
2

)

,
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Figure 1.4.1. Standardised (i.e., scaled to [0, 1]) values of E(ω′
1 | ω1) (black)

and E(ω′
2 | ω2) (grey) for n = 200 and n′ = 50. Theoretical results (solid lines)

according to Eq. (1.4.2) and simulation results (dots), obtained with ms [26].

where n1 = n, n2 = n−Ω1 and n3 = n−Ω1 −Ω2. Since 2Ωi/ni is approximately

uniform on the interval [2/ni, 1], T 3 is close to standard normal [33]. Small values

of T 3 are obtained for highly unbalanced trees, i.e., when ωi are small, produced for

instance by caterpillars, and large values for highly balanced trees. In the context

of population genetics, a locally unbalanced genealogy of a sample of n genes

can be produced by the rapid fixation of a favourable allele. Hence, an estimate

of T3, based on observed genetic variability, provides a statistic with which the

hypothesis of neutral evolution can be tested. The results on induced subtrees

can be integrated into a nested test-strategy where samples and sub-samples are

tested jointly. More details are described in [39].

1.5. Transformations I: Pruning, grafting and recombination

Let T ∈ Λ+−
n be a ranked tree. The layer lj (1 6 j 6 n) of T is the ‘interval’

in which T has j branches. Layer l1 can be imagined as the infinitely long layer

above the root, which makes T a planted tree [17, p.6]. An internal node νj
(1 6 j < n) marks the border between layers lj and lj+1 and layers subdivide

any branch b between two nodes into branch segments s(b)1, . . . , s(b)k, where k

depends on b. The size of a branch is the number of leaves below the branch. By

extension, the size of a segment is the size of the branch to which the segment

belongs. A tree T may be transformed into another tree T̃ by a prune and re-graft

operation: (i) randomly select branch segments sp in layer lp for pruning and sg
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in layer lg for re-grafting, such that lg 6 lp; (ii) prune the subtree spanned by

sp and re-graft it to segment sg. This prune and re-graft operation is a model of

genetic recombination. Recombination can also be thought of as a segmentation

process, which subdivides a linear chromosome into (genomic) segments, such that

all sites within one segment have the same genealogical history, or ranked tree; see

the contributions of Baake and Baake [3], Birkner and Blath [4] and Dutheil [19]

in this volume. Here, we ask two questions: (i) what is the probability that

recombination changes the root of the tree and (ii) how is root balance affected

by recombination? First note that only some recombination events affect tree

topology. One way to change the root is by a re-graft operation to a segment in

layer l1 above the root. Such events may also change root balance ω1. Re-grafting

below the root may change root height or balance only if sp and sg belong to

different root subtrees. On average, this happens with probability one third (see

below).

So far, we ignored branch lengths, but for applications in population genetics

it is of interest to assign branch lengths according to the coalescent process: the

length of each layer lj (j > 1) is scaled by a factor proportional to 1/
(

j
2

)

. Let P̃↑(i)

be the probability that a pruned branch in such a coalescent tree has size i and

that re-grafting is above the current root, i.e., tree height increases. Averaging

over coalescent trees of size n, this probability is [21]

(1.5.1) P̃↑(i) =
2

an

n
∑

k=2

Pn,k(i)
1

k(k − 1)(k + 1)
,

where an is the n-th harmonic number and

Pn,k(i) =

(

n−i−1
k−2

)

(

n−1
k−1

)

is the probability that a branch of layer k has size i. Since re-grafting is above the

root, one of the root-subtrees will have size i after re-grafting and Ω1 will take the

value ω1 = min(i, n− i) with probability

P↑(ω1) =
P̃↑(ω1) + P̃↑(n− ω1)

(1 + δ2ω1,n
)

.

Similarly, one can also obtain the transition probabilities from ω0
1 before recom-

bination to ω1 after recombination when tree height is increasing. Let Pn,j(i | ω0)

be the probability that a branch at level j has size i in a tree of total size n, given

that the size of the root branches are ω0
1 and n− ω0

1 . Then [21],

P̃↑(i | ω0
1) =

2

an

n
∑

j=2

Pn,j(i | ω0
1)

1

j(j − 1)(j + 1)
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and

P↑(ω1 | ω0
1) =

P̃↑(ω1 | ω0
1) + P̃↑(n− ω1 | ω0

1)

1 + δ2ω
1
,n

.

Similar calculations lead also to the transition probabilities of root balance

under recombination events that do not change tree height, and to estimates of

the ‘correlation length’ of root balance under multiple recombination events. These

help to explore the speed with which genealogical trees and shapes change along

a recombining chromosome. Considering only recombination events that change

root height, we estimated the physical distance between such recombination events

as [21, Eq. (51)]
1

2(10− π2)ρ
∼ 3.83

ρ
,

where ρ is the scaled recombination rate per nucleotide site. In other words, about

every 4th recombination event affects tree height. For example, if ρ = 10−3, the

genomic distance between such events is about 4, 000 nucleotides. Recombination

events that affect root balance are slightly more common, since more branches

are available for re-grafting. The distance between such events can be estimated

by the average run-length (1 − P (ω1 | ω1))
−1, i.e., the average size of a genomic

fragment within which root balance ω1 does not change. The run-length depends

on n, is longer for more unbalanced trees (small ω1) and is on the order of a few

recombination events (about 2 to 6, for a typical sample size of n = 100) [21].

Linkage disequilibrium

Change in tree topology along a recombining chromosome can also be inter-

preted as a reduction of linkage disequilibrium. Two-loci linkage disequilibrium,

LD, is the non-random association of two alleles (genetic variants) from two linked

genetic loci or sites (alleles A, a at the first locus and alleles B, b at the second,

say). Let XA (XB) be the indicator variable of allele A (B). Then, one standard

way to express LD is by Pearson’s correlation coefficient (e.g. [54]) of the indicator

variables

r2 =
Cov2(XA, XB)

V(XA)V(XB)
.

Alleles A and B are often interpreted as being derived from their ancestral forms a

and b, respectively, by two independent mutation events that occurred some time

ago in the genealogical history of each locus, i.e., by events that ‘fall on’ some

branches of their genealogical trees. As such, a mutation event can be thought of

as a ‘subtree marker’, marking the subtree below the branch on which it occurred.

Thus, the frequency of the new mutation in the current population(-sample) is

identical to the size of the marked subtree. Focusing on this property, one arrives

at a slightly modified concept of linkage disequilibrium [51]: considering two, not

necessarily adjacent, genomic segments, S and U , with labelled ranked trees T (S)
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and T (U), and left root subtrees T (S)L and T (U)L, the leaf labels can be parti-

tioned into four sets: (i) labels that belong to both left subtrees, (ii) both right

subtrees, (iii) to either the left subtree in segment S and right subtree in segment

U , or (iv) vice versa. With the indicator variables XT (S)L and XT (U)L one can

calculate r2 in exactly the same way as before and formulate

Definition 1.5.1. The quantity

r2S,U =
Cov2(XT (S)

L

, XT (U)
L

)

V(XT (S)
L

)V(XT (U)
L

)

is called topological linkage disequilibrium (tLD) of the segments S and U .

Here, a segment takes the role of a gene locus, and left/right take the roles of

two alleles. The assignment of left and right is arbitrary, as much as the naming of

two alleles in the context of conventional LD, and does not affect the value r2S,U .

Let SL, SR, UL and UR denote the leaf labels in the left and right root subtrees

at segments S and U . Note that r2S,U = 1, if and only if SL = UL or SL = UR.

This implies that subtrees are not only identical in size but also contain identically

labelled leaves at both segments.

In contrast to conventional LD, a configuration of complete topological linkage,

r2S,U = 1, can be broken only by recombination events that do change tree topology.

Since only about every third recombination event changes tree topology, average

decay of tLD with distance between segments is slower than decay of conventional

LD [51]. A simple argument is the following: consider a pruning and a re-grafting

event and the relative size p of the left root subtree. The probability that both

events take place on opposite sides of the tree, i.e., on different root subtrees,

is 2p(1 − p). Integrating with uniform density over all left subtree sizes yields
∫ 1

p=0
2p(1− p)dp = 1/3. Furthermore, tLD has an about 3-times higher signal-to-

noise ratio (the inverse of the coefficient of variation) than conventional LD [51].

The limit of expected tLD at large distances between segments is

lim
ρ→∞

E
(

r2S,U (ρ)
)

=
1

n− 1
,

which is in agreement with a classical result by Haldane [24].

Generally, compared to conventional LD, tLD shows a sharper contrast among

genomic regions that are in low versus high linkage disequilibrium. This is a

welcome property when searching in whole genome scans for signatures of potential

gene-gene interactions using patterns of linkage disequilibrium [51].
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1.6. Transformations II: Pruning, grafting and evolving trees

1.6.1. The evolving Moran genealogy

The Yule process is a pure birth process. Augmented by a death process, such

that each split of a leaf is compensated by removal of a uniformly chosen leaf and

its parental branch, size n < ∞ remains constant in time and the Yule process

becomes aMoran process . Following the Moran process over time τ naturally leads

to the evolving Moran genealogy (EMGτ )τ>0 (see the contribution of Kersting and

Wakolbinger [27] for a related class of evolving genealogies). Conversely, for any

time τ = τ∗, a tree T (τ∗) of size n can be extracted from the sequence (EMGτ )τ .

In the following, we consider ordered, rather than un-ordered, trees and keep track

of left/right when choosing a leaf for splitting.

The evolving Moran genealogy, EMG for short, induces a discrete Markov

process on the set
◦

Λ+−
n . This process is recurrent and aperiodic [52] and therefore

has a stationary distribution P ∗ on
◦

Λ+−
n . Since we may interpret the genealogy

T (τ) for any given τ as a result of a Yule process, and since all T are uniformly

distributed, P ∗ must be the uniform distribution as well, i.e., P ∗(T ) = 1/(n− 1)!

(see Table 1.2.1).

Following the process of tree balance in an EMG, let |T (τ)L| be the size of

the left root subtree of T (τ) extracted from (EMGτ )τ . The sequence (|T (τ)L|)τ
is subject to the same transition law as the frequency of a newly arising allele

in a Moran model. A new allele arising at time τ∗ can be imagined as ‘mark-

ing’ an external branch of T (τ∗) and the evolving subtree under this branch in

(EMGτ )τ>τ∗ . Only at the boundary, there is an exception: whenever the left (or

right) root subtree is of size 1, this remaining branch may be killed with positive

probability. This leads to loss or fixation of the allele and consequently to a root

jump with a uniform ‘entrance’ law. After a root jump the new left root subtree

has uniformly distributed size, and not necessarily size 1. We call the time interval

between successive root jumps an episode of the evolving Moran process.

Result 1.6.1. For 2 6 |T (τ)L| 6 n−2, the transition probability of the tree balance

process (|T (τ)L|)τ is given by [52]

Prob
(

|T (τ + 1)L| = ω | |T (τ)L|
)

=



















|T (τ)L|(n−|T (τ)L|)
n2 , ω = |T (τ)L|+ 1 ,

|T (τ)L|2+(n−|T (τ)L|)2

n2 , ω = |T (τ)L| ,
|T (τ)

L
|(n−|T (τ)

L
|)

n2 , ω = |T (τ)L| − 1 .
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At the boundary |T (τ)L| = 1, one has

Prob (|T (τ + 1)L| = ω) =















1
n , ω = 2 ,

(n−1)2+2
n2 , ω = 1 ,

1
n2 , otherwise ,

and at the boundary |T (τ)L| = n− 1, one has

Prob (|T (τ + 1)L| = ω) =















1
n , ω = n− 2 ,

(n−1)2+2
n2 , ω = n− 1 ,

1
n2 , otherwise .

The result is proved by simple enumeration of the discretely many admissible

events and calculation of their probabilities.

There is an alternative procedure of constructing an ordered ranked tree of

size n: by random grafting of a new external branch onto any branch segment of

an existing tree of size n−1. Random grafts onto existing segments can take place

in two orientations, left- and right-oriented. Both constructions are equivalent and

yield identical distributions. More precisely, we state the following result.

Result 1.6.2. The distributions of ordered Yule trees of size n, and those generated

by successive random graftings are identical. Thus, for T ∈
◦

Λ+−
n generated by

successive random graft operations from trees of size n− 1, n− 2, . . . , one has

Prob(T ) =
1

(n− 1)!

The proof goes by induction on tree size and using a Lemma derived in [52].

1.6.2. Time reversal of the EMG

The Moran process can be imagined as a forward-in-time processes. Reversing

time, and starting with a planted tree T ∈
◦

Λ+−
n of size n, consider now the

following merge-graft operation that generates a tree T ′ ∈
◦

Λ+−
n : (i) including

the branch segment parental to the root, there are in total
(

n+1
2

)

segments in T ;

choose one branch segment s∗; this is done with probability 1/n2 for segments

ending in a leaf (n possibilities) and with probability 2/n2 for all other segments

(
(

n
2

)

possibilities); (ii) if a leaf segment was chosen then assign T ′ ← T . Otherwise,

choose an orientation χ ∈ {L,R} (left/right) with equal probability, remove the

n-th layer from T , re-graft a new branch in orientation χ at s∗, and update the

labels of all nodes. The resulting tree is returned as T ′ (see Figure 1.6.1).

Iterating the merge-graft operation one obtains a backward-in-time process

that is dual to the Moran process. We call the genealogy generated by this process
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1

2

3

1

3

2

Figure 1.6.1. Tree transformation by a merge-graft operation on the tree shown

left. Removing the lowest layer (below the dashed line) leads to removal of the

shaded cherry. A new branch is grafted (‘resurrected’) on a segment marked by

the open circle. Labels are updated, resulting in the tree shown on the right.

Both trees belong to
◦

Λ+−
4 .

the evolving Moran genealogy backward in time, EMG♭ for short, and note [52] the

following result.

Result 1.6.3. For all T, T ′ ∈
◦

Λ+−
n :

(1.6.1)

ProbEMG

(

T (τ + 1) = T ′ | T (τ) = T
)

= Prob
EMG♭

(

T (τ) = T | T (τ + 1) = T ′
)

,

with ProbEMG (Prob
EMG♭) denoting the transition probability of the EMG- (EMG♭-

) process, respectively.

1.6.3. The root jump process

The EMG♭ is interesting theoretically as well as practically. While transitions

in the EMG depend on two random events, splitting and killing, in the EMG♭

there is only one random operation, grafting. This fact simplifies some analytic

approaches. Consider the root jump process. An obvious question to ask is how

often do root jumps occur? Working in the framework of the EMG♭, one can

immediately state the following.

Result 1.6.4. Root jumps in the EMG and in the EMG♭ occur according to a

geometric jump process of intensity 2
n2 .

Proof. In the EMG♭, a root jump occurs if and only if the segment parental

to the root is chosen for re-grafting. This happens with probability 2
n2 . The same

holds for the forward process due to duality. �
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This result agrees with the one derived in [37], where the jump process in the

infinite-population limit is identified as a Poisson process of intensity 1. This is the

limit of the geometric jump process as n→∞ with time sped up by n2/2, which

is the average number of Moran steps before a root jump occurs. Also implied

by Result 1.6.4, the number of steps needed to observe any number k > 0 of root

jumps follows a negative binomial distribution with parameters k and 2/n2.

Finally, using the simple structure of the EMG♭, one can calculate the number

of root jumps during fixation of a new allele. More precisely, consider time τ0 when

a new allele x∗ is born (a subtree marker on some branch of T ) and — conditional

on fixation — time τ1 when x∗ becomes fixed, i.e., when all leaves of T (τ1) are

descendants of x∗. We have the following result.

Result 1.6.5. In an EMG of size n > 2, one expects 2(1 − 1
n ) root jumps during

the time interval [τ0, τ1].

The proof goes by considering events in the backward process, where one finds

that the expected total number of root jumps along the EMG♭-path is

n−1
∑

k=2

2

k(k + 1)
=

n− 2

n
.

Adding one additional jump, which necessarily happens at the moment of fixation,

one obtains the stated expectation. Hence, in an infinitely large sample (n = ∞)

one expects two root jumps per one fixation, a result obtained with different means

before [37].

In the framework of the EMG♭ one can calculate the exact distribution of root

jumps during a fixation recursively for any n, and show that these distributions

quickly converge as n → ∞. For n > 2, let Probn(k) denote the probability of

observing k root jumps during fixation of a new allele in an EMG of size n, and

Prob∞(k) the same probability in the infinite-population limit. Then,

Probn(k) =
∑

26i1,...,ik−16n−1

k
∏

1

2

ik(ik + 1)

∏

j 6=i1,...,ik−1

(

1− 2

j(j + 1)

)

.

For small k, using software for symbolic algebra, one can easily write down closed-

form expressions for Probn(k). For n = 2, Prob2(1) = 1. Probn(1) decreases

monotonically in n, with limn→∞ Probn(1) = 1/3. In Figure 1.6.2 root jump

distributions are shown for some small values of n and for n =∞, illustrating the

fast convergence for n→∞.

Any root jump is tantamount to loss of some ‘genetic memory’. In the future,

it will be interesting to explore the root jump process in more detail, in particular

under non-equilibrium and non-neutral population genetic scenarios, and with

regard to the speed of loss of genetic memory.
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Figure 1.6.2. The distributions of Pn(k), k = 1, . . . , 7; n = 2 (dotted), n = 5

(dashed), n = 10 (short dashes), n = 25 (dot-dashed) and n = ∞ (black).
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