
Prepared for submission to JHEP

Planar Kinematics: Cyclic Fixed Points, Mirror

Superpotential, k-Dimensional Catalan Numbers, and

Root Polytopes

Freddy Cachazo and Nick Early

Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada

E-mail: fcachazo@pitp.ca, earlnick@gmail.com

Abstract: In this paper we prove that points in the space X(k, n) of configurations of n

points in CPk−1 which are fixed under a certain cyclic action are the solutions to the general-

ized scattering equations on planar kinematics (PK). In the first part, we give a constructive

upper bound: we show that these solutions inject into certain aperiodic k-element subsets

of {1, . . . , n}, and consequently that their number is bounded above by the number of Lyn-

don words with k one’s and n-k zeros. The proof uses a somewhat surprising connection

between the superpotential of the mirror of G(n−k, n) and the generalized CHY potential on

X(k, n). We also check the recent conjecture that generalized biadjoint amplitudes evaluate

to k-dimensional Catalan numbers on PK for several examples including k = 3 and n ≤ 40

and (k, n) = (6, 13). We then reformulate the CEGM generalized biadjoint scalar amplitude

directly as a Laplace transform-type integral over Trop+G(k, n) and we use it to evaluate the

amplitude on PK with the purpose of exhibiting how GFD’s glue together.

We initiate the study of two minimal lattice polytopal neighborhoods of the planar kine-

matics point. One of these, the rank-graded root polytope Rk,n, in the case k = 2, is a

projection of the standard type A root polytope. The other, denoted Πk,n, in the case k = 2,

is a degeneration of the associahedron. We check up to and including R3,9 and R4,9 that the

relative volume of Rk,n is the multi-dimensional Catalan number C
(k)
n−k, hinting towards the

possibility of deeper geometric and combinatorial interpretations of m(k)(In, In) near the PK

point.
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1 Introduction

Motivated by Cachazo-He-Yuan (CHY) definition of biadjoint double partial amplitudes,

mn(I, I), as integrals over the configuration space of n points on CP1 localized to points

satisfying the scattering equations [1–5], Guevara, and Mizera and the two authors (CEGM)
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introduced a generalization of the CHY formulation that uses the configuration space of n

points on CPk−1 [6–8] usually denoted by X(k, n). This also led to generalized biadjoint

amplitudes m
(k)
n (I, I).

In 2013, CHY noticed that the kinematic invariants of all possible planar poles in a

k = 2 biadjoint amplitude form a basis of the corresponding kinematic space [3]. Using this

fact CHY set all planar kinematic invariants to unity so that each planar Feynman diagram

contributes exactly 1 to the amplitude leading to the result that m
(2)
n (I, I) = Cn−2 with Cm

the mth Catalan number.

Very recently in [9] the authors proposed a generalization of the k = 2 planar-basis

kinematics to all k and n using the planar basis introduced by the second author in [10].

This kinematics turns out to be a single integer point in the kinematic space which we call

the PK point. In [9] the scattering equations were solved for k = 3 and n = 5, 6, 7, 8 and

the corresponding CEGM biadjoint amplitudes were evaluated. The explicit results led the

authors to conjecture that these amplitudes evaluate to the k-dimensional Catalan numbers

(see O.E.I.S. A060854 [11]), i.e.

m(k)
n (I, I) = C

(k)
n−k. (1.1)

Clearly, C
(2)
n−2 coincides with the standard Catalan numbers.

In this note we continue the study of the scattering equations evaluated on the PK point,

and its deformations: this culminates in Section 10 where we initiate the study of two minimal

polytopal neighborhoods in the integer lattice in the kinematic space which are closely linked

to the evaluation of the amplitude. Here the PK point is the integer point in the kinematic

space where a certain family of
(
n
k

)
linear functions, denoted ηJ for J a k-element subset of

{1, . . . , n}, on the kinematic space are either 0 or 1.

A linear functional ηJ , introduced in Section 10.1 is dual to piecewise linear surface

over a hypersimplex, pinned to to one of its vertices such that the bends define a tropical

hypersurface called a blade. In [12] it was shown that matroidal blade arrangements on

a hypersimplex ∆k,n are in bijection with weakly separated collections1 and thus could be

viewed as living inside the homogeneous component of a subalgebra of the cluster algebra of

the Grassmannian G(k, n).

Here the linear functions ηJ are constructed by lifting certain positroidal multi-split

matroid subdivisions of the hypersimplex ∆k,n to a piecewise linear surface and pairing with

a point in the kinematic space. See Equation (10.10) for the definition and [10] and [14] for

details and related constructions in combinatorics and applications to generalized Feynman

diagrams.

Specifically, ηJ = 0 for cyclically consecutive subsets J = {i, i + 1, . . . , i + (k − 1)} and

ηJ = 1 for all of the remaining k-element subsets of {1, . . . , n}. Solving these
(
n
k

)
equations

gives the point in kinematic space which we call planar kinematics.

1The weak separation condition was introduced by Leclerc and Zelevinsky in [13].
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The solution has the following simple formula. Fixing a planar ordering such as the

canonical order I := (1, 2, . . . , n− 1, n), set

s12...k = s23...k+1 = . . . = sn1...k−1 = 1, (1.2)

sn1...k−2,k = s12...k−1,k+1 = . . . = sn−1,n...k−3,k−1 = −1,

where all other sJ are set to zero.

The fact that the kinematics is cyclically invariant, i.e., invariant under a cyclic shift of

the labels i→ i+ 1 mod (n), motivated us to look for solutions with the same property. In

other words, we are interested in points in X(k, n) which are fixed under a cyclic shift. In

Sections 3, 4 and 5, we find all such points and prove that they are indeed all the solutions

to the scattering equations on planar kinematics. Some such points do not lie in X(k, n) but

in its compactification X(k, n).

The proof, given in Section 4, uses that there is a very close relation between the scattering

equations on planar kinematics, i.e. the equations for the critical points of

S(PK)
k,n =

n∑
i=1

log

(
∆i,i+1,...i+(k−2),i+(k−1)

∆i,i+1,...i+(k−2),i+k

)
(1.3)

and those for the critical points of the superpotential in the theory mirror to the Grassmannian

G(n− k, n) introduced by Marsh and Rietsch in [15]

Fq :=
n∑

i=1, i 6=n−k

∆i,i+1,...,i+(k−2),i+k

∆i,i+1,...,i+(k−2),i+(k−1)
+ q

∆n−k,n−k+1,...,n−1,1
∆n−k,n−k+1,...,n−1,n

. (1.4)

Here ∆i1,i2...,ik are the Plucker coordinates of G(k, n) and q is a parameter.

In [16] Karp proved that all critical points of the mirror superpotential, Fq, are in fact

fixed points under a cyclic action. Our proof provides the criteria for a fixed point in G(k, n)

to descend to one in X(k, n) and become a critical point of S(PK)
k,n . In Section 5, we prove

that these solutions inject into aperiodic k-element subsets of {1, . . . , n}, and consequently

that their number is bounded above by the number of Lyndon words with k one’s and n-k

zeros.

The construction of the fixed points is explicit and therefore it is possible to evaluate the

CEGM biadjoint amplitudes on them. In Section 6, we develop new techniques to evaluate

the CEGM biadjoint amplitude, for k=3,4 in particular.

In Section 7, we perform the explicit evaluations up to (k, n) = (3, 40), (k, n) = (4, 29),

(k, n) = (5, 19), and (k, n) = (6, 13). In all cases we find perfect agreement with the k-

dimensional Catalan numbers.

Since the 2-dimensional Catalan numbers count planar Feynman diagrams and CEGM

biadjoint amplitudes have been related to the positive tropical Grassmannian Trop+G(k, n),

it is natural to ask what the k-dimensional Catalan numbers are counting. The CEGM
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biadjoint amplitudes have also been defined as the sum over generalized Feynman diagrams

(GFD) [17, 18]. However, it is known that that for k > 2 they are not counted by higher

dimensional Catalan numbers [9]. In fact, on planar kinematics individual GFD’s evaluate

to rational numbers. Motivated by this puzzle, in Section 8 we introduce an integral of

an exponentiated piecewise linear function supported on R(k−1)(n−k−1) which computes the

amplitude. The integral can be thought of as the Laplace transform of Trop+G(k, n).

In fact, in the examples we studied, when the integral is evaluated on generic kinematics

it splits into regions which coincide with individual GFD’s. However, on planar kinematics

it simplifies and the number of linear regions is much smaller. Moreover, each such region

contributes a positive integer number hinting the existence of a polytopal interpretation.

In Section 10, we initiate the study of two families of lattice polytopes which are related by

duality: first, we define rank-graded root polytopes R̂k,n, and in particular, their projections,

the root polytopes Rk,n. In the case k = 2, then R̂2,n coincides with the usual root polytope

introduced in [19], which is the convex hull of the origin together with the set of positive roots

ei − ej for i < j. Moreover, R2,n is a codimension 1 projection of it,

Also in Section 10, we initiate the study of a family of lattice polytopes Πk,n which are

in duality with the polytopes Rk,n and which specialize in the case k=2 to a degeneration of

the associahedron. We show that Πk,n minimally bounds the PK point in the integer lattice

in the kinematic space. We conjecture the expression of Πk,n as a Newton polytope.

Based on computations in SageMath of the volume of Rk,n for nontrivial values of k and

n, including R3,9 and R4,9, we finally conjecture that the rank-graded root polytope Rk,n has

volume the multi-dimensional Catalan number C
(k)
n−k, thus hinting towards a deeper polytopal

(and in particular combinatorial) interpretation of Equation (1.1).

2 Motivation: Fixed Points under a Cyclic Shift on X(k, n)

The space X(k, n) of configurations of n labeled points on CPk−1 can be represented by

selecting homogeneous coordinates for the n points and arranging them in a k × n matrix.

The space can be formally defined as

X(k, n) := SL(k)\M∗(k, n)/ (C∗)n (2.1)

where M∗(k, n) is the set of all k × n matrices with no vanishing minors. SL(k) is the

automorphism group of CPk−1 while the algebraic torus (C∗)n corresponds to the projective

action on each point.

In order to study the solutions to the scattering equations in the next section, it turns

out to be necessary to also include configurations of points represented by k × n matrices

with vanishing minors whose only constraint is that no column is identically zero (so that the

point is in CPk−1) and have maximal rank k, so that the action of SL(k) is well-defined. We

denote the extended space by X(k, n). A formal definition of X(k, n) as the compactification
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of X(k, n) is beyond the scope of this work since we are only interested in particular points

so a set-theoretic description suffices.

In order to find the points of interest we have to define a cyclic action on X(k, n). Denote

by T ↪→ GL(n) the embedding of the torus (C∗)n into the diagonal of GL(n).

With e1, . . . , en the standard basis for Cn, define a linear operator ρn ∈ GLn by

ρn(ej) = ej−1

where the indices are cyclic modulo n.

The Grassmannian G(k, n) admits a natural right-action of the cyclic group Z/n ' 〈ρn〉
generated by ρn:

ρn(g) = g · ρ−1n .

Further, letting G be the embedding of the semi-direct product T o Z/n into GL(n),

then G acts on X(k, n) from the right; in a slight abuse of terminology, we will simply say

that a torus orbit [g] that is preserved by G is a cyclic fixed point. We are interested in the

set of cyclic fixed points in X(k, n) of G.

In order to clarify the discussion which follows, let us be completely explicit about what it

means for an element of X(k, n) to be fixed by G. Given g ∈ G(k, n), denote by [g] ∈ X(k, n)

the T -orbit of g.

Proposition 2.1. An element g ∈ G(k, n) descends to a cyclic fixed point [g] ∈ X(k, n)

provided that for any λ1 ∈ T we have

(g · λ1)ρ−1n = g · λ2

for some λ2 ∈ T.

We are interested in finding all fixed points of the cyclic shift. This is easily done by using

SL(k) and the torus action to fix the first column of the k × n matrix to be (1, 1, . . . , 1)T .

Consider any row of the matrix and denote its elements as (1, x1, x2, . . . , xn−2, xn−1). The

action of the cyclic shift is

(1, x1, x2, . . . , xn−2, xn−1) −→ (x1, x2, . . . , xn−2, xn−1, 1). (2.2)

Let us impose the condition that this be a fixed point. It is often convenient to combine the

diagonal GL(1) in (C∗)n with SL(k) into a GL(k) action. In fact, in order to compare the

matrix after the shift with the original one it is necessary to apply a GL(k) transformation

that multiplies the row by 1/x1 so as to normalize the first component. Having done this we

have to require

(1, x1, x2, . . . , xn−2, xn−1) = (1, x2/x1, . . . , xn−2/x1, xn−1/x1, 1/x1). (2.3)
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These n − 1 equations are equivalent to xi = (x1)
i for i ∈ {2, 3, . . . , n − 1} and (x1)

n = 1.

Denoting q = exp 2πi/n the basic root of unity, one has n possibilities for x1 given by the

{0th, 1st, 2nd, . . . , (n− 1)th} powers of q.

It is now clear that in order to obtain a cyclic fixed point each row in k × n matrix

representative of the point must have the form(
1, ωa, ω

2
a, . . . , ω

n−1
a

)
(2.4)

with ωa := qma and ma ∈ {0, 1, . . . , n− 1}.
This amounts to a choice of k integers. However, using the torus action the last row can

be fixed to have all components equal to one, which brings down the number of choices to

k − 1. The fact that the matrix must have maximal rank requires all rows to be different

and therefore a fixed point can be labeled by a k−1 tuple {m1,m2, . . . ,mk−1}. Sometimes it

would be convenient to use a k-tuple description where the kth integer is set to be mk := n.

We alternate between descriptions based on the application.

Finally, let us describe how a given k − 1 tuple can generate k − 1 equivalent ones.

Consider a given choice {ω1, ω2, . . . , ωk−1} of distinct nth roots of unity corresponding to the

choice {m1,m2, . . . ,mk−1}. The configuration of points on CPk−1 is then given by the k × n
matrix with the ith column defined as(

1, ω
(i−1)
1 , ω

(i−1)
2 , . . . , ω

(i−1)
k−1

)T
. (2.5)

Let us choose any value b ∈ {1, 2, . . . , k − 1} and use the torus action to rescale all columns

as follows: Rescale the ith column by (1/wb)
(i−1). This has the effect of setting to 1 the

bth row of the k × n matrix defining the point on X(k, n). Using a SL(k) transformation

to permute the rows we can send the row with all 1’s to be the first one. This leads to a

new matrix defining the same configuration of points in CPk−1 but with different values of

integers. Moreover it is easy to find the new set of integers

ma →

{
ma −mb for a 6= b,

−ma for a = b.
(2.6)

When n is prime this process groups all possibilities into

1

k

(
n− 1

k − 1

)
(2.7)

classes.

When n is not prime the transformation (2.6) does not necessarily produce distinct tuples

and the number of classes has a structure that depends on the divisors of n. Clearly (2.7)

provides an upper bound. Indeed, when n is not prime a tighter upper bound can be obtained.

To this end, in Section 5, to which we refer for details and expanded discussions, we give
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an injection into the set of certain aperiodic k-element subsets of {1, . . . , n} and we give a

constructive upper bound for the number of cyclic fixed points in X(k, n).

3 Critical Points of Sk,n on Planar Kinematics

In this section we study critical points of the function on X(k, n) which is used in the definition

of generalized biadjoint amplitudes when evaluated on planar kinematics,

S(PK)
k,n =

n∑
i=1

log

(
pi,i+1,...i+(k−2),i+(k−1)

pi,i+1,...i+(k−2),i+k

)
. (3.1)

Here all indices are defined modulo n and pi1,i2,...,ik denotes the minor of a k × n matrix

representative of a point in X(k, n) made from columns {i1, i2, . . . , ik}. Note that the notation

differs from the one the introduction (1.3) which was written in terms of Plucker coordinates

of G(k, n) in which the torus variables are exhibited explicitly but as it is well-known they

completely drop out.

The aim of this section is to give a physically intuitive reason for why the critical points

of S(PK)
k,n are the cyclic fixed points discussed in the previous section. A formal proof requires

making a connection to the superpotential of the mirror of the Grassmannian G(n−k, n) and

it is postponed to Section 4.

If S(PK)
k,n is taken as a potential function describing the interaction of particles then

particle at point a only interacts with particles with indices in a range determined by the

value of k. For example, if k = 2, particle at point a only interacts with particles at points

a− 1 and a+ 1. This is known as a nearest neighbor interaction if particles are thought of as

spins on in a periodic one dimensional chain. The analogy with a spin chain is stronger if we

allow each spin to carry degrees of freedom in CPk−1.
In order to study the critical points of S(PK)

k,n it is convenient to use a strategy familiar

in statistical mechanics. We first consider the problem of an infinite number of spins on

a line and then find solutions which satisfy the correct periodic boundary conditions to be

interpreted as solutions to the problem of n spins on a circle.

3.1 Solving the Infinite Chain

Let us define the case of an infinite chain as that given by

Sk,∞ :=

∞∑
i=−∞

log

(
pi,i+1,...i+(k−2),i+(k−1)

pi,i+1,...i+(k−2),i+k

)
. (3.2)

In this function, the indices are allowed to run over all integers. It is only when we restrict

to finite n that indices will be defined modulo n.

Consider inhomogeneous variables in CPk−1 given by (1, x1, x2, . . . , xk−1). When denoting

a particular point we use (1, x
(i)
1 , x

(i)
2 , . . . , x

(i)
k−1).
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Proposition 3.1. Any (k − 1)-tuple, {ω1, ω2, . . . , ωk−1}, of non-zero and distinct complex

numbers defines a critical point of Sk,∞ given by x
(i)
a = ωi−1a .

As mentioned above, the aim of this section is to give an intuitive reason for the Propo-

sition. We do so by giving an elementary technique that we have used to prove it for values

of k < 8.

Let us illustrate the idea with the k = 2 case. We can simplify the notation and set

x
(i)
1 = yi. The critical points are obtained by setting to zero the derivative of the potential

function
∂S2,∞
∂yi

= − 1

yi−1 − yi
+

1

yi − yi+1
+

1

yi−2 − yi
− 1

yi − yi+2
. (3.3)

In order to verify Proposition (3.1), we set yi = ωi−1 and substitute it into (3.3) to get

∂S2,∞
∂yi

=
1

ω(i−2)(1− ω)

(
− 1

ω
+

1

ω2
+

1

1 + ω
− 1

ω2(1 + ω)

)
. (3.4)

Combining the first two terms and the last two terms one finds

∂S2,∞
∂yi

=
1

ω(i−2)(1− ω)

(
1− ω
ω2

+
ω − 1

ω2

)
= 0. (3.5)

It is important to notice that the cancellation leading to the vanishing result is i independent.

The reason we have shown the cancellation in detail here is that it hints that for general

k the key is to combine terms pairwise hoping that a telescopic cancellation would take place.

It turns out that this is indeed the case.

We have studied all cases up to k = 7 and found the telescopic cancellation. Consider

the k = 7 case. In order to simplify the discussion, let us introduce another variable called

z to write the coordinate of the ith point as (zi−1, ωi−11 , ωi−12 , . . . , ωi−1k−1). Let us study the

scattering equation
∂S7,∞
∂z

= 0. (3.6)

The left hand since can be computed combining the contributions from each of the seven

pairs. The result of the simplification of each pair is proportional to

{s1z5,−s1z5 − s2z4, s2z4 + s3z
3,−s3z3 − s4z2, s4z2 + s5z,−s5z − s6, s6} (3.7)

where sm is the elementary symmetric polynomial of degree m in {ω1, ω2, . . . , ω6}. The factor

we have omitted depends on i but since it is a common factor it is not relevant for the

computation. Adding the terms shows that the cancellation is telescopic as expected.

3.2 Finite Chain

We are interested making the infinite chain periodic with period n. Therefore we must impose

that the CPk−1 value assigned to the ith site is the same as that assigned to any j ∈ Z such
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that j = i mod n. This has the effect of making the infinite chain equivalent to a chain on

a circle with n sites.

It is clear that by requiring every entry of {ω1, ω2, . . . , ωk−1} to be an n-root of unity the

chain becomes periodic as desired. This leads to the following proposition.

Proposition 3.2. Any (k − 1)-tuple, {ω1, ω2, . . . , ωk−1}, of non-zero and distinct complex

numbers, such that ωna = 1 defines a critical point of S(PK)
k,n given by x

(i)
a = ωi−1a as long as

none of the minors entering in S(PK)
k,n vanishes.

This result is still not satisfactory as the potential function S(PK)
k,n is defined on the con-

figuration space X(k, n) and distinct choices can lead to the same point in X(k, n). Moreover,

these are clearly the fixed points of the cyclic action defined in section 2. This leads to the

following refined statement, which is our main result.

Theorem 3.3. Any fixed point of the cyclic action on X(k, n) defines a critical point of

S(PK)
k,n as long as none of the minors entering in S(PK)

k,n vanishes.

See the end of Section 4 for the proof of Theorem 3.3.

In order to compute the number of solutions to the scattering equations it is useful to

find a simple criterion to find out the fixed points that make at least one of the minors in

S(PK)
k,n vanish and the remove them.

Computing minors of the form pi,i+1,...,i+k−2,i+k−1 one discovers that they cannot vanish

if all roots of unity chosen are distinct. On the other hand pi,i+1,...,i+k−2,i+k vanishes non-

trivially if and only if

1 + ω1 + ω2 + . . .+ ωk−1 = 0. (3.8)

This means that fixed points which satisfy (3.8) are not solutions of the scattering equations

and must be removed.

The number of solutions, Nk,n, is a very interesting function that depends on the factor-

ization properties of k and n. We have not been able to construct the function explicitly but

in Section 5 we prove an upper bound given by the number of binary Lyndon words.

4 Relation to Mirror Symmetry Superpotential

In this section we prove the result stated in Theorem 3.3 by making a connection between the

equations that determine the critical points of the CEGM potential, S(PK)
k,n , and those of the

superpotential, Fq, in the theory which is the mirror of the Grassmannian G(n− k, n). The

precise form we use is that introduced by Marsh and Rietsch in [15] as a rational function of

the Plucker coordinates of G(k, n).

In [16] Karp proved that fixed points of the Grassmannian G(k, n) under a certain cyclic

shift map are the critical points of a superpotential Fq.
We prove that by treating G(k, n) as a torus fibration over X(k, n), which is possible at

least locally, and “integrating out” the fields that control the scale of each point one finds

that the critical points of Fq contain those of the potential on planar kinematics, S(PK)
k,n .
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Let ∆a1,a2,...,ak denote the minors of the k×n matrix representative of a point in G(k, n),

i.e. the Plucker coordinates.

The mirror symmetry superpotential introduced by Marsh and Rietsch [15] is

Fq :=
n∑

i=1, i 6=n−k

∆i,i+1,...,i+(k−2),i+k

∆i,i+1,...,i+(k−2),i+(k−1)
+ q

∆n−k,n−k+1,...,n−1,1
∆n−k,n−k+1,...,n−1,n

. (4.1)

This superpotential depends on a parameter q. In fact, one could include a parameter qi for

each term but using a simple rescaling of the fields all parameters can be removed except for

one, which by convention is chosen to be qn−k := q. In order to simply the notation in the

computations below it is actually useful to keep the other parameters and write

F :=

n∑
i=1

qi
∆i,i+1,...,i+(k−2),i+k

∆i,i+1,...,i+(k−2),i+(k−1)
. (4.2)

In order to proceed let us choose a chart of G(k, n) parameterized as
t1 0 · · · 0 tk+1 tk+2 . . . tn
0 t2 · · · 0 tk+1 tk+2x1,1 . . . tnx1,n−k−1
...

... · · ·
...

...
...

...

0 0
. . . tk tk+1 tk+2xk−1,1 . . . tnxk−1,n−k−1

 . (4.3)

As usual, other charts might be necessary to cover all points of interest but the argument can

be carried out in the exactly the same way.

The Plucker coordinates of G(k, n) can now be written as

∆a1,a2,...,ak = ta1ta2 . . . takpa1,a2,...,ak (4.4)

where pa1,a2,...,ak denote the minors of a matrix representative of a point in X(k, n), i.e. the

minors of 
1 0 · · · 0 1 1 . . . 1

0 1 · · · 0 1 x1,1 . . . x1,n−k−1
...

... · · ·
...

...
...

...

0 0
. . . 1 1 xk−1,1 . . . xk−1,n−k−1

 . (4.5)

In this chart the superpotential becomes

F =
n∑
i=1

qi
ti+k pi,i+1,...,i+(k−2),i+k

ti+(k−1) pi,i+1,...,i+(k−2),i+(k−1)
. (4.6)
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Differentiating with respect to ta gives

∂F
∂ta

= −qa−k
1

ta−1

p...,a−3,a−2,a
p...,a−3,a−2,a−1

+ qa−k+1
ta+1

t2a

p...,a−2,a−1,a+1

p...,a−2,a−1,a
. (4.7)

Setting this to zero implies that

qa−k
ta
ta−1

p...,a−3,a−2,a
p...,a−3,a−2,a−1

= qa−k+1
ta+1

ta

p...,a−2,a−1,a+1

p...,a−2,a−1,a
. (4.8)

and therefore the following quantity is independent of a,

Γ := qa−k
ta
ta−1

p...,a−3,a−2,a
p...,a−3,a−2,a−1

. (4.9)

Let us now compute the derivative of F with respect to any variable that appears in the

minors pb1,b2,...,bk . Let us denote such a generic variables as za, then

∂F
∂za

= qa
ta+k

ta+(k−1)

∂

∂za

(
pa,a+1,...a+(k−2),a+k

pa,a+1,...,a+(k−2),a+(k−1)

)
+ . . . (4.10)

Critical points are found by setting this to zero and provided Γ does not vanish the equations

are equivalent to
1

Γ

∂F
∂za

= 0 ∀ a. (4.11)

Using a form of Γ appropriate to each term one can turn each term in the sum into a

logarithmic derivative. For example, consider the contribution of the first term in (4.10) to

the lhs of the equation in (4.11),

qa
Γ

ta+k
ta+(k−1)

∂

∂za

(
pa,a+1,...a+(k−2),a+k

pa,a+1,...,a+(k−2),a+(k−1)

)
. (4.12)

Using

Γ = qa
ta+k

ta+(k−1)

pa,a+1,...a+(k−2),a+k

pa,a+1,...,a+(k−2),a+(k−1)
(4.13)

the expression simplifies to

pa,a+1,...,a+(k−2),a+(k−1)

pa,a+1,...a+(k−2),a+k

∂

∂za

(
pa,a+1,...a+(k−2),a+k

pa,a+1,...,a+(k−2),a+(k−1)

)
(4.14)

which can be written as
∂

∂za
log

(
pa,a+1,...a+(k−2),a+k

pa,a+1,...,a+(k−2),a+(k−1)

)
. (4.15)
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Putting all together the equations for the superpotential (4.11) can be written as

∂

∂za

n∑
i=1

log

(
pi,i+1,...i+(k−2),i+k

pi,i+1,...,i+(k−2),i+(k−1)

)
= 0 ∀ a (4.16)

which coincide with the scattering equations on planar kinematics.

Note that the derivation is only valid if Γ is not zero and so we have proven the following.

Lemma 4.1. Any critical point of Fq for which Γ does not vanish descends to a critical point

of S(PK)
k,n evaluated on planar kinematics.

Let us now discuss the critical points of Fq.

Proposition 4.2 ([16]). For t ∈ C∗, the critical points of Fq on G(k, n) at q = t are precisely

the fixed points of the t-deformed cyclic shift map σt.

Here the t-deformed cyclic shift map, σt, is defined as a map Cn → Cn which acts on

G(k, n) by acting on each of the rows of a k×n matrix representative. The precise definition

of σt is the following.

Definition 4.3 ([16]). For t ∈ C∗, define the t-deformed (left) cyclic shift map σt ∈ GL(n,C)

by

σt(v) = (v2, v3, · · · , vn, (−1)k−1tv1) for v = (v1, v2, · · · , vn) ∈ Cn.

Finally, we are ready to prove our Theorem 3.3. For convenience we state it again.

Theorem 4.4. Any fixed point of the cyclic action on X(k, n) defines a critical point of

S(PK)
k,n as long as none of the minors entering in S(PK)

k,n vanishes.

Proof. First note that fixed points of the t-deformed cyclic shift map σt clearly descend to

fixed points of our cyclic action ρn. Of course, two fixed points in G(k, n) which only differ

by a torus action descend to the same fixed point in X(k, n). However, such fixed points

only produce solution to the scattering equations if Γ 6= 0. Since the scale factors ta do not

vanish in any of the cyclic fixed points in G(k, n), the only way Γ can vanish is for cyclic fixed

points for which pa,a+1,...,a+k−2,a+k = 0. But these are exactly the fixed points excluded in

the Proposition.

5 Enumeration of Aperiodic Critical Points of the Planar Kinematics Po-

tential Function

In this section, our aim is to give an explicit combinatorial tabulation of the critical points

of S(PK)
k,n ; we do not completely succeed, but we are able to give a useful constructive upper

bound.
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In what follows, it is convenient to regard S(PK)
k,n as a function on the complex Grass-

mannian that happens to be invariant under not only the action of the torus group (C∗)n

(denoted T in Section 2), but in fact it is invariant under the action of the semidirect product

(C∗)n oZ/n ↪→ GL(n), where the subgroup (C∗)n acts by scaling the standard basis vectors

in Cn by complex numbers in the standard way as λ · ej = λjej , and the subgroup Z/n acts

by cyclic rotation operator ρn(ej) = ej−1. Given 2 ≤ k ≤ n− 2, put q = exp(2πi/n).

Let Tn ' Z/n be the subgroup of GL(n) embedded into the diagonal as

a 7→ diag(1, qaq2a, . . . , q(n−1)a).

Then in particular, Tn acts on the standard basis of Cn by

a : ej 7→ qa(j−1)ej .

Denote by
([n]
k

)
the set of k-element subsets of [n] = {1, . . . , n}; then the group Z/n acts

by {j1, . . . , jk} 7→ {j1 + a, . . . , jk + a}.

Definition 5.1. We say that a k-element subset J = {j1, . . . , jk} ∈
([n]
k

)
is aperiodic if its

Z/n-orbit has exactly n elements,

|{{j1 + j, . . . , jk + j} : j ∈ Z/n}| = n,

where addition is regarded modulo n.

Recall that a string w with k ones and n − k zeros is a binary Lyndon word if it is

the unique lexicographically smallest element among its cyclic rotations. As it is the unique

lexicographically smallest element among its cyclic rotations, it follows that w is different

from its cyclic rotations.

Recall that the number of binary Lyndon words with k ones and n− k zeros is equal to

Nk,n =
1

n

∑
d|gcd(k,n)

(
µ(d)

(
n/d

k/d

))
, (5.1)

see O.E.I.S. number triangle A051168 [11].

Here µ(d) is the Moebius function,

µ(d) =


0, if d is a product of primes with repeated factors,

1, d = 1,

(−1)` if d is a product of ` distinct primes.

Proposition 5.2. The number of equivalence classes of aperiodic k-element subsets of [n]

modulo Z/n, is given by Equation (5.1).
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Proof. This is a straightforward consequence of the standard bijection between Z/n-orbits of

k-element subsets of [n] and Lyndon words. For the bijection, one identifies a subset J =

{j1, . . . , jk} ∈
([n]
k

)
with its indicator function eJ =

∑
j∈J ej ; then restrict to lexicographically

minimal indicator functions.

Here Z/n acts on binary Lyndon words via the n-cycle (12 · · ·n) on positions, while it

acts on aperiodic subsets by permuting index labels.

Given A = {a1, . . . , ak} ∈
([n]
k

)
, then clearly since the elements a1, . . . , ak are distinct,

the k × n matrix gA, which we define by its entries xi,j = q(j−1)ai , has nonvanishing minor

p1,2,...,k−1,k(gA), (which is the Vandermonde determinant in the entries qa1 , . . . , qak) so it has

rank k and defines an element of G(k, n).

Let us call a cyclic fixed point g ∈ G(k, n) aperiodic if its Tn-orbit has exactly n distinct

cyclic fixed points. It follows immediately that the number of Tn-orbits of aperiodic cyclic

fixed points in G(k, n) is given by Nk,n in Equation (5.1).

In Theorem 5.3, we show that the minors pi,i+1,...,i+k−2,i+k that appear in the planar

kinematics potential function S(PK)
k,n vanish on Tn-orbits which are not aperiodic; however,

there will be defective cyclic fixed points g ∈ G(k, n) which are aperiodic, but for which

we still have pi,i+1,...,i+k−2,i+k(g) = 0. Recall that these minors appeared in the factor Γ in

Equation (4.9), which was assumed to be nonzero.

Theorem 5.3. The set of cyclic fixed points in X(k, n) injects into the set of Tn-orbits of

aperiodic cyclic fixed points in G(k, n).

Proof. Supposing that g ∈ G(k, n) is any cyclic fixed point. Then it follows from [16, Theorem

1.1] that there exists a unique A = {a1, . . . , ak} ∈
([n]
k

)
such that g = gA modulo GL(k).

Let us suppose that A were not aperiodic; this means that there exists m ∈ {1, . . . , n−1}
such that as sets we have

{a1 +m, . . . , ak +m} = {a1, . . . , ak}.

First note that
p1,2,...,k−1,k+1(gA)

p1,2,...,k−1,k(gA)
= qa1 + qa2 + · · ·+ qak .

Then we have

qm (qa1 + qa2 + · · ·+ qak) = qa1 + qa2 + · · ·+ qak

hence

0 = (1− qm) (qa1+t + qa2+t + · · ·+ qak+t)

⇒ 0 = qa1 + qa2 + · · ·+ qak .

This implies that g cannot be a critical point of the planar kinematics potential function.
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Consequently we finally obtain our constructive upper bound on the number of critical

points of the planar kinematics potential function (3.1).

Corollary 5.4. For any 2 ≤ k ≤ n − 2, then the PK potential function S(PK)
k,n has at most

Nk,n critical points, where Nk,n is the number of Lyndon words with k ones and n− k zeros,

given in Equation (5.1).

Below we enumerate cyclic equivalence classes of aperiodic k-element subsets of {1, . . . , n},
that is to say, Lyndon words with k one’s and n−k zero’s, for k ≤ 6 and n ≤ 24. The numbers

of critical points are given subsequently.

k\n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11

3 0 1 2 3 5 7 9 12 15 18 22 26 30 35 40 45 51 57 63 70 77 84

4 0 0 1 2 5 8 14 20 30 40 55 70 91 112 140 168 204 240 285 330 385 440

5 0 0 0 1 3 7 14 25 42 66 99 143 200 273 364 476 612 775 969 1197 1463 1771

6 0 0 0 0 1 3 9 20 42 75 132 212 333 497 728 1026 1428 1932 2583 3384 4389 5598

Call a cyclic fixed point gA ∈ X(k, n) defective if A ∈
([n]
k

)
is aperiodic, but we still have

det(vi, . . . , vi+k−2, vi+k) = 0

for i = 1, . . . , n.

In other words, gA does not define a solution to the scattering equations at the PK point.

We see this behavior for the first time at k=5.

In the table above the actual number of critical points is less than the number of Lyndon

words starting at k = 5, where the (nonzero) entries are now given by

1 3 7 14 25 42 65 99 143 200 273 364 474 612 775 969 1197 1463 1768.

In what follows, we tabulate representatives of the first few defective aperiodic cyclic

fixed points which are not critical points.

k=5:

n = 12 : {(1, 4, 7, 8, 12)}}
n = 18 : {(1, 6, 10, 12, 18), (1, 7, 9, 13, 18)}
n = 24 : {(1, 8, 13, 16, 24), (1, 9, 12, 17, 24), (2, 8, 14, 16, 24)}
n = 30 : {(1, 10, 16, 20, 30), (1, 11, 15, 21, 30), (2, 10, 17, 20, 30), (2, 12, 15, 22, 30)}.

Thus, the count decreases by n−6
6 for n = 12, 18, 24, 30, 36, . . .. We have checked that this

formula holds through n = 90.
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For instance, for n = 12 we have

q + q4 + q7 + q8 + q12 = 0,

where q = exp(2πi/12).

Also, by explicit computation, for k = 6 one finds exactly one defective aperiodic cyclic

fixed point at n = 30 and one at n = 60; we did not attempt to compute larger n. These

correspond to

n = 30 : {(1, 7, 13, 19, 20, 30)}
n = 60 : {(2, 14, 26, 38, 40, 60)}.

Based on the data for n = 5, 6, it is tempting to try to refine the upper bound to an exact

enumeration; but finding the general rule for all 2 ≤ k ≤ n − 2 appears to be beyond the

scope of this paper and is left to future work.

6 Evaluating CEGM Biadjoint Amplitudes

In this section we review the construction of CEGM biadjoint amplitudes with special detail

on the SL(k) gauge fixing procedure. In fact, on planar kinematics there are solutions which

do not admit the standard gauge fixing and therefore more general gauge fixings are necessary.

Recall that the most general CPk−1 scattering equations are the conditions for finding

the critical points of a general potential function

Sk,n =
n∑

b1,b2,...,bk=1

sb1,b2,...,bk log pb1,b2,...,bk . (6.1)

More explicitly,

∂Sk,n
∂za,i

= 0 ∀ (a, i), (6.2)

where za,i represent inhomogeneous coordinates of the ath point on CPk−1. The coordinates

can be arranged in a matrix
1 1 · · · 1 1

z1,1 z2,1 · · · zn−1,1 zn,1
z1,2 z2,2 · · · zn−1,2 zn,2

...
...

. . .
...

...

z1,k−1 z2,k−1 · · · zn−1,k−1 zn,k−1

 . (6.3)

In order for the potential function to be well-defined on X(k, n) the kinematic invariants
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sI must be completely symmetric in their indices and satisfy the following properties:

n∑
b2,b3,...,bn=1

sa,b2,b3,...,bn = 0 and sa,a,b3,...,bk = 0 ∀ a ∈ {1, 2, . . . , n}. (6.4)

The set of scattering equations (6.2) is covariant under the action of SL(k) acting on the

matrix (6.3) by left multiplication. This means that k2 − 1 equations are redundant. This is

a welcome fact as SL(k) can be used to fix k2 − 1 of the variables in the matrix (6.3). These

two facts mean that the Hessian matrix of Sk,n which is a (k − 1)n × (k − 1)n matrix has

corank k2 − 1.

The evaluation of the amplitudes requires the definition of a reduced determinant of the

Hessian matrix, since the Hessian of Sk,n is the Jacobian matrix of the scattering equations.

In the CEGM original work, the reduced determinant was defined by analogy with the

well-known k = 2 case. Let us describe such particular construction before discussing the

most general one.

The components of the Hessian in this context are usually denoted ΨIJ , with composed

indices I = (a, i) and J = (b, j) so that

ΨIJ :=
∂2Sk,n
∂za,i∂zb,j

. (6.5)

The CEGM construction of the reduced determinant is defined by selecting a submatrix

obtained from Ψ by deleting k2− 1 rows and k2− 1 columns, computing its determinant and

compensating with a factor which makes the object independent of the choices made. Let

us denote the submatrix obtained by deleting all rows that contain labels {a1, a2 . . . ak+1} in

their indices; a total of (k − 1)(k + 1), and rows containing labels {b1, b2 . . . bk+1} in their

indices by Ψ
a1,a2...,ak+1

b1,b2,...,bk+1
. Then the reduced determinant is

det′Ψ(k) :=
detΨ

a1,a2...,ak+1

b1,b2,...,bk+1

Va1,a2,...,ak+1
Vb1,b2,...,bk+1

, (6.6)

where the Va1,a2,...,ak+1
is a generalization of a Vandermonde determinant defined by

Va1,a2,...,ak+1
:=

k+1∏
i=1

pa1,a2,...,âi,...ak+1
. (6.7)

Clearly, this definition of the reduced determinant requires Va1,a2,...,ak+1
and Vb1,b2,...,bk+1

to be non-vanishing on the solution to the scattering equations used in the evaluation. Since

the choice of the sets {a1, a2, . . . , ak+1} and {b1, b2, . . . , bk+1} is arbitrary, one can try different

choices until the generalized Vandermonde determinants are non-vanishing.

Definition 6.1. A set {a1, a2, . . . , ak+1} is called an SL(k) frame on a particular solu-

tion to the scattering equations if the corresponding generalized Vandermonde determinant,
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Va1,a2,...,ak+1
, evaluated on the solution is non-zero.

Now we can restate the applicability of the CEGM definition of reduced determinant.

Formula (6.6) can be used on a given solution to the scattering equations if and only if the

solution defines a point in Xk,n with at least one frame.

When k = 2 all solutions to the scattering equations admit at least one frame. However,

in the next section we find that k = 4, n = 9 is the first case with frameless solutions.

When dealing with frameless solutions one has to use a more general gauge fixing proce-

dure. Since k = 4 is our main application in this work, we describe the construction in that

case and leave the general k construction as a straightforward exercise to the reader.

6.1 General SL(4) Gauge Fixing

Consider an arbitrary infinitesimal SL(4) transformation acting on a point in CP3. Let us

parameterize the transformations as
1 + ε11 ε12 ε13 ε14
ε21 1− ε11 + ε22 ε23 ε24
ε31 ε32 1− ε22 + ε33 ε34
ε41 ε42 ε43 1− ε33

 . (6.8)

Here εij are infinitesimal deformations and we have chosen to impose the tracelessness condi-

tion of the infinitesimal generations in a particular way. There are 42 − 1 = 15 infinitesimal

deformations.

To obtain the action on (1, x1, x2, x3)
T we simply multiply on the left by (6.8) and use the

torus action to set the top component to one. Performing this and subtracting the original

vector one finds the infinitesimal variations

δx1 = −x21ε12 − 2x1ε11 + x1ε22 − x2x1ε13 − x3x1ε14 + x2ε23 + x3ε24 + ε21,

δx2 = x1ε32 − x2ε22 + x2ε33 + x3ε34 + x2(−x1ε12 − x2ε13 − x3ε14 − ε11) + ε31,

δx3 = x1ε42 + x2ε43 − x3ε33 + x3(−x1ε12 − x2ε13 − x3ε14 − ε11) + ε41. (6.9)

The key idea is that these infinitesimal variations provide a way of computing a basis of the

null space of the Jacobian matrix which is covariant under SL(k) and torus actions. The null

space is spanned by 15 vectors in C3n. There is one vector for each εi,j . For example, consider

ε4,1. Setting all other εi,j to zero in (6.9)

(δx1, δx2, δx3) =
(
−x1x2,−x2x3,−x23

)
ε4,1. (6.10)

Applying this to the coordinates of all n particles produces a 3n dimensional vector

v41 :=
(
−x1,1x2,1,−x2,1x3,1,−x23,1, . . . ,−x1,nx2,n,−x2,nx3,n,−x23,n

)T
. (6.11)
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These vectors can be grouped into a 15× 3n matrix,

V := (v11, v22, v33, v12, . . . , v43) . (6.12)

Note that we have not yet fixed the normalization of the vectors spanning the null space.

This is done when we reproduce the standard CEGM gauge fixing.

It is convenient to give a notation for the minors of V. Recall that the entries of the

the Hessian matrix, ΨIJ , where indexed with I = (a, i) and (J, b). Here we allow I and J to

be numbers from 1 to 3n with the matching made lexicographically to (a, i). For example,

I = 4 corresponds to (2, 1). The minor of V made with rows {I1, I2, . . . I15} is denoted as

[I1, I2, . . . , I15].

Now we are ready to define the most general SL(4) gauge fixing and its associated reduced

determinant,

det′Ψ(4) :=
N detΨI1,I2,...,I15

J1,J2,...,J15

[I1, I2, . . . , I15][J1, J2, . . . , J15]
. (6.13)

Here N is a proportionality constant which is needed to match the normalization of biadjoint

amplitudes. If desired, N could be reabsorbed in the normalization of the vectors chosen to

span the null space of the Hessian.

Proposition 6.2. The value of det′Ψ(4) evaluated on a solution to the scattering equations

is independent of the choice of sets {I1, I2, . . . I15} and {J1, J2, . . . J15}, up to a sign, for all

choices in which neither [I1, I2, . . . , I15] nor [J1, J2, . . . , J15] vanish.

The proof is a simple extension of the one given in Appendix A of [20] for the k = 2 case.

Let us end this part of the section with a discussion on how to recover the CEGM gauge

fixing from the generalized one and in the process we fix the normalization N . In cases in

which there is a frame, it is natural to select {I1, I2, . . . I15} so that they agree with

{(a1, 1), (a1, 2), (a1, 3), (a2, 1), (a2, 2), (a2, 3) . . . , (a5, 1), (a5, 2), (a5, 3)}. (6.14)

In other words, one selects five particle labels {a1, a2, a3, a4, a5} and all three coordinates for

each.

Proposition 6.3. Given a choice of {I1, I2, . . . , I15} as in (6.14) the following agree

[I1, I2, . . . , I15] = 4Va1,a2,a3,a4,a5 (6.15)

with V defined in (6.7) as

Va1,a2,a3,a4,a5 =

5∏
i=1

pa1,a2,...,âi,...a5 .
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The proof is easily carried out using a symbolic manipulation program. The identity

(6.15) is purely algebraic and it does not require to be on the support of the scattering

equations.

Using this result in the definition of the reduced determinant (6.13) one immediately

concludes that N = 42 = 16.

7 CEGM Amplitudes on Planar Kinematics

In this section we evaluate the CEGM biadjoint amplitudes on planar kinematics in order

to provide support for the conjecture stating that their values are computed by the higher

dimensional Catalan numbers.

In order to evaluate the CEGM biadjoint amplitudes on the planar kinematics it is

necessary to introduce the k-Parke-Taylor factor,

PT(1, 2, . . . , n) :=
1

p1,2,...,k p2,3,...,k+1 · · · pn,1,...,k−1
. (7.1)

Finally, the CHY formulation of the CEGM biadjoint amplitude is constructed as follows

m(k)
n (I, I) =

Nn,k∑
m=1

1

det′Ψ(k)
(PT(1, 2, . . . , n− 1, n))2

∣∣∣∣
za=z

(m)
a

. (7.2)

where the sum runs over all Nk,n solutions to the scattering equations denoted z
(m)
a .

In order to present our results, it is useful to review the definition of the higher di-

mensional Catalan numbers C
(d)
m . As it turns out, these numbers satisfy a duality relation

C
(d)
m = C

(m)
d . This motivated us to write their explicit form in a way that manifests the

symmetry. Moreover, the conjecture of [9] states that m
(k)
n (I, I) = C

(k)
n−k with

C
(k)
n−k :=

∏n−k
p=0 p!

∏k
q=0 q!∏n−1

r=0 r!
. (7.3)

7.1 Explicit Results

We have performed extensive computations and in every case we have found that m
(k)
n (I, I) =

C
(k)
n−k on planar kinematics.

For k = 2 Cachazo, He, and Yuan (CHY) conjectured in 2013 that m
(2)
n (I, I), defined

in terms of a sum over solutions, evaluates to the (n − 2)th Catalan number, Cn−2. This

is consistent with the more general conjecture since C
(2)
n−2 is indeed the standard (n − 2)th

Catalan number. In their paper CHY provided strong evidence for their conjecture. In 2014

Dolan and Goddard proved that m
(2)
n (I, I) on general kinematics agrees with the sum over

planar Feynman diagrams in a cubic scalar theory. If the planar kinematics is approached as

a limit of general kinematics then each planar Feynman diagram evaluates to one and their
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sum simply becomes the number of planar cubic trees with n leaves which is well-known to

be Cn−2.

For k = 3 we have evaluatedm
(3)
n (I, I) on planar kinematics by summing over the solutions

corresponding to cyclic fixed points for all n ≤ 40.

The computation for k = 3 is very straightforward since all cyclic fixed points that are

solutions to the scattering equations admit a frame and therefore a standard gauge fixing.

Let us move to k = 4 cases where for the first time frameless solutions are found for

n > 8. Clearly, k = 4, n < 8 cases do not have frameless solutions since they are dual to k = 2

and k = 3 cases.

Let us start the k = 4 discussion with n = 8. The first step is to determine the cyclic

fixed points that are solutions to the scattering equations. There are a total for ten triples

of integers (m1,m2,m3) that are inequivalent under the SL(4) and torus action. Of these,

two are not solutions to the scattering equation. More explicitly, one can check that if

q = exp(2πi/8) then

1 + q + q4 + q5 = 0 and 1 + q2 + q4 + q6 = 0

and therefore (1, 4, 5) and (2, 4, 6) are not solutions to the scattering equations.

The remaining eight cyclic fixed points are solutions. Seven of them admit a standard

frame using particles {1, 2, 3, 4, 5}. The seven solutions are

{(1, 2, 3), (1, 2, 4), (1, 2, 6), (1, 3, 4), (1, 3, 5), (1, 3, 6), (1, 4, 6)}. (7.4)

The evaluation of the contributions to the amplitude from these seven solutions is easily done

using the standard gauge fixing and gives rise to 24008.

The solution corresponding to (1, 2, 5) has a matrix representative of the form
1 0 0 0 1 1 1 1

0 1 0 0 2 1 1 0

0 0 1 0 0 1 1
2 1

0 0 0 1 1 1 1
2

1
2

 (7.5)

which makes it clear that a frame with particles {1, 2, 3, 4, 5} is not possible but one with

particles {1, 2, 3, 4, 6} is. Computing the contribution to the amplitude gives 16. Combining

the two results we obtain

m
(4)
8 (I, I) = 24 024 (7.6)

which agrees with the four-dimensional Catalan number C
(4)
4 .

Now we are ready to discuss the first example in which frameless solutions are found.

This is the case of (k, n) = (4, 9).

There are a total for fourteen inequivalent triples of integers (m1,m2,m3). In this case

all fourteen produce solutions to the scattering equations.
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There are twelve solutions that admit a frame and two frameless solutions. The ones that

admit a frame are

(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 2, 7), (1, 3, 4),

(1, 3, 5), (1, 3, 7), (1, 4, 5), (1, 4, 6), (1, 5, 7), (2, 4, 6).

and their contribution to the amplitude is 14 965 237/9.

The frameless triples are (1, 3, 6) and (1, 4, 7). Defining r = exp(πi/9) a matrix represen-

tative for (1, 3, 6) is given by 
1 0 0 0 1 1 1 1 1

0 1 0 0 r7 0 0 r4 0

0 0 1 0 0 r5 0 0 r2

0 0 0 1 −1 −1 r6 −1 −1

 . (7.7)

An exhaustive search shows that all possible subsets of five particles give rise to vanishing

generalized Vandermonde determinants.

Following the construction of general SL(4) gauge fixings provided in Section 6.1 it is

possible to find a valid one given by

(I1, I2, . . . , I15) = (10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27).

In order words, the determinant of the 12 × 12 submatrix of the Jacobian matrix obtained

from columns and rows in 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14 is non zero.

Defining s = exp(πi/3), the second frameless solution has a matrix representative of the

form 
1 0 0 0 1 1 1 1 1

0 1 0 0 −1 0 0 −s 0

0 0 1 0 0 −1 0 0 −s
0 0 0 1 s s s2 s s

 . (7.8)

It turns out that the same gauge fixing that works for (1, 3, 6) also works for (1, 4, 7).

The combined contribution to the amplitude is 1/9.

Adding the contributions from all fourteen solutions one finds

m
(4)
9 (I, I) = 1 662 804 (7.9)

which agrees with C
(4)
5 .

In principle there is no obstacle against computing m
(k)
n (I, I) to arbitrarily high values

of k and n except for the computationally intensive task of searching for valid SL(k) gauge

fixings for frameless solutions.

It is important to mention that in our numerical study we have found that when n is

prime there are no frameless solutions and computations can be carried out to high values of
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(k, n). We list the computations we have performed below. In every case, the results agree

with the high-dimensional Catalan conjecture.

Results are listed with computation time, in Mathematica.

• k = 3: n ≤ 40.

• k = 4: All n ≤ 15. Additionally n = 23 (493 seconds) and n = 29 (1839 seconds).

• k = 5: n = 10, 11, 12, 13, 14, 17. (For n = 19: 6953 seconds).

• k = 6: n = 13 (8007 seconds).

8 Tropical Grassmannian Evaluation

In [9] evidence for the conjecture that m
(k)
n (I, I) evaluates to the k-dimensional Catalan num-

ber C
(k)
n−k on planar kinematics was obtained by evaluating m

(k)
n (I, I) as a sum over generalized

Feynman diagrams [17]. Generalized Feynman diagrams are the k > 2 analog of the stan-

dard planar cubic Feynman diagrams used to evaluate m
(2)
n (I, I). In fact, planar kinematics

for k = 2 was originally designed to make each Feynman diagram evaluate to one so that

m
(2)
n (I, I) counts the number of such diagrams which is known to be C

(2)
n−2. Unfortunately,

generalized Feynman diagrams (GFD) do not all evaluate to one on planar kinematics. The

reason is that while some GFD’s only possess poles in the planar basis and evaluate to one,

other GFD’s have other planar poles which are linear combinations of elements in the basis

and therefore evaluate to rational numbers.

As it turns out, k = 2 (and via duality k = n − 2) is the only case when the dimension

of the planar basis coincides with the dimension of the space of kinematic invariants. The

fact that individual GFD’s evaluate to rational numbers makes the counting interpretation

implausible.

In this section, we rewrite the sum over GFD’s in a way that leads to a decomposition in

terms of objects that evaluate to positive integer numbers. We believe that each of the new

objects combines the contribution of several GFD’s.

In order to explain the construction, let us start by recalling that standard Feynman

diagrams contributions to an amplitude can be thought of as the Laplace transform of certain

regions in the Billera-Holmes-Vogtmann (BHV) space of trees [21], which is also the tropical

Grassmannian TropG(2, n) [22, 23].

When restricting to m
(2)
n (I, I) only planar Feynman diagrams contribute which leads to

the positive tropical Grassmannian Trop+G(2, n) introduced by Speyer and Williams in [24].

The restriction to planar objects is very important because it allows us to find regions

in kinematic space where the Laplace transform which computes individual Feynman dia-

grams exist simultaneously for all planar diagrams. This is not the case without the planarity

condition, e.g. for n = 4 there are three Feynman diagrams, with values 1/s, 1/t, 1/u. In

order to express one of them as a Laplace tranform of the space of trees (i.e. in a Schwinger
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parametrization) one needs the relevant Mandelstam invariant to be positive. However, mo-

mentum conservation s+t+u = 0 allows at most two invariants to be positive simultaneously.

Restricting to two of the three diagrams is in fact equivalent to imposing planarity.

This means that we can hope to be able to perform the Laplace transform of the whole

Trop+G(2, n) as a single integral if the elements in the planar basis are chosen to be positive.

Generalized Feynman diagrams extend the same ideas identifying m
(k)
n (I, I) with the

Laplace transform of Trop+G(k, n). So far in the literature the Laplace transform has been

carried out diagram by diagram since for generic kinematics it provides a systematic way

of evaluation [17, 25]. However, as mentioned above this obscures the way they should be

combined when evaluated on planar kinematics.

Here we proceed by writing a formula for the Laplace transform of Trop+G(k, n) as a

single integral which on general kinematics can be decomposed in terms of individual GFD’s

but when evaluated on planar kinematics it performs the combination of GFD we are looking

for. Note that planar kinematics sits inside the region where we expect the Laplace transform

to exist.

Consider the Laplace transform representation of a single GFD, T [17, 25],

IT =

∫
dµT expF (8.1)

where dµT represents a measure over the space of internal edge lengths of the diagrams in

the array of Feynman diagrams defining T while

F =
∑

J⊂[n]:|J |=k

sJdJ . (8.2)

Here sJ is the generalized Mandelstam invariant with a short hand notation for the in-

dices while dJ is the metric on the array of Feynman diagrams2 that make T . If we let

J = {j1, . . . , jk} then dJ is a completely symmetric tensor satisfying that the rank-two tensor

constructed by fixing any k − 2 indices and letting the remaining two vary is a metric on a

binary tree ([23]). This means that dJ satisfies all the three-term tropical Plucker vectors rela-

tions. This means that they define a point in the Dressian Dr(k, n) (see [22, 23]). Restricting

to planar GFD’s further imposes that the tensor dJ defines a point in the positive Dressian

which was recently proven to be equal to the positive tropical Grassmannian Trop+G(k, n),

concurrently in [26, 27].

Using the connection to Trop+G(k, n) and the fact that the invariants sJ satisfy the

generalized momentum conservation one can write dJ as the tropical Plucker coordinates

evaluated on certain regions of Trop+G(k, n).

This means that the Laplace transform of the whole Trop+G(k, n) must be equivalent to

2The precise definition of arrays of Feynman diagrams and GFD is not needed in this work and we refer
the reader to [17] and [25] for details.

– 24 –



the sum over all GFD integrals IT ,

m(k)
n (I, I) =

∑
T
IT =

∫
dµTrop+G(k,n) exp F (8.3)

where the measure depends on the coordinates chosen.

Luckily Speyer and Williams [24] provided a natural construction of Trop+G(k, n) based

on the well-known positive Grassmannian G+(k, n).

The Speyer-Williams construction starts with a Web diagram and provides a matrix rep-

resentative of a point in G+(k, n) as the boundary matrix of the diagram using edge variables.

The k(n − k) edge variables vary in R+ and generate G+(k, n). Given a matrix representa-

tive, Speyer and Williams proceed to map it to a point in Trop+G(k, n) by tropicalizing the

maximal minors. In the tropical object, the new “edge” variables are now in R. This can be

understood by recalling that the tropical map can be thought of as the limit of an exponential

map in which x ∈ R+ goes to exp(x̃) with x̃ ∈ R. This immediately leads to the following

formula

m(k)
n (I, I) =

1

(Vol(R+))n−1

∫
Rk(n−k)

dk(n−k)x̃ exp F (8.4)

with F as in (8.2) but with the metric dJ replaced with the tropicalized Plucker minors written

in terms of the variables x̃. The reason for dividing by the volume of the torus (R+)n−1 is

the fact that the tropicalization procedure makes the scales of each column in the k × n

representation of a point in G+(k, n) redundant. In physics terms, the model has a (R+)n−1

gauge invariance. It is important to note that one of the n possible rescalings has been fixed

already when the standard GL(k) action on the k×n matrix representatives of G+(k, n) was

fixed. Once the redundancies are fixed the integral is over R(k−1)(n−k−1) as expected.

Before illustrating the construction with examples it is important to mention that a

realization of the biadjoint amplitude m
(k)
n (I, I) can also be obtained as the limit when α′ → 0

of a string-like integral [28]. This connection makes the evaluation of the amplitude that of a

volume of a region defined in terms of tropical inequalities. Our formula, which integrates over

tropicalized functions (8.4), seems compatible with the formulation in [28] which computes

the volume of a region defined by tropical inequalities (see Claim 3 of [28]). Also, generalized

biadjoint amplitudes have been evaluated using cluster algebra techniques [29–32] in which

the notion of a volume can be assigned to each cluster, which either coincides with a GFD or

provide a refinement of one.

Now we can proceed to the two main examples were we have done explicit computations.

8.1 Case I: k = 2

A matrix representative of a (generic) point in G(2, n) can be parametrized as

C =

(
t1 0 t3 t4(1 + x1) t5(1 + x1 + x2) · · · tn(1 + x1 + x2 + . . .+ xn−3)

0 t2 t3 t4 t5 · · · tn

)
. (8.5)
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This parametrization differs slightly from that used by Speyer and Williams but the results

are the same.

Let us introduce notation for the tropicalization of a Plucker coordinate:

pa,b := det (Ca,Cb) −→ ||a, b||. (8.6)

Let us present some examples by computing the minors that enter when we specialize to

planar kinematics. The first set is given by pa,a+1 minors:

p1,2 = t1t2 −→ ||1, 2|| = t̃1 + t̃2,

p2,3 = −t2t3 −→ ||2, 3|| = t̃2 + t̃3,

p3,4 = −t3t4x1 −→ ||3, 4|| = t̃3 + t̃4 + x̃1,

p4,5 = −t4t5x2 −→ ||4, 5|| = t̃4 + t̃5 + x̃2,
...

pn−1,n = −tn−1tnxn−3 −→ ||n− 1, n|| = t̃n−1 + t̃n + x̃n−3,

pn,1 = −tnt1 −→ ||n, 1|| = t̃n + t̃1.

(8.7)

The second set is pa,a+2 minors:

p1,3 = t1t3 −→ ||1, 3|| = t̃1 + t̃3,

p2,4 = −t2t4(1 + x1) −→ ||2, 4|| = t̃2 + t̃4 + min(0, x̃1),

p3,5 = −t3t5(x1 + x2) −→ ||3, 5|| = t̃3 + t̃5 + min(x̃1, x̃2),

p4,6 = −t4t6(x2 + x3) −→ ||4, 6|| = t̃4 + t̃6 + min(x̃2, x̃3),
...

pn−1,1 = −tn−1t1 −→ ||n− 1, 1|| = t̃n−1 + t̃1,

pn,2 = tnt2(1 + x1 + x2 + . . .+ xn−3) −→ ||n, 2|| = t̃n + t̃2 + min(0, x̃1, x̃2, . . . , x̃n−3).

(8.8)

The last ingredient is to write

F =
∑
a<b

sabdab = −
∑
a<b

sab||a, b||. (8.9)

The minus sign on the RHS is needed to match the definition of dab as a metric on trees.

Note that F is independent of all t̃’s. In fact, the t̃’s could be identified with the lengths of

the leaves once the integral is separated into individual trees. In order to see the independence

note that every tropical minor in (8.9) has the form

||a, b|| = t̃a + t̃b + . . . , (8.10)
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where we have exhibited all t̃ dependence. Using that the kinematic invariants satisfy

saa = 0 and
n∑
b=1

sab = 0 ∀ a (8.11)

it is simple to see that all t̃’s drop out of F . This means that the integrals over t̃’s factor out

and cancel with the volume factors in (8.4).

Now we are ready to write down the Laplace transform over the entire Trop+G(2, n) as

a single integral,

m(2)
n (I, I) =

n−3∏
a=1

∫ ∞
−∞

dx̃a expF . (8.12)

Here we have dropped t̃ terms in F .

Specializing to planar kinematics gives rise to

FPK = −
n−3∑
a=1

x̃a + min(0, x̃1) +
n−4∑
a=1

min(x̃a, x̃a+1) + min(0, x̃1, x̃2, . . . , x̃n−3). (8.13)

Already the k = 2 case is interesting because writing the amplitude on planar kinematics

using (8.13) requires a decomposition of the integration domain in (8.12) into regions where

FPK becomes linear. The number of regions is much smaller than the number of standard

Feynman diagrams. In fact, it coincides with the number of linear trees (see OEIS entry

A045623, [11]) as we prove below.

Proposition 8.1. The number of regions needed to expand the piecewise function, Fn,PK
defined in (8.13) is equal to the number of linear trees with n leaves, i.e.

Nn,linear trees = n 2n−5.

y1

y2

y0 = 1

y1

y2

y0 = 1 y1

y2

y0 = 1

y2

y0 = 1

y1y1

0 1 2 0 1 2 0 1 2 0 1 2

Figure 1. Counting argument used in the proof of Proposition 8.1.

In order to prove the proposition and also to more easily evaluate the integral it is

convenient to use

exp (min(a1, a2, . . . , am)) = min (exp(a1), exp(a2), . . . , exp(am)) ,
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which follows from the fact that the exponential is a monotonically increasing function, in

order rewrite the integral (8.13). Using a change of variables ya = exp(x̃a) one finds

m(2)
n (I, I) =

n−3∏
a=1

∫ ∞
0

dya
y2a

min(1, y1)
n−4∏
a=1

min(ya, ya+1) min(1, y1, y2, . . . , yn−3). (8.14)

Consider the first n − 3 factors in the integrand and note that each one proves a choice

between two options. For example, min(1, y1) gives either 1 < y1 or 1 > y1. Therefore there

are 2n−3 possibilities. Let y0 := 1. For any given one of the 2n−3 possibilities one can draw a

mountain range picture by plotting the values of {y0, y1, y2, . . . , yn−3} in that order. Having

constructed a mountain range it is easy to find out the number of options provided by the

last factor in the integrand (8.14). The function min(1, y1, y2, . . . , yn−3) can only pick values

from the valleys in the mountain range. Therefore the number of regions is given by

Nn =
2n−3∑
i=1

V (Ri) (8.15)

where V (Ri) is the number of valleys in the mountain range Ri.

Now let us find a recursion relations for Nn. Separate the ranges according to whether

the first interval is up (y0 < y1) or down (y0 > y1). More explicitly,

Nn =
2n−4∑
i=1

V (Ri,D1) +
2n−4∑
i=1

V (Ri,U1), (8.16)

where Ri,U1 (Ri,U1) are mountain ranges where the first interval is up U1 (or down D1).

Clearly, if we go down then the remaining n − 4 steps have the same number of valleys

as they would if y0 was removed. This means that the sum over them contributes Nn−1 to

Nn. More explicitly,

Nn = Nn−1 +
2n−4∑
i=1

V (Ri,U1). (8.17)

Next, we separate the ranges Ri,U1 according to whether the second step is up or down. If

the second step is down then one gets the contributions from Nn−2 plus one additional choice

from the valley at y0 for each of the graphs, i.e. a total of 2n−5. This gives

Nn = Nn−1 + (Nn−2 + 2n−5) +

2n−5∑
i=1

V (Ri,U1,U2). (8.18)

Recursing the argument leads to

Nn = Nn−1 +

n−2∑
i=3

(
Ni + 2i−3

)
+ 1 with N3 = 1. (8.19)
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Simplifying the recursion gives

Nn = 2Nn−1 + 2n−5 with N3 = 1, N4 = 5. (8.20)

In this new form it is easy to the see that the solution agrees with the number of linear trees

Nn = Nn,linear trees = n 2n−5

as expected.

The first example in which there are trees that are not linear is n = 6. In fact, there are

exactly 2 non-linear (snowflake) trees and 12 linear ones. Computing the integral (8.14), i.e.

m
(2)
6 (I, I) =

∫ ∞
0

dy1
y21

∫ ∞
0

dy2
y22

∫ ∞
0

dy3
y23

min(1, y1) min(y1, y2) min(y2, y3) min(1, y1, y2, y3)

is a simple exercise once the integrand is separated into the 12 regions, with 10 regions

evaluating to 1 and two regions evaluating to 2. Adding up gives

m
(2)
6 (I, I) = 10× 1 + 2× 2 = 14

as expected.

8.2 Case II: k = 3

Having seen that the t̃ scale factors drop from all computations, it is convenient to set them

to one, i.e. t̃a = 1, from the start and use a matrix representative of a point in G(3, n) of the

form

C =

 1 0 0 1 1 + (1 + y1)x1 1 + (1 + y1)x1 + (1 + y1 + y2)x2 · · ·
0 1 0 1 1 + x1 1 + x1 + x2 · · ·
0 0 1 1 1 1 · · ·

 . (8.21)

Once again this parametrization slightly differs from that used in [24] but the results are

the same3.

Let us present the minors that appear in F when evaluated on planar kinematics and

3Note that in the parameterization of the nonnegative Grassmannian, the entries in the second row of the
matrix would usually come with minus signs; but for our purposes this is not necessary and we omit them.
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their tropicalization. Once again the first set is given by pa,a+1,a+2,

p1,2,3 = 1 −→ ||1, 2, 3|| = 0,

p2,3,4 = 1 −→ ||2, 3, 4|| = 0,

p3,4,5 = −x1y1 −→ ||3, 4, 5|| = x̃1 + ỹ1,

p4,5,6 = −x1x2y2 −→ ||4, 5, 6|| = x̃1 + x̃2 + ỹ2,
...

pn−2,n−1,n = −xn−5xn−4yn−4 −→ ||n− 2, n− 1, n|| = x̃n−5 + x̃n−4 + ỹn−4,

pn−1,n,1 = −xn−4 −→ ||n− 1, n, 1|| = x̃n−4,

pn,1,2 = 1 −→ ||n, 1, 2|| = 0.

(8.22)

The second set is given by minors of the form pa,a+1,a+3,

p1,2,4 = 1 −→ 0,

p2,3,5 = 1 + x1 + x1y1 −→ min(0, x̃1, x̃1 + ỹ1),

p3,4,6 = −(x1y1 + x2y1 + x2y2) −→ min(x̃1 + ỹ1, x̃2 + ỹ1, x̃2 + ỹ2),

p4,5,7 = −x1(x2y2 + x3y2 + x3y3) −→ x̃1 + min(x̃2 + ỹ2, x̃3 + ỹ2, x̃3 + ỹ3),
...

pn−2,n−1,1 = yn−k−1(1 + x1 + · · ·+ xn−k−1) −→ ỹn−k−1 + min(0, x̃1, . . . , x̃n−k−1),

pn−1,n,2 = yn−k−1(1 + x1 + · · ·+ xn−k−1) −→ ỹn−k−1 + min(0, x̃1, . . . , x̃n−k−1),

pn,1,3 = −(1 + y1 + · · ·+ yn−k−1) −→ min(0, ỹ1, . . . , ỹn−k−1).

(8.23)

See also Equation (8.29) for the general formula for the minors in the web parameteriza-

tion.

8.2.1 Examples

Let us provide some example to show how specializing to planar kinematics before integrating

over Trop+G(3, n) gives rise to a different splitting into objects, each of which giving an integer

contribution.

The simplest case is k = 3 and n = 6. In order to simplify the notation we use {xa, ya}
instead of {x̃a, ỹa} for the integration variables.

The integral to be performed is∫
R2

d2x

∫
R2

d2y exp (−x1 − x2 − y1 − y2 +G(x1, x2, y1, y2)) , (8.24)

with G a piece-wise linear function

G(x1, x2, y1, y2) := min (0, x1, x1 + y1) + min (0, y1, y2) +

min (x1 + y1, x2 + y1, x2 + y2) + min (0, x1, x2) .
(8.25)

Here we have used that min (x2, x2 + y1, x2 + y2) = x2 + min (0, y1, y2).
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In the examples which follow, note that, as expected, the numbers of linear domains (re-

gions) coincides with the numbers of facets in the respective root polytopes Rk,n, as provided

in the f-vectors listed in Example 10.20).

Separating the integration region into 27 parts turns G(x1, x2, y1, y2) into a linear function

in each. Note that if we had used generic kinematics, the corresponding piece-wise linear

function would have required 48 regions, i.e. the number of generalized Feynman diagrams.

Evaluating the integral over the 27 regions reveals three kinds of contributions. There are

16 which contribute 1, 10 which contribute 2 and a single one which contributes 6 to the

total integral. Combining the contributions gives rise to the value of the amplitude on planar

kinematics

m
(3)
6 (I, I) = 16× 1 + 10× 2 + 1× 6 = 42. (8.26)

In order to express our results for n = 7 and n = 8 it is convenient to introduce a vector of

values v = (1, 2, 6) and one of the frequencies in which they appear, i.e. f = (16, 10, 1) so

that f · v = 14.

For k = 3 and n = 7 we find 128 regions and 10 different values. The explicit results are:

v = (1, 2, 3, 4, 5, 6, 8, 11, 12, 25), f = (21, 38, 32, 8, 14, 2, 6, 3, 2, 2). (8.27)

In this case f · v = 462 as expected.

We have also carried out the n = 8 computation. There are 557 regions and 36 distinct

values. The explicit results are:

v = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 28, 30, 32, 33, 40, 42, 49,

54, 57, 75, 77, 93, 98, 169),

f = (23, 42, 46, 57, 64, 47, 26, 18, 52, 26, 11, 20, 18, 6, 8, 10, 8, 10, 10, 4, 10, 6, 2, 7, 2, 2, 4, 2, 4, 2,

2, 2, 2, 1, 2, 1).

(8.28)

Once again this leads to the expected result f · v = 6 006.

These decomposition of the integrals over Trop+G(3, n) also provide a decomposition of

the three-dimensional Catalan numbers. We leave the interpretation of this construction of

C
(3)
n−3 for future work.

Let us finally record the general formula for the integrand. Define

Pi(x) =

n−k∑
j=1

xi,j , (8.29)

Qj(x) = x1,jx2,j · · ·xk−1,j + x1,jx2,j · · ·xk−2,jxk−1,j+1 + x1,jx2,j · · ·xk−3,jxk−2,j+1xk−1,j+1

+ · · ·+ x1,j+1x2,j+1 · · ·xk−1,j+1. (8.30)

Claim 8.2. In the web parameterization, for the planar kinematics potential function we
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have

S(PK)
k,n = log

(∏k−1
i=1 Pi(x)

∏n−k−1
j=1 Qj(x)∏

(i,j) xi,j

)
, (8.31)

where in the denominator (i, j) ranges over the set

(i, j) ∈ {1, . . . , k − 1} × {1, 2, . . . , n− k}.

We have checked this formula explicitly for nontrivial values of (k, n), including (k, n) ∈
{(5, 19), (6, 18)}.

Now setting all xi,1 = 1 for all i = 1, . . . , k − 1 and then tropicalizing, we obtain the

integrand of Equation (8.4) specialized to planar kinematics.

9 Planar Scattering Equation in Terms of Cross-ratios and an Involution

In this section, we derive a projectively invariant expression for the k = 3 and k = 4 scattering

equations in terms of cross-ratios which makes manifest the flip symmetry. Flip symmetry in

the kinematic space arises by the involution j 7→ n+ 1− j, while the analogous action on the

space of solutions of the PK scattering equations is by complex conjugation.

It is not difficult to show that the planar kinematics scattering equations for k = 3 have

the projectively invariant form

p1,2,3 p2,4,5 p3,4,6
p1,2,4 p2,3,4 p3,5,6

= 1 (9.1)

p2,3,4 p3,5,6 p4,5,6 p4,5,7
p2,4,5 p3,4,5 p3,4,6 p5,6,7

= 1,

and the cyclic index permutations under the transformation j 7→ j + 1 modulo n, or equiva-

lently that is

p1,2,3 p2,4,5 p3,4,6
p1,2,4 p2,3,4 p3,5,6

= 1 (9.2)

p1,2,4 p3,4,5 p3,5,6
p1,3,4 p2,3,5 p4,5,6

= 1,

together with all of equations obtained under cyclic index permutation.

This form of the equations has the advantage that it makes manifest the fact that on PK

the equations have a symmetry not shared by the definition of the kinematics.

We define an involution on the kinematic space K(k, n) by eJ 7→ eJ
′
, where {eJ : J ∈

([n]
k

)
is the standard basis for R(nk), and where J ′ is the flip of J :

{j1, . . . , jk} 7→ {n+ 1− j1, . . . , n+ 1− jk}.
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It follows that the new, flipped planar kinematics is now characterized by the equations{
ηJ = 1 : J ∈

(
[n]

k

)nf}
7→

{
ηJ = `− 1 : J ∈

(
[n]

k

)nf}

where ` is the number of cyclic intervals in J .

Here
([n]
k

)nf
is the set of k-element subsets J = {j1, . . . , jk} that decompose the cycle

(1, 2, . . . , n) into at least two cyclic intervals.

The effect for the coordinate functions sJ ’s is to replace the conditions

{si,i+1,...i+k−1,i+k+1 = −1 : i = 1, . . . , n}

by

{si,i+2,...i+k,i+k+1 = −1 : i = −1, . . . , n} .

In other words, the invariants with a gap on the right are replaced by those with a gap on

the left. Note that for k = 2 there is no distinction between left and right and therefore the

kinematics is invariant.

Having defined the involution on the kinematic space, one can compute the new scattering

equations associated to it. In the cross ratio form it is clear that the equations are invariant

under the transformation.

Therefore, all solutions to the PK scattering equations are also solutions to the trans-

formed version. This raises the question of whether there is an avatar of the involutive

transformation on the solutions which maps them among themselves.

The way to find this out is the following. For any solution to the PK scattering equations

defined by {ω1 = qm1 , ω2 = qm2} and q = exp(2πi/n), one has

pa,a+1,a+3 = det

 1 1 1

ωa1 ω
a+1
1 ωa+3

1

ωa2 ω
a+1
2 ωa+3

2

 = (ω1ω2)
a(1 + ω1 + ω2)(ω1 − 1)(ω1 − ω2)(ω2 − 1) (9.3)

and

pa,a+2,a+3 = det

 1 1 1

ωa1 ω
a+2
1 ωa+3

1

ωa2 ω
a+2
2 ωa+3

2

 = (ω1ω2)
a(ω1+ω2+ω1ω2)(ω1−1)(ω1−ω2)(ω2−1). (9.4)

Applying complex conjugation to ω1, ω2 one obtains another solution to the PK scattering

equations with {ω̃}1, ω̃2} = {1/ω1, 1/ω2}. Conjugating (9.3) gives then

p∗a,a+1,a+3 = (ω1ω2)
(−2a−3)pa,a+2,a+3. (9.5)

This means that one can define the action of the involution as conjugation, one can check
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that the set of all solutions remains invariant.

In order to generalize the cross ratio form of the scattering equations to k = 4 and beyond

it is convenient to rewrite (9.2) in yet another form. To this end, let us define a family of

projective invariants, as follows4. Denote

w
(L)
i,j =

pL,i,j′pL,i′,j
pL,i,jpL,i′,j′

,

where the set L ∪ {i, i′, j, j′}, with L ∈
( [n]
k−2
)
, has k + 2 distinct elements, and where i′

and j′ are the immediate successors of respectively i and j in the standard cyclic order on

{1, . . . , n} \ L.

Working backward we find that the k = 3 planar basis kinematics scattering equations

have the following expression in terms of cross-ratios:

w
(2)
14 = w

(3)
25 , w

(3)
14 = w

(4)
25 , (9.6)

together with the set of cyclic shifts by j 7→ j + 1 mod(n). This gives a (redundant) system

of 2n equations. Here for instance

w
(2)
14 =

p125p234
p124p235

, w
(3)
14 =

p135p234
p134p325

.

For an expression in terms of only minors made from one or two cyclic intervals, substi-

tuting w
(1)
14 7→ 1− w(a)

14 in Equation (9.2) gives the following set of equations:

p123p245
p124p235

=
p234p356
p235p346

,
p124p345
p134p245

=
p235p456
p245p356

. (9.7)

Similarly, for k = 4 we find

p1234p2356p3457
p1235p2345p3467

= 1,
p1235p2456p3467
p1245p2346p3567

= 1,
p1245p3456p3567
p1345p2356p4567

= 1 (9.8)

together with their cyclic shifts modulo n.

These can be straightforwardly reorganized in terms of cross ratios, as

w
(23)
15 = w

(34)
26 , w

(24)
15 = w

(35)
26 , w

(34)
15 = w

(45)
26 , (9.9)

again together with the set of cyclic shifts by j 7→ j + 1 mod (n). Here for instance

w
(23)
15 =

p1236p2345
p1235p2346

, w
(24)
15 =

p1246p2345
p1245p2346

, w
(34)
15 =

p1346p2345
p1345p2346

,

which could be rewritten in terms of minors with two cyclic intervals by replacing w
(ab)
15 with

4See Section 4.2 of [10]. One can show that w
(L)
i,j is a monomial in the multi-split cross ratios wJ for

J ∈
(
[n]
k

)nf
.
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1− w(ab)
15 .

Unfortunately we could not achieve a systematic derivation starting from the scattering

equations which would lead to a proof of a general cross-ratio formula for all k, but based on

Equations (9.6) and (9.9) but it is natural to infer the following cross-ratio formulation of the

PK scattering equations for any k and n (of course with 2 ≤ k ≤ n− 2), as follows:{
w

(2,3,...̂j,...,k)
1,k+1 = w

(3,4,...ĵ+1,...,k+1)
2,k+2 : j = 2, . . . , k

}
(9.10){

w
(3,4,...ĵ+1,...,k+1)
2,k+2 = w

(4,5,...ĵ+2,...,k+2)
3,k+3 : j = 3, . . . , k + 1

}
,

...

for a total of (k − 1)n (dependent) equations.

10 Polytopes: Roots and Deformations of the PK Point

In the rest of the paper our efforts are directed towards answering the natural question: are

there good deformations of the PK point? Usuallym(k)(InIn) is evaluated at generic kinematic

points; on the other hand the PK point is extremely singular, with only 2n non-vanishing

coordinates: si,i+1,...,i+k−2,i+k = −1 and si,i+1,...,i+k−2,i+k−1 = 1 with all others equal to zero.

We summarize partial results towards answering this question. Using the planar basis

of functions on K(k, n), we embed a dimension (k − 1)(n − k − 1) lattice polytope Πk,n in

the kinematic space which has the following key property: it has the PK point as its unique

interior lattice point. Then we introduce the rank-graded root polytopes Rk,n, which are

related to Πk,n by duality, and we present evidence for our conjecture that the volume of

Rk,n is the Catalan number modulo a factor intrinsic to the lattice,

Vol(Rk,n) =
C

(k)
n−k

((k − 1)(n− k − 1))!
.

10.1 Blades, Planar Bases and Polymatroidal Blade Arrangements

In this section, for the reader’s convenience we review some key results from earlier work,

in particular [10, 14]; these culminate in Proposition 10.7 and provide key ingredients for

Definition 10.11, and they lie at the core of the embedding Ψ : R(nk) ↪→ K(k, n) in Remark

10.14, of the polytope Πk,n into the kinematic space.

Fix integers (k, n) such that 1 ≤ k ≤ n− 1.

Recall the notation
([n]
k

)
for the set of k-element subsets of the set [n] = {1, . . . , n}, and

denote by (
[n]

k

)nf
=

(
[n]

k

)
\ {{j, j + 1, . . . , j + k − 1} : j = 1, . . . , n}

the nonfrozen k-element subsets. Let {eJ : J ∈
([n]
k

)
} be the standard basis for R(nk).
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The kth hypersimplex in n variables is the kth integer cross-section of the unit cube [0, 1]n,

∆k,n =
{
x ∈ [0, 1]n :

∑
xj = k

}
.

Henceforth we shall assume that 2 ≤ k ≤ n− 2.

Recall that the lineality space is the n-dimensional subspace{∑
J

xJe
J : x ∈ Rn

}
,

of R(nk), where we use the notation xJ =
∑

j∈J xj .

Then the kinematic space is the dimension
(
n
k

)
− n subspace of R(nk),

K(k, n) =

(s) ∈ R(nk) :
∑
J : J3j

sJ = 0, j = 1, . . . , n

 . (10.1)

The original definition of blades is due to A. Ocneanu; blades were first studied in [33] with

connections to structures known in Hopf algebras as quasi-shuffles.

Definition 10.1 ([34]). A decorated ordered set partition ((S1)s1 , . . . , (S`)s`) of ({1, . . . , n}, k)

is an ordered set partition (S1, . . . , S`) of {1, . . . , n} together with an ordered list of integers

(s1, . . . , s`) with
∑`

j=1 sj = k. It is said to be of type ∆k,n if we have additionally 1 ≤ sj ≤
|Sj | − 1, for each j = 1, . . . , `. In this case we write ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n), and we

denote by [(S1)s1 , . . . , (S`)s` ] the convex polyhedral cone in Hk,n, that is cut out by the facet

inequalities

xS1 ≥ s1

xS1∪S2 ≥ s1 + s2
... (10.2)

xS1∪···∪S`−1
≥ s1 + · · ·+ s`−1.

These cones were called plates by Ocneanu. Finally, the blade (((S1)s1 , . . . , (S`)s`)) is the

union of the codimension one faces of the complete simplicial fan formed by the ` cyclic block

rotations of [(S1)s1 , . . . (S`)s` , ], that is

(((S1)s1 , . . . , (S`)s`)) =
⋃̀
j=1

∂
(
[(Sj)sj , (Sj+1)sj+1 , . . . , (Sj−1)sj−1 ]

)
. (10.3)

We emphasize that in this paper we consider only translations of the single nondegener-

ate blade with labeled by the cyclic order (1, 2, . . . , n), usually denoted β := ((1, 2, . . . , n));

however in [12] it was shown that by pinning β to a vertex eJ of a hypersimplex ∆k,n, then
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that translated blade βJ intersects the hypersimplex in a blade (((S1)s1 , . . . , (S`)s`)) where

now the pairs (Sj , sj) are uniquely determined and satisfy the condition from Definition 10.1,

1 ≤ sj ≤ |Sj | − 1,

or in short ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n). Additionally, we have that each Sj = {a, a +

1, . . . , b} is cyclically contiguous. We refer the reader to [12] for a detailed explanation of the

construction of the decorated ordered set partition.

The number of blocks ` is equal to the number of cyclic intervals in the set J and the

contents of the blocks are determined by the set J together with the cyclic order. In particular,

the number of blocks is equal to the number of maximal cells in the subdivision induced by

the blade.

It was further shown in [12] that (((S1)s1 , . . . , (S`)s`)) induces a multi-split positroidal

subdivision where the vertices of the maximal cells become bases of Schubert matroids, or

nested matroids.

Remark 10.2. We emphasize that a blade is not a tropical hyperplane, though the two are

isomorphic as polyhedral complexes. The blade ((α1, . . . , αn)) has the following key feature:

the directions of its n edges are exactly the cyclic system of roots eα1 − eα2 , . . . , eαn − eα1 ;

this in fact has the nontrivial consequence that blades are tightly connected to the theory of

matroids.

Superimposing multiple copies of the same blade ((1, 2, . . . , n)) on the vertices of a hy-

persimplex ∆k,n results in a particularly “well-behaved” subdivision when the vertices satisfy

a condition on their pairwise relative displacements: in [12], a combinatorial criterion called

weak separation, for k-element subsets of {1, . . . , n}, was shown to provide the compatibility

criterion for an arrangement of blades on the vertices of ∆k,n to induce a subdivision of it

such that every maximal cell is a matroid (in particular positroid) polytope. It is natural to

ask what happens when the hypersimplex is replaced with more general classes of generalized

permutohedra (or, polymatroids). We return to this question at the end of the section.

Let us now recall from [10] the construction of the planar basis: this is a set of
(
n
k

)
− n

linear functions, denoted ηJ , on K(k, n) which are used to construct generalized Feynman

diagrams in the sense of [10, 17, 25].

We first introduce n linear functionals

Lj(x) = xj+1 + 2xj+2 + · · ·+ (n− 1)xj−1,

on Rn, where the indices are cyclic modulo n. For any lattice point v ∈ Rn, define a piecewise-

linear surface

ρv(x) =
1

n
min{L1(x− v), . . . , Ln(x− v)}eI .

We warn the reader that our convention differs from [14] in that now the factor 1
n is incorpo-

rated into ρv.
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We remark that unless otherwise stated we shall assume that v has integer coordinates,

so that v ∈ Zn.

Here the graph of ρv is a piecewise linear surface, with n linear domains and with maxi-

mum height zero at v.

Remark 10.3. The locus of nonzero curvature of the function ρJ is the blade ((1, 2, . . . , n)),

see Definition 10.1.

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

Figure 2. The two blade arrangements on the octahedron. For clarity only portions of the blade are
shown. In physics these induce the s and t channels via the planar basis of linear functionals on the
kinematic space. Left: η13 = s23. Right: η24 = s12. For general (k, n) see [10, 12, 14].

The set of functions ρu for u ∈
{
x ∈ Zn :

∑n
j=1 xj = 0

}
, say, satisfy relations which

generalize the positive tropical Plucker relations from the hypersimplex to the ambient integer

lattice.

Indeed, a slight extension of Proposition5 of [14, Prop. 3.8] leads to Proposition 10.4.

Proposition 10.4. Let r ∈ Z be an integer.

For any v ∈
{
x ∈ Zn :

∑n
j=1 xj = r − 2

}
and x ∈

{
x ∈ Zn :

∑n
j=1 xj = r

}
, then

ρv+eac(x) + ρv+ebd(x) = min{ρv+eab(x) + ρv+ecd(x), ρv+ead(x) + ρv+ebc(x)}. (10.4)

for any cyclic order a < b < c < d.

Sketch of Proof. For the proof, the key insight is that around each integer lattice point,

the hypersimplices ∆1,n,∆2,n, . . . ,∆n−1,n meet, each with a multiplity
(
n
k

)
. Therefore the

proof reduces to the geometric one given in [14], for any chosen appropriated translated

5In the modification, we simply enlarge the vertex set of beyond that of ∆k,n, to other vertex sets an integer
lattice of the form {x ∈ Zn :

∑n
J=1 xj = r} for a given integer r.
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hypersimplex ∆2,n, . . . ,∆n−2,n. For an analytic derivation, which we omit, one would show

that

−(ρv+eac(x) + ρv+ebd(x)) + (ρv+eab(x) + ρv+ecd(x))

and

−(ρv+eac(x) + ρv+ebd(x)) + (ρv+ead(x) + ρv+ebc(x))

have disjoint support on the given lattice x ∈
{
x ∈ Zn :

∑n
j=1 xj = r

}
, finding that when one

of the two equations is nonzero at some ev for a lattice point v, then the coefficient is +1.

For the present purposes we shall specialize the discussion to vertices v = eJ ∈ ∆k,n. For

each k-element subset J ⊂ {1, . . . , n}, define a piecewise linear surface over the hypersimplex,

the graph of the function ρJ : ∆k,n → R, by

ρJ(x) = min {L1(x− eJ), . . . , Ln(x− eJ)} .

Often – as is the case here – it is important to localize the function ρJ still further to the

vertices of a lattice polytope; for example, to the vertex set of ∆k,n. We obtain a vector of

heights, that is, an element of R(nk) with simple rational coefficients.

Denote the localization of ρJ to the vertices of the hypersimplex by

hJ =
∑

I∈([n]k )

ρJ(eI)e
I (10.5)

=
1

n

∑
I∈([n]k )

min{L1(eI − eJ), . . . , Ln(eI − eJ)}eI , (10.6)

where {eI : I ∈
([n]
k

)
} is the standard basis for R(nk). Then using the height function hJ , one

can interpolate to recover the piecewise linear surface (i.e., the graph of ρJ) over ∆k,n whose

bends project down to the blade βJ , which intersects the hypersimplex in a blade of the form

(((S1)s1 , . . . , (S`)s`)).

Then each element hJ determines a lift of each vertex eI ∈ ∆k,n to a height 1
n min{L1(eI−

eJ), . . . , Ln(eI − eJ)} and interpolating between these lifts gives rise to the piecewise-linear

surface over the hypersimplex ∆k,n defined by ρJ , pinned to the vertex eJ ∈ ∆k,n.

Moreover, the bends of each such surface project down into ∆k,n to the internal facets

of a certain kind of matroid subdivision, called a positroidal multi-split ([12]). This union

of internal facets was further shown to coincide with the intersection of the translated blade

((1, 2, . . . , n))eJ with the hypersimplex.

Example 10.5. Let us now give the explicit calculation of the identity of Proposition 10.4;

of course, the basic example is the octahedron ∆2,4 itself. The six height functions are as
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follows:

h13 = −1

4

(
e12 + 3e14 + 3e23 + 2e24 + e34

)
h24 = −1

4

(
3e12 + 2e13 + e14 + e23 + 3e34

)
h12 = −1

4

(
3e13 + 2e14 + 2e23 + e24 + 4e34

)
(10.7)

h34 = −1

4

(
4e12 + 3e13 + 2e14 + 2e23 + e24

)
h14 = −1

4

(
2e12 + e13 + 4e23 + 3e24 + 2e34

)
h23 = −1

4

(
2e12 + e13 + 4e14 + 3e24 + 2e34

)
.

Now we find that:

(h12 + h34)− (h13 + h24) = e13 (10.8)

(h14 + h23)− (h13 + h24) = e24. (10.9)

Comparing respective coefficients we see that the height functions e13 and e24 above now

obviously have disjoint support; it follows that indeed,

ρ13(e
ij) + ρ24(e

ij) = min
{
ρ12(e

ij) + ρ34(e
ij), ρ14(e

ij) + ρ23(e
ij)
}

for each eij , where eij is a vertex of the octahedron ∆2,4.

Now, as shown in [14], by specializing ρv to the vertex set {eJ : J ∈
([n]
k

)
} of a hyper-

simplex, we find that the vectors hJ ∈
([n]
k

)
satisfy the positive tropical Plucker relations

and thus define elements in the positive tropical Grassmannian Trop+G(k, n); in fact each

hJ generates a ray in Trop+G(k, n), and as a height function it induces the piecewise linear

surface ρJ which projects down to the hypersimplex to induce a positroidal multisplit, such

that ρJ is linear over each maximal cell.

Consequently we obtain a family of piecewise-linear functions, pinned to the integer lattice

points in a affine hyperplane of the form
∑n

j=1 xj = r ∈ Z in Rn, which can be localized to

the integer lattice points in any generalized permutohedron; one particularly interesting case

is when the facet hyperplanes are of the form
∑b

j=a xj = c for any cyclic interval a, a+1, . . . , b

and where c is an integer.

Let us recall the first basis result result from [14].

Proposition 10.6 ([14]). The set of height functions hJ is a basis for R(nk).

Denote by “·” the standard Euclidean dot product on R(nk).

Now for any J ∈
([n]
k

)nf
, define a linear functional on the kinematic space, or in more
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physical terminology, a planar kinematic invariant, ηJ : K(k, n)→ R, by

ηJ(s) := −hJ · (s) = − 1

n

∑
I∈([n]k )

min{L1(eI − eJ), . . . , Ln(eI − eJ)}sI . (10.10)

Usually instead of ηJ(s) we write just ηJ with the understanding that ηJ is to be evaluated

on points in K(k, n).

Then we have the property that if J = {i, i + 1, . . . , i + k − 1} is frozen, then since the

graph of ρJ : ∆k,n → R does not bend over ∆k,n, it follows that ηJ is identically zero on

K(k, n). See [14] for details.

A further computation proves linear independence for the set of ηJ where J is nonfrozen,

and we obtain Proposition 10.7. This will be the key to defining the map Ψ in Equation

(10.14).

Proposition 10.7 ([14]). The set of linear functionals{
ηJ : K(k, n)→ R : J ∈

(
[n]

k

)nf}

is a basis of the space of the dual kinematic space (K(k, n))∗, that is to say, it is a basis of

the space of linear functionals on K(k, n).

For the conclusion of this section, we initiate the study of polymatroidal blade arrange-

ments; these generalize the construction of matroidal blade arrangements in [12].

Note that in Definition 10.8 we are including unbounded generalized permutohedra as

maximal cells.

Definition 10.8. Fix an integer r ∈ Z.

Given lattice points v1, . . . , vM in an affine hyperplane where
∑n

j=1 xj = r ∈ Z, call the

arrangement of blades {βv1 , . . . , βvM } polymatroidal if every maximal cell in the superposition

of the blades is a generalized permutohedron.

Clearly, matroidal blade arrangements, where each vj is a vertex of a hypersimplex,

provide a special case of this construction.

Corollary 10.9. The maximal cells of a polymatroidal blade arrangement are generalized

permutohedra6 whose facets are in hyperplanes of the form xi + xi+1 + · · ·+ xj = ci,j.

Example 10.10. Figure 3 gives two polymatroidal blade arrangements on the vertices of a

two-dimensional generalized permutohedron. Clearly, all of the maximal cells (some of which

are unbounded) are generalized permutohedra (note that this included the unbounded case

of permutohedral cones).

6It is immediate that the bounded maximal cells occurring in a polymatroidal blade arrangement are
polypositroids, as introduced very recently in [35].
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Figure 3. Two polymatroidal blade arrangements on the type A2 root solid.

10.2 Polytopal Neighborhood of the Planar Kinematics Point

Recall that {αi,j : (i, j) ∈ [1, k − 1]× [1, n− k]} are coordinates on R(k−1)×(n−k).

Let (xi,j)[1,k−1]×[1,n−k] be auxiliary variables (appearing in the so-called web parameter-

ization of the nonnegative Grassmannian). Define a codimension k − 1 subspace Hk,n of

R(k−1)×(n−k),

Hk,n =

(αij) ∈ R(k−1)×(n−k) :
n−k∑
j=1

αi,j = 0 for each i = 1, . . . , k − 1

 .

Define αi,[a,b] =
∑b

j=a αi,j . If a > b then put αi,[a,b] = 0. More generally, put αI,J =∑
(i,j)∈I×J αi,j for subsets I ⊆ {1, . . . , k − 1} and J ⊆ {1, . . . , k − n}.

Definition 10.11 contains the main construction of this section, of the lattice polytopal

deformation of the PK point.

Definition 10.11. Define a polyhedron Πk,n ⊂ Hk,n by

Πk,n =

{
(αij) ∈ Hk,n :

k−1∑
i=1

αi,[ji,ji+1−i−1] + 1 ≥ 0, J ∈
(

[n]

k

)nf}
, (10.11)

where J = {j1, . . . , jk} runs over all non-frozen subsets of {1, . . . , n}.

Then for instance if J = {1, 4, 5} then correspondingly we have

α1,1 + α1,2 + 1 ≥ 0,

while if J = {1, 3, 6} then

α1,1 + α2,23 + 1 ≥ 0.
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Note that αi,j ≥ −1 is included in the set of inequalities; it follows that Πk,n is a bounded

polyhedron with (at most)
(
n
k

)
− n facets.

Proposition 10.12. For the polyhedron Πk,n we have the following two properties:

1. Πk,n has exactly
(
n
k

)
− n facets.

2. Πk,n has a unique interior lattice point p0, given by αi,j = 0 for all (i, j) ∈ [1, k − 1]×
[1, n− k].

Proof. First note that the point p0 with all coordinates αi,j = 0, for (i, j) ∈ [1, k−1]×[1, n−k]

satisfies all
(
n
k

)
− n inequalities, but it does not minimize any of them. Consequently Πk,n is

nonempty and has the full dimension (k − 1)(n− k)− (k − 1) = (k − 1)(n− k − 1).

For (1), we have that the
(
n
k

)
− n facet inequalities are of the form

k−1∑
i=1

αi,[ji,ji+1−i−1] ≥ −1

from which it is evident that they are additively independent and consequently are minimized

on distinct facets of Πk,n.

For (2) we finally claim that p0 is the only interior lattice point. Indeed, first note that

Πk,n lies inside the cube where [−1, n− k − 1](k−1)(n−k) and satisfies
∑n−k

j=1 αi,j = 0 for each

i = 1, . . . , k − 1. In particular, it lives in a Cartesian product of k-1 copies of the (n − k)th

dilate of a simplex of dimension n− k − 1, and each of these has exactly one interior lattice

point at the origin. Therefore the interior lattice point of Πk,n projects uniquely onto the

origin in each copy.

The result follows.

Example 10.13. The polyhedron Π3,6 is cut out by 14 facet inequalities in the codimension

two subspace H3,6 of R(2)×(3) that is characterized by

α1,123 = α1,1 + α1,2 + α1,3 = 0,

α2,123 = α2,1 + α2,2 + α2,3 = 0.

Now, αi,j ≥ −1 accounts for 2 · 3 = 6 facets. The remaining 8 facets minimize the following

inequalities:

αi,1 + αi,2 + 1 ≥ 0, αi,2 + αi,3 + 1 ≥ 0

α1,1 + α2,2 + 1 ≥ 0, α2,2 + α2,3 + 1 ≥ 0 (10.12)

α1,1 + α1,2 + α2,3 + 1 ≥ 0, α1,1 + α2,2 + α2,3 + 1 ≥ 0,
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where in the first line i = 1, 2. Moreover, Πk,n has f-vector (1, 27, 60, 47, 14, 1); hence Euler

characteristic zero. It is interesting to note that the f-vector is the reverse of the one in

Example 10.20; we expect that this will be true in general for the two families of polytopes.

Recall from Proposition 10.7 that the set of
(
n
k

)
− n planar kinematic invariants ηJ(s) :

K(k, n) → R is a basis for the space of linear functions on the kinematic space; we will use

this property in the following construction to give an embedding of R(k−1)×(n−k) into K(k, n).

For each α ∈ R(k−1)×(n−k) we define a point in the kinematic space s(α) ∈ K(k, n) by

solving the system of equations{
ηJ(s) =

k−1∑
i=1

αi,[ji,ji+1−i−1] + 1, ηi,i+1,...,i+k−1(s) = 0 : J ∈
(

[n]

k

)nf
, i = 1, . . . , n

}
(10.13)

for the coordinate functions sJ on K(k, n).

This gives rise to an embedding Ψ : R(k−1)×(n−k) ↪→ K(k, n),

Ψ(α) = s(α), (10.14)

which restricts to an embedding of Πk,n into a (k− 1)(n− k− 1)-dimensional subspace of the

kinematic space.

Now Πk,n has an interesting compatibility with planar kinematics, as in Proposition 10.14.

Proposition 10.14. We have that ηJ(Ψ(p0)) = 1 whenever J ∈
([n]
k

)nf
and otherwise

ηJ(Ψ(p0)) = 0 when J is frozen, that is Ψ(p0) ∈ K(k, n) is the planar kinematics point.

In other words, the unique lattice point inside Πk,n is the planar kinematics point!

For instance, for the embedding Π3,6 ↪→ K(3, 6), we have

η134 = α1,1 + 1, η245 = α1,2 + 1, η356 = α1,3 + 1, η145 = α1,12 + 1, η256 = α1,23 + 1,

η124 = α2,1 + 1, η235 = α2,2 + 1, η346 = α2,3 + 1, η125 = α2,12 + 1, η236 = α2,23 + 1

η135 = α1,1 + α2,2 + 1, η136 = α1,1 + α1,23 + 1, η146 = α1,12 + α2,3 + 1

η246 = α1,2 + α2,3 + 1.

In particular, the center p0 = 0 ∈ Πk,n is pushed to the PK point, where ηJ = 1. Further,

comparing with Example 10.13, then the facet inequalities cutting out Π3,6 become the exactly

the conditions for the planar invariants ηJ to be nonnegative.

We conclude this section with a proposal for the expression of Πk,n as a Newton polytope.

Claim 10.15. For any 2 ≤ k ≤ n − 2, then the polyhedron Πk,n is equal to the Newton

polytope of the Laurent polynomial appearing in Equation (8.31):∏k−1
i=1 Pi(x)

∏n−k−1
j=1 Qj(x)∏

(i,j) xi,j
, (10.15)
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where

Pi(x) =
n−k∑
j=1

xi,j , (10.16)

Qj(x) = x1,jx2,j · · ·xk−1,j + x1,jx2,j · · ·xk−2,jxk−1,j+1 + x1,jx2,j · · ·xk−3,jxk−2,j+1xk−1,j+1

+ · · ·+ x1,j+1x2,j+1 · · ·xk−1,j+1.

In fact, note that directly from Equation (10.16), by calculating total degrees of the variables

xi,j , it follows that the Newton polytope for Equation (10.15) is in the subspace Hk,n and in

particular it contains the origin in its interior.

10.3 Rank-Graded Root Polytopes and Their Volumes

In what follows, we initiate the study of a polytope which is in duality with Πk,n, modulo a

change of coordinates. We first introduce a (k− 1)(n−k)-dimensional polytope R̂k,n, and its

(k− 1)(n− k− 1)-dimensional projection Rk,n. Our primary aim is to investigate properties

of the latter. By abuse of terminology we may call both R̂k,n and its projection Rk,n root

polytopes, but it will be clear from the context which one we mean.

After providing computational evidence, at the end of the section we formulate Conjecture

10.22, that the volume of Rk,n is

Vol(Rk,n) =
C

(k)
n−k

((k − 1)(n− k − 1))!
.

On the other hand, a dimension k(n − k) polytope analogous to Rk,n, called the super-

potential polytope ΓG, was studied in [36]. Rewriting the formula given in Proposition 16.8

of [36], the volume is

Vol(ΓG) =
C

(k)
n−k

((k)(n− k))!
.

In Example 10.19, we check that R2,5 coincides with (a projection of) the so-called root

polytope of type A2. The identification clearly extends to any n.

In particular, R̂2,n is the largest among the family of root polytopes introduced in [19];

these are by construction the convex hull of the origin together with all positive roots ei− ej
with i < j.

Recall that {ei,j : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n− k} is the standard basis for R(k−1)×(n−k),

and {αi,j : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n− k} is the set of coordinate functions.

The polytope R̂k,n lives in the space

Ĥk,n =

(αij) ∈ R(k−1)×(n−k+1) :

n−k+1∑
j=1

αi,j = 0 for each i = 1, . . . , k − 1

 .
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Recall also the subspace of Ĥk,n,

Hk,n =

(αij) ∈ R(k−1)×(n−k) :

n−k∑
j=1

αi,j = 0 for each i = 1, . . . , k − 1


and denote by projk,n : Ĥk,n → Hk,n the projection determined by projk,n(ei,j) = ei,j for

j ≤ n− k, and

projk,n(ei,n−k+1) = ei,1.

Finally, for each nonfrozen J = {j1, . . . , jk} ∈
([n]
k

)nf
, let

v̂J =

k−1∑
λ=1

(eλ,jλ−(λ−1) − eλ,jλ+1−(λ−1)−1). (10.17)

Definition 10.16. The polytope R̂k,n ⊂ Ĥk,n is the convex hull of the origin, together with

the following
(
n
k

)
− n points: {

v̂J : J ∈
(

[n]

k

)nf}
,

as well as the k − 1 points

{ei,1 − ei,n−k+1 : i = 1, . . . , k − 1} .

Now define

vJ =
k−1∑
λ=1

(eλ,jλ−(λ−1) − eλ,jλ+1−(λ−1)−1),

where now the subscripts are now by convention taken modulo n− k.

Definition 10.17. The polytope Rk,n ⊂ Hk,n is the convex hull of the following
(
n
k

)
− n

points: {
vJ : J ∈

(
[n]

k

)nf}
.

Note that the origin is already in the convex hull.

Observe that

projk,n(ei,1 − ei,n−k+1) = 0

for all i = 1, . . . , k − 1, and consequently projk,n(R̂k,n) = Rk,n.

Remark 10.18. We claim that the polytope Rk,n introduced in the Section 10.3 is in duality

with the polyhedron Πk,n defined in Section 10.2. This can be seen as follows. Define new

elements

fi,j = ei,j − ei,j+1.
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Then the vertices of Rk,n take the form

vJ =
k−1∑
i=1

fi,[ji,ji+1−i−1],

which dualizes to the linear function defining the facet hyperplane

k−1∑
i=1

αi,[ji,ji+1−i−1] + 1 = 0,

of Πk,n.

Example 10.19. Consider the type A2 root polytope. In the present convention this is equal

to

R̂2,5 = convex hull{0, e1,1− e1,2, e1,1− e1,3, e1,1− e1,4, e1,2− e1,3, e1,2− e1,4, e1,3− e1,4} ⊂ Ĥ2,5.

Now its projection is

R2,5 = proj2,5(R̂k,n) = convex hull{e1,1−e1,2, e1,1−e1,3, e1,2−e1,3, e1,2−e1,1, e1,3−e1,1} ⊂ H2,5,

that is,

R2,5 = convex hull {v1,3, v1,4, v2,4, v2,5, v3,5} .

Example 10.20. Let us also present R3,6 explicitly. This is the convex hull in H3,6 of the

following 14 points:

v1,2,4 e2,1 − e2,2
v1,2,5 e2,1 − e2,3
v1,3,4 e1,1 − e1,2
v1,3,5 e1,1 − e1,2 + e2,2 − e2,3
v1,3,6 e1,1 − e1,2 − e2,1 + e2,2
v1,4,5 e1,1 − e1,3
v1,4,6 e1,1 − e1,3 − e2,1 + e2,3
v2,3,5 e2,2 − e2,3
v2,3,6 e2,2 − e2,1
v2,4,5 e1,2 − e1,3
v2,4,6 e1,2 − e1,3 − e2,1 + e2,3
v2,5,6 e1,2 − e1,1
v3,4,6 e2,3 − e2,1
v3,5,6 e1,3 − e1,1.

(10.18)
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Using a computer program such as SageMath, one finds that R3,6 has f-vector given by

(1, 14, 47, 60, 27, 1),

and volume

Volume(R3,6) =
42

4!
=
C

(3)
3

4!
,

where C
(k)
n−k is the multi-dimensional Catalan number.

Similarly we find that R3,7, (R3,8 and R5,8), R3,9 and R3,11 have f-vectors respectively

(1, 28, 178, 483, 661, 456, 128, 1),

(1, 48, 486, 2122, 5030, 7048, 5895, 2750, 557, 1),

(1, 75, 1108, 6948, 24170, 52281, 73891, 68921, 41244, 14474, 2286, 1),

(1, 154, 4179, 45769, 278224, 1081720, 2898751, 5583293, 7902473, 8280735, 6383651,

3537888, 1341425, 313380, 34236, 1)

while R4,8, R4,9 have f-vectors

(1, 62, 770, 4048, 11653, 20409, 22559, 15524, 6133, 1074, 1),

(1, 117, 2441, 20488, 94620, 275905, 544210, 750799, 731318, 496454, 225059, 61668, 7783, 1).

Moreover, as in Example 10.20 we find that the volumes are the fractions

Vol(Rk,n) =
C

(k)
n−k

((k − 1)(n− k − 1))!
,

for R3,n with n ≤ 9 and R4,n with n ≤ 9. In particular the relative volume is the multi-

dimensional Catalan number C
(k)
n−k itself.

Using SageMath we were also able to compute the f-vectors of R4,10 and R5,10 (in about

ten hours), respectively

(1, 200, 6463, 79151, 525529, 2217016, 6460534, 13639822, 21436558, 25407704, 22742748,

15211454, 7404964, 2490478, 520155, 51128, 1)

and

(1, 242, 9041, 123808, 907951, 4218658, 13571560, 31822956, 56070720, 75497722, 78187219,

62086930, 37284006, 16453106, 5055558, 970826, 88193, 1).

Now we arrive at the initial raison d’etre for rank-graded root polytopes: their (relative)
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volume computes the generalized biadjoint scalar m(k)(In, In) at the planar kinematic point!

Indeed, this demonstrates a compatibility with the discussion in Section 2.2 of [28] concerning

the volume of the dual polytope.

Moreover, we see directly that the number of facets of R3,6,R3,7 and R3,8 in the f-

vectors listed above coincide with the number of linear domains used in Section 8 to evaluate

m(k)(In, In) as a Laplace type transform at the planar kinematics point.

For a small preview of the structure of rank graded root polytope R̂k,n and its projection

Rk,n, we observe a basic feature of their face posets which can be easily verified, by simply

expanding the vertices vJ in the standard basis of ei,j ’s as in Equation (10.17).

Proposition 10.21. Whenever 2 ≤ k−1 < k ≤ n−2 then we have k−1 natural embeddings

R̂k−1,n−1 ' R̂k,n ∩
{
α ∈ Ĥk,n : αi,j = 0 for all j = 1, . . . , n− k

}
,

one for each i = 1, . . . , k − 1, and similarly for Rk,n.

Proof. The subpolytopes can be constructed explicitly. For instance, the vertices of the

polytope Rk−1,n−1 in the ith embedding into Rk,n, that is such that αi,j = 0 for all j =

1, . . . , n−k, are those vertices vJ ∈ Rk,n where J ∈
([n]
k

)nf
has the property that ji+1 = ji+1.

For R̂k,n the procedure it exactly analogous.

Conjecture 10.22. The polytope Rk,n has (relative) volume the k-dimensional Catalan

number C
(k)
n−k.

In particular,

Vol(Rk,n) =
C

(k)
n−k

((k − 1)(n− k − 1))!
.

A combinatorial proof of Conjecture 10.22 would be very interesting, see [37].

Remark 10.23. Finally we observe that a similar construction to that used for Proposition

10.14 shows that Rk,n can be embedded in the kinematic space as a minimal polytopal

neighorhood of the PK point.

10.4 Conical Kinematics: Roots and Weights

In this section, we introduce conical kinematics, which provides a generalization of the con-

struction for k=2 in [38], which in particular gives a different value for m(k)(In, In) for k ≥ 3

from the minimal kinematics in [9].

For any J ∈
([n]
k

)nf
, define the linear functional

γJ =
k−1∑
`=1

(α`,j`−(`−1) − α`,j`+1−(`−1)−1), (10.19)

where the indices satisfy (i, j) ∈ [1, k − 1]× [1, n− k + 1].
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Conjecture 10.24. For any α ∈ R(k−1)(n−k+1), solve the equations ηJ(s) = γJ for the

coordinate functions s on K(k, n). Then the scattering equations possess a unique solution,

and we have

m(k)(In, In)
∣∣
ηJ=γJ

=
k−1∏
i=1

(
αi,1 − αi,n−k+1∏n−k
j=1 (αi,j − αi,j+1)

)
.

There is a second version of conical kinematics which differs from the above by a coordi-

nate transformation.

For any J ∈
([n]
k

)nf
, define the linear functional

γ′J =
k−1∑
i=1

αi,[ji,ji+1−i−1], (10.20)

Thus, Conjecture 10.24 has the following equivalent formulation in the second set of variables.

Conjecture 10.25. For any α ∈ R(k−1)(n−k), solve the equations ηJ(s) = γ′J for the coordi-

nate functions s on K(k, n). Then the scattering equations possess a unique solution, and we

have

m(k)(In, In)
∣∣
ηJ=γ

′
J

=

k−1∏
i=1

(∑n−k
j=1 αi,j∏n−k
j=1 αi,j

)
.

11 Discussions

In this paper we are seeing that the planar kinematic point and its surrounding polytopal

neighborhood Πk,n on the integer lattice, lie at the core of a seemingly vast network of

connections and novel structures, between the CHY formulation of the biadjoint cubic scalar

theory and its CEGM generalization, and mirror symmetry, tropical geometry, integrable

systems, enumerative combinatorics and lattice polytopes.

We found that the set of critical points of the planar kinematics potential function can

be identified with equivalence classes of certain critical points of the superpotential defined

in [39] and more recently in [15]. We have initiated the study of a highly structured lattice

polytope Πk,n that surrounds the planar kinematic point, where Π2,n is a degeneration of

the associahedron; we have studied its dual polytope, the rank-graded root polytope Rk,n,

where R2,n is a projection of the type An−2 root polytope. We have checked to nontrivial

values of (k, n) that the volume of Rk,n is the multi-dimensional Catalan number modulo a

normalization constant,

Vol(Rk,n) =
C

(k)
n−k

((k − 1)(n− k − 1))!
.

We have reformulated the CEGM generalization of the cubic scalar theory as a single

integral, with a tropical integrand, which can be evaluated explicitly, as opposed to its formu-

lation as a sum over generalized Feynman diagrams (GFD). This integral can be interpreted
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as a Laplace transform of the whole Trop +G(k, n) where the dual space is the space of kine-

matic invariants. This is a significant advance, since now (in theory) one can evaluate m
(k)
n

without the computational task of constructing the arrays of Feynman diagrams with com-

patible metrics. Instead, the internal lengths of the diagrams in the GFD have been“glued”

together to form a (k−1)(n−k−1)-dimensional space. Our main motivation for inotrducing

this object was to use it as a tool to explore possible combinatorial structures hidden in (re-

summations of) GFDs which account for the appearance of k-dimensional Catalan numbers

as the value of CEGM amplitudes at the PK point. However, it is clear that even for general

kinematics the integral formula could have many applications. For example in the study of

soft theorems [8, 40, 41]. We leave the study of this fascinating object for future research.

We have given a suggestive combinatorial interpretation for the domains of linearity

for the tropicalized (exponentiated) planar kinematics potential function S2,n which, dually,

provides a combinatorial interpretation for the vertices of the planar kinematics associahedron,

that is, as the facets of the root polytope R2,n. It would be very interesting to extend this

construction to k ≥ 3. This interpretation suggests the possibility that planar kinematics

could be extended from a single point to a some bigger subset of the kinematic space; in fact

we have seen exactly this in Corollary 10.14, which provides a minimal polytopal neighborhood

Πk,n of the planar kinematics point on the integer lattice.

We have constructed rank-graded root polytopes Rk,n; it is reasonable to expect that

these possess a regular, unimodular triangulation into C
(k)
n−k simplices; that will prove that

the relative volume conjecture for Rk,n. This suggests the natural possibility of an ampli-

tude wherein the Feynman diagrams, that is maximal collections of compatible poles, are

in bijection with the simplices in the unimodular triangulation of Rk,n. For this and other

combinatorial structures associated to the polytopes Rk,n and Πk,n, see [37].

Let us conclude some forward-looking and speculative issues raised through our work.

In [12], certain arrangements of the blade ((1, 2, . . . , n)) on the vertices of hypersimplices

∆k,n were shown to induce certain coarsest matroidal subdivisions and to provide a combi-

natorial criterion for compatibility of positroidal multi-splits; integrating integer translations

v of the blade ((1, 2, . . . , n)) gives rise to a family of tropical polynomials ρv on an integer

lattice which satisfy a continuous analog of the octahedron recurrence (see Proposition 10.4);

the vector of heights over the vertices eJ ∈ ∆k,n defines a functional on the kinematic space

K(k, n) and induces a planar basis element ([10]), as used in this paper to characterize the

PK point and a minimal polytopal neighborhood of it via an embedding Πk,n ↪→ K(k, n).

On the other hand, in [17], see also [25] and [18], Generalized Feynman Diagrams were

introduced and used as a powerful combinatorial device for the calculation of maximal col-

lections of compatible poles of m(k)(In, In).

Now one could consider blade arrangements on more general classes of lattice polytopes

as well and it is reasonable to expect that corresponding notions of Generalized Feynman

Diagrams would provide the characterization of maximal collections of compatible poles.

Put another way, what are the admissible subdivisions of polytopes, such as the type A3
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root solid in Figure 4, that would be detected by Generalized Feynman Diagrams to induce

maximal collections of compatible poles of an amplitude? In Figure 4, the root polytope

Figure 4. Incompatible 2-splits of the type A3 root solid. The root polytope R̂2,5 is the convex hull
of the red vertices.

R̂2,5 is the convex hull of the red vertices, and by projecting along the diameter through

the red vertex e1 − e4 and its opposite black vertex −(e1 − e4) we obtain the root polytope

R2,5. There, the pair of orthogonal hyperplanes correspond locally to the blade arrangement

{((1, 2, 3, 4))e13 , ((1, 2, 3, 4))e24}. The root polytopes R̂k,n and Rk,n introduced in Section

10.3 provide a rank-graded higher analog of the type A root polytope, in the sense that Rk,n
contains all lower-order polytopes Rk−j,n−j as faces, see Proposition 10.21. A first-order

question is to investigate what Rk,n, and Πk,n and its deformations, can tell us about the

generalized biadjoint scalar m(k)(In, In).

For a perhaps more ambitious question, let us first take a slight detour to discuss the

classical Steinmann relations: we shall approach Figure 4 from a new direction.

The classical Steinmann relations, which provide a condition on what are the possible

discontinuities of generalized retarded Green’s functions, lie at the foundation of axiomatic

QFT and an incarnation has appeared more recently in the study of planar N = 4 SYM [42].

Very recently they have appeared in the context of species, see [43].

The classical Steinmann relations (see for instance the review article [44] and the ref-

erences therein) can be formulated as a constraint on which are the pairwise compatible

hyperplanes that cut through the center of the type A root solid, formed as the convex hull

of all roots ei − ej for i 6= j, as follows: for proper nonempty subsets I, J of [n] = {1, . . . , n},
a pair of hyperplanes

xI = 0, xJ = 0
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corresponds to an admissible discontinuity of a Green’s function provided that at least one of

the following four intersections is empty:

I ∩ J, I ∩ Jc, Ic ∩ J, Ic ∩ Jc. (11.1)

It is natural to view these conditions as a pointwise analog of the condition for pairwise

compatibility relation of (2-split) matroid subdivisions of the hypersimplex ∆2,n.

Returning to the root solid, the Steinman relations in Equation (11.1) constitute a com-

patibility criterion for the common refinement of a pair of 2-splits of the type An−2 root solid,

of which the root polytope R̂2,n is a subpolytope.

Therefore one would like to ask for analogous compatibility relations for splits of the root

polytopes R̂k,n and Rk,n and related root solids.

Techniques developed to work with positroidal subdivisions for Generalized Feynman

Diagrams [17] and [25], matroidal blade arrangements in [10, 14], and their polymatroidal

generalizations defined here, could provide an approach.
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