
THE POLYLOGARITHM FUNCTION IN JULIA

MATTHEW ROUGHAN∗

Abstract. The polylogarithm function is one of the constellation of important mathematical
functions. It has a long history, and many connections to other special functions and series, and
many applications, for instance in statistical physics. However, the practical aspects of its numerical
evaluation have not received the type of comprehensive treatments lavished on its siblings. Only a
handful of formal publications consider the evaluation of the function, and most focus on a specific
domain and/or presume arbitrary precision arithmetic will be used. And very little of the literature
contains any formal validation of numerical performance. In this paper we present an algorithm for
calculating polylogarithms for both complex parameter and argument and evaluate it thoroughly
in comparison to the arbitrary precision implementation in Mathematica. The implementation was
created in a new scientific computing language Julia, which is ideal for the purpose, but also allows
us to write the code in a simple, natural manner so as to make it easy to port the implementation
to other such languages.

Key words. IEEE-754 Floating Point, Special functions

AMS subject classifications. 33E20, 33F05, 65B10

1. Introduction. The polylogarithm function is defined by the sum

(1.1) Lis(z) =

∞∑
k=1

zk

ks
,

for |z| < 1 (or for |z| ≤ 1 when <(s) ≥ 2), and by analytic continuation to the entire
complex plane. For instance when <(s) > 0 we can define it using the integral

(1.2) Lis(z) =
1

z

∫ ∞
0

ts−1

et/z − 1
dt,

except for a pole at z = 1 for <(s) < 2. There are many other representations for
the function, but these suffice for our understanding here. Figure 1.1 shows some
examples for integer parameter s.

The polylogarithm is an interesting function. Zagier [24] describes just the dilog-
arithm (the instance with s = 2) as one of the simplest, and yet strangest of non-
elementary functions. He states

“almost all the formulas relating to it, have something of the fantas-
tical in them, as if this function alone among all others possessed a
sense of humor.”

The polylogarithm has a long history; its early variants go back to 1696 with corre-
spondance between Leibniz and the Bernoullis1. And it is an important function. It
has direct relationships with the gamma function, Hurwitz and Riemann zeta func-
tions and many others. An entire book has been written on it [13]. It’s relationships
to Fermi-Dirac integrals lead to physical applications, for instance, computations in
statistical mechanics [12]. It also has many other applications including those in
number theory and geometry [15].

Note, however, that the polylogarithm function is unrelated to polylogarithmic
complexity as discussed in complexity theory.

∗ARC Centre of Excellence for Mathematical & Statistical Frontiers in the School of Mathematical
Sciences at the University of Adelaide, Australia. matthew.roughan@adelaide.edu.au

1See Maximon [15] for a brief history.

1

ar
X

iv
:2

01
0.

09
86

0v
1

 [
m

at
h.

N
A

]
 1

6
O

ct
 2

02
0

mailto:matthew.roughan@adelaide.edu.au

2 1 0 1
z

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Po
ly

lo
ga

rit
hm

Li 3
Li 2
Li 1
Li0
Li1
Li2

(a) Integer parameter s and real argument z.

-2 -1 0 1 2

-2

-1

0

1

2

−1

−0.5

0

0.5

1

phase/π

real(z)

i
m
a
g
(
z
)

(b) Phase plot of Li−2(z).

Fig. 1.1. Examples of the polylogarithm function.

The function gains its name [24] by comparison to the Taylor series of the ordinary
logarithm

− ln(1− z) =

∞∑
n=1

zn

n
,

leading to some authors (e.g., [15]) defining the polylogarithm to refer to the integer
cases s = n, and using the term Jonquière’s function or fractional polylogarithm for
non-integer cases. We use the term polylogarithm to include all values of s ∈ C.

There are many publications on the function, but only a handful on its numerical
evaluation [10, 23, 7, 19, 8, 3, 4]. Zagier [24] precisely describes the situation

“It occurs not quite often enough, and in not quite an important
enough way, to be included in the Valhalla of the great transcenden-
tal functions—the gamma function, Bessel and Legendre-functions,
hypergeometric series, or Riemann’s zeta function. And yet it occurs
too often, and in far too varied contexts, to be dismissed as a mere
curiosity.”

It occurs not quite often enough to have always been given the consideration it de-
serves. In particular little work has been done on its numerical evaluation, and all of
the existing works are incomplete, contain errors, or are specific to particular domains
or sets of parameters, e.g., s integer and real (see Section 3 for details). Notably, al-
most none of these present anything serious in the way of validation. And most
existing implementations are (i) not open, and/or (ii) use arbitrary-precision arith-
metic [17, 18, 20], in order to produce high-precision results for instance for examining
zeros. Instead, we aim to provide a standard IEEE floating point [9] implementation
of reasonable accuracy used for instance for computing zeta-distribution moment-
generating functions. Obtaining reasonable accuracy over the whole parameter space
within the limits of 64 bit precision is still challenging. For instance, some stopping
rules that are relatively straight forward in the deep tail of a series are less reliable
early on in the sequence.

The implementation is provided in a relatively new programming language –
Julia [5] – designed specifically for numerical computing. Julia is an ideal language
for such tasks, providing both an adaptable and dynamic high-level language, but

2

also very good computational performance [11]. Note, however, that our code is open
source2 under the MIT licence and the intent is that the code be straight-forward
enough to be adapted easily to any modern procedural language.

The algorithm is tuned to provide relative accuracy better than 10−12 using stan-
dard IEEE double-precision floating point calculations. In over 30,000 tests it fails
to attain this accuracy in only 88 cases, and the worst case accuracy is 1.1 × 10−11.
The typical accuracy is much better. The implementation’s speed is comparable or
substantially better than the alternatives for which we have data.

An additional goal of this work is to present a complete set of information for
implementation of this function in other languages and settings, from the ground up,
including many of the small technical pieces that are missing from earlier expositions.

2. Notation, Conventions and Standard Results. The standard notation
for the polylogarithm is Lis(z), where we refer to s as the parameter, and z as the
input argument. In the case where s is a real integer, it is often represented by n.

Note that the notation Li has also been used for the Eulerian logarithmic integral,
which is not under consideration here.

2.1. Standard Functions. There is a common set of useful functions – Zagier’s
Valhalla – defined in most computational packages. Most are well-known, e.g., see
[1], but we define our notation here to be precise.

Γ(s) = the gamma function,

ψ(n) = the digamma function = the derivative of log-gamma,

ψ(m)(n) = the polygamma function = the mth derivative of log-gamma,

ζ(s) = the Riemann zeta function =

∞∑
n=0

1/ns, for <(s) > 1,

ζ(s, q) = the Hurwitz zeta function =

∞∑
n=0

1/(n+ q)s, for <(s) > 1,<(q) > 0,

η(s) = the Dirichlet eta function =
(
1− 21−s

)
ζ(s),

β(s) = the Dirichlet beta function = 4−s
(
ζ(s, 1/4)− ζ(s, 3/4)

)
.

These functions are provided by, or calculable directly from standard numerical pack-
ages such as the SpecialFunctions3 package in Julia.

These have many useful relationships: e.g., one that is used here is [1, 6.4.2]

(2.1) ψ(n)(1) = (−1)n+1n! ζ(n+ 1), for n = 1, 2,

2.2. Additional Functions and Sequences. There are a number of sequences
and functions used in computing polylogarithms or as reference points for testing that
are not as commonly implemented in standard numerical packages (e.g., these are not
provided by the SpecialFunctions package in Julia). In particular:

• The Stieltjes constants [14] γN , which we provide in our code from values from
the OEIS [16]. Note that γ0 = γ, which is also called the Euler-Mascheroni
constant. The sequence is sometimes called the generalised Euler constants,
but that this is confusing because there are other series called Euler numbers.
Euler was prolific.

2Source available at https://github.com/mroughan/Polylogarithms.jl.
3https://juliamath.github.io/SpecialFunctions.jl/

3

https://github.com/mroughan/Polylogarithms.jl
https://juliamath.github.io/SpecialFunctions.jl/

• The harmonic numbers, Hn =
∑n
k=1 1/k (where H0 = 0 by convention) and

generalized harmonic numbers, Hn,r =
∑n
k=1 1/kr. We calculate values for

smaller n directly, while for larger we use the identity that

Hn = ψ(n+ 1) + γ,

and we use a similar identity for generalised harmonic numbers.
• The Bernoulli numbers Bn and polynomials Bn(x). The first 35 numbers are

provided as exact rationals4 based on [16, A027642], and larger values are
derived as real numbers from the polynomials using Bn = Bn(0) because the
integers in the rational representation come close to the bounds for 64 bit
integers. Bernoulli polynomials are given exactly up to 5th order, otherwise
calculated using the standard recursion, or for large n using the following
identity [6], Bn(x) = −nζ(1− n, x).

The advantage of expressing harmonic number and Bernoulli polynomials in terms of
other special functions is that these special functions are given in many now standard
numerical libraries, for instance, the SpecialFunctions module of Julia, but for small
n it can be faster and more precise to calculate them directly.

2.3. The Branch. The polylogarithm function has a branch on the real axis for
z ∈ [1,∞). The conventional behaviour around the branch is exemplified by particular
values such as given in [7] for infinitesimally small ε > 0

Li2(2) =
π2

4
− iπ ln 2,(2.2)

Li2(2 + iε) =
π2

4
+ iπ ln 2.(2.3)

In general the discontinuity should take the form

(2.4) Disc Lis(z) = 2πi
(ln z)s−1

Γ(s)
,

the convention being [23, (3.1)] that

=
(
Lis(z)

)
= −π (ln z)s−1

Γ(s)
,(2.5)

=
(
Lis(z + iε)

)
= +π

(ln z)s−1

Γ(s)
,(2.6)

and these terms go to zero for s = n ≤ 0.

3. Related Work. It is surprising that there is relatively little written about
computing standard polylogarithms, much of it in informal literature, rather than
refereed publications. In rough chronological order:

• The pre-history of this work primarily concentrates only on di- and triloga-
rithms (s = 2 and 3), e.g., see Jacobs and Lambert [10].

• Wood [23] presents the first somewhat complete set of series for calculating the
polylogarithm function in various domains. Apart from frequent typograph-
ical mistakes, there are several major difficulties with the manuscript. Wood

4Julia provides a Rational number type.

4

primarily presents series without any deep consideration of which should be
applied. Wood also focusses on s real as do many other papers. The re-
sults often generalise, but special care was found to be needed for complex
parameters.

• Crandall [7] provides an actual algorithm, specifying choice of domain for
each piece. However, in this paper Crandall only considers s = n, integer
and real. Crandall also provides only a few hints as to how the function is
tested, but no numerical results. This is the first reference given in Python
mpmath’s implementation [17], and is presumably the basis of the code there.

• Vepstas [19] presents a new approach to solving problems of this type, but the
algorithm uses arbitrary-precision arithmetic. We seek here to find a standard
64-bit floating-point implementation. Vepstas provides more details of tests
of the function than any of the other publications. However, even here, the
results are often unclear: for instance, images without scales are published.

• Crandall [8] presents a unified version of his earlier approach for general s
(and other related functions), as well as the expression for the expansions near
negative integer s, but in this work does not report a complete algorithm, and
also suffers from some small mistakes.

• Bailey and Borwein [3, 4] use and refine Crandall’s work for calculating poly-
logarithms and their derivatives. They discuss alternative approaches in dif-
ferent domains, but their main interest is in related functions and although
they fill in some gaps of [8], they do not present a complete algorithm either.

Existing software is also limited in this domain. Many implementations are only
valid for certain parameters (e.g., integer and real s or even just a few values of s [21]).

Others [17, 18, 20] use arbitrary-precision arithmetic, for instance in order to
produce high-precision results for computing zeros. Bailey and Borwein [2] argue co-
gently for the need to have high-precision calculations in many applications. However,
a vast set of precedents show the value of standard floating-point implementations (for
instance see the C/C++ mathematics library) of useful functions. We here seek to
add the polylogarithm to the a list of commonly available functions. A simple in-
stance in which this would be useful is the calculation of the moment generating and
characteristic functions of the zeta distribution.

4. Components. As with many special functions we use series representations
to calculate the polylogarithm. However, no single series converges over the entire
domain and there are some places where special numerical care is needed even though
the series technically converge. Thus, as in previous works we will present several
components. These are largely consistent with those works, but some of the previous
works are incomplete or have mistakes, and hence we will list all of the series used
here in detail to eliminate any confusion.

We also use one identity to transform some parameter values into a more amenable
range.

In the following section we will precisely define how these are combined into an
algorithm.

4.1. Direct Series. Our first port of call is the definition (1.1). This definition
can be used directly to calculate the polylogarithm for |z| < 1, and we shall refer to
this approach to calculation as Series 1.

Although it is convergent for |z| < 1, the rate of convergence can be quite slow
close to the boundary. Crandall [7] suggests use of this series for |z| < 1/2, which leads
to an easy calculation of 1 bit of precision per term (asymptotically) in the series,

5

based on the asymptotic dependence on the |z|k term. Bailey and Borwein [4] suggest
|z| < 1/4 based on experimental results, however we shall refine this the section
below. However, note that much of the commentary presumes very-high precision
will be required, and hence the sum must proceed deep into the tail of the series.
We are concerned here with finite precision and when <(s) < 0 the early part of the
sequence is strongly impacted by the denominators of the sequence. If z is small, we
may not need to proceed further into the tail, and so Crandall’s comment about bits
per term may not apply.

4.2. Alternative Series 2. The main alternative power series is about z = 1,
where we find [8, (32)] and [23, (9.3)] and [4, (2)]

(4.1) Lis(z) = Γ(1− s)(− ln z)s−1 +

∞∑
k=0

ζ(s− k)

k!
(ln z)k,

which converges for | ln z| < 2π and s not a positive integer. We call this Series 2.
Convergence in the region | ln z| < 2π arises from Riemann’s functional equation

[1, 23.2.6]
ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s),

which, when substituted in the above series leads to

Lis(z) = Γ(1− s)(− ln z)s−1

+2sπs−1
∞∑
k=0

sin(π(s− k)/2)ζ(1− s+ k)
Γ(1− s+ k)

Γ(1 + k)

(
ln z

2π

)k
,

The terms ζ(1− s+ k) converges to 1 as k →∞, and the sine is bounded, and hence
the tail of the sequence has much in common with that of Series 1, except that it is
dominated by the term (ln z/2π)k. Figure 4.1 shows contours of ln z/2π both at small
and large scales.

This series has a much larger domain of convergence than Series 1, but there
is a small region about the origin which is excluded and hence we cannot discount
Series 1. Past approaches partition the space using Series 1 inside some radius around
the origin, and Series 2 in a region around that with alternative radii being proposed
by Crandall [7] (|z| = 1/2) and Bailey and Borwein [4] (|z| = 1/4).

However, it seems more natural (and is actually consistent with the detailed
results in [4]) to make the dividing line between Series 1 and Series 2 slightly more
complex: we will prefer Series 1 when 2π|z| < | ln z|. This leads to a more complex
boundary, but results in a better tradeoff between the two approaches in some regions,
particularly on the negative real axis where convergence of Series 2 is at its worst.

The regions are shown in Figure 4.2. Note that on the positive real axis we fall
back to the advice of Bailey and Borwein in that our transition occurs at |z| ' 0.2323
(near 1/4) and on the negative real axis we chose a threshold z ' 0.5113 near that of
Crandall (near 1/2). The shape of the region proposed for the choice matches very
closely to the empirical results shown in Bailey and Borwein [4, Figure 1].

Many existing works presume that use of Series 2 will be restricted to the region
ln z/2π ≤ 0.5 in order that, asymptotically, we obtain 1 bit per term as for Series 1.
Figures 4.1 and 4.2 together illustrate a seemingly unstated fact that despite being
a very large region, the combined regions |z| ≤ 0.5 and | ln z|/2π ≤ 0.5 still leave a
small gap in the unit disc near the negative real axis (shaded yellow). This gap closes
if we allow as small a change as | ln z|/2π ≤ 0.512, and so we can either allow a small

6

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Re(z)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
(z

)

0.050

0.100

0.150

0.2
00

0.250

0.3
00

0.350

0.400

0.450

0.500 0.500

10 0 10 20 30
Re(z)

20

15

10

5

0

5

10

15

20

Im
(z

)

0.500
0.512

Fig. 4.1. Contours of constant magnitude for ln z/2π (solid lines). The final tear-drop shaped
contour near the origin corresponds to ln z/2π = 0.55. Dotted lines show |z| = 0.25, 0.5 and 1.0 for
comparison. The right figure illustrates the large regions of convergence outside the uni circle for
given thresholds.

1.0 0.5 0.0 0.5 1.0
Re(z)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Im
(z

)

|z| = |ln(z)|/2
|z|=1
|z|=1/2
|z|=1/4
|ln(z)|/2 =0.512

Fig. 4.2. Boundaries in the choice of Series 1 and 2. Series 1 is used in the shaded blue region.
The yellow region indicates the region that is missed if we bound use of Series 2 by ln z/2π ≤ 0.5. The
shaded red tear-drop region indicates the region excluded if we use Series 2 when ln z/2π ≤ 0.512.
As that this lies inside the region where Series 1 is used all of the unit disc is covered by either
Series 1 or 2.

increase in the region allowed for Series 2, or use an alternative in this region. The
duplication formula appears to work, but we have not proved that it converges for
every point in this domain and so we prefer the former approach.

Detailed results of the tradeoffs are included in Section 6.1.

4.3. Alternative Series 3. For s = n > 0 (i.e., a positive integer) we get the
same summation, however, the terms ζ(1) and Γ(1 − s) both have poles. The poles

7

cancel, but if we naively calculate these, we run into numerical problems. Cancelling
the two poles we get (as in [8, (33)])

(4.2) Lin(z) =
(ln z)n−1

(n− 1)!

[
Hn−1 − L

]
+

∞∑
k=0

k 6=n−1

ζ(n− k)
(ln z)k

k!
,

where L = ln(− ln z). This series could be used for cases where s = n but when s is
near an integer then there are numerical difficulties in computing the difference of the
two large terms. Hence for s = n + τ for small τ , we perform an expansion around
s = n to get

Lin+τ (z) =
(ln z)n−1

(n− 1)!
Qn−1(L, τ) +

∞∑
k=0

k 6=n−1

ζ(n+ τ − k)
(ln z)k

k!
,(4.3)

where the two problematic terms are grouped into Qn(L, τ), i.e.,

Qn(L, τ) = ζ(1) + (−1)nn!Γ(−n− τ)(ln z)τ .

Crandall [8, (51)] expands Qn(L, τ) as a Taylor series about τ = 0 as

Qn(L, τ) =

∞∑
j=0

cn,j(L)τ j ,

and gives the ck,j in [8, pp.35-36] recursively, but note that Crandall’s manuscript has
typographic errors; Bailey and Borwein [3, 4] give the correct formula. However, for
|τ | � 1 we need only take a small number of terms, the first three of which can be
written explicitly as

cn,0(L) = Hn − L,

cn,1(L) = −γ1 −
(ψ(n+ 1)− L)2

2
−
(
π2

6
− ψ(1)(n+ 1)

2

)
,

cn,2(L) =
γ2
2

+
(ψ(n+ 1)− L)3

6

+(ψ(n+ 1)− L)

(
π2

6
− ψ(1)(n+ 1)

2

)
+
ψ(2)(n+ 1)

6
.

Noting that from [1, 6.3.2] and (2.1) we get relationships such as

ψ(0)(n) = ψ(n) = −γ +Hn−1 and ψ(1)(1) = ζ(2) =
π2

6
,

we see that cn,0(L) and c0,1(L) are consistent with the formulas given in [8, pp.36].
Wood [23, (9.4)] presents a similar expansion, but only the 1st term is the same. The
2nd term differs only in the signs of some terms and there are other typographic errors
in the work.

Taking τ = 0 we use just the first term leading to a result consistent with (4.2).
Taking a jth order approximatio we get

Q(j)
n (L, τ) = cn,0(L) + τcn,1(L) + · · ·+ τ jcn,j(L),

8

in

(4.4) Lin+τ (z) ' (ln z)n−1

(n− 1)!
Q

(j)
n−1(L, τ) +

∞∑
k=0

k 6=n−1

ζ(n+ τ − k)
(ln z)k

k!
.

We refer to (4.4) as Series 3. To determine how many terms are needed in Q and
how small |τ | need be before we swap to Series 3, we test the two series empirically
near the point s = 1. Figure 4.3 shows the errors as a function of |τ |. We see quite
similar results for several other values of s = n that were tested. The figure indicates
that around 5 terms are needed before the cross-over point between the two series lies
below 10−12 (our target precision) and that the threshold should be τ < 10−3.

10 6 10 5 10 4 10 3 10 2 10 1

| |

10 13

10 11

10 9

10 7

10 5

10 3

re
la

tiv
e

ab
so

lu
te

 e
rro

r

Series 2
Series 3 (5 terms)
Series 3 (3 terms)

Fig. 4.3. A comparison of Series 2 and 3 near positive integer parameters, i.e., s = n + τ ,
for n > 0 (here n = 1 and z = −1/2). The number of terms in Series 3 is with respect to the
approximation of Qn−1(L, τ) used in (4.3). Note that the cross-over point between Series 2 and
Series 3 achieves the desired precision for 5 terms and a threshold around 10−3. The three term
version of Series 3 is included because in that case the terms are known in closed form making
calculation potentially faster with a loss of precision of about 1 order of magnitude.

4.4. The Special Case At z = 1. There are a number of special cases where
the polylogarithm resolves to a more familiar function. The most obvious (the reason
for which the function is named) is that Li1(z) = − ln(1− z), but at the moment we
do not use special cases in the calculations so that we can use these identies as test
cases. However the following identity

(4.5) Lis(1) = ζ(s), for <(s) > 1,

is useful because at this allows Series 2 and Series 3 to be written without considering
the special case in detail. Note that when <(s) ≤ 1 there is a pole at z = 1, so the
function returns Inf.

9

4.5. Duplication Identity. The polylogarithm satisfies the duplication iden-
tity [12, (e)]

(4.6) Lis(z) + Lis(−z) = 21−sLis(z
2).

Wood refers to this as the square formula [23, 14.1], and notes that in an alternative
[23, 15.1] form

(4.7) Lis(z) = 2s−1
(
Lis(
√
z) + Lis(−

√
z)
]
,

it could be use recursively to put z into a domain where another algorithm can be
brought to bear. However Wood recommends against this citing difficulties in imple-
menting recursion in his contemporary Fortran as well as the increase in the number
of polylogarithms to be calculated. Recursion is not difficult in many modern lan-
guages so this can be a useful technique noting that the increase in the number of
polylogarithms is countered by faster convergence on the square root.

4.6. Reciprocal Identity. The polylogarithm also satisfies another identity of-
ten called Jonquière’s Identity, which leads to a reciprocal relationship:

Lis(z) + (−1)sLis(1/z)

=
(2πi)s

Γ(s)
ζ

(
1− s, 1

2
+

ln(−z)
2πi

)
− 2πiΘ(z)

(ln z)s−1

Γ(s)
,(4.8)

where Θ(z) is Crandall’s domain-dependent step function

(4.9) Θ(z) =

{
1 if =(z) < 0 or z ∈ [1,∞),
0 otherwise.

The function Θ(z) is intended to provide the conventional behaviour on and around
the branch.

Wood [23] and others suggest use of this for large |z|. We tested the reciprocal
computation but we found this approach to be numerically unstable for s with a large,
negative imaginary component5 and thus prefer not to use it here. This choice also
reduces the dependence of our code on the Hurwitz zeta function, which is perhaps
the least commonly implemented function (of those used here) in standard scientific
packages.

Note that if s takes negative integer values we hit poles of the Gamma functions.
In these cases we use the relation [23, (10.3)]

(4.10) Li−n(z) + (−1)nLi−n(1/z) = 0,

but we shall use this relationship primarily for validation in what follows.

5. Algorithm.

5.1. Dependencies. The calculations require a number of other mathematical
constants, sequences and functions as described in Section 2. Many of these (the
gamma, digamma, polygamma, and Riemann, Hurwitz and Dirichlet zeta functions)
are provided by Julia’s SpecialFunctions package (v0.10.3) designed around the

5Wood and others primarily consider the calculation of the polylogarithm with real arguments.

10

Algorithm 1 The polylogarithm algorithm Lis(z) with inputs s, z ∈ C.

T1 ← 0.512
T2 ← 10−3

µ← ln(z)
t← |µ|/2π
if 2π|z| ≤ |µ| then

Use Series 1 [defined in (1.1)];
else if t ≤ T1 AND s is further than T2 from a positive, real integer then

Use Series 2 [defined in (4.1)]
else if t ≤ T1 then

Use Series 3 [defined in (4.4) with j = 4]
else

Recurse on the Duplication Identity (4.7)
end if

OpenSpecFun6 and OpenLibm7 libraries. The implementation of the polygamma is re-
stricted to integer orders m but that is all we require. The Euler-Mascheroni constant
γ and π are provided as part of Base.MathConstants as Irrational type constants,
which is a type that supports both floating point and functional (arbitrary precision)
definition.

Other required constants, sequences and functions are defined as part of this
package using standard values and algorithms as indicated in Section 2. The imple-
mentations of these components are comparatively straight forward.

5.2. Domain breakup. The algorithm selects various approaches in different
domains. The completed algorithm is given via the pseudo-code described in Algo-
rithm 1, which describes the breakup of the input domain in detail. The main breaks
occur to use Series 3 near positive integer values of s and to separate the domains
where Series 2 and Series 3 have the best convergence.

There are special cases of the function for certain values (for instance Li1(z) =
− ln(1− z)) but we do not use these at present because these identities are useful in
testing series convergence. These might be used more in future versions.

5.3. Stopping Criteria. Determining at which point to stop each sequence to
attain a given accuracy with minimal cost is not completely trivial. For instance,
Series 1 has terms like zk/ks. For large k we can approximate these as ∼ zk and
hence the remainder term is that of the geometric series, and hence for real, positive
z it should be almost trivial to determine a cut-off at which we terminate the series,
which seems to work well for |z| near 0.5. However, for small z the series drops so
fast we don’t reach this asymptotic domain. Luckily, a practical compromise is to
terminate the sequence when the relative value of a summation term drops below 1/2
of the desired precision bound, i.e., at the first m such that

zm/km∑m
k=1 z

k/ks
≤ 0.5a,

where for the majority of the work here we use a = 10−12. We must be a little
careful for very small z and <(s) < 0 to terminate the sequence only after it begins

6OpenSpecFun uses AMOS and Faddeeva to provide Bessel, Airy and error functions.
7OpenLibm uses the standard C libm, which includes, for instance the gamma function suite.

11

to decrease at k = d<(s)/ ln |z|e.
The bound will may be somewhat conservative for imaginary or negative z where

the sequence oscillates and thus may contain cancelling terms.
We will show the relative merits of this cut-off in the following sections.
Series 2 appears much more complicated, but has essentially the same character-

isics with the exception that its tail is dominated by powers of ln z. However, it is
somewhat more oscillatory and we have found that testing the relative size of the last
two terms in the tail are both ≤ 0.5a, is more reliable, but once again, it is somewhat
conservative due to the oscillatory nature of the sequence.

The tail of the summation in Series 3 is almost identical to that in Series 2 and
so we use the same termination criteria.

6. Tests. The goal we set here is to attain a relative absolute error ≤ 10−12.
This value was chosen to be challenging but realistic. More importantly, if we set the
goal to be machine precision, we would not be able to see by how much the approach
exceeds the goal and hence is being potentially wasteful of computation.

The majority of tests performed here were conducted by creating benchmark data
using Mathematica’s arbitrary precision Polylog function, to high precision. Note
that, in reading this data into double-precision floating point variables in Julia there
is an inevitable loss of accuracy to machine precision, and so there is a lower bound
on the degree to which we can test the accuracy of our code, i.e., errors around 10−15

should not be over-interpreted.
In addition to the tests reported below, a large number of additional tests (nearly

1000) were created using special values, common identities between the polylogarithm
function and other standard functions, and relationships between polylogarithms, e.g.,
(4.10).

6.1. Testing of |z| domains. The breakup of the z domain is illustrated in
Figure 6.1. The left figure shows the boundary (explained in Section 4.2) between use
of Series 1 and 2 on a large set of random points. It is natural to question how well
this breakup works.

A set of test points z were created on the unit disc, spread in even radii circles
about the origin, and we performed this test for around three different values of s and
errors in Series 1 and 2 compared.

Figure 6.2 shows the results: both the relative absolute errors and number of
iterations required by the two series as functions of |z| and arg z. Noteworthy features
include the trade-off in number of iterations in the two series (lower-left) which crosses-
over between 0.25 and 0.5, with the larger values being along the negative real axis
(bottom right figure).

Figure 6.1 (b) illustrates the regions in which the recursive duplication identity
is used, and to what depth. Of note, the recursion is not a straight-forward matter
of breaking the calculation up into a balanced binary tree to a given depth. The
positive square-root term in the recursion quickly drops into the domain where we
use Series 2. It is the negative square-root term that bounces around before hitting
this region. The recursion tree is illustrated Figure 6.3 in a typical case of 2 levels
of recursion, where Series 2 would be evaluated 3 times rather than 4 as one might
guess.

12

1.0 0.5 0.0 0.5 1.0
Re(z)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
(z

)

Series 1
Series 2

(a) The boundary between Series 1 and Series 2.

1000 500 0 500 1000
Re(z)

1000

750

500

250

0

250

500

750

1000

Im
(z

)

Series 2 used 2 times
Series 2 used 3 times
Series 2 used 4 times
Series 2 used 5 times

(b) The duplication identity at work.

Fig. 6.1. Illustration of the alternative approaches used as a function of z.

0.0 0.2 0.4 0.6 0.8 1.0
|z|

10 15

10 14

10 13

10 12

10 11

re
la

tiv
e

ab
so

lu
te

 e
rro

r

0.0 0.2 0.4 0.6 0.8 1.0
|z|

101

102

103

nu
m

be
r o

f t
er

m
s

0.0

0.125
0.25
0.3750.5
0.6250.750.875
1.0arg(z)/

0.0 0.2 0.4 0.6 0.8 1.0
arg(z)/

10 15

10 14

10 13

10 12

10 11

re
la

tiv
e

ab
so

lu
te

 e
rro

r

Series 1
Series 2

0.0 0.2 0.4 0.6 0.8 1.0
arg(z)/

101

102

103

nu
m

be
r o

f t
er

m
s

Fig. 6.2. A comparison of Series 1 and 2 for z on the unit circle (with s = −2). The top
two plots show relative accuracy showing that the two approaches meet the accuracy requirements
within the domains in which we calculate them. The stopping rule for Series 2 is perhaps a little
conservative. The two lower plots show number of terms calculated in the series showing exactly the
trade-off described in Section 4.2, namely, that the cut-off between them lies between approximately
1/4 and 1/2, and that while the number of terms in Series 1 is somewhat independent of arg(z),
Series 2 performs better for positive real values of z, and worst for negative real values.

13

Lis(z)

Lis(z1/2) Lis(-z1/2)

Lis((-z1/2)1/2) Lis(-(-z1/2)1/2)
Fig. 6.3. A typical recursion using the duplication identity twice, but evaluating Series 2 only

3 times (blue terms), not 4.

6.2. Accuracy. We assessed overall accuracy using three sets of 10,000 uni-
formly at-random values of s and z with z chosen over 2x2, 16x16 and 2000x2000
rectangles centred on the origin of the complex plane, and with s chosen in the 16x16
rectangle. The data used to perform tests is included with our open source code. The
package also contains code to regenerate all test figures included here.

We present three sets of tests over different sized ranges of z in order to test
the polylogarithm function (i) in the typical region around the unit circle, (ii) for
a larger domain including some recursion, and (iii) for a very large range of z to
stress the algorithms, particularly the recursion. Histograms of the performance of
the algorithm are shown in Figure 6.4. Only 88 cases out of 30,000 tests fell outside
the desired accuracy of a relative error no more than 10−12, and the worst case was
1.1× 10−11. Achieving a higher degree of accuracy is possible, but then the majority
of points are calculated too accurately (and hence are wasteful of computations).

It is interesting to understand where the errors occur. The vast majority occur
for large z, in the range where 3 or 4 levels of recursion were required. Moreover, they
occur for s with a large, real component as shown in Figure 6.5.

6.3. Computational Speed. Table 1 reports the average computation times
on the three random datasets used above on an Intel i9-10900K CPU running in Julia
v1.4.2 with v0.10.3 of the SpecialFunctions package, using a single core, running
under Linux Mint 19.3.

The main impact on performance occurs when recursion is needed for large z
values, which requires multiple evaluations of earlier series.

The table also shows Mathematica8 computation times. The Julia code is at
least ten times as fast, which reflects Julia’s desire to provide very fast computations.
However, we do not argue that this is an entirely valid comparison. It is problematic
comparing computation times between programming languages as their internal mea-
surement facilities may use different concepts and underlying libraries, and therefore
comparisons are not “apples-to-apples” comparisons. Nevertheless, the speeds we are
attaining seem creditable for a function of this type.

A second comparison arises in the results presented in [4], where times for com-
putations of the order of 20,000-40,000 µs are reported, though once again note that
we cannot simplistically compare these results as they were computed to 1000 digits
of precision. However, presuming 1 bit of accuracy per summation term, i.e., that
the computation time is somewhat proportional to the required accuracy, these times

8Calculations for this component are made to the same precision goal as our code.

14

16 15 14 13 12 11 10 9 8
log10(relative absolute error)

0

500

1000

1500

2000

2500

nu
m

be
r

(a) z in a 2x2 rectangle; 2 points fall outside the goal 10−12.

16 15 14 13 12 11 10 9 8
log10(relative absolute error)

0

1000

2000

3000

4000

nu
m

be
r

(b) z in a 16x16 rectangle; 0 points fall outside the goal 10−12.

16 15 14 13 12 11 10 9 8
log10(relative absolute error)

0

1000

2000

3000

4000

5000

nu
m

be
r

(c) z in a 2000x2000 rectangle; 86 points fall outside the goal
10−12.

Fig. 6.4. Histograms of log10 of the relative, absolute errors. The dashed lines in each plot
indicate the maximum error. In total, 88 points out of 30,000 fell outside of the desired accuracy
goal.

15

8 6 4 2 0 2 4 6 8
Re(s)

8

6

4

2

0

2

4

6

8

Im
(s

)

Fig. 6.5. A scatter plot of the random values of s used for testing. Red points indicate those
with a relative error larger than 10−12.

Dataset Julia Mathematica ζ(z)

<(z),=(z) ∈ [−1, 1] 30.3 1606.0 1.0

<(z),=(z) ∈ [−8, 8] 41.3 1790.0 1.0

<(z),=(z) ∈ [−1000, 1000] 143.2 1890.0 0.8
Table 1

Computation times for the polylogaarithm and zeta functions. All times are given in µs and
are averages over 10,000 computations.

would scale to around 240-480 µs to obtain 12 digits. The comparison is still flawed
because Bailey and Borwein [4] don’t report details of the system used to perform
their computations, but the Julia implementation seems to compare favourably.

As another comparison point we also report the time to compute Julia’s ζ function
over the same range of inputs. The polylogarithm calculation is an order of magnitude
slower, which is quite reasonable given that the more common computation strategy
(Series 2) requires evaluation of a series of ζ functions. However, the result should
allow readers to benchmark the expected performance they would receive against
performance of zeta function calculations in existing libraries.

The current code has room for improvement. The code was written to be simple
and clear and does not exploit Julia’s language-dependent tricks to improve perfor-
mance. Nor does it use numerical techniques such as Kahan summation.

The slowest computations involve the recursion. Developing a more stable re-
ciprocal method would obviate this, and bring these times back towards those on
other domains. However, an interesting alternative would be to combine the terms in
the two components: Series 2 could then reuse some of the component calculations,
notably the zeta function calculations.

We leave these improvements as future work.

7. Conclusion. This paper describes a complete algorithm for computing nu-
merical values of the polylogarithm for complex arguments using standard double-
precision floating-point calculations.

16

There are many possibilities for improvements. Most obviously, the current code
has been written for simplicity and clarity and could be optimised in many ways.
Simple improvements include more extensive use of look-up tables and series termi-
nation thresholds that cope better with oscillation. Moreover series are added in the
most direct way as they are calculated (generally from largest to smallest) which isn’t
necessarily optimal, not to mention that Kahan summation or Shank’s transformation
might be used to speed up convergence of summations.

There are also additional sequences that could be applied. In particular, asymp-
totic forms valid for |z| � 1, though our experiments with these showed little promise.

There are many extensions to be made in the future.
• Extending the toolkit to produce some of the standard related functions such

as Fermi-Dirac integrals.
• Mass production of calculations: Julia’s default approach to calculating mul-

tiple values of a function is to broadcast the inputs, which is ideal for paral-
lelisation, but in calculating polylogarithms for multiple values of z but the
same s, we can potentially reuse many of the terms in the calculation, thus
saving a large amount of computations.

• Calculation of incomplete polylogarithm functions.
• Calculation of Neilsen generalised polylogarithm functions [10].
• Calculation of multiple polylogarithms [22].

Acknowledgements. We would like to thank the Australian Research Council
for funding through the Centre of Excellence for Mathematical & Statistical Frontiers
(ACEMS), and grant DP110103505. I would also like to thank Andrew Feutrill for
help in revising the paper.

REFERENCES

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, Dover Publications, Inc., New York, 1964.

[2] D. H. Bailey and J. M. Borwein, High-precision computation and mathematical physics,
Proceedings of Science: XII Advanced Computing and Analysis Techniques in Physics
Research, (2008). https://www.carma.edu.au/resources/jon/erici.pdf.

[3] D. H. Bailey and J. M. Borwein, Computation and theory of Mordell–Tornheim–Witten
sums II, Journal of Approximation Theory, 197 (2015), pp. 115–140, https://doi.org/https:
//doi.org/10.1016/j.jat.2014.10.004. Special Issue Dedicated to Dick Askey on the occasion
of his 80th birthday.

[4] D. H. Bailey and J. M. Borwein, Crandall’s computation of the incomplete Gamma function
and the Hurwitz zeta function, with applications to Dirichlet L-series, Applied Mathematics
and Computation, 268 (2015), pp. 462–477, https://doi.org/https://doi.org/10.1016/j.amc.
2015.06.048.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: a fresh approach to numer-
ical computing, SIAM Review, 59 (2017), pp. 65–98.

[6] M. W. Coffey, An efficient algorithm for the Hurwitz zeta and related functions, Journal of
Computational and Applied Mathematics, 225 (2009), pp. 338–346.

[7] R. Crandall, Note on fast polylogarithm computation, January 2006. www.wolfgang-ehrhardt.
de/Polylog.pdf.

[8] R. Crandall, Unified algorithms for polylogarithm, L-series, and zeta variants, Algo-
rithmic Reflections: Selected Works, (2012). PSIpress, www.marvinrayburns.com/
UniversalTOC25.pdf.

[9] IEEE standard for floating-point arithmetic, IEEE Standards, (2008), pp. 1–70, https://doi.
org/10.1109/IEEESTD.2008.4610935.

[10] D. Jacobs and F. Lambert, On the numerical calculation of polylogarithms, BIT Numerical
Mathematics, (1972), pp. 581–585.

[11] S. Karpinski, Man creates one programming language to rule them all, WIRED, (2014).
[12] M. H. Lee, Polylogarithms and Riemann’s ζ function, Phys. Rev. E, 56 (1997), pp. 3909–3912.

17

https://www.carma.edu.au/resources/jon/erici.pdf
https://doi.org/https://doi.org/10.1016/j.jat.2014.10.004
https://doi.org/https://doi.org/10.1016/j.jat.2014.10.004
https://doi.org/https://doi.org/10.1016/j.amc.2015.06.048
https://doi.org/https://doi.org/10.1016/j.amc.2015.06.048
www.wolfgang-ehrhardt.de/Polylog.pdf
www.wolfgang-ehrhardt.de/Polylog.pdf
www.marvinrayburns.com/UniversalTOC25.pdf
www.marvinrayburns.com/UniversalTOC25.pdf
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935

[13] L. Lewin, Polylogarithms and associated functions, North Holland, New York., 1981.
[14] J. J. Y. Liang and J. Todd, The stielties constants, Journal of Research of the Notionol

Bureau of Standords – Mathematical Sciences, 76B (1972), pp. 161–178. https://nvlpubs.
nist.gov/nistpubs/jres/76B/jresv76Bn3-4p161 A1b.pdf.

[15] L. C. Maximon, The dilogarithm function for complex argument, Proc. R. Soc. Lond. A.,
(2003), pp. 2807–2819. http://doi.org/10.1098/rspa.2003.1156.

[16] The on-line encyclopedia of integer sequences (OEIS). https://oeis.org/.
[17] Polylogarithms and Clausen functions, mpmath 1.1.0, Python 3.6.9. http://mpmath.org/doc/

current/functions/zeta.html#polylogarithms-and-clausen-functions.
[18] Polylog, Wolfram language & system. https://reference.wolfram.com/language/ref/PolyLog.

html.
[19] L. Vepstas, An efficient algorithm for accelerating the convergence of oscillatory series, useful

for computing the polylogarithm and Hurwitz zeta functions, Numerical Algorithms, 47
(2008), pp. 211–252, https://doi.org/10.1007/s11075-007-9153-8, https://arxiv.org/abs/
math/0702243. https://arxiv.org/abs/math/0702243.

[20] L. Vepstas, Anant – algorithmic ’n analytic number theory, version 0.2.4, 2019. https://
github.com/linas/anant.

[21] A. Voigt, polylogarithm. Julia package. https://github.com/Expander/polylogarithm, accessed
August 27, 2020.

[22] M. Waldschmidt, Multiple polylogarithms: An introduction, Number Theory and Dis-
crete Mathematics, (2002). https://webusers.imj-prg.fr/∼michel.waldschmidt/articles/
pdf/Chandigarh.pdf.

[23] D. C. Wood, The computation of polylogarithm, Tech. Report Technical Report 15-92, Univer-
sity of Kent, 1992. https://www.cs.kent.ac.uk/pubs/1992/110/.

[24] D. Zagier, Frontiers in Number Theory, Physics, and Geometry II, Springer, Berlin, Heidel-
berg., 2007, ch. The Dilogarithm Function. https://doi.org/10.1007/978-3-540-30308-4 1.

18

https://nvlpubs.nist.gov/nistpubs/jres/76B/jresv76Bn3-4p161_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/76B/jresv76Bn3-4p161_A1b.pdf
http://doi.org/10.1098/rspa.2003.1156
https://oeis.org/
http://mpmath.org/doc/current/functions/zeta.html#polylogarithms-and-clausen-functions
http://mpmath.org/doc/current/functions/zeta.html#polylogarithms-and-clausen-functions
https://reference.wolfram.com/language/ref/PolyLog.html
https://reference.wolfram.com/language/ref/PolyLog.html
https://doi.org/10.1007/s11075-007-9153-8
https://arxiv.org/abs/math/0702243
https://arxiv.org/abs/math/0702243
https://arxiv.org/abs/math/0702243
https://github.com/linas/anant
https://github.com/linas/anant
https://github.com/Expander/polylogarithm
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/Chandigarh.pdf
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/Chandigarh.pdf
https://www.cs.kent.ac.uk/pubs/1992/110/
https://doi.org/10.1007/978-3-540-30308-4_1

	1 Introduction
	2 Notation, Conventions and Standard Results
	2.1 Standard Functions
	2.2 Additional Functions and Sequences
	2.3 The Branch

	3 Related Work
	4 Components
	4.1 Direct Series
	4.2 Alternative Series 2
	4.3 Alternative Series 3
	4.4 The Special Case At z=1
	4.5 Duplication Identity
	4.6 Reciprocal Identity

	5 Algorithm
	5.1 Dependencies
	5.2 Domain breakup
	5.3 Stopping Criteria

	6 Tests
	6.1 Testing of |z| domains
	6.2 Accuracy
	6.3 Computational Speed

	7 Conclusion
	References

