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Abstract

In the chip-firing variant, Diffusion, chips flow from places of high concentration to places

of low concentration (or equivalently, from the rich to the poor). We explore this model on

complete graphs, determining the number of different ways that chips can be distributed

on an unlabelled complete graph and demonstrate connections to polyominoes.

1 Introduction

Introduced by Duffy et al. [3], Parallel Diffusion is a process defined on a simple finite
graph, G, in which at every time step, chips are diffused throughout the graph following
specific rules. Each vertex is assigned a stack size which is an integral number. This number
represents the number of chips a vertex has. At each time step, the chips are redistributed
via the following rules: If a vertex is adjacent to a vertex with fewer chips, it takes a chip
from its stack and sends it to the poorer vertex. We call this action the firing of a vertex.
At each time step of the diffusion process, every vertex fires. Note that when a vertex with
no poorer neighbours fires, it does not send any chips. In Figure 1, we see an example
of Parallel Diffusion. Note that at each time step, the vertices of P5 have a stack size;
an assignment of stack sizes to the vertices of a graph G is referred to as a configuration,
denoted C = {(v, |v|C ) : v ∈ V (G)}, where |v|C is the stack size of v in C. We omit the
superscript when the configuration is clear.

A vertex v is said to be richer than another vertex u in configuration C if |v|C > |u|C .
In this instance, u is said to be poorer than v in C. If |v|C < 0, we say v is in debt in C.

In Parallel Diffusion, given a graph G and a configuration C on G, to fire C is to decrease
the stack size of every vertex v ∈ V (G) by the number of poorer neighbours v has and
increase the stack size of v by the number of richer neighbours v has. More formally, for
all v, let ZC

− (v) = {u ∈ N(v) : |v|C > |u|C} and let ZC
+ (v) = {u ∈ N(v) : |u|C > |v|C}.

Then, firing results in every vertex v changing from a stack size of |v|C to a stack size of
|v|C + |ZC

+ (v)| − |ZC
− (v)|.

We are interested in counting the number of configurations on Kn, n ≥ 1 (up to a
definition of equivalence). We will show, in Theorem 3, a bijection between the number
of configurations that exist on unlabelled complete graphs of order n and the number of
board-pile n-ominoes (or sets of stacked 1×k rectangles with a total area of n). An example

1This author was supported by NSERC.
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of a board-pile n-omino is given in Figure 2, and an example of a configuration on Kn is
given in Figure 3. i
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Figure 1: Several steps in a Parallel Diffusion game on P5. The period begins with C3. This
is the first configuration that is repeated.
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Figure 3: Configuration on a complete graph, K5.

Unlike some other chip-firing processes like the original Chip-Firing game [1] and Brushing
[8], in Parallel Diffusion it is possible for a stack size to initially be positive but to become
negative as time goes on. For example if some vertex v with a stack size of n, n ∈ N, is
adjacent to n+ 1 vertices, each of which having a stack size of 0, then after firing, v would
have at stack size of −1. However in [3], it was shown that Parallel Diffusion is such that
an addition of some constant k, k ∈ Z, to each stack size will have no effect on determining
when and if a chip will move from one vertex to another. So if one wanted to view diffusion
as a process in which stack sizes are never negative, one would only need to add a sufficient
constant k, k ∈ N, to each stack size. Some results pertaining to locating an appropriate k

value for any given graph can be found in [2].

2 Diffusion Background

We begin with some necessary terminology.
Let G be a finite simple undirected graph with vertex set V (G) and edge set E(G). Let

A ⊆ E(G). A graph orientation of a graph G is a mixed graph obtained from G by choosing
an orientation (x → y or y → x) for each edge xy ∈ A. We refer to the edges that are in
E(G)\A as flat. We refer to the assignment of either x → y, y → x, or flat to an edge xy

as xy’s edge orientation.
We refer to the discrete time increments in Parallel Diffusion as steps. The configuration

of G at any step k is referred to as the configuration at step k or the configuration at t = k.
We refer to the configuration at step 0 as the initial configuration. At every step, the
vertices of V (G) fire. So, a step t consists of both a configuration and the firing of the
vertices yielding the configuration at step t+1. The firing of vertices at step 0 which yields
the configuration at step 1 is called the initial firing.

In Parallel Diffusion, the assigned value of a vertex, v, at step t, is referred to as its stack
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size at time t. If the initial configuration is C, then the stack size at time t is denoted |v|Ct .
This implies that |v|C = |v|C0 . We omit the superscript when the configuration is clear.

In Parallel Diffusion, given a graph G and an initial configuration C0, the configuration
at time t can be denoted by Ct = {(v, |v|Ct ) : v ∈ V (G)}. The configuration sequence
Seq(C0) = (C0, C1, C2, . . . ) is the sequence of configurations that arises as the time increases.
The configuration sequence clearly depends on both the initial configuration and the graph
G. However, G is omitted from the notation since it will always be clear to which graph we
are referring.

Let Seq(C0) = (C0, C1, C2, . . . ) be the configuration sequence on a graph G with initial
configuration C0. A positive integer p is a period length if Ct = Ct+p for all t ≥ N for some
N . In this case, N is a preperiod length. For such a value, N , if k ≥ N , then we say that
the configuration, Ck, is inside the period. For the purposes of this paper, all references to
period length will refer to the minimum period length p in a given configuration sequence.
Also, all references to preperiod length will refer to the least preperiod length that yields
that minimum period length p in a given configuration sequence. Given two configurations,
C and D, of a graph G, in which the vertices are labelled, C and D are equal if |v|C = |v|D

for all v ∈ V (G). In Figure 1, the period length is 2 and the preperiod length is 3.
Let L(G) = {Seq(C) : C is a configuration on G}. Since the set of integers is infinite, on

any graph G, L(G) is an infinite set.
In their paper [5], Long and Narayanan prove that the period length of every configu-

ration sequence is either 1 or 2 [5]. Let Seq(C0) denote the singleton or ordered pair of
configurations contained within the period of a configuration sequence Seq(C0).

Let C be a configuration on a graph G. Let C + k denote the configuration created by
adding an integer k to every stack size in the configuration C. Two configuration sequences,
Seq(C) and Seq(D) in L(G), are equivalent if Seq(C+k) = Seq(D) for some integer k. For
all configurations C and all integers k, we say that C and C + k are equivalent.

We see an example of equivalent configuration sequences in Figure 4.
A configuration D on a graph G is a period configuration if D is in Seq(C) for some

configuration C. A configuration D on a graph G is a p2-configuration if D is in Seq(C) for
some configuration C and Seq(C) has exactly 2 elements. A configuration D on a graph G

is a fixed configuration if D is in Seq(C) for some configuration C and Seq(C) has exactly
1 element.
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Figure 4: Two equivalent configuration sequences.

We conclude this section with an observation tying together Parallel Diffusion and graph
orientations.

Observation 1. In Parallel Diffusion, every configuration induces a graph orientation.

Proof. Let G be a graph and Ct a configuration on G. For all pairs of adjacent vertices u,
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v in G at step t, assign directions as follows:

• If |u|t > |v|t, assign uv the edge orientation u → v.

• If |v|t > |u|t, assign uv the edge orientation v → u.

• If |u|t = |v|t, do not direct the edge uv.

We say that this graph orientation is induced by Ct. We see an example of a graph
orientation induced by a configuration in Parallel Diffusion in Figure 5.

v1

15
v2

9
v3

8
v4

2
v5

12

v1 v2 v3 v4 v5

Figure 5: Configuration on P5 and its induced graph orientation.

3 Polyominoes

We will now introduce polyominoes. The following concepts are from David Klarner’s paper
[4], reworded slightly to improve the clarity of our results.

Definition 1. [4] A polyomino is a plane figure composed of a number of connected unit
squares joined edge on edge. A polyomino with exactly n unit squares is called an n-omino.

Definition 2. [4] In a polyomino X, a horizontal strip, or h-strip, is a maximal rect-
angle of height one.

By convention, we will set each h-strip in the plane so that its height spans from an
integer k to k + 1.

Definition 3. [4] The infinite area enclosed by the lines y = k and y = k + 1 is called a
row.

Definition 4. [4] A board-pile polyomino is a polyomino which has at most one h-strip
per row. A board-pile polyomino with n unit squares is called a board-pile n-omino.

With this, we can now begin to prove that there exists a bijection between the number
of board-pile n-ominoes and the number of period configurations of an unlabelled complete
graph on n vertices. To accomplish this, we will first develop a notation for polyominoes
that will eliminate the necessity of a pictorial representation, then define a mapping from
the set of all polyominoes on n unit squares to the set of all period configurations of (an
unlabelled) Kn up to equivalence, and then show that mapping to be a bijection.

Given a polyomino X, we will use the convention of labelling the h-strips from bottom
to top as S1, S2, . . . , SN , where N is the number of h-strips in X. Let S(X) be the set of
all h-strips in X.

A board-pile polyomino X, can be represented as an ordered set of ordered pairs of the
form X = {(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dN , |SN |)}, where |Si| is the number of unit
squares in the h-strip Si, and di is the difference between the greatest x-coordinate in Si

and the least x-coordinate in Si−1. By convention, d1 = 0. See Figure 6 for an example.
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X = {(0, 2), (3, 3), (2, 1)}

S(X) = {S1, S2, S3}

Figure 6: Board-pile 6-omino X with shading differentiating between S1, S2, and S3.

4 Period Configurations on Unlabelled Complete Graphs

In this section, we will be counting the number of period configurations that exist on
unlabelled complete graphs.

A configuration, C, of an unlabelled Kn, n ≥ 1, can be represented by a multi-set of
cardinality n with the stack sizes as elements. We will use the notation ak to represent k

instances of stack size a in the configuration. An example is shown in Figure 7.

3 5

5

4

4

C = {3, 4, 4, 5, 5}

= {3, 42, 52}

Figure 7: Configuration on an unlabelled complete graph

Given n, define a map f from the set of all board-pile n-ominoes to the set of all complete
graph configurations on Kn. We will show that only period configurations of Kn exist in
the range of f and that f is a bijection.

For a board-pile n-omino X = {(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dN , |SN |)}, let
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f(X) = f({(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dn, |SN |)})

=
{

0|S1|,
(

2
∑

i=1

di

)|S2|
,
(

3
∑

i=1

di

)|S3|
, . . .

(

N
∑

i=1

di

)|SN |}

.

For all Sk ∈ S(X), the complete graph configuration f(X) has |Sk| vertices, each of which

contain
∑k

i=1 di chips.
We denote the set of vertices in f(X) corresponding to the strip Sk to be Vk for all k ≤ N .

An example of this mapping is shown in Figure 8.
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X = {(0, 2), (3, 2), (2, 4), (3, 2)}

v1

0
v2

0

v3

3
v4

3

v55 v6 5

v7

5

v8

5

v9

8

v10

8

f(X) = {02, (0 + 3)2, (0 + 3 + 2)4, (0 + 3 + 2 + 3)2}

= {02, 32, 54, 82}

Figure 8: Mapping a board-pile 10-omino to its corresponding configuration of K10.
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We will now use f to show that the number of period configurations of Kn is equal to
the number of board-pile polyominoes containing exactly n unit squares.

Lemma 2. Let X = {(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dN , |SN |)} be a board-pile polyomino
with exactly N h-strips. If 1 ≤ i ≤ N − 1, then 1 ≤ di+1 ≤ |Si|+ |Si+1| − 1.

Proof. Since Si and Si+1 are adjacent h-strips, and polyominoes, by definition, are joined
edge on edge, the distance from the least x-coordinate of Si to the greatest x-coordinate
of Si+1 must be less than the sum of the two lengths (|Si| + |Si+1|). So, di+1 must be less
than |Si| + |Si+1|. Since di+1 is equal to the difference between the greatest x-coordinate
in Si and the least x-coordinate in Si−1, and since Si and Si−1 are connected edge on edge,
d ≥ 1. Thus, we conclude 1 ≤ di+1 ≤ |Si|+ |Si+1| − 1.

Theorem 3. For all n ≥ 1, there exists a bijection between the set of all board-pile n-
ominoes and the set of all period configurations on unlabelled complete graphs.

Proof. This proof will amount to proving two separate statements: For any board-pile
polyomino, X, on n unit squares, n ≥ 1, f(X) is a period configuration of Kn, and for any
period configuration, C, of Kn, there is some board-pile polyomino X on n unit squares
such that C = f(X). We will first suppose that X is a board-pile n-omino and reach that
f(X) is a period configuration of the complete graph Kn.

A board-pile polyomino with only a single h-strip maps trivially to a period configuration
of Kn. In this case, every stack size is equal to 0. Therefore, the configuration is a period
configuration with a period length of 1. We will now show that any board-pile polyomino
with only two h-strips maps to a period configuration. Let X be such a board-pile poly-
omino. These two h-strips, S1 and S2, map to two sets of vertices, V1 and V2, with distinct
stack sizes, d1 = 0 and d2 respectively. We know from Lemma 2 that in f(X), the vertices
of V2 must have between 1 and |S1|+ |S2| − 1 chips. Hence, the vertices of V2 have d2 chips
with 1 ≤ d2 ≤ |S1| + |S2| − 1. After the initial firing, the vertices of V1 will each have
|S2| chips, having just received from |S2| richer neighbours, and the vertices of V2 will each
have d2 − |S1| chips, having just sent to |S1| poorer neighbours. A result stated in [3] and
proven in [6] states that an integer value can added to or subtracted from each stack size
of a configuration without changing the behaviour of the process. So we can normalize the
resulting configuration by subtracting d2 − |S1| from both totals, leaving |S1| + |S2| − d2
chips on each of the vertices in V1 and leaving 0 chips on each of the vertices in V2. Note
that since the x-distance from the least x-coordinate of S1 to the greatest x-coordinate of
S2 is d2, then the x-distance from the least x-coordinate of S2 to the greatest x-coordinate
of S1 must, when added to d2, equal the sum of the two strip lengths. So, the x-distance
from the least x-coordinate of S2 to the greatest x-coordinate of S1 is |S1|+ |S2| − d2. To
show that the relative sizes have changed and that in the second firing, the vertices of V1

will send chips to the vertices of V2, we must show that |S2| > d2 − |S1|. We know that the
maximum value that d2 can take on is |S1|+ |S2| − 1. So,

|S1|+ |S2| − 1 ≥ d2

|S2| ≥ d2 − |S1|+ 1

|S2| > d2 − |S1|

Thus, we can conclude that the vertices of V1 are now richer than the vertices of V2.
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This gives us that the configuration following the initial firing, call it [f(X)]′, is itself
equal to f(X ′) for some board-pile n-omino X ′. In fact, X ′ is the board-pile n-omino
created by reflecting X about the horizontal axis since [f(X)]′ represents an interchange
of the relative stack sizes of the two sets of vertices, V1 and V2, corresponding to the two
h-strips in X (See Figure 9). So, after the second firing, the vertices of V2 will have |S1|
chips and the vertices of V1 will have |S1| − d2 chips. By adding d2 − |S1| to both totals
(to counteract our subtracting of d2 − |S1| chips previously), we get back where we started
with the vertices of V1 having 0 chips and the vertices of V2 having d2 chips. So, we have
that f(X) is a period configuration.

1

1

2

2

3

3

4

4

5

5

S1

S2

0 0

4 4 4 4 4

1

1

2

2

3

3

4

4

5

5

S2

S1 5 5

2 2 2 2 2

Figure 9: Board-pile with two strips “flipping” upon the firing of the related complete graph
configuration.

We will use this case as the basis of an induction. We will induct on the number of
h-strips to show that for all board-pile n-ominoes, X, the initial firing of f(X) yields f(X ′)
(up to an addition of a constant to each of the stack sizes) where X ′ is the board-pile
n-omino created by reflecting X about the horizontal axis. This will imply that f(X) is
a period configuration of some complete graph because two firings will return the original
configuration.

Our inductive hypothesis is that for all board-pile polyominoes X with at most k h-strips,
the initial firing of f(X) yields f(X ′) (up to an addition of a constant to each of the stack
sizes) where X ′ is the board-pile polyomino created by reflecting X about the horizontal
axis.
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Now suppose we have a board-pile polyomino, Y , with exactly k + 1 h-strips. Then,
f(Y ) is some configuration of some complete graph. Thus, by Lemma 2, dk+1 is bounded
so that 1 ≤ dk+1 ≤ |Sk| + |Sk+1| − 1. We know by our inductive hypothesis that if Sk+1

were removed from Y , that the resulting polyomino would map to a period configuration
of some complete graph. Also, the vertices of Vk+1 in f(Y ) will act as source vertices
enriching every other vertex upon firing. The addition of such a source strip cannot affect
the relative stack sizes of the other vertices within the graph. We know from our base case
that the board-pile polyomino Z composed of just the squares of Sk and Sk+1 is such that
f(Z ′) = [f(Z)]′. Therefore, since the effect of the vertices in V (f(Y )) \ V (f(Z)) will enrich
the remaining stack sizes of the graph equally upon firing, we have that Y satisfies our
criteria with f(Y ′) = [f(Y )]′.

We now present the second portion of the proof where we begin by supposing that C is
a period configuration of Kn and reach that there exists some board-pile n-omino X such
that C = f(X).

Suppose the vertices of C have N distinct stack sizes

{0a1 , (
2

∑

i=1

di)
a2 , (

3
∑

i=1

di)
a3 , . . . (

N
∑

i=1

di)
aN }

in ascending order for some set a1, a2, . . . , aN ∈ N and some set d1 = 0, d2, d3, . . . , dN with
d2, . . . , dN ∈ N. Let Vj be the set of all vertices in C with stack size (

∑j
i=1 di)

aj for all
j ≤ N . Let X be a collection of N h-strips on a plane with exactly one h-strip per row
for y = 1, 2, . . . , N . Call these h-strips S1, S2, . . . , SN , containing |V1|, |V2|, . . . , |VN | unit
squares, respectively, with Si spanning y-coordinates i − 1 to i for all i ≤ N . Arrange
these strips so that dj is equal to the x-distance from the leftmost coordinate of Sj−1 to
the rightmost coordinate of Sj. X is a board-pile polyomino if and only if it is a connected
plane figure.

In particular, we must prove that dj+1 ≤ |Vj |+ |Vj+1| − 1 for all j. This will imply that
every pair of strips |Sj | and |Sj+1| are connected edge on edge, proving that a single board-
pile polyomino will result rather than a number of disconnected board-pile polyominoes in
the plane.

By contradiction, suppose dj+1 > |Vj |+ |Vj+1| − 1 for some j. Then, following the initial

firing, the vertices of Vj would each have (
∑j

i=1 di) + |Vj+1| + r chips, where r represents
the difference between the number of vertices richer than those in Vj+1 and the number
of vertices poorer than those in Vj . Also, following the initial firing, the vertices of Vj+1

would each have (
∑j+1

i=1 di)−|Vj |+ r chips. Since C is a period configuration, we know that

(
∑j

i=1 di) + |Vj+1| + r > (
∑j+1

i=1 di) − |Vi| + r. But, this implies that dj+1 < |Vj+1| + |Vj |
which implies that dj+1 ≤ |Vj+1| + |Vj | − 1 which contradicts our assumption. So, for all
period configurations, C, C = f(X), for some board-pile polyomino X.

Since we have shown f to be bijective, we can now count the number of period config-
urations of unlabelled complete graphs with a given number of vertices by using previous
results regarding board-pile polyominoes.

Corollary 1. The number of period configurations of a complete graph on n vertices follows
the recurrence relation an = 5an−1 − 7an−2 + 4an−3 for n ≥ 5 with initial values a1 = 1,
a2 = 2, a3 = 6, and a4 = 19.

Proof. The number of board-pile polyominoes of size n can be found in the OEIS, se-
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quence A001169 [7], and the values are exhibited in Table 1. The generating function

is x(1−x)3

(1−5x+7x2−4x3) [7]. This sequence of numbers follows the recurrence relation an =

5an−1 − 7an−2 + 4an−3 for n ≥ 5.[4]

n # of board-pile polyominoes

1 1

2 2

3 6

4 19

5 61

6 196

7 629

8 2017

9 6466

10 20727

11 66441

Table 1: Number of board-pile polyominoes containing n unit squares for 1 ≤ n ≤ 11.

By Theorem 3, the number of period configurations of an unlabelled complete graph up
to equivalence is equal to the number of board-pile polyominoes of size n. Thus, the number
of period configurations of a complete graph on n vertices follows the recurrence relation
an = 5an−1 − 7an−2 + 4an−3 for n ≥ 5 with initial values a1 = 1, a2 = 2, a3 = 6, and
a4 = 19.

In order to find the explicit formula, we must perform some algebra:

an = 5an−1 − 7an−2 + 4an−3

an − 5an−1 + 7an−2 − 4an−3 = 0 Let an = xn

xn − 5xn−1 + 7xn−2 − 4xn−3 = 0

xn−3(x3 − 5x2 + 7x− 4) = 0

x3 − 5x2 + 7x− 4 = 0

The roots of this equation are α1 ≈ 3.2056, α2 ≈ 0.8972 − 0.6655i, and α3 ≈ 0.8972 +
0.6655i.

The solution for the kth value of this recurrence is

3
∑

i=1

−

(

−7αi
−2 + 13αi

−1 − 5
)

(αi)
k

(192αi
−2 − 224αi

−1 + 80 )αi
−1
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This can be rewritten as ak = c1(α1)
k + c2(α2)

k + c3(α3)
k. The dominating term, out

of these three roots, is the one which has the greatest modulus. These values are roughly
3.2056, 1.1171, and 1.1171. Thus, in the equation ak = c1(α1)

k + c2(α2)
k + c3(α3)

k +
c4(α4)

k, the dominant term is c1(α1)
k ≈ (0.1809)(3.2056) k.

Corollary 2. ak has an asymptotic value of 0.1809 × 3.2056k.

5 Period Configurations of Labelled Complete Graphs

How many period configurations exist on labelled complete graphs? We know that a con-
figuration C is a period configuration if and only if f−1(C) is a board-pile polyomino.

Our method must involve finding all labelled ordered partitions of the vertices. Then,
given a labelled ordered partition, we must determine the number of ways that the ith part
can be connected edge on edge with parts i− 1 and i+ 1.

Let Kn be a complete graph. The number of labelled ordered partitions of a complete
graph is just the ordered Bell numbers [6]. We can view this as all of the ways that a set of
labelled unit squares can be grouped together into ordered strips but without yet affixing
the strips together to form a polyomino.

For every possible ordered partition, we must determine all of the possible stack sizes
which could be shared by the vertices in each respective part. Recall that this is equivalent
to determining all of the ways that an ordered set of strips can be oriented with respect to
each other so as to create a polyomino.

For each period orientation of Kn, assign all possible stack sizes by using the product
∏N

i=1(|Si−1+ |Si|− 1) (the product of the number of ways each strip Si with length |Si| can
be adjacent to its neighbours). Give the period orientations of Kn some ordering from 1 to

R(Kn). Let |S
j
i | be the length of the ith strip in the jth period orientation of Kn. Then we

reach that the number of labelled period configurations that exist on Kn is

R(Kn)
∑

j=1

N
∏

i=1

(|Sj
i−1|+ |Sj

i | − 1).

Theorem 4. The number of period configurations which exist on a labelled complete graph
with n vertices is

R(Kn)
∑

j=1

N
∏

i=1

(|Sj
i−1|+ |Sj

i | − 1).

6 Open Problems

Prior to this result using polyominoes, the only results for counting period configurations
in Parallel Diffusion were on paths and stars [6]. It remains an open problem to count all
of the period configurations up to equivalence on many other families of graphs like cycles,
trees, and complete bipartite graphs. Much of the work on Parallel Diffusion since Long
and Narayanan [5] proved the conjecture from Duffy et al. [3] has been on variations to
the rules. However, there remain many questions about pre-period configurations that have
not been answered in addition to the questions about counting period configurations. As
for the relationship between Parallel Diffusion and polyominoes, very little is known. Are
there properties of polyominoes in general (rather than just board-pile polyominoes) that
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can aid in our understanding of complete graphs in Parallel Diffusion? Conversely, can the
research into Parallel Diffusion answer any questions in the field of polyominoes? Since
there seems to be no reason to believe that polyominoes will be useful in analyzing any
graphs other than the complete graph in Parallel Diffusion, the result that would be most
satisfying would be one that relates general polyominoes to pre-period configurations of the
complete graph and characterizes the period configurations (board-pile polyominoes) based
on these pre-period configurations.
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