
FAST GRAPH KERNEL WITH OPTICAL RANDOM FEATURES

Hashem Ghanem Nicolas Keriven Nicolas Tremblay

CNRS, GIPSA-lab, FR-38402 Saint Martin d’Heres Cedex, France

ABSTRACT

The graphlet kernel is a classical method in graph classifica-
tion. It however suffers from a high computation cost due to
the isomorphism test it includes. As a generic proxy, and in
general at the cost of losing some information, this test can
be efficiently replaced by a user-defined mapping that com-
putes various graph characteristics. In this paper, we propose
to leverage kernel random features within the graphlet frame-
work, and establish a theoretical link with a mean kernel met-
ric. If this method can still be prohibitively costly for usual
random features, we then incorporate optical random features
that can be computed in constant time. Experiments show that
the resulting algorithm is orders of magnitude faster that the
graphlet kernel for the same, or better, accuracy.

Index Terms— Optical random features, Graph kernels

1. INTRODUCTION

In mathematics and data science, graphs are used to model a
set of objects (the nodes) and their interactions (the edges).
Given a set of pre-labeled graphs (X = {G1, . . . ,Gn},Y =
{y1, . . . , yn}), where each graph Gi belongs to the class with
label yi, graph classification consists in designing an algo-
rithm that outputs the class label of a new graph. For in-
stance, proteins can be modeled as graphs: amino acids are
nodes and the chemical links between them are edges. They
can be classified to enzymes and non-enzymes [1]. In social
networks analysis, post threads can be modeled with graphs
whose nodes are users and edges are replies to others’ com-
ment [2]. One task is then to discriminate between discussion-
based and question/answer-based threads [3]. In addition to
the graph structure, nodes and edges may have extra features.
While it has been shown that node features are important to
obtain high classification performance [4], here we focus on
the case where one has only access to the graph structure.

Structure-based graph classification has been tackled with
many algorithms. Frequent subgraphs based algorithms [5]

The authors warmly thank LightOn (https://lighton.ai) for the
use of the OPU. HG is supported by the LabEx PERSYVAL (ANR-11-
LABX-0025-01) “Bourse d’excellence”. NT is partly supported by the
French National Research Agency in the framework of the ”Investissements
d’avenir” program (ANR-15-IDEX-02) and the LabEx PERSYVAL (ANR-
11-LABX-0025-01); as well as the ANR GraVa (ANR-18-CE40-0005).

analyze the graph datasetX to catch the frequent and discrim-
inative subgraphs and use them as features. Kernel-based al-
gorithms [6] can be used by defining similarity functions (ker-
nels) between graphs. An early and popular example is the
graphlet kernel, which computes frequencies of subgraphs. It
is however known to be quite costly to compute [7], in par-
ticular due to the presence of graph isomorphism tests. While
possible in particular cases [7], accelerating the graphlet ker-
nel for arbitrary datasets remains open. Finally, graph neural
networks (GNNs) [8] have recently become very popular in
graph machine learning. They are however known to exhibit
limited performance when node features are unavailable [9].

In kernel methods, random features are an efficient ap-
proximation method [10, 11]. Recently, it has been shown
[12] that optical computing can be leveraged to compute such
random features in constant time in any dimension – within
the limitations of the current hardware, here referred to as
Optical Processing Units (OPUs). The main goal of this pa-
per is to provide a proof-of-concept answer to the follow-
ing question: can OPU computations be used to reduce the
computational complexity of a combinatorial problem like the
graphlet kernel? Drawing on a connection with mean kernels
and Maximum Mean Discrepancy (MMD) [13], we show,
empirically and theoretically, that a fast and efficient graph
classifier can indeed be obtained with OPU computations.

2. BACKGROUND

First, we present the concepts necessary to define the graphlet
kernel. We represent a graph of size v by the adjacency ma-
trix A ∈ {0, 1}v×v , such that ai,j = 1 if there is an edge
between nodes {i, j} and 0 otherwise. Two graphs are said to
be isomorphic (G ∼= G′) if we can permute the nodes of one
such that their adjacency matrices are equal [14].

2.1. Isomorphic graphlets

In this paper, we will, depending on the context, manipulate
two different notions of k-graphlets (that is, small graphs of
size k): with or without discriminating isomorphic graphlets.
We denote by H̄ = {H̄1, ..., H̄N̄k

} with N̄k = 2
k(k−1)

2 the
set of all size-k graphs, where isomorphic graphs are counted
multiple times, and H = {H1, ...,HNk

} ⊂ H̄ the set of all
non-isomorphic graphs of size k. Its size Nk has a (quite

ar
X

iv
:2

01
0.

08
27

0v
1

 [
cs

.L
G

]
 1

6
O

ct
 2

02
0

https://lighton.ai

verbose) closed-from expression [15], but is still exponential
in k. In the course of this paper, we shall manipulate map-
pings ϕ(H) and probability distributions (histograms) over
graphlets. By default the underlying space will be H̄, how-
ever when the mapping ϕ is permutation-invariant, then the
underlying space can be thought of as H. Also note that, as-
suming each isomorphic copies has equal probability, a prob-
ability distribution over H̄ can be folded into one over H, and
both distributions contain the same amount of information.

2.2. The graphlet kernel

The traditional graphlet kernel is defined by computing his-
tograms of subgraphs over non-isomorphic graphlets H. We
define the matching function ϕmatchk (F) =

[
1(F∼=Hi)

]Nk

i=1
∈

{0, 1}Nk , where F is a graph of size k. In words, ϕmatchk (F)
is a one-hot vector of dimension Nk identifying F up to iso-
morphism. Note that the cost of evaluating ϕmatchk once is
O
(
NkC

∼=
k

)
, where C∼=k is the cost of the isomorphism test

between two graphs of size k, for which no polynomial al-
gorithm is known [16]. Given a graph G of size v, let FG =
{F1,F2, . . . ,F(v

k)
} be the collection of subgraphs induced

by all size-k subsets of nodes. The following representation
vector is called the k-spectrum of G:

fG =
(
v
k

)−1∑
F∈FG ϕ

match
k (F) ∈ RNk (1)

For two graphs G,G′, the graphlet kernel [7] is then defined
as fTG fG′ . For a graph of size v, the computation cost of fG
is Cgk = O

((
v
k

)
NkC

∼=
k

)
. This cost is usually prohibitively

expensive, since each three terms are exponential in k.
Subgraph sampling is generally used as a first step to

accelerate (and sometimes modify) the graphlet kernel [7].
Given a graph G, we denote by Sk(G) a sampling process that
yields a random subgraph of G, seen as a probability distribu-
tion over H̄. Then, sampling s subgraphs F̂G = {F1, ..., Fs}
i.i.d. from Sk(G), we define the estimator:

f̂G,Sk
= s−1

∑
F∈F̂G ϕ

match
k (F). (2)

and its expectation fG,S = EF∼Sk(G) ϕ
match
k (F), which is

nothing more than the folding of the distribution Sk(G) over
non-isomorphic graphlets H. For any sampler, we refer to
these expectations as graphlet kernels. In all generality, any
choice of sampling procedure Sk yields a different defini-
tion of graphlet kernel. For instance, if one considers uni-
form sampling (Sunif : independently samples k nodes of G
without replacement), then one obtains the original graphlet
kernel of Eq. (1): fG,Sunif = fG . Other choices of sampling
procedures are possible [17]. In this paper, we will also use
the random walk (RW) sampler, which, unlike uniform sam-
pling, tends to sample connected subgraphs. The computation
cost per graph of the approximate graphlet kernel of Eq. (2)
is Cgk+gs = O

(
sCSNkC

∼=
k

)
, where CS is the cost of sam-

pling one subgraph. For a fixed error in estimating fG,S , the

required number of samples s generally needs to be propor-
tional to Nk [7], which unfortunately still yields a generally
unaffordable algorithm.

Algorithm 1: GSA-ϕ generic algorithm
Input: labeled graph dataset X = (Gi, yi)i=1,...,n

1 Tools Graphlet sampler Sk, a function ϕ : H̄→ Rm,
a linear classifier (ex. SVM)

2 Hyperparameters s: number of graphlet samples
Output: Trained model to classify graphs

3 Algorithm
4 for Gi in X do
5 fi = 0 (null vector of size m)
6 for j = 1 : s do
7 Fi,j ← Sk(Gi)
8 fi ← fi + 1

sϕ(Fi,j)

9 Train the classifier on the vector dataset (fi, yi)
n
i=1

3. GRAPHLET KERNEL WITH OPTICAL MAPS

3.1. Proposed method

In this paper, we focus on the main remaining bottleneck of
the graphlet kernel, that is, the function ϕmatchk . We define a
framework where it is replaced with a user-defined map ϕ :
H̄→ Rm, which leads to the final representation:

f̂G,Sk,ϕ = s−1
∑
F∈F̂G ϕ(F). (3)

The resulting methodology (Alg. 1) is referred to as Graphlet
Sampling and Averaging (GSA-ϕ). The cost of computing (3)
is CGSA−ϕ = O (sCSCϕ), where Cϕ is the cost of applying
ϕ. Similar methods have been studied with ϕ as simple graph
statistics [18], which unavoidably incurs information loss. We
see next that choosing ϕ as kernel random features preserves
information for a sufficient number of features. Some of these
maps will not be permutation-invariant at the graphlet level,
however, in the infinite sample limit, it is easy to see that
f̂G,Sk,ϕ is permutation-invariant at the graph level.

3.2. Kernel random features with GSA− ϕ

In the graphlet kernel, the underlying metric used to compare
graphs is the Euclidean distance between graphlet histograms.
When ϕmatchk is replaced by another ϕ, one compares certain
embeddings of distributions, which is reminiscent of kernel
mean embeddings [13]. We show below that this corresponds
to choosing ϕ as kernel random features.

For two objects x,x′, a kernel κ associated to a random
features (RF) decomposition is a positive definite function
that can be decomposed as follows [10]:

κ(x,x′) = Ew∼p[ξw(x)∗ξw(x′)] (4)

where ξ is a real (or complex) function parameterized by w ∈
Ω, and p a probability distribution on Ω. A classical exam-
ple is the Fourier decomposition of translation-invariant ker-
nels [10]. The RF methodology then defines maps:

ϕ(x) = m−1/2(ξwj (x))mj=1 ∈ Cm (5)

where m is the number of features and the parameters wj

are drawn iid from p. Then, κ(x,x′) ≈ ϕ(x)Hϕ(x′) =
m−1

∑
j ξwj (x)∗ξwj (x′).

Assume that we have a base kernel κ(F ,F ′) between
graphlets, with a RF decomposition (ξw, p), and define ϕ as
in (5). Then, one can show [19, 20] that the Euclidean dis-
tance between the embeddings (3) approximates the follow-
ing Maximum Mean Discrepancy (MMD) [13, 21] between
distributions on H̄:

MMD2(Sk(G), Sk(G′))

= Ew

(∣∣ESk(G)ξw(F)− ESk(G′)ξw(F ′)
∣∣2) (6)

The main property of the MMD is that, for so-called char-
acteristic kernels, it is a true metric on distributions, i.e.
MMD(Sk(G), Sk(G′)) = 0 ⇔ Sk(G) = Sk(G′). Most usual
kernels, like the Gaussian kernel, are characteristic [13, 21].

Theorem 1. Let G and G′ be two graphs. Assume a random
feature map as in (5). Assume that |ξw(F)| ≤ 1 for any w, F .
We have for all δ > 0 and with probability at least 1− δ:∣∣∣‖f̂G,Sk,ϕ − f̂G′,Sk,ϕ‖22 −MMD2(Sk(G), Sk(G′))

∣∣∣
≤ 4m−

1
2

√
log(6/δ) + 8s−

1
2

(
1 +

√
2 log(3/δ)

)
(7)

Proof. See the supplementary material [?].

Hence, if two classes of graphs are well-separated in terms
of the MMD (6), then, for sufficiently large m, s, GSA-ϕ has
the same classification power. However, according to (7), m
should be of the order of s, and we have seen that the latter
generally needs to be quite large: most usual random feature
scheme, typically in Cϕ = O(k2m), still have a high compu-
tation cost. We discuss next the use of optical hardware.

3.3. Considered choices of ϕRF

Gaussian maps: the RF map of the Gaussian kernel [10].

ϕGs(F) = m−1/2
(√

2 cos(wT
j aF + bj)

)m
j=1
∈ Rm (8)

where aF = flatten(AF) is the vectorized adjacency matrix
of the graphlet F , the wj ∈ Rk2 are drawn from a Gaussian
distribution and bj ∼ U([0, 2π]). While using a Gaussian ker-
nel on aF is not very intuitive, this will serve as a baseline for
other methods. Note that ϕGs is not permutation-invariant.

Graphlet kernel O(
(
v
k

)
NkC

∼=
k)

GSA-ϕ with:

ϕmatchk O(CSsNkC
∼=
k)

ϕGs O(CSsmk
2)

ϕGs+eig O(CSs(mk + k3))
ϕOPU O(CSs)

Table 1. Per-graph complexities of GSA-ϕ.

Gaussian maps applied on the sorted eigenvalues: We con-
sider a permutation-invariant alternative to the first case. For
a graphlet F we denote the vector of its sorted eigenvalues
by λ(F) ∈ Rk and ϕGs+eig(F) = ϕGs(λ(F)) (with wj of
dimension k). Note that the existence of co-spectral graphs,
that is, non-isomorphic graphs with the same set of eigenval-
ues, implies a loss of information when computing λ(F).
Optical random feature maps: Due to high-dimensional
matrix multiplication, Gaussian RFs costO(mk2) and are no-
tably expensive to compute in high-dimension (here mostly
large m). To solve this, OPUs (Optical Processing Units)
were recently developed to compute a specific random fea-
tures mapping in constant time O(1) using light scatter-
ing [12] – within the physical limits of the OPU, currently of
the order of a few millions for both input and output dimen-
sions. Here we again consider the flattened adjacency matrix
for simplicity. The OPU computes an operation of the type:

ϕOPU (F) = m−1/2
(
|wT

j aF + bj |2
)m
j=1

with bj a random bias and wj a complex vector with Gaus-
sian real and imaginary parts. Both wj ,bj are here incurred
by the physics and are unknown, however the corresponding
kernel κ(F ,F ′) has a closed-form expression [12]. Table 1
summarizes the complexities of the mappings ϕ examined.

4. EXPERIMENTS

4.1. Datasets

Different methods are first compared in a controlled setting:
a synthetic dataset generated by a Stochastic Block Model
(SBM) [22]. We generate 300 graphs, 240 for training and 60
for testing. Each graph has v = 60 nodes divided equally in
six communities. Graphs are divided into two classes {0, 1}.
For each class we fix pin (resp. pout) the edge probability be-
tween any two nodes in the same (resp. different) community.
Also, to prevent the classes from being easily discriminated
by the average degree, the pairs (pin,i, pout,i)i=0,1 are chosen
such that nodes in both classes have the same expected degree
(set to 10). Having one degree of freedom left, we fix pin,1
to 0.3, and vary r = (pin,1/pin,0) the inter-class similarity
parameter: the closer r is to 1, the more similar both classes
are and the harder it is to discriminate them.

In addition, two real-world datasets are considered: D&D
[23] (of size n = 1178) and Reddit-Binary [3] (n = 2000).

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Inter-class similarity parameter

50%

60%

70%

80%

90%

100%

Te
st

 a
cc

ur
ac

y

k=3
k=4
k=5
k=6
m=10
m=25
m=1000

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Inter-class similarity parameter

50%

60%

70%

80%

90%

100%

Te
st

 a
cc

ur
ac

y

OPU RFs k=3
OPU RFs k=4
OPU RFs k=5
GIN-based GCN model
Graphlet kernel k=6

Fig. 1. (left) GSA − ϕOPU with uniform sampling (s =
2000) for different k (m fixed to 5000) and m (k fixed to
6). (right) Comparison between i/ GSA − ϕOPU with RW
sampling for different k; ii/GSA−ϕmatchk with same number
of samples and random features (s = 2000, m = 5000);
iii/ the GNN consisting of 5 GIN layers [9] followed by 2
fully connected layers, with dimension of hidden layers 4.

We recall that graphs are classified based on their struc-
ture only and all other existing information is discarded.
Python codes can be found here: https://github.
com/hashemghanem/OPU_Graph_Classifier. The
OPU is developped by LightOn (https://lighton.ai).
The rest of the experiments are performed on a laptop.

4.2. Varying m, k and Sk in GSA− ϕOPU

From Fig. 1 (left), we observe that as k and/orm increase, the
performance ofGSA−ϕOPU associated to uniform sampling
increases, saturating in this SBM dataset for m = 5000 and
k = 6. From the right figure, as expected, note that RW
sampling outperforms uniform sampling: the smaller k, the
larger the improvement.

4.3. Choice of feature map ϕ

Comparison of random features. Fig 2 (left) shows that, for
sufficiently largem, GSA−ϕOPU outperforms bothGSA−
ϕGs+Eig and GSA − ϕGs (whose variance σ2 is chosen so
as to maximize the validation accuracy).
Comparing GSA−ϕOPU and GSA−ϕmatchk . From Fig 1
(right) we observe that with s = 2000 andm = 5000,GSA−
ϕOPU with both uniform sampling (k = 6) and RW sampling
(k = 5) clearly outperforms the graphlet kernel with k = 6.
Computational time. Fig 2 (right) compares computation
time per subgraph, with respect to the subgraph size k. As
expected, the execution time is exponential with k forGSA−
ϕmatchk , roughly polynomial for GSA − ϕGs and GSA −
ϕGs+Eig , and constant for GSA− ϕOPU .

4.4. Comparing GSA− ϕOPU and a GNN model

In Fig 1, we see that GSA−ϕOPU with either RW sampling
(k ≥ 4) or uniform sampling (k ≥ 5) performs better than
a deep GNN, specifically a model based on GIN layers [9].
GNNs are known to struggle in the absence of node features.

101 102 103

Number of random features

70%

75%

80%

85%

90%

95%

100%

Te
st

 a
cc

ur
ac

y

OPU random features
Gaussian random features
Gaussian Rf with Eigenvalues

5 10 15 20 25 30 35
Graphlet size

10 3

10 2

Co
m

pu
ta

tio
n

tim
e

(S
EC

)

OPU RFs
Graphlet kernel
GS RFs
GS RFs + Eig

Fig. 2. (left) Test accuracy versus m, for different maps ϕ in
GSA−ϕ. (right) Computation time versus k forGSA−ϕ and
the graphlet kernel. These figures are for r = 1.1, s = 2000,
m = 5000 and a Gaussian map variance σ2 = 0.01.

101 102 103

Number of random features

70%

72%

74%

76%

78%

80%

Te
st

 a
cc

ur
ac

y

OPU RFs (all exps)
OPU RFs (avg)
Graphlet kernel

101 102 103

Number of random features

65%

70%

75%

80%

Te
st

 a
cc

ur
ac

y

OPU RFs (all experiments)
OPU RFs (average)
Graphlet kernel

Fig. 3. GSA − ϕ vs the graphlet kernel on real datasets.
(left) D&D. (right) Reddit-Binary. With s = 4000, and k = 7.

4.5. GSA− ϕOPU on real datasets

Fig 3 shows the test accuracy of GSA − ϕOPU versus m,
for two real datasets, compared with the graphlet kernel as
a baseline. For each value of m we conduct the experiment
3 times on D&D and 4 times on Reddit-Binary dataset. For
D&D, no steady improvement in the average accuracy is ob-
served, however its variance between experiments decreases
as m increases. This average is still better than the accuracy
obtained by GSA − ϕmatchk . For Reddit-Binary, the average
accuracy increases with the number of random features, and
outperforms GSA− ϕmatchk for m ≥ 5000.

5. CONCLUSION

In this paper, we deployed OPUs random features in graph
classification within the graphlet kernel framework. On the
theoretical side, we showed concentration of the random
embedding around an MMD metric between graphlet his-
tograms, hinting at the potential of OPUs in such a combina-
torial setting to reduce computation costs without information
loss. On the practical side, our experiments showed that the
proposed algorithm is significantly faster than the graphlet
kernel with generally better performance. A major point
left open is how to use the OPU in the presence of node
features. A promising possibility is to integrate it within a
message-passing framework to efficienty generate high-level
embeddings that also use node features. On the theoreti-
cal side, the properties of the MMD metric could be further
analyzed on particular models of graphs such as SBMs.

https://github.com/hashemghanem/OPU_Graph_Classifier
https://github.com/hashemghanem/OPU_Graph_Classifier
https://lighton.ai

6. REFERENCES

[1] Giannis Nikolentzos, Polykarpos Meladianos, and
Michalis Vazirgiannis, “Matching node embeddings for
graph similarity,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[2] Pinar Yanardag and SVN Vishwanathan, “Deep graph
kernels,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2015, pp. 1365–1374.

[3] Christopher Morris, Nils M Kriege, Franka Bause, Kris-
tian Kersting, Petra Mutzel, and Marion Neumann, “Tu-
dataset: A collection of benchmark datasets for learning
with graphs,” arXiv preprint arXiv:2007.08663, 2020.

[4] Chi Thang Duong, Thanh Dat Hoang, Ha The Hien
Dang, Quoc Viet Hung Nguyen, and Karl Aberer, “On
node features for graph neural networks,” arXiv preprint
arXiv:1911.08795, 2019.

[5] X Yan and J Han, “gspan: Graph-based substructure
pattern mining, 2002,” Published by the IEEE Computer
Society, 2003.

[6] Nils M Kriege, Fredrik D Johansson, and Christopher
Morris, “A survey on graph kernels,” Applied Network
Science, vol. 5, no. 1, pp. 1–42, 2020.

[7] Nino Shervashidze, SVN Vishwanathan, Tobias Petri,
Kurt Mehlhorn, and Karsten Borgwardt, “Efficient
graphlet kernels for large graph comparison,” in Arti-
ficial Intelligence and Statistics, 2009, pp. 488–495.

[8] Michael M. Bronstein, Joan Bruna, Yann Lecun, Arthur
Szlam, and Pierre Vandergheynst, “Geometric Deep
Learning: Going beyond Euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[9] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka, “How powerful are graph neural networks?,”
arXiv preprint arXiv:1810.00826, 2018.

[10] Ali Rahimi and Benjamin Recht, “Random features for
large-scale kernel machines,” in Advances in neural in-
formation processing systems, 2008, pp. 1177–1184.

[11] Aman Sinha and John C Duchi, “Learning kernels with
random features,” in Advances in Neural Information
Processing Systems, 2016, pp. 1298–1306.

[12] Alaa Saade, Francesco Caltagirone, Igor Carron, Lau-
rent Daudet, Angélique Drémeau, Sylvain Gigan, and
Florent Krzakala, “Random projections through mul-
tiple optical scattering: Approximating kernels at the
speed of light,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2016, pp. 6215–6219.

[13] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,
Bernhard Schölkopf, and Alexander J. Smola, “A Ker-
nel Method for the Two-Sample Problem,” in Advances
in Neural Information Processing Systems (NIPS), 2007,
pp. 513–520.

[14] Johannes Kobler, Uwe Schöning, and Jacobo Torán, The
graph isomorphism problem: its structural complexity,
Springer Science & Business Media, 2012.

[15] OEIS Foundation Inc., “The online encyclopedia of in-
teger sequences, https://oeis.org/a000088,” 2019.

[16] Anna Lubiw, “Some np-complete problems similar to
graph isomorphism,” SIAM Journal on Computing, vol.
10, no. 1, pp. 11–21, 1981.

[17] Jure Leskovec and Christos Faloutsos, “Sampling from
large graphs,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, 2006, pp. 631–636.

[18] Anjan Dutta and Hichem Sahbi, “Stochastic Graphlet
Embedding,” IEEE Transactions on Neural Networks
and Learning Systems, 2018.

[19] Nicolas Keriven, Anthony Bourrier, Rémi Gribonval,
and Patrick Pérèz, “Sketching for Large-Scale Learn-
ing of Mixture Models,” Information and Inference: A
Journal of the IMA, vol. 7, no. 3, pp. 447–508, 2018.

[20] Nicolas Keriven, Damien Garreau, and Iacopo Poli,
“NEWMA: a new method for scalable model-free on-
line change-point detection,” IEEE Transactions in Sig-
nal Processing, vol. 68, pp. 3515–3528, 2020.

[21] Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fuku-
mizu, Bernhard Schölkopf, and Gert R.G. Lanckriet,
“Hilbert space embeddings and metrics on probability
measures,” The Journal of Machine Learning Research,
vol. 11, pp. 1517–1561, 2010.

[22] Thorben Funke and Till Becker, “Stochastic block mod-
els: A comparison of variants and inference methods,”
PloS one, vol. 14, no. 4, 2019.

[23] Paul D Dobson and Andrew J Doig, “Distinguish-
ing enzyme structures from non-enzymes without align-
ments,” Journal of molecular biology, vol. 330, no. 4,
pp. 771–783, 2003.

[24] Ali Rahimi and Benjamin Recht, “Weighted sums of
random kitchen sinks: Replacing minimization with
randomization in learning,” in Advances in Neural In-
formation Processing Systems (NIPS), 2009.

Appendices
A. PROOF OF THEOREM 1

Proof. We decompose the proof in two steps.
Step 1: infinite s, finite m. First we define the random

variables xj = |EF∼Sk(G)ξwj
(F) − EF ′∼Sk(G′)ξwj

(F ′)|2,
which are: i/independent, ii/have expectationMMD(Sk(G), Sk(G′))2,
/iii are bounded by the interval [0, 4] based on our assumption
|ξw| ≤ 1. Thus, as a straight result of applying Hoeffding’s
inequality with easy manipulation: with probability 1− δ∣∣∣ 1

m

m∑
j=1

xj −MMD(Sk(G), Sk(G′))2
∣∣∣ ≤ 4

√
log(2/δ)√
m

(9)

Step 2: finite s and m. For any fixed set of random
features {wj}1,...,m and based on our previous assumptions
we have: i/ ϕ is in a ball of radius M =

√
m√
m

= 1, ii/
EF∼Sk(G) ϕ(F) = E

(
1
s

∑
i ϕ(Fi)

)
. Therefore, we can di-

rectly apply a vector version of Hoeffding’s inequality [24,
Lemma 4] on the vectors 1

s

∑
i ϕ(Fi) to get that with proba-

bility 1− δ:∥∥∥∥∥EF∼Sk(G)ϕ(F)− 1

s

∑
i

ϕ(Fi)

∥∥∥∥∥ ≤ 1 +
√

2 log 1
δ√

s
(10)

Defining Jexp(G,G′) = ‖EF∼Sk(G)ϕ(F)−EF ′∼Sk(G′)ϕ(F ′)‖
and Javg(G,G′) = ‖ 1

s

∑
i ϕ(Fi) − 1

s

∑
i ϕ(F ′i)‖, then using

triangular inequality followed by a union bound based on
(10), we have the following with probability 1− 2δ,

∣∣∣Jexp(G,G′)− Javg(G,G′)∣∣∣ ≤ 2√
s

(
1 +

√
2 log

1

δ

)

On the other hand, Jexp(G,G′)+Javg(G,G′) ≤ 4, so with
same probability:

∣∣∣Jexp(G,G′)2 − Javg(G,G′)2
∣∣∣ ≤ 8√

s

(
1 +

√
2 log

1

δ

)
(11)

Since it is valid for any fixed set of random features, it is also
valid with joint probability on random features and samples,
by the law of total probability.

Finally, combining (9), (11) with a union bound and a tri-
angular inequality, we have with probability 1− 3δ,∣∣∣‖f̂G,Sk,ϕ − f̂G′,Sk,ϕ‖22 −MMD(G,G′)2

∣∣∣ ≤
4
√

log(2/δ)√
m

+
8√
s

(
1 +

√
2 log

1

δ

)

which concludes the proof by taking δ as δ/3.

	1 Introduction
	2 Background
	2.1 Isomorphic graphlets
	2.2 The graphlet kernel

	3 Graphlet kernel with optical maps
	3.1 Proposed method
	3.2 Kernel random features with GSA-
	3.3 Considered choices of RF

	4 Experiments
	4.1 Datasets
	4.2 Varying m, k and Sk in GSA-OPU
	4.3 Choice of feature map
	4.4 Comparing GSA-OPU and a GNN model
	4.5 GSA-OPU on real datasets

	5 Conclusion
	6 References
	Appendices
	A Proof of Theorem 1

