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Abstract

We consider walks on the edges of the square lattice Z2 which obey two-step rules,
which allow (or forbid) steps in a given direction to be followed by steps in another
direction. We classify these rules according to a number of criteria, and show how these
properties affect their generating functions, asymptotic enumerations and limiting shapes,
on the full lattice as well as the upper half plane.

For walks in the quarter plane, we only make a few tentative first steps. We pro-
pose candidates for the group of a model, analogous to the group of a regular short-step
quarter plane model, and investigate which models have finite versus infinite groups. We
demonstrate that the orbit sum method used to solve a number of the original models can
be made to work for some models here, producing a D-finite solution. We also generate
short series for all models and guess differential or algebraic equations where possible. In
doing so, we find that there are possibilities here which do not occur for the regular short-
step models, including cases with algebraic or D-finite generating functions but infinite
groups, as well as models with non-D-finite generating functions but finite groups.

1 Introduction

Over the last two decades there has been a flurry of activity regarding lattice walks re-
stricted to certain types of steps and to certain subsets of the lattice. A great deal of this
recent activity has in particular focused on enumerative properties of such walks, rather
than using a probabilistic approach. The general questions one asks relate to cn, the num-
ber of such walks taking n steps, and to C(t) = ∑n≥0 cntn, the generating function of
the sequence {cn}. In particular, one may search for an explicit expression for cn and/or
its asymptotic properties, a closed form for C(t), and whether it is rational, algebraic, or
differentially finite (D-finite, also known as holonomic).

Enumeration in the full plane is trivial and all generating functions are rational. Ban-
derier and Flajolet [1] considered directed walks in the half and quarter planes, showing
that the generating functions of such objects are algebraic, as well as providing accurate
asymptotic enumerations. Bijections can be used to extend these results to all lattice walks
in the half plane.
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Non-directed walks in the quarter plane are a rather more difficult (and interest-
ing!) problem. Bousquet-Mélou and Petkovšek [6] demonstrated the existence of a step
set which results in walks with a non-holonomic generating function, showing that the
quarter plane is significantly different to the full and half planes. Mishna and Rech-
nitzer [17] found two more. Bousquet-Mélou and Mishna [5] showed that there are 79
non-isomorphic models with a step set S ⊂ {−1, 0, 1}2 \ {(0, 0)} (so-called small steps,
where walks can step along the edges of the square lattice or take diagonal steps across
squares), and conjectured that 23 of those have holonomic (or differentially finite, usually
written D-finite for short) generating functions, four of which are actually algebraic. They
derived solutions for 22 of the 23 holonomic cases.

For the final algebraic model, a simple expression for the number of paths of length n
ending at the origin was conjectured by Gessel around 2000 (the model has subsequently
borne his name). This was proved in 2009 by Kauers, Koutschan and Zeilberger [12] and
generalised in 2010 by Bostan and Kauers [3], in both cases with extensive use of computer
algebra software. A ‘human’ proof was not found until 2016 by Bousquet-Mélou [4].

As for the remaining 56 models, their non-holonomic nature was proved for 51 cases
by Kurkova and Raschel [14], and the final five were covered by Melczer and Mishna [16].

The D-finiteness (or not) of the 79 small step quarter plane models goes hand-in-
hand with the nature of a certain group of ‘birational’ transformations, depending on the
particular step set. This group (generated by a pair of involutions) is finite exactly when
the generating function is D-finite. In particular, 16 of the finite groups are isomorphic to
the dihedral group D2, five are isomorphic to D3 and two are isomorphic to D4.

In this paper we consider the enumerative properties of walks which obey a different
kind of restriction. Rather than looking at walks which take steps from a set S in any
order, we will impose a two-step rule, which governs which consecutive pairs of steps are
allowed. We will only consider walks which take unit steps in the four lattice directions
{(1, 0), (0, 1), (−1, 0), (0,−1)}. In the cases where steps in all four directions are allowed
(these are the only types of models we consider here), one can alternatively view a two-
step rule as a restriction on configurations of vertices, whereas the models described above
are defined by restrictions on edges.

This study was inspired by the works on lattice walks described above, as well as a
paper by Guttmann, Prellberg and Owczarek [9] which considers two-step rules in the
context of self-avoiding walks. These are walks with the (much more complicated) restric-
tion of not being able to visit a lattice vertex more than once. (See [15] for an overview.)
For certain two-step rules (so-called spiral walks – see [2, 7, 10]), precise expressions for
the generating function and the asymptotic form of the enumeration can be found. This
is in contrast to general self-avoiding walks, where almost nothing is known about the
generating function and only conjectures exist for asymptotics. (However, the number of
spiral walks of length n grows asymptotically like exp(c

√
n) for a constant c, which is far

removed from the exponential growth of general self-avoiding walks.) In [9] the authors
argue that there are essentially four universality classes of two-step rules (classified by a
pair of exponents which govern the ‘size’ of a walk in two orthogonal directions) with
seven non-isomorphic members.

The goal of this work is to investigate how lattice paths with a different kind of restric-
tion differ from the well known models discussed above. We will see that there are strong
similarities between the two approaches, but things are, in general, more complicated (un-
surprisingly). In at least some cases the methods used in the aforementioned works can
be applied here, but there are still many techniques which we have not yet attempted to
use.
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1.1 Overview of the paper

In Section 2 we introduce the models and some notation. In Section 3 we determine
the number of non-isomorphic rules in the full plane, and solve all models using both
transfer matrices and functional equations. We also compute asymptotics for the number
of walks and the expected location of the endpoint. In Section 4 we run through the same
calculations for walks restricted to the upper half plane. Section 5 is then dedicated to
the quarter plane. Here, computing the number of non-isomorphic models is much more
complicated. We derive a functional equation satisfied by the generating function, and
show that it can, at least sometimes, be solved using existing methods. We then present a
range of computational results, including an investigation of the groups for all the models,
and some series analysis. Finally some concluding remarks can be found in Section 6.

Some code used here will be made available at the author’s website.1

2 Definitions and classification

We begin with some basic definitions and notation, and introduce some criteria designed
to filter out trivial or pathological two-step rules.

We denote by Z2 the square lattice, and by x(v) and y(v) the x- and y-coordinates of
a vertex v. The four types of steps on the edges of Z2 are denoted by east, north, west and
south. A two-step rule (or just rule) R is a mapping

R : {east, north, west, south}2 7→ {0, 1}, (2.1)

where R(i, j) = 1 if a step of type i may be followed by a step of type j, and R(i, j) = 0 if
not. There are thus 242

= 216 = 65536 different two-step rules. For a given step type θ, we
will denote by f (θ) the set of steps which can follow a θ step, and by p(θ) the set of steps
which can precede a θ step.

A rule can be easily and usefully represented by a 4× 4 transfer matrix T ≡ T(R),
where we order the rows and columns east, north, west and south, and take Tij = R(i, j).
For example, the (counter-clockwise) spiral walks we mentioned in the introduction (there
restricted to be self-avoiding, though we no longer impose that restriction) are, after a step
in any direction, allowed to take another step in that same direction or turn to their left.
The transfer matrix of this rule is thus

T =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 . (2.2)

We can also use diagrammatic representations, as illustrated in Figure 1. The first is
similar to that used in [9]. The second is the graph whose adjacency matrix is T.

The transfer matrix serves not only as a compact way to write down a rule, but also
as an easy way to enumerate walks of a given length. For a given two-step rule, define
the 1 × 4 vector cm ≡ cm(R) = (em, nm, wm, sm), where em is the number of walks of
length m which follow the rule and end with an east step, and similarly for nm, wm and
sm. If we allow walks to begin with a step in any direction, regardless of the rule, then
c1 = (1, 1, 1, 1) and for m ≥ 2, cm = cm−1 · T. Then of course by induction,

cm = c1 · Tm−1 for m ≥ 1. (2.3)

For example, for our spiral walks, we have c2 = (2, 2, 2, 2), c3 = (4, 4, 4, 4), c4 = (8, 8, 8, 8)
and so on. See Figure 2 for an example of a long spiral walk.

1www.nicholasbeaton.com/papers
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(a)
(b)

Figure 1: Diagrammatic representations of the rule for counter-clockwise spiral walks. (a) The
vertices at (0, 1), (1, 0), (0,−1) and (−1, 0) represent “incoming” north, east, south, and west
steps respectively, and the arrows coming out of each of these vertices indicate what kind of
steps can follow. (b) The directed graph whose adjacency matrix is the transfer matrix T.

Figure 2: A random spiral walk of length 1000, starting at the green vertex and ending at the
red.

We will also use the notation pm = ‖cm‖1 = em + nm + wm + sm to represent the total
number of walks of length m following a given rule. (Here ‖v‖ denotes the L1 norm.) For
simplicity we set t0 = 0, that is, we do not count the empty walk containing no steps. For
a matrix M, we will use the notation Mi∗ and M∗i to denote the i-th row and column of
M respectively.

Now the 65536 different two-step rules include a number of trivial cases of little interest
to us. For example, the “zero” rule which allows no steps after the first, or the rule which
never allows walks to turn corners:

T =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 or T =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.4)

There are many different criteria we could use to define a “trivial” rule, but here we will
consider rules which satisfy (at least) the following conditions:

• Walks should not be directed or partially directed: they should be able to take steps in
all four directions.
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• The step set should be connected: for any two step types i and j, a walk ending with
i should be able to take a finite number of steps to become a walk ending in j.

These two conditions boil down to a restriction on the transfer matrix T. We say that a
rule is connected if for any i, j ∈ {east, north, west, south}, there exists a k ≥ 1 such that
(Tk)ij > 0.

Lemma 1. Of the 65536 two-step rules, 25696 are connected.

Proof. This amounts to counting the number of strongly connected digraphs on four la-
belled vertices with loops. The vertices are the four step types, and there is a directed edge
from x to y if step x can be followed by step y. The number of such graphs without loops
is 1606 [21, sequence A003030]. Since loops have no effect on strongly-connectedness, the
number of strongly connected digraphs with loops is then 1606× 24 = 25696.

Connectedness is not the only property which affects how we count walks. Consider
the following connected rule, given by its transfer matrix and diagram:

T =


0 1 0 1
1 0 0 0
0 1 0 0
1 0 1 0


One can show that for this model, pm ∼ am · µm as m→ ∞, where µ ≈ 1.55377 and

am ≈
{

2.42491 m odd
2.41421 m even.

(2.5)

That is, there is an underlying periodicity to this particular model. Here the period is two,
though there also exist rules with periods three and four, for example

T =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 1 0

 and T =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 . (2.6)

(In the second case the periodicity will not be apparent in the series for the full plane, but
will be visible for the half plane.) We thus introduce another new definition: a two-step
rule is aperiodic if there exists a k ≥ 1 such that for any i, j ∈ {east, north, west, south},
(Tk)ij > 0. If a connected rule is not aperiodic, it is periodic.

For a given connected rule R and i ∈ {east, north, west, south}, the period of step type i
is the greatest common divisor of all positive integers k with (Tk)ii > 0. Then the period of
R is the greatest common divisor of the periods of north, south, east and west. It follows
that aperiodic rules are precisely those connected rules with period one.

Lemma 2. Of the 25696 connected two-step rules, 25575 are aperiodic.

Proof. In terms of graphs, this amounts to counting those strongly connected digraphs on
four labelled vertices with the property that the greatest common divisor of the lengths of
all cycles is one. However, a better-known way of looking at this problem is to consider
the transfer matrix T, and observe that a rule is aperiodic precisely when its matrix is
primitive. The enumeration of primitive 0-1 matrices has been previously studied [21,
sequence A070322], and the number of 4× 4 such matrices is 25575.
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For the rest of the paper, we will focus solely on aperiodic two-step rules. The primary
reason for this is brevity – all of the results we give here can be generalised to periodic
rules without too much difficulty, but the expressions become much longer and add little
to the overall picture.

3 Enumeration in the full plane

Lemmas 1 and 2 provide that there are 25696 connected two-step rules, of which 25575 are
aperiodic. However, this does not take into account the fact that many rules are isomor-
phic to one another (in the sense of relabelling the step set). We thus devote some time
to considering the possible isomorphisms, and determining the number of non-isomorphic
connected and primitive two-step rules.

3.1 Isomorphisms in the full plane

In the full plane, we are free to apply any permutation to the step set of a walk to obtain
another walk obeying a (possibly different) rule. (This is certainly not the case in the half
plane, where permuting the step set may result in a walk which no longer stays in the half
plane.) We thus see that we can use the symmetric group S4 as the permutation group
acting on the set T of two-step rules. It is also clear that any permutation of the step set
will also preserve connectedness and aperiodicity, and thus S4 also acts on the sets C and
A of connected and aperiodic rules respectively.

Given a set X of combinatorial objects, the standard tool for determining how many
isomorphism classes X has, under the action of a group G, is Burnside’s lemma. If NG(X)
is the number of isomorphism classes of X under the group action of G, and fX(g) is the
number of elements of X which are fixed by g ∈ G, then

NG(X) =
1
|G| ∑

g∈G
fX(g). (3.1)

Given the size of the sets in question, performing this calculation by hand is out of the
question. It is, however, straightforward to write code to calculate this automatically. (We
use Mathematica.) We must first generate the sets T , C and A.

The set T is straightforward – in terms of transfer matrices, it is just the set of all
4 × 4 matrices with elements from {0, 1}. For C, we must inspect each element of T
to determine whether it is connected or not. That is, for each T ∈ T and each pair
i, j ∈ {north, east, south, west}, we must determine if there exists a k ≥ 1 such that
(Tk)ij > 0.

Note that if such a k does exist, then min{k : (Tk)ij > 0} ≤ 4. This is because the
shortest path from i to j in the adjacency graph of T must have length at most four – any
longer path must necessarily visit a vertex more than once, but then the sub-path between
those two visits can be deleted. Thus, for each T and i, j, we need only evaluate Tk for
k = 1, 2, 3, 4 and check that the ij entry is non-zero in at least one of those four matrices.

For A, we need to do something similar: for each T ∈ C, we need to determine if there
exists a k ≥ 1 such that (Tk)ij for all pairs i, j. Here, however, it is not so obvious what the
maximum value of k is. Fortunately, there is a result due to Wielandt [20, 22] which states
that if M is a primitive n× n matrix, then for all i, j ≤ n, (Mk)ij > 0 for k ≥ (n− 1)2 + 1.
In our case, this means that we only need to check if T10 is positive. Moreover, Wielandt’s
result states that any matrix which is a permutation of

T =


0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

 , (3.2)
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raised to the power of k, will not be positive for k < 10. That is, k = 10 is the smallest
exponent we can use which is guaranteed to confirm if a rule is aperiodic or not.

Given all this, we can then apply Burnside’s lemma to our three sets, to obtain to the
following.

Lemma 3. Let T , C and A be the sets of all, connected and aperiodic two-step rules respectively,
and let NG(X) be the number of isomorphism classes of a set X under the group action of G. Then

NS4(T ) = 3044 (3.3)

NS4(C) = 1168 (3.4)

NS4(A) = 1159. (3.5)

3.2 Asymptotics via eigenvalues

As we saw in Section 2, the transfer matrix T of a two-step rule can be easily used to
enumerate walks of length m, via the simple relationship (2.3). We are also interested in
the asymptotics of cm and pm.

We first take the Jordan decomposition of T; that is, we find the matrices S and J
such that T = SJS−1. If T is diagonalisable, then of course J is the diagonal matrix of
eigenvalues of T and S is the matrix of right eigenvectors of T. More generally, J is the
Jordan normal form of T and S is the matrix of generalised eigenvectors. From (2.3), we
then have

cm = c1 · SJm−1S−1. (3.6)

Now if the rule in question is aperiodic, then its transfer matrix T is primitive. We
can thus invoke the Perron-Frobenius theorem, which states that the eigenvalue of T with
greatest absolute value is real, positive, simple and unique. Call it µ. We can assume
without loss of generality that J11 = µ. (Otherwise we need only permute the rows and
columns of J and S.) Then as m grows large, µm will come to dominate each of the terms
of cm. Asymptotically, we will have

cm ∼ ‖S∗1‖1 × µm−1 × (S−1)1∗, (3.7)

where ‖S∗1‖1 is the sum of the first column of S (that is, the eigenvector of T correspond-
ing to µ), and (S−1)1∗ is the first row of S−1. Hence

pm ∼
1
µ
× ‖S∗1‖1 × ‖(S−1)1∗‖1 × µm. (3.8)

We note here that if the rule is periodic with period k, then the matrix T is irreducible
with period k. In this case we can apply the more general version of the Perron-Frobenius
theorem, which states that T has k eigenvalues of maximal absolute value, located at
points µ · exp(2nπi/k) for 0 ≤ n < k, where µ is real and positive. Each such eigenvalue
is simple. In light of this, we can compute the asymptotics of cm by essentially repeating
the above procedure for each dominant eigenvalue and adding the resulting contributions.

3.3 Generating functions

We now turn our attention to the generating functions of walks obeying two-step rules. In
the full plane this is a very simple matter, but as we will later see, things become more
complicated in restricted geometries. We will start to count walks not only by their length,
but also by the coordinates of their endpoint.

For a given two-step rule R, define em,a,b to be the number of m-step walks obeying
R which end with an east step, having started at the origin and ending at the coordinate
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(a, b). Similarly define nm,a,b, wm,a,b and sm,a,b, and take pm,a,b = em,a,b + nm,a,b + wm,a,b +
sm,a,b. Then, define the partition function

Em(x, y) = ∑
a,b

em,a,bxayb, (3.9)

and similarly define Nm(x, y), Wm(x, y), Sm(x, y) and Pm(x, y). Let Cm(x, y) be the 1× 4
vector of the individual partition functions.

The generating functions for walks ending with an east step is then

Fe(t; x, y) ≡ Fe(x, y) = ∑
m

Em(x, y)tm = ∑
m,a,b

em,a,btmxayb. (3.10)

We likewise have the generating functions Fn(t; x, y), Fw(t; x, y), Fs(t; x, y) and Fp(t; x, y).
The recursive relation cm = cm−1 · T can be encoded with linear equations in the

generating functions. For example, returning to our spiral walks from earlier, we have

Fe(x, y) = tx + txFe(x, y) + txFs(x, y) (3.11)

Fn(x, y) = ty + tyFn(x, y) + tyFe(x, y) (3.12)

Fw(x, y) = tx + txFn(x, y) + txFw(x, y) (3.13)

Fs(x, y) = ty + tyFs(x, y) + tyFw(x, y), (3.14)

where x = 1
x and y = 1

y .
To put things in terms of matrices, define

T̂(t; x, y) ≡ T̂(x, y) ≡ T̂ = T ·


tx 0 0 0
0 ty 0 0
0 0 tx 0
0 0 0 ty

 . (3.15)

Then the above equations can be encoded in a single matrix equation:

(I− T̂>) ·


Fe(x, y)
Fn(x, y)
Fw(x, y)
Fs(x, y)

 =


tx
ty
tx
ty

 . (3.16)

The system (3.16) will have a unique solution for every two-step rule. To see this,
suppose there is a rule R without a unique solution. Then det(I − T̂>) = 0. Since the
determinant of a matrix is a polynomial in the entries of the matrix, det(I − T̂>) is a
polynomial in t, and is thus a continuous function of t. Now take t → 0. The matrix T̂>

becomes the zero matrix in this limit, and hence det(I− T̂>) → det(I) = 1, contradicting
the initial assumption.

For example, spiral walks have the solution

Fe(x, y) =
ty
(
t2 − tx + xy + t2xy− txy2)

D(x, y)
(3.17)

Fn(x, y) =
ty
(
t2 − t3x− 2ty + t3y + t2xy + y2)

D(x, y)
(3.18)

Fw(x, y) =
ty
(
−t + t2x + y− txy + t2xy2)

xD(x, y)
(3.19)

Fs(x, y) = −
t
(
tx− t2x2 − ty− xy + tx2y + t3x2y + txy2 − t3xy2 − t2x2y2)

xD(x, y)
(3.20)

8



where

D(x, y) = t2− t3x− 2ty− t3y+ 2t2xy+ t4xy+ y2 + 2t2y2− t4y2− txy2− 2t3xy2− ty3 + t2xy3.
(3.21)

Then

Fp(x, y) = − t
xD(x, y)

(tx− t2x2 − xy− 3t2xy + 2tx2y + 2t3x2y− y2 + 4txy2

− 2t3xy2 − x2y2 − 3t2x2y2 − xy3 − t2xy3 + tx2y3). (3.22)

From here, the most straightforward approach to determine the asymptotic behaviour
of cm and pm is singularity analysis. (See [8] for the definitive reference.) According to
this method, we look for the singularities of the generating functions (evaluated at x =
y = 1). The dominant singularities – those closest to the origin t = 0 – are the ones which
dominate the asymptotic behaviour. The location of a dominant singularity determines the
exponential growth rate of the coefficients of the generating function, while the nature of
the singularity (pole, branch point, etc.) affects the subexponential factors.

While we can certainly do this on a case-by-case basis, we have little feeling for the
structure of the generating functions. Instead, we will present an alternative method of
construction, which will give information about the combinatorial meaning of the numer-
ators and denominators, as well as making things easier when we move to the half and
quarter planes.

Theorem 1. The generating functions Fθ each satisfy a functional equation of the form

Fθ(x, y) = Aθ(x, y) + Bθ(x, y)Fθ(x, y), (3.23)

where

• Aθ(x, y) is the generating function of walks which start in any direction and contain only
one θ step, being their last step; and

• Bθ(x, y) is the generating function of walks which start in any direction from f (θ) and
contain only one θ step, being their last step.

Proof. Equation (3.23) then encodes a combinatorial construction: walks which end in θ
either contain only one θ step, which must naturally be their last step, and are counted by
Aθ ; or they contain more than one θ step, in which case they can be decomposed into the
walk up to and including the second-last θ step (which could be any walk counted by Fθ)
and then the remaining steps (any walk counted by Bθ).

Since we clearly can’t have Bθ(x, y) = 1, we then obtain

Fθ(x, y) =
Aθ(x, y)

1− Bθ(x, y)
. (3.24)

Before going into the singularity structure of Fθ , we will show how to construct the
generating functions Aθ and Bθ . Define Iθ to be the 4× 4 identity matrix with the θ-th
element on the diagonal 0 instead of 1.

Lemma 4. The generating functions Aθ(x, y) and Bθ(x, y) have the form

Aθ(x, y) =
(

Vθ + (T̂∗θ)> · (I− IθT̂>)−1Iθ

)
·


tx
ty
tx
ty

 (3.25)
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and

Bθ(x, y) = (T̂∗θ)> ·

(I− IθT̂>)−1Iθ · (T̂θ∗)
> + (I− Iθ) ·


1
1
1
1


 , (3.26)

where Vθ is the 1× 4 vector with 1 in the θ-th position and 0 elsewhere, and T̂∗θ (resp. T̂θ∗) is the
θ-th column (resp. row) of T̂.

Proof. Equation (3.25) can be interpreted as follows. We first need to consider what can
happen before the first θ step. To do this, we solve the set of equations (3.16), but with all
references to Fθ removed. This is solved by

(I− IθT̂>)−1 · Iθ ·


tx
ty
tx
ty

 . (3.27)

(The matrix inverse is well-defined for all rules by the same arguments as used above.)
Then, we need to attach a θ step to the end of those walks ending with a step in p(θ): this
is where the (T̂∗θ)> comes in. Finally, we allow walks to start with a θ step regardless of
the rule, which is accounted for by the Vθ term.

Similarly for Bθ , we first solve for walks which start with a step in f (θ) but take no θ
steps: this is (I− IθT̂>)−1Iθ · (T̂θ∗)

>. This doesn’t account for the fact that a θ step might
be able to follow another θ step. Thus, we add (I− Iθ) · (1, 1, 1, 1)> (this is just the vector
with 1 in the θ-th position). Finally we attach a θ step where possible to those walks we’ve
just counted, hence the (T̂∗θ)>.

Now, there are three possible sources of singularities in Fθ as written in (3.24): singu-
larities of Aθ , singularities of Bθ , and points where Bθ = 1. In the next lemma we show
that the dominant singularity always arises from the third case. Note that by the results
of Section 3.2, the location and the nature of the dominant singularity are the same for all
four directions.

Lemma 5. For fixed x, y ∈ (0, ∞), there is a dominant singularity ρθ(x, y) of Fθ(t; x, y) at the
smallest positive value of t which solves Bθ(t; x, y) = 1. At this point Fθ(t; x, y) has a simple pole.

Proof. By Pringsheim’s Theorem [8, Thm. IV.6] Fθ(t; x, y) must have a dominant singular-
ity on the positive real axis, so we can restrict t to that domain for the time being.

Since Bθ is a generating function of walks, it is a polynomial or a power series in t
whose coefficients are Laurent polynomials in x and y. If it is a power series then its dom-
inant singularity is a pole, say at t = βθ(x, y). Bθ(t; x, y) is thus a continuous, monotone
increasing function from zero at t = 0 to infinity at t = βθ(x, y). So the smallest point
at which Bθ(t; x, y) = 1 must be closer to zero than βθ(x, y). If instead Bθ is polynomial,
it obviously has no poles, so in this case we will assign βθ(x, y) = ∞. It is clear that
ρθ(x, y) > 0, since Bθ(0; x, y) = 0 for x, y ∈ (0, ∞).

There then remain two potential problems we need to rule out: the possibility that
there is a zero of Aθ which cancels the pole at ρθ(x, y), and the possibility of Aθ having
a singularity closer to 0 than ρθ . We start with the second problem, and will demon-
strate that Bθ and Aθ have the same radius of convergence. Let αθ(x, y) be the radius of
convergence of Aθ(x, y).

Since every walk counted by Bθ is also counted by Aθ , we have Bθ(t; x, y) ≤ Aθ(t; x, y)
for t < min(αθ(x, y), βθ(x, y)). This immediately implies αθ(x, y) ≤ βθ(x, y).

Let Aφθ(t; x, y) be the generating function of those walks counted by Aθ(t; x, y) which
start with step type φ, so Aθ(t; x, y) = ∑φ∈{n,e,s,w} Aφθ(t; x, y). Let αφθ(x, y) be its radius of
convergence. By connectedness, there exists a (possibly empty) walk γ which can follow
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a θ step, contains no θ steps itself and can be followed by a φ step. Let Γ be the monomial
contribution to generating functions of such a walk, where we take Γ = 1 if γ is empty.
Then for any walk σ counted by Aφθ , the concatenation γ ◦ σ is a walk counted by Bθ . We
thus have

Bθ(t; x, y) ≥ ΓAφθ(t; x, y), (3.28)

and it follows that βθ(x, y) ≤ αφθ(x, y). Repeating this process for all four values of φ, we
see

βθ(x, y) ≤ min
φ

(αφθ(x, y)) = αθ(x, y) (3.29)

as desired.
As for the possibility of ρθ(x, y) being a zero of Aθ(t; x, y), this is now clearly impos-

sible, as 0 < ρθ(x, y) < αθ(x, y), and Aθ(t; x, y) (as a generating function) cannot possibly
vanish on this interval.

To see that the dominant pole of Fθ(t; x, y) is simple, observe that the derivative of
Bθ(t; x, y) is positive at t = ρθ(x, y). (It is a convergent power series with positive coeffi-
cients.)

We note here that if g(t) is an analytic function of t around t0 6= 0, and t0 is an isolated
simple zero of 1− g(t), then near t = t0 we have

1
1− g(t)

∼
t→t0

1
t0g′(t0)

· 1
1− t/t0

. (3.30)

If t0 is the unique singularity of 1/(1− g(t)) of minimum absolute value, then it follows
by singularity analysis that

[tm]
1

1− g(t)
∼ 1

t0g′(t0)
· t−m

0 as m→ ∞. (3.31)

Using Lemma 5 we can then formulate the asymptotics of Cm(x, y) in terms of the gener-
ating functions.

Corollary 1. For a given aperiodic two-step rule R, take x, y ∈ (0, ∞), let Fθ(t; x, y) be one of
the four individual generating functions (corresponding to step direction θ) and let ρθ(x, y) be as
defined in Lemma 5. Define µθ(x, y) = 1/ρθ(x, y). Then

Θm(x, y) ∼ µθ(x, y) · Aθ(ρθ(x, y); x, y)

B(1,0,0)
θ (ρθ(x, y); x, y)

· µθ(x, y)m as m→ ∞. (3.32)

Corollary 2. For a two-step rule R and step direction θ corresponding to the generating function
Bθ(x, y), define ρθ(x, y) as per Lemma 5. Then ρθ(x, y) is independent of θ; that is,

ρe(x, y) = ρn(x, y) = ρw(x, y) = ρs(x, y). (3.33)

Proof. Corollary 1 and the results of Section 3.2 demonstrate that the exponential growth
rate µθ(x, y) = 1/ρθ(x, y) for Θm(x, y) is independent of the step direction θ.

In light of Corollary 2, we will henceforth just write ρ(x, y) instead of ρθ(x, y).

3.4 Location of the endpoint

Before moving on to the half plane geometry, we consider the behaviour of the endpoint
of walks of length m, and in particular the expected coordinates of the endpoint of a walk in
the limit m→ ∞.
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For a given connected rule R and x, y ∈ (0, ∞), we define a Boltzmann distribution on
the walks of length m ending with step type θ. If a walk γ ends at (a, b), then

Pm(γ) =
xayb

Θm(x, y)
. (3.34)

(We can similarly define the distribution on walks of length m ending with any step type,
by replacing Θm with Pm.) The expected x-coordinate of the endpoint of a walk of length
m is then

〈xm〉 =
∑a,b aθm,a,bxayb

Θm(x, y)
=

x ∂
∂x Θm(x, y)
Θm(x, y)

=
x[tm] ∂

∂x Fθ(t; x, y)
[tm]Fθ(t; x, y)

, (3.35)

and we likewise have

〈ym〉 =
y[tm] ∂

∂y Fθ(t; x, y)

[tm]Fθ(t; x, y)
(3.36)

for the expected y-coordinate.
We have already determined the asymptotic behaviour of the denominators of (3.35)

and (3.36). It remains to determine the asymptotics of the numerators. We have

∂

∂x
Fθ(t; x, y) =

A(0,1,0)
θ (t; x, y)

1− Bθ(t; x, y)
+

Aθ(t; x, y)B(0,1,0)
θ (t; x, y)

(1− Bθ(t; x, y))2 . (3.37)

Our primary interest is in the dominant asymptotic behaviour, which comes from the
double pole. The singularity of interest is t = ρ(x, y), and near that point we have

∂

∂x
Fθ(t; x, y) ∼

t→ρ(x,y)

Aθ(ρ; x, y)B(0,1,0)
θ (ρ; x, y)

ρ2B(1,0,0)
θ (ρ; x, y)

· 1
(1− t/ρ)2 (3.38)

where we denote ρ ≡ ρ(x, y) for short.
However, (3.38) becomes useless when B(0,1,0)

θ (ρ(x, y); x, y) = 0. In that case ∂
∂x Fθ(t; x, y)

does not have a double pole, and we look instead to the next term in the Laurent series:

∂

∂x
Fθ(t; x, y) ∼

t→ρ

(
A(0,1,0)

θ (ρ; x, y)

ρB(1,0,0)
θ (ρ; x, y)

−
Aθ(ρ; x, y)B(1,1,0)

θ (ρ; x, y)

ρB(1,0,0)
θ (ρ; x, y)2

)
· 1

1− t/ρ
. (3.39)

From (3.38) and (3.39) we can then determine the asymptotic behaviour of the coef-
ficients of ∂

∂x Fθ(t; x, y), and this can then be combined with (3.35) to give the expected
x-coordinate of the endpoint.

Lemma 6. If B(0,1,0)
θ (ρ(x, y); x, y) 6= 0 then 〈xm〉 behaves asymptotically as

〈xm〉 ∼ xδx ·m as m→ ∞, (3.40)

where

δx ≡ δx(x, y) =
B(0,1,0)

θ (ρ(x, y); x, y)

ρ(x, y)B(1,0,0)
θ (ρ(x, y); x, y)

. (3.41)

If instead B(0,1,0)
θ (ρ(x, y); x, y) = 0 then

〈xm〉 ∼ x

(
−

B(1,1,0)
θ (ρ; x, y)

B(1,0,0)
θ (ρ; x, y)

+
A(0,1,0)

θ (ρ; x, y)
Aθ(ρ; x, y)

)
. (3.42)

Proof. We simply take the ratio of the dominant asymptotic behaviours of ∂
∂x Fθ(t; x, y)

and Fθ(t; x, y). The exponential growth rate is the same for both and thus cancels; (3.40)
and (3.42) are then just the ratios of the subexponential factors.
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The result for the expected y-coordinate 〈ym〉 is essentially identical, with the factor of
x and the derivatives with respect to x changing to y as appropriate.

As they are written, (3.41) and (3.42) appear to depend on the choice of θ – that is, the
asymptotic behaviour of 〈xm〉 (and 〈ym〉) seems to depend on the direction of the final
step of a walk. In fact (3.41) is independent of the choice of θ.

Lemma 7. Write µ(x, y) = 1/ρ(x, y), where ρ(x, y) is the smallest positive root of Bθ(t; x, y) =
1. (This is the same for any choice of θ.) Then

δx(x, y) =
∂

∂x µ(x, y)
µ(x, y)

=
∂

∂x
log µ(x, y) (3.43)

and

δy(x, y) =
∂

∂y µ(x, y)

µ(x, y)
=

∂

∂y
log µ(x, y). (3.44)

The quantities δx and δy are called the horizontal and vertical drifts.

Proof. For x, y ∈ (0, ∞), the function ρ(x, y) is well-defined (by Lemma 5), and is a con-
tinuously differentiable function of x and y by the implicit function theorem. It is strictly
positive, since Bθ(0; x, y) = 0. Thus µ(x, y) is well-defined and continuously differentiable.

For the horizontal drift, we have

Bθ(1/µ(x, y); x, y) = 1 =⇒ ∂

∂x
Bθ(1/µ(x, y); x, y) = 0. (3.45)

Applying the chain rule to the RHS,

B(0,1,0)
θ (1/µ(x, y); x, y)−

B(1,0,0)
θ (1/µ(x, y); x, y) ∂

∂x µ(x, y)
µ(x, y)2 = 0. (3.46)

Rearranging,
µ(x, y)B(0,1,0)

θ (1/µ(x, y); x, y)

B(1,0,0)
θ (1/µ(x, y); x, y)

= δx(x, y) =
∂

∂x µ(x, y)
µ(x, y)

(3.47)

as required. The proof for δy is analogous.

4 Enumeration in the upper half plane

We now consider those walks obeying two-step rules which start at the origin and re-
main in the upper half plane. Things become more complicated here, but much of the
machinery we set up in Section 3 will be useful.

We first need to introduce a new sub-classification. A model is north-bound if there is
always a north step between each pair of south steps. Similarly, it is south-bound if there
is always a south step between each pair of north steps. If a model is neither north- nor
south-bound, it is vertically unbounded.

Observe that, since we allow walks to start in any direction, a north-bound walk can
never step below y = −1, and a south-bound walk can never step above y = 1. This
means that restricting such models to the upper half plane is not particularly interesting:
north-bound models are almost confined to the upper half plane anyway, while south-
bound models would be confined to the strip 0 ≤ y ≤ 1. The generating functions of both
types of models in the upper half plane are still rational.

We thus focus on vertically unbounded models, for which the restriction to the upper
half plane is non-trivial. Let V denote the set of vertically unbounded models.
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4.1 Isomorphisms in the half plane

In the full plane we were able to apply any permutation to the step set of a walk obeying
a rule to obtain another walk obeying a (possibly different) rule. In general this is not the
case for walks restricted to the upper half plane, as a walk may end up stepping below
the x-axis after its steps are transformed. There is only one non-trivial permutation which
is guaranteed to keep a walk in the upper half plane: the one which swaps east and west
steps. (For some directed or disconnected rules there may be other valid permutations,
but they don’t seem to apply to the connected rules we study here.)

We of course first need to generate the set V . This works in a similar way to the
generation of the set C. Note that a rule is north-bound iff there is no value of k ≥ 1 such
that ((InTIn)k)ss > 0, and is south-bound iff there is no value of k such that ((IsTIs)k)nn >
0. Furthermore, in each case we only have to check k = 1, 2, 3, as the shortest path s → s
(resp. n→ n) which contains no north (resp. south) step either doesn’t exist or has length
at most three.

We arrive at the following.

Lemma 8. The number of vertically unbounded models, as well as vertically unbounded and
aperiodic, are

|V| = 19328 and |V ∩ A| = 19285. (4.1)

Let G2 denote the group acting on a set of two-step rules X, comprising the identity e and the
element σ which swaps east and west steps. Then

NG2(V) = 9744 and NG2(V ∩A) = 9722. (4.2)

4.2 Functional equations

In the upper half-plane we denote the partition function of walks of length m ending with
a θ step by Θ+

m(x, y), and we will write the corresponding generating function as

Hθ(t; x, y) = ∑
m

Θ+
m(x, y)tm. (4.3)

In the upper half plane walks cannot start with a south step, and they cannot take a
south step from a vertex on the x-axis. Thus the system of equations (3.16) becomes

(I− T̂>) ·


He(x, y)
Hn(x, y)
Hw(x, y)
Hs(x, y)

 =


tx
ty
tx
0

− (I− Is)T̂ ·


He(x, 0)
Hn(x, 0)
Hw(x, 0)
Hs(x, 0)

 . (4.4)

Since (I− T̂>) is always invertible, this then reduces to a set of four equations, each of the
form

Hθ(x, y) = Xθ(x, y)− Zθ(x, y)H∗(x, 0), (4.5)

where Xθ and Zθ are rational functions and H∗(x, y) is the sum of some or all of the
Hθ(x, y), namely, the sum of the generating functions of walks ending with steps which
can be followed by a south step. Specifically,

Xθ(x, y) = Vθ · (I− T̂>)−1 ·


tx
ty
tx
0

 (4.6)

and

Zθ(t, y) = Vθ · (I− T̂>)−1 ·


0
0
0
ty

 . (4.7)
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It is straightforward to see that Xθ is the generating function of walks in the full plane
which start with anything except a south step and end with a θ step, while Zθ is the
generating function of walks in the full plane which start with a south step and end with
a θ step.

Alternatively, we can use a combinatorial construction like Theorem 1.

Theorem 2. The generating functions Hθ(x, y) each satisfy a functional equation of the form

Hθ(x, y) = Cθ(x, y) + Bθ(x, y)Hθ(x, y)− Dθ(x, y)H∗(x, 0), (4.8)

where H∗(x, y) is as defined above,

• Cθ is like Aθ in Theorem 1, except it only counts walks which do not start with a south step,
and

• Dθ is like Aθ in Theorem 1, except it only counts walks which do start with a south step.

Proof. The idea is the same as for Theorem 1, except we must now excise walks which step
below the x-axis. Those which immediately step south have been removed by the use of
Cθ instead of Aθ . Those which step on or above the x-axis first and then later step below
are counted by Dθ(x, y)H∗(x, 0).

It will be convenient to write this functional equation as

(1− Bθ(x, y))Hθ(x, y) = Cθ(x, y)− Dθ(x, y)H∗(x, 0). (4.9)

Using the same reasoning as Lemma 4, we also have the following.

Lemma 9. The generating functions Cθ and Dθ have the solutions

Cθ(x, y) = Vθ ·


tx
ty
tx
0

+ (T̂•θ)> · (I− IθT̂>)−1Iθ ·


tx
ty
tx
0

 (4.10)

Dθ(x, y) = Vθ ·


0
0
0
ty

+ (T̂•θ)> · (I− IθT̂>)−1Iθ ·


0
0
0
ty

 . (4.11)

We will next show that for all vertically unbounded models, this equation can be solved
with the kernel method [13, 18].

4.3 Solution via the kernel method

Lemma 10. Let R be an aperiodic, vertically unbounded two-step rule. Let θ be one of the four
step directions and Bθ(t; x, y) the corresponding generating function defined as per Lemma 4. Then
the equation Bθ(t; x, y) = 1 has at most two solutions in y.

Proof. We first consider the denominator of Bθ(t; x, y). Recall from the proof of Lemma 5
that this is det(I− IθT̂>). The elements of the second row of T̂> are ty or 0; the elements
of the fourth row are ty or 0; and there is otherwise no y-dependence. Hence for any rule,
det(I− IθT̂>) is a Laurent polynomial in y with exponents between −1 and 1.

We now turn our attention to the numerator of Bθ(t; x, y). By similar arguments to
the determinant, the terms of (I− IθT̂>)−1 are Laurent polynomials in y with exponents
between −1 and 1. Moreover, there are no terms with positive powers of y in the second
column of (I − IθT̂>)−1 and no terms with negative powers in the fourth column. In
fact if θ = n then there are no positive powers of y at all, and if θ = s then there are
no negative powers. The terms of (I− IθT̂>)−1 Iθ · (T̂ f •)

> are thus Laurent polynomials
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in y with powers between −1 and 1, with no positive powers if θ = n and no negative
powers if θ = s. Taking the product with (T̂θ•)

> thus leaves the numerator as a Laurent
polynomial in y with exponents between −1 and 1.

So Bθ(t; x, y) is a rational function whose numerator and denominator are Laurent
polynomials in y with powers between −1 and 1. The statement of the lemma then
follows by considering the equation Bθ(t; x, y) = 1 and rearranging appropriately.

Lemma 10 now allows us to establish the number and form of the solutions to Bθ(x, y) =
1 in the variable y.

Lemma 11. For an aperiodic and vertically unbounded two-step ruleR, let ρ(x, y) be the smallest
positive root of Bθ(t; x, y) = 1 in t, as defined in Lemma 5. Then ρ(x, y) is an increasing then
decreasing function of y, approaching 0 as y→ 0 and as y→ ∞.

Proof. First recall that by the implicit function theorem, ρ(x, y) is a continuously differen-
tiable function of x and y for x, y ∈ (0, ∞). Also, note that ρ(x, y) < βθ(x, y), where the
latter is the radius of convergence of Bθ(t; x, y), as discussed in the proof of Lemma 5.

Now Bn(t; x, y) has positive powers of y and Bs(t; x, y) has negative powers of y, so we
must have ρ(x, y) → 0 in both limits. Since ρ(x, y) is continuously differentiable, there
must be at least one value of y ∈ (0, ∞) with ∂

∂y ρ(x, y) = 0. Call this point y†.
For any of the Bθ , we have by the chain rule

∂

∂y
ρ(x, y) = −

B(0,0,1)
θ (ρ(x, y); x, y)

B(1,0,0)
θ (ρ(x, y); x, y)

. (4.12)

For x, y ∈ (0, ∞) we have 0 < ρ(x, y) < βθ(x, y), and so 0 < B(1,0,0)
θ (ρ(x, y); x, y) < ∞.

Hence
B(0,0,1)

θ (ρ(x, y†); x, y†) = 0. (4.13)

For fixed t ∈ (0, βθ(x, y)), note that because the power series (in t) Bθ is absolutely con-
vergent, it can be rewritten as a Laurent series in the variable y with some annulus of
convergence yr < |y| < yR (dependent on t). Then for y ∈ (yr, yR) (that is, y real) we have

∂2

∂y2 Bθ(t; x, y) > 0. (4.14)

In particular, B(0,0,2)
θ (ρ(x, y†); x, y†) > 0. Hence there is an ε > 0 such that for (y† − ε) <

y′ < y† < y′′ < (y† + ε) we have

Bθ(ρ(x, y†); x, y′) > Bθ(ρ(x, y†); x, y†) and Bθ(ρ(x, y†); x, y′′) > Bθ(ρ(x, y†); x, y†).
(4.15)

Since Bθ is monotone increasing in t, we must then have ρ(x, y′) < ρ(x, y†) and ρ(x, y′′) <
ρ(x, y†). So y† is a local maximum of ρ(x, y).

But if ρ(x, y) must have at least one point where ∂
∂y ρ(x, y) = 0, and every such point

must be a local maximum, it follows that ρ(x, y) has precisely one local maximum, and is
an increasing then decreasing function of y.

In Figure 3 we illustrate the different βθ(x, y) and ρ(x, y) for spiral walks.

Corollary 3. For R aperiodic and vertically unbounded with x ∈ (0, ∞), there exists a κ ≡
κ(x) > 0 such that for 0 < t < κ, there are two positive, continuously differentiable functions
υ−(t; x) and υ+(t; x) satisfying Bθ(t; x, υ−(t; x)) = Bθ(t; x, υ+(t; x)) = 1. The first function
υ−(t; x) is an increasing function of t, approaching 0 as t → 0 and a positive value τ ≡ τ(x)
as t → κ; the second function υ+(t; x) is a decreasing function, which diverges as t → 0 and
approaches τ as t→ κ.
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Figure 3: A plot of the different βθ(1, y) and ρ(1, y) for spiral walks: βn(1, y) is blue;
βs(1, y) is pink; and ρ(1, y) is gold. The other radii βe(1, y) = βw(1, y) are equal to
min(βn(1, y), βs(1, y)), i.e. the blue curve for y ≤ 1 and the pink curve for y ≥ 1.

Proof. We have κ = ρ(x, y†), where y† is the value of y at which ∂
∂y ρ(x, y) = 0, as discussed

in Lemma 11. Since ρ(x, y) is not an injective function of y, it is not invertible; however,
the sections for y < y† and y > y† are injective, and are thus individually invertible. Thus
υ−(t; y) is the inverse of ρ(x, y) over 0 < y < y† and υ+(t; y) is the inverse of ρ(x, y) over
y > y†. It is then clear that τ = y†.

We have four equations of the form of (4.9), each of which will give the eventual
solution

Hθ(x, y) =
Cθ(x, y)− Dθ(x, y)H∗(x, 0)

1− Bθ(x, y)
. (4.16)

So to proceed, we must solve H∗(x, 0).

Lemma 12. For an aperiodic vertically unbounded ruleR, let υ−(t; x) be as defined in Corollary 3.
Then for any step direction θ,

H∗(x, 0) =
Cθ(x, υ−(x))
Dθ(x, υ−(x))

. (4.17)

Proof. Corollary 3 guarantees the existence of two functions, υ−(t; x) and υ+(t; x), which
cancel the kernel. Lemma 10 asserts that these are the only two solutions, as the equation
Bθ(t; x, y) = 1 is at most quadratic in y, and that these two solutions are of the form

υ±(t; x) =
p(t; x)±

√
q(t; x)

r(t; x)
(4.18)

where p, q, r are polynomials in t whose coefficients are Laurent polynomials in x. How-
ever, since we know that υ+(t; x) → ∞ as t → 0, it cannot possibly have a power series
expansion at t = 0 and thus cannot be validly substituted into (4.9). On the other hand,
υ−(t; x)→ 0 as t→ 0, and thus it does have a Taylor series expansion at t = 0 and can be
substituted. Making this substitution leads to (4.17).
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4.4 Asymptotics

Having solved the generating functions of walks obeying connected two-step rules in the
upper half plane, we now turn our attention to the asymptotic behaviour of the coeffi-
cients. This behaviour depends on the vertical drift δy(x, y) of the model – those with
a positive drift will have essentially the same asymptotic form (up to a constant factor)
as their full-plane equivalents, while those with zero or negative drift may have quite
different behaviour. As for the full plane, we continue to write µ(x, y) = 1/ρ(x, y).

Lemma 13. For an aperiodic vertically unbounded rule R, let x ∈ (0, ∞) and take y > τ(x),
where τ(x) is defined in Corollary 3. Then the vertical drift δy(x, y) of the model is positive. For
a given step direction θ with half-plane generating function Hθ(t; x, y) as defined by (4.16) and
Lemma 12, the dominant singularity of Hθ is a simple pole at t = ρ(x, y). Near t = ρ(x, y),

Hθ(t; x, y) ∼
t→ρ(x,y)

c+(x, y)
1

1− t/ρ(x, y)
, (4.19)

where

c+(x, y) =
Cθ(ρ(x, y); x, y)− Dθ(ρ(x, y); x, y)H∗(ρ(x, y); x, 0)

ρ(x, y)B(1,0,0)
θ (ρ(x, y); x, y)

. (4.20)

Thus
Θ+

m(x, y) ∼ c+(x, y)µ(x, y)m as m→ ∞, (4.21)

where µ(x, y) = 1/ρ(x, y).

Proof. The vertical drift being positive follows from the fact that τ(x) is the unique point
in (0, ∞) where ∂

∂y ρ(x, y) = 0, and so for y > τ(x), ∂
∂y ρ(x, y) < 0 and hence ∂

∂y µ(x, y) > 0.
Lemma 5 and Corollary 1 show how in the full plane the dominant singularity at

t = ρ(x, y) arises as a root of Bθ(t; x, y) = 1, and how this singularity contributes to the
asymptotic behaviour of the series coefficients. The same idea applies here. We must
thus show (a) that the numerator Cθ(t; x, y)− Dθ(t; x, y)H∗(t; x, 0) of (4.16) is not singular
at any point t = t′ with |t′| ≤ ρ(x, y), and (b) that this numerator does not vanish at
t = ρ(x, y).

We begin with the first point (a). Using the same ideas as described in the proof of
Lemma 5, one can easily show that the radii of convergence of Cθ(t; x, y) and Dθ(t; x, y)
(viewed as functions of t) are no smaller than βθ(x, y), the radius of convergence of
Bθ(t; x, y). Since ρ(x, y) < β(x, y), these functions thus cannot introduce singularities
closer to zero than ρ(x, y).

As for H∗(t; x, 0), note that (i) it counts a subset of walks in the full plane, and (ii)
it is independent of y. It follows that its radius of convergence can be no smaller than
ρ(x, y), for any y > 0. In particular, by considering y = τ(x), we see that the radius of
convergence of H∗(t; x, 0) is at least κ(x) > ρ(x, y) for y > τ(x).

To address point (b), we must show that

Cθ(ρ(x, y); x, y)− Dθ(ρ(x, y); x, y)H∗(ρ(x, y); x, 0) (4.22)

is non-zero for x ∈ (0, ∞) and y ∈ (τ(x), ∞). We will show that this is the case for θ = n,
and then demonstrate how this implies it is also true for the other three cases.

First note that Dn(t; x, y)H∗(t; x, 0) is a series in t with no t0 term and with no positive
powers of y. Since ρ(x, y)→ 0 as y→ ∞, it follows that Dn(ρ(x, y); x, y)H∗(ρ(x, y); x, 0)→
0 as y→ ∞.

Next, let B+
n (t; x, y) = y[y1]Bn(t; x, y) (this is everything in Bn with a positive power of

y). Observe that B+
n (ρ(x, y); x, y) ↗ 1 as y → ∞, since Bn is identically 1 at t = ρ and (by

the same argument as the previous paragraph) all the terms with non-positive powers of
y must vanish in the limit.
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Now every walk counted by Bn which ends at y = 1 is also counted by Cn (such a walk
cannot start with a south step). So Cn(ρ(x, y); x, y) is bounded away from 0 as y→ ∞, and
hence (4.22) is non-zero for sufficiently large y.

Since (4.22) is algebraic, it can be zero only at a set of isolated points in (τ(x), ∞).
Suppose (for a contradiction) that y′ is one such point. Then

Cn(t; x, y′)− Dn(t; x, y′)H∗(t; x, 0) (4.23)

is analytic (as a function of t) in the region of ρ(x, y′), so (4.23) must vanish polynomially
at that point. Since the denominator of (4.16) has a simple root at t = ρ(x, y′) (Lemma 5),
the dominant singularity at y′ must be strictly greater than ρ(x, y′). But ρ is continuous,
so this implies that there is an ε > 0 such that the dominant singularity of Hn(x, y′)
is greater than that of Hn(x, y′ − ε), contradicting the fact that this singularity must be
non-increasing in y.

For the other three generating functions, note that their dominant singularities cannot
be any closer to 0 than ρ(x, y), as this would imply a larger growth rate than the same
walks in the full-plane, an impossibility. To show that they are not farther from 0 than
ρ(x, y), let γ be the shortest sequence of steps which can follow a north step and ends
with an θ step, and let Γ be the contribution to generating functions of γ. Since γ contains
at most one south step, it can be attached to any walk ending with a north step in the
upper half-plane. Thus

ΓHn(t; x, y) ≤ Hθ(t; x, y) ≤ Fθ(t; x, y), (4.24)

and so Hθ(t; x, y) must also diverge at t = ρ(x, y), with a simple pole.

When the vertical drift is negative, the numerator of (4.16) will disappear at t = ρ(x, y).
The dominant singularity is then at κ(x), which is a square-root singularity of υ−(t; x).

Lemma 14. For an aperiodic vertically unbounded rule R, let x ∈ (0, ∞) and take y < τ(x).
Then the vertical drift δy(x, y) of the model is negative. For a given step direction θ with half-
plane generating function Hθ(t; x, y), the dominant singularity of Hθ is a square-root singularity
at t = κ(x). Near t = κ(x),

Hθ(t; x, y) ∼
t→κ(x)

c∗(x, y) + c−(x, y)
√

1− t/κ(x), (4.25)

where c∗(x, y) is constant with respect to t and

c−(x, y) =

√
2

κ(x)P(0,2)(x, τ(x))
· Dθ(κ(x); x, y)

Dθ(κ(x); x, τ(x))
· 1

1− Bθ(κ(x); x, y)

×
(

C(0,0,1)
θ (κ(x); x, τ(x))− D(0,0,1)

θ (κ(x); x, τ(x))
Cθ(κ(x); x, τ(x))
Dθ(κ(x); x, τ(x))

)
. (4.26)

Consequently

Θ+
m(x, y) ∼ − c−(x, y)

2
√

πm3/2 λ(x)m as m→ ∞, (4.27)

where λ(x) = 1/κ(x).

Proof. For y < τ(x), ρ(x, y) and υ−(t; x) are inverses – that is, υ−(ρ(x, y); x) = y. Hence
the numerator of Hθ(t; x, y),

Cθ(t; x, y)− Dθ(t; x, y)
Cθ(t; x, υ−(t; x))
Dθ(t; x, υ−(t; x))

, (4.28)

19



vanishes as t → ρ(x, y). Moreover, since ρ(x, y) < κ(x) for y < τ(x), the numerator is
analytic in the region of t = ρ(x, y), and thus it has a zero of integral order there. This
completely cancels out the zero of 1− Bθ(t; x, y).

The next-smallest singularity then comes from υ−(t; x), and is a square root singularity
at t = κ(x). Near that point, the numerator behaves like(

Cθ(κ(x); x, y)− Dθ(κ(x); x, y)
Cθ(κ(x); x, τ(x))
Dθ(κ(x); x, τ(x))

)
− Dθ(κ(x); x, y)

Dθ(κ(x); x, τ(x))

×
(

C(0,0,1)
θ (κ(x); x, τ(x))− D(0,0,1)

θ (κ(x); x, τ(x))
Cθ(κ(x); x, τ(x))
Dθ(κ(x); x, τ(x))

)
υ−(t; x). (4.29)

Meanwhile as t→ κ(x) we have

υ−(t; x) ∼
t→κ(x)

τ(x)−
√

2
κ(x)µ(0,2)(x, τ(x))

·
√

1− t/κ(x), (4.30)

where we still have µ(x, y) = 1/ρ(x, y). Combining (4.29) and (4.30) gives (4.25), where
c∗(x, y) is the sum of the terms with no t-dependence. The principles of singularity anal-
ysis [8], and in particular the asymptotic form of the coefficients of a function with a
singularity of square root type, then give the second part of the lemma.

For rules with vertical drift exactly zero, we have essentially a combination of the
results for positive and negative drifts. In this case, the square root singularity of the
numerator and the simple zero of the denominator exactly coincide, resulting in a function
which diverges at t = ρ(x, y) as the reciprocal of a square root.

Lemma 15. For an aperiodic vertically unbounded rule R, let x ∈ (0, ∞) and take y = τ(x).
Then the vertical drift δy(x, y) of the model is exactly 0. The radius of convergence of Hθ(t; x, y)
for each step direction θ is ρ(x, y); near t = ρ(x, y) we have

Hθ(t; x, y) ∼
t→ρ(x,y)

c0(x, y)(1− t/ρ(x, y))−1/2 (4.31)

where

c0(x, y) =

√
2

κ(x)P(0,2)(x, τ(x))
· 1

κ(x)B(1,0,0)
θ (κ(x); x, τ(x))

×
(

C(0,0,1)
θ (κ(x); x, τ(x))− D(0,0,1)

θ (κ(x); x, τ(x))
Cθ(κ(x); x, τ(x))
Dθ(κ(x); x, τ(x))

)
. (4.32)

Thus

Θ+
m(x, y) ∼ c0(x, y)√

πm
µ(x)m as m→ ∞, (4.33)

where µ(x) = 1/κ(x) = 1/ρ(x, τ(x)).

Proof. As t → κ(x), the numerator of Hθ(t; x, y) behaves like (4.29) (note that at y = τ(x)
that expression simplifies), while the denominator behaves like

1

κ(x)B(1,0,0)
θ (κ(x); x, τ(x))

· 1
1− t/κ(x)

. (4.34)

Multiplying the two expressions gives (4.31). Standard singularity analysis techniques
then provide the rest of the lemma.
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4.5 Location of the endpoint

For walks restricted to the upper half-plane, we can perform similar calculations to those
of Section 3.4 to determine the expected coordinates of the endpoint in the limit of walk
length. However, in the upper half-plane there are many more cases to consider, and
providing all the precise calculations here would be overly tedious. We instead make
some broad observations without proof.

• For rules with positive vertical drift δy, the picture in the upper half-plane is, as one
might expect, similar to the full plane. The expected y-coordinate 〈ym〉 still scales as
O(m), and it is in fact easy to show that the leading asymptotic behaviour of 〈ym〉
is the same as in the full plane. Similarly, if 〈xm〉 has leading asymptotic term O(m)
in the full plane, this carries over (with the same constant factor) to the half-plane.
If instead 〈xm〉 is O(1) in the full plane, it will be in the half-plane too, though with
possibly a different constant term.

• For rules with zero vertical drift, the expected y-coordinate scales as O(
√

m). The
expected x-coordinate 〈xm〉 can be O(m), O(

√
m) or O(1), depending on the rule in

question.

• Finally, rules with negative vertical drift will have 〈ym〉 = O(1), while 〈xm〉 can be
O(m) or O(1).

5 Enumeration in the quarter plane

We finally turn to walks obeying two-step rules in the quarter plane x, y ≥ 0.

5.1 Non-trivial models and isomorphisms

As for the full and half planes, we will attempt to determine just how many ‘interesting’
models there are. Firstly, let G′2 denote the group comprising the identity e and the element
σ′ which swaps east and north steps and swaps south and west steps.

In the upper half plane we did not want walks which were forced to stay near the
x-axis or were forced to move away from it. This motivated the definition of vertically
unbounded models. In the quarter plane we now also want to exclude walks which are
stuck to the y-axis or which are forced to leave it. Thus, we define a model to be east-
bound if there is always an east step between two west steps, and west-bound if there is
always a west step between two east steps. A model is then horizontally unbounded if it
is neither east-bound nor west-bound, and cardinally unbounded if it is both vertically and
horizontally unbounded.

With U denoting the set of cardinally unbounded models, we have the following.

Lemma 16. The number of cardinally unbounded models, as well as aperiodic and cardinally
unbounded, is

|U | = 14978 and |U ∩ A| = 14943. (5.1)

Counting up to the symmetry of the quarter plane, we have

NG′2
(U ) = 7541 and NG′2

(U ∩A) = 7520. (5.2)

However, by simply considering cardinally unbounded models we still include a num-
ber of undesirable cases. Consider for instance the following model:
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T =


0 1 0 0
1 0 0 1
0 0 0 1
1 0 1 1



It is easy to see that this model is cardinally unbounded, so that walks following this
rule can go arbitrarily far in the four cardinal directions. However, observe that every
north step must always be followed by an east or south step, and every west step must
always be followed by a south step. Thus any walk following this rule (say, in the full
plane, where the first step can be in any direction) can never step above the line y = x + 1.

For such a model, restricting to the upper half plane is almost the same as restricting
to the first quadrant – the only difference being that a half plane walk can visit the point
(−1, 0). This is not enough of a difference to make these models worth counting in the
quadrant. We thus introduce a new definition. A model is south-east-bound if all of the
following are zero:

Tnn = Tww = TnwTwn = TneTewTwn = TnwTweTen = TwnTnsTsw = TwsTsnTnw = 0.
(5.3)

Similarly, a model is north-west-bound if all of the following are zero:

Tee = Tss = TesTse = TenTnsTse = TesTsnTne = TseTewTws = TswTweTes = 0. (5.4)

Likewise, a model is south-west-bound if all of the following are zero:

Tee = Tnn = TneTen = TenTnsTse = TesTsnTne = TneTewTwn = TnwTweTen = 0. (5.5)

(Restricting a south-west-bound model to the first quadrant results in walks that can only
visit the vertices (0, 0), (1, 0) and (0, 1).)

We will then say a model is diagonally unbounded if it is neither north-west-bound,
south-east-bound or south-west bound. Let D denote the set of such rules.

Remark. We could also forbid north-east-bound models, which would be forced to move
away from the origin in the first quadrant. However the quarter plane restriction is mean-
ingful for these models, and in the literature on regular quarter plane lattice paths, models
with this property are not forbidden.

We have the following.

Lemma 17. The number of cardinally and diagonally unbounded models, as well as the number
of those which are aperiodic, is

|U ∩ D| = 14209 and |U ∩ D ∩A| = 14205. (5.6)

Counting up to the symmetry of the quarter plane, we have

NG′2
(U ∩D) = 7149 and NG′2

(U ∩D ∩A) = 7146. (5.7)

Even with these restrictions, there is still another subtle problem that can occur. Con-
sider for instance the following model:

T =


0 0 0 1
0 1 1 0
1 1 1 0
1 1 1 0
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This model is cardinally and diagonally unbounded. However, in the quarter plane,
we have a problem. If a walk starts with an east step then it can take no further steps; if
it starts with a north step then the only option is to take another north step, and so on.
Thus, walks following this rule can never leave the boundaries of the quarter plane.

For a walk to be able to leave the x-axis (away from the y-axis), it must be able to
step east-north or both east-east and east-west-north. Similarly, for a walk to leave the
y-axis (away from the x-axis), it must be able to step north-east or both north-north and
north-south-east. This motivates the following definition. A two-step rule is glued if all of
the following are zero:

Ten = TeeTewTwn = Tne = TnnTnsTse = 0. (5.8)

Let G denote the set of glued rules and G ′ its complement. We have the following.

Lemma 18. Let Q = U ∩D ∩ G ′. Then

|Q| = 13749 and |Q ∩A| = 13745. (5.9)

Counted up to the symmetry of the quarter plane,

NG′2
(Q) = 6912 and NG′2

(Q∩A) = 6909. (5.10)

5.2 Functional equations

In the first quadrant we denote the partition function of walks of length m ending with a
θ step by Θm(x, y), and we will write the corresponding generating function as

Qθ(t; x, y) = ∑
m

Θ+Θm(x, y)tm. (5.11)

In the quarter plane walks cannot start with a west or south step, and they cannot
take a west (resp. south) step from a vertex on the y-axis (resp. x-axis). We get something
similar to (4.4), but now with two sets of boundary terms:

(I− T̂>) ·


Qe(x, y)
Qn(x, y)
Qw(x, y)
Qs(x, y)

 =


tx
ty
0
0

− (I− Is)T̂ ·


Qe(x, 0)
Qn(x, 0)
Qw(x, 0)
Qs(x, 0)

− (I− Iw)T̂ ·


Qe(0, y)
Qn(0, y)
Qw(0, y)
Qs(0, y)

 .

(5.12)
We once again turn to a combinatorial construction.

Theorem 3. Each of the generating functions Qθ satisfies an equation of the form

Qθ(x, y) = Lθ(x, y) + Bθ(x, y)Qθ(x, y)− Dθ(x, y)Q↓(x)− Jθ(x, y)Q←(y), (5.13)

where

• Bθ is as before, ie. the generating function of walks (in the full plane) which start with a step
that can follow θ and contain no θ steps except for their last;

• Lθ is the generating function of walks (in the full plane) which start with an east or north
step and contain no θ steps except for their last;

• Dθ is as before, ie. the generating function of walks (in the full plane) which start with a
south step and contain no θ steps except for their last;

• Jθ is like Dθ except it counts walks starting with a west step;

• Q↓(x) is the quarter plane version of H∗(x, 0), ie. the generating function of walks in the
quarter plane which end on the x-axis, with a step type that can precede south; and
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• Q←(y) is the generating function of walks in the quarter plane which end on the y-axis, with
a step type that can precede west.

Proof. The idea is the same as Theorem 2, but we must now contend with two boundaries,
and remove any walks which step below the x-axis or to the left of the y-axis.

Walks which immediately step south or west are forbidden by Lθ . Walks whose
first step is valid but at some later point cross the x-axis are counted by Dθ(x, y)Q↓(x).
Walks whose first step is valid but at some later point cross the y-axis are counted by
Jθ(x, y)Q←(y).

We will usually write the above as

(1− Bθ(x, y))Qθ(x, y) = Lθ(x, y)− Dθ(x, y)Q↓(x)− Jθ(x, y)Q←(y). (5.14)

Similar to Lemmas 4 and 9, we also have the following.

Lemma 19. The generating functions Lθ and Jθ have the solutions

Lθ(x, y) = Vθ ·


tx
ty
0
0

+ (T̂•θ)> · (I− IθT̂>)−1Iθ ·


tx
ty
0
0

 (5.15)

Jθ(x, y) = Vθ ·


0
0
tx
0

+ (T̂•θ)> · (I− IθT̂>)−1Iθ ·


0
0
tx
0

 . (5.16)

5.3 A D-finite solution: spiral walks

The remainder of the paper is dedicated to a brief exploration of (5.14) and the properties
of Qθ . In this section we demonstrate that some of the methods which have been used to
solve regular quarter plane path problems can also be employed here.

We first recall how some of this methodology works [5]. For regular quarter plane lat-
tice paths with small steps, the generating function Q(t; x, y) satisfies a functional equation
of the form

K(t; x, y)Q(t; x, y) = 1− A(t; x, y)Q(t; x, 0)− B(t; x, y)Q(t; 0, y) + C(t; x, y)Q(t; 0, 0) (5.17)

where K, A, B, C are (known) Laurent polynomials. In particular, K(t; x, y) is known as
the kernel of the system; it has the form 1− tS(x, y), where S is the step generator of the
model. For example, for walks which may step north, southeast and southwest, we have
S(x, y) = y + xy + xy, and

(1− t(y + xy + xy)) Q(t; x, y) = 1− t(xy + xy)Q(t; x, 0)− txyQ(t; 0, y) + txyQ(t; 0, 0).
(5.18)

Write

S(x, y) = A−1(x)y + A0(x) + A1(x)y = B−1(y)x + B0(y) + B1(y)x. (5.19)

Then for all non-trivial models (without specifying what that means), S(x, y) is in-
variant under the action of a group of birational transformations, generated by the two
involutions

Φ : (x, y) 7→
(

x
B−1(y)
B1(y)

, y
)

and Ψ : (x, y) 7→
(

x, y
A−1(x)
A1(x)

)
. (5.20)

This group (call it G) is either infinite or isomorphic to a dihedral group; for walks with
small steps in the quarter plane it happens that the possible groups are D2, D3 and D4.
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For example, for the model just mentioned, the group is isomorphic to D3, and its actions
on the pair (x, y) are

{(x, y), (xy, y), (y, xy), (y, x), (xy, x), (x, xy)}. (5.21)

Some of the models with finite groups can be solved using the orbit sum method. This
involves applying each the elements of G to the functional equation (5.17), generating a
set of equations which are then combined in such a way as to eliminate the Q(t; ·, 0) and
Q(t; 0, ·) terms. One then takes the positive part in x and y (that is, all the terms where
the exponents of x and y are positive) to obtain Q(x, y). (Some other models with finite
groups can be solved using only half of the elements of G – this method is called the half
orbit sum. One final model – Gessel’s paths – requires more elaborate machinery [4].)

We return to the spiral walks of (2.2) and Figure 1. Focusing on θ = east, we have

Be(x, y) = Le(x, y) =
tx(t2 − tx− ty + xy + t2xy + t2y2 − txy2)

(x− t)(y− t)(1− ty)
(5.22)

= tx + t4 + t5(x + y + y) + O(t6), (5.23)

De(x, y) =
t2x

y− t
(5.24)

= t2xy + t3xy2 + t4xy3 + t5xy4 + O(t6), (5.25)

Je(x, y) =
t3x

(x− t)(y− t)
(5.26)

= t3y + t4(xy + y2) + t5(xy2 + x2y + y3) + O(t6). (5.27)

The similarities between (5.14) and (5.17) are obvious:

• Bθ has replaced tS;

• Lθ has replaced 1 on the right hand side;

• Dθ and Jθ have replaced A and B;

• Q↓(x) and Q←(y) have replaced Q(t; x, 0) and Q(t; 0, y).

(There is nothing analogous to C(t; x, y)Q(t; 0, 0) – this term only comes up for regular
quarter plane models which permit southwest steps.)

There is a key difference however – for regular quarter plane paths, all the coefficients
are Laurent polynomials in t, x, y (in fact they are linear in t). For two-step rules, the coef-
ficients become rational functions, which can be expanded as series in t with coefficients
that are Laurent polynomials in x, y. In particular, Bθ is much more complicated than tS.

Nevertheless, we can still attempt to use the orbit sum method, using the following
observation.

Lemma 20. For any cardinally unbounded rule, the equation

Bθ(x, Y) = Bθ(x, y) (5.28)

has two distinct solutions in Y, one of which is Y = y and the other is a rational function of t, x, y.
Similarly,

Bθ(X, y) = Bθ(x, y) (5.29)

has two distinct solutions in X, one of which is X = x and the other is a rational function of t, x, y.

Proof. We focus on (5.28); the proof for (5.29) is analogous. By Lemma 10 and Corollary 3,
the equation Bθ(x, Y) = 1 is quadratic in Y for a vertically unbounded rule. Since there
are two specialisations of y which sets Bθ(x, y) = 1 (namely, υ±(t; x)), it follows that (5.28)
must have two distinct roots. One of them is obviously Y = y, so the other must be
rational.
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Let Y = Φθ(t; x, y) be the other solution to (5.28) and X = Ψθ(t; x, y) the other solution
to (5.29). It is easy to see that the operations y 7→ Φθ(t; x, y) and x 7→ Ψθ(t; x, y) are
involutions. We can thus view them as the generators of a group Gθ , exactly like the
group used for regular quarter plane paths.

For example, for spiral walks we have

Ψe(t; x, y) =
t(t2 − tx− ty + xy + t2xy + t2y2 − txy2)

(x− t)(y− t)(1− ty)
and Φe(t; x, y) = y. (5.30)

(There may be a combinatorial explanation for the fact that Ψe(t; x, y) = xBe(t; x, y); we
presently do not understand it.) Since Ψe(t; x, y) = Ψe(t; x, y), the group here is isomor-
phic to D2:

{(x, y), (Ψe, y), (Ψe, y), (x, y)}. (5.31)

Note here that every term appearing in (5.31) can be expanded as a power series about
t = 0. This is important – it means that all four pairs can be validly substituted into (5.14).

Doing so gives four equations, with unknowns Qe(x, y), Qe(Ψe, y), Qe(Ψe, y), Qe(x, y)
on the left and Q↓(x), Q←(y), Q↓(Ψe), Q←(y) on the right. A linear combination of these
equations can be taken to eliminate all of the latter four unknowns:

y(t− y)Qe(x, y)
1− ty

− t3xy2(t− y)Qe(Ψe, y)
(x− t)(1− ty)(t2 − tx− ty + xy + t2xy + t2y2 − txy2)

− t3xyQe(Ψe, y)
(x− t)(t2 − tx− ty + xy + t2xy + t2y2 − txy2)

+ Qe(x, y) = RHSe, (5.32)

where RHSe is

− tx(1− y2)(t3 − 2t2x + tx2 − t2y + 2txy + 2t3xy− x2y− t2x2y + t3y2 − 2t2xy2 + tx2y2)

(x− t)2(y− t)(1− ty)2(1− Be(x, y))
.

(5.33)
Taking the positive part [x>y>] of this equation, only the first term on the LHS sur-

vives, and we thus have the following.

Theorem 4. The generating function Qe(x, y) for spiral walks has the solution

Qe(x, y) = −y(1− ty)
y− t

[x>y>]RHSe (5.34)

= tx + t2x2 + t3x3 + t4x4 + t5(x + x5) + t6(2x2 + x6 + xy) + O(t7). (5.35)

Being the positive part of a rational function, Qe(x, y) is D-finite.

This process can be repeated in almost exactly the same way for Qn(x, y); the only
difference is that when extracting the [x>y>] of the orbit sum, the unknowns Qn(x, y) and
Qn(0, y) both appear on the left. But Qn(0, y) is just ty/(1− ty), so this is not a problem.

However, this process does not work for Qw or Qs. This is because Ψw and Φs do
not have power series expansions about t = 0, and thus cannot be validly substituted
into (5.14). (However the group is still isomorphic to D2 for each.)

Fortunately, in this case there is a straightforward way to use the solution to Qe(x, y)
to solve all four generating functions. Note that for spiral walks, Q←(0) = 0 (the only
way a spiral walk can end at the origin is with a south step, which cannot be followed by
a west step). Taking y = 0 in (5.14) with θ = e, we obtain a relation between Qe(x, 0) and
Q↓(x), giving the solution to the latter. Substituting back into (5.14) gives us Q←(y), and
then all the other Qθ(x, y) follow. They are all D-finite.

The expression (5.34) is sufficiently complicated that we have been unable to rigorously
derive asymptotics. However, elementary series analysis permits us to be confident in the
following conjecture.
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Conjecture 1. For spiral walks in the quarter plane,

Pm =
8
π
× 1

m
× 2m ×

(
1− 3

2m
+ O

(
1

m2

))
. (5.36)

Let Pm,x be the number of quarter plane spiral walks of length m which end on the x-axis, and
similarly define Pm,y and Pm,o for walks ending on the y-axis and at the origin. Then

Pm,x =
16
π
× 1

m2 × 2m ×
(

1− 4− (−1)m

2m
+ O

(
1

m2

))
(5.37)

Pm,y =
16
π
× 1

m2 × 2m ×
(

1− 8− (−1)m

2m
+ O

(
1

m2

))
(5.38)

Pm,o =


64
π
× 1

m3 × 2m ×
(

1− 15
2m

+ O
(

1
m2

))
, m even

0, m odd.
(5.39)

5.4 How the above can fail

We have found a number of rules for which the above orbit sum method works. For the
majority of cases, however, it does not work. Here we briefly run through some examples.

5.4.1 Finite group, but the orbit sum does not cancel all terms

We take spiral walks but now add the reverse of each step in as well (equivalently, the
two-step rule which forbids a walk from turning to the right):

T =


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1



The group structure is the same as for spiral walks – it is D2 for all four directions θ,
and all terms can be validly substituted for θ = e and n but not w or s. However, the four
Q↓ and Q← terms cannot all be eliminated.

Trying to guess a differential or polynomial equation satisfied by Qp(1, 1) using 2000
terms of the series turned up nothing, and so we are reasonably confident in saying that
the generating functions are not D-finite.

5.4.2 Finite group, but the orbit sum vanishes

This time take the following rule:

T =


0 1 1 0
1 0 0 1
1 1 1 1
1 1 1 1



For θ = e, the group is isomorphic to D3:

{(x, y), (ψ, y), (y, ψ), (y, x), (ψ, x), (x, ψ)} (5.40)
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where

ψ =
t(1 + xy)

xy− tx− ty− t2xy
. (5.41)

The group is the same for θ = n. For the other two directions the group is still isomorphic
to D3 but not quite so nice. (The nice symmetry of the group reflects the x-y symmetry
of the rule, but it should be noted that many other rules with x-y symmetry do not have
such simple groups.)

We can expand ψ as a series in t so all six elements of the group may be used, but this
time the orbit sum completely vanishes. This phenomenon is characteristic of the regular
quarter plane models which are algebraic – Kreweras, reverse Kreweras, double Kreweras
and Gessel paths [5]. The first three of these also have x-y symmetry, so that Q(x, y) =
Q(y, x). For θ = e we do not quite have this, but we do have Q↓(x) = Q←(x). The groups
for those three models are also isomorphic to D3, and look very much like (5.40), with xy
instead of ψ.

Kreweras, reverse Kreweras and double Kreweras paths were solved not by using the
full orbit sum but instead by using a half orbit sum. For this method, only three of the
group elements are substituted, and the resulting equations are combined to eliminate all
but one unknown on the right. The coefficient [y0] is then taken, eliminating all but one
term on the left, and finally after some delicate factorisation the [x>] and [x<] parts are
separated.

In addition to the above similarities with algebraic regular quarter plane models, we
are able to guess an algebraic equation for Qe(1, 1) using only 50 terms:

− t(2 + 4t− 19t2 − 22t3 − 9t4) + 2(1 + t)(1− 16t2 + 16t3 + 18t4)Qe

+ t(5− 16t− 24t2 + 64t3 + 54t4)Q2
e + 4t2(1 + t)(1− 3t)2Q3

e + t3(1− 3t)2Q4
e = 0. (5.42)

The idea of using a half orbit sum for this model is thus very appealing, but unfortu-
nately we have been unable to make it work. The equation obtained reads

(1 + xy)Qe(x, y)− x(t− x)(1 + ty)Qe(ψ, x)
xy− tx− ty− t2xy

+
x(t− y)(1 + ty)Qe(ψ, y)

xy− tx− ty− t2xy

= Re −
2t2x2(1 + ty)(1 + xy)Q↓(x)

xy− tx− ty− 2t2xy− t2x2y2 (5.43)

where Re is a large-ish rational term. It is unclear how to extract the [y0] term, or [x>]
or [x<] parts. (We do however note that ψ has no positive powers of x or y in its series
expansion, similar to xy, so perhaps an elaborate coefficient extraction may be possible.)

5.4.3 Infinite group

Unsurprisingly, for many (indeed, most) two-step rules, the symmetry group of Bθ is
infinite. More surprisingly, some of these appear to have D-finite generating functions,
such as this one:

T =


0 0 0 1
0 1 1 1
0 1 0 0
1 1 0 1



Others even have algebraic generating functions:
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T =


0 0 1 1
1 0 1 0
1 1 1 0
1 1 1 1



5.5 Computational results

In this final section we run through some computational results regarding enumeration
in the quarter plane. We have completed two sets of computations for the 6909 different
‘non-trivial’ quarter plane models:

1. Using Sage [19], we compute Bθ and then the group Gθ , for each of the four direc-
tions θ. Of course the group may be infinite; but in our experience when the group
is finite the calculation terminates very quickly, so it suffices to impose a time limit
of a few seconds to separate the finite and infinite groups.

2. Using the Ore Algebra package [11] for Sage, we use 500 terms of the series for
Qp(t; 1, 1) to ‘guess’ a differential equation satisfied by the generating function. If
this is successful we then try to guess an algebraic equation.2

While we are very confident that the group calculations are correct, the D-finite/algebraic
results are almost certainly incomplete. That is, for some rules 500 terms may not have
been enough in order to guess a differential or algebraic equation. (For 6909 series we had
to draw the line somewhere.)

We summarise the results in the following conjectures.

Conjecture 2. For every two-step rule in Q, we have

|Ge| = |Gn| = |Gw| = |Gs|. (5.44)

For the next conjecture, let N` denote the set of rules in Q whose symmetry group has
order `.

Conjecture 3. We have

|N4| = 1084 |N6| = 443 |N8| = 146

|N10| = 66 |N12| = 6 |N∞| = 5164
(5.45)

Finally, let Ealg, EDf and EnonDf respectively be the sets of rules for which Qp(t; 1, 1)
satisfies an algebraic equation, differential equation (but not an algebraic one), or neither.

Conjecture 4. We have

|Ealg| ≥ 73 |EnonDf| ≤ 6018 (5.46)

and of course |EDf| = 6909− |Ealg| − |EnonDf|.

Conjecture 5. The combinations of the sets from Conjectures 3 and 4 are summarised below.
For the non-empty intersections, we also give an example rule. For the particular non-D-finite
examples illustrated, we used 2000 terms when attempting (and failing) to guess a differential
equation instead of the usual 500. For the D-finite examples below, we used 1000 terms when
attempting (and failing) to guess an algebraic equation.

2As mentioned in Section 5.4.1, for a few models we have used many more terms.
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alg (lower bound) Df (?) nonDf (upper bound)

N4 – 659 425

N6 40 66 337

N8 5 59 82

N10 6 4 56

N12 – – 6

N∞ 22 30 5112

6 Conclusion

We have investigated walks on the square lattice Z2 obeying two-step rules, which govern
which consecutive pairs of steps in the four cardinal directions are permitted. There are
naturally 65536 such rules, but many are trivial, directed, or isomorphic to another rule;
for simplicity we also exclude rules whose series coefficients coefficients display strong
periodicity. For the full, half and quarter planes we have determined the number of non-
isomorphic rules which are in some sense ‘interesting’.

For enumeration we have obtained recurrence relations for the series coefficients and
functional equations satisfied by their generating functions. These equations resemble
the equivalent equations for ‘regular’ lattice path models, but with some coefficients now
rational functions instead of Laurent polynomials.

Enumeration in the full plane is elementary. In the upper half plane all generating
functions can be solved with the kernel method, while the asymptotics depend on the
vertical ‘drift’. In the quarter plane things are, unsurprisingly, much more complicated.
We have demonstrated that each model has a symmetry group (actually four, one for each
direction) much like regular lattice paths. At least some models can be solved using the
‘orbit sum’ method, leading to a D-finite solution. Series analysis reveals that there are
also many models which have algebraic solutions. Surprisingly, and in contrast to regular
lattice paths, there appear to be models with finite groups but non-D-finite solutions, as
well as models with infinite groups but D-finite or algebraic solutions.

This work is intended to serve as a preliminary exploration into more varied lattice
paths, and in particular quarter plane lattice paths. There are many questions that arise:

• Can any models be bijected to regular lattice paths, or some other combinatorial
objects?

• Can Conjectures 2 and 3 be firmly established? Is there a combinatorial or geometric
interpretation of the group?

• Which other models can be solved with the orbit sum method? Or the half orbit sum
method?
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• How is it that some models with infinite groups have D-finite solutions? Is there
some ‘trick’ for their solution?
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